Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery

Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic li...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 40; no. 2; pp. e1800279 - n/a
Main Authors Zhang, Wen‐Jian, Hong, Chun‐Yan, Pan, Cai‐Yuan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self‐assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self‐assembly method, which is usually called polymerization‐induced self‐assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self‐assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large‐scale production of polymeric nanoparticles. In this review, the developments of PISA‐based polymeric nanoparticles for drug delivery are discussed. Drug delivery systems based on functionalized polymeric nanoparticles have attracted considerable attention. For fabrication of polymeric nanoparticles, polymerization‐induced self‐assembly (PISA) offers decisive advantages over conventional protocols in terms of efficiency and cost‐effectiveness. Recently, the nascent investigation of functional PISA‐generated nanocarriers with stimulus‐responsive drug release has already found applications in the biomedical area, which is discussed in this review.
AbstractList Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self‐assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self‐assembly method, which is usually called polymerization‐induced self‐assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self‐assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large‐scale production of polymeric nanoparticles. In this review, the developments of PISA‐based polymeric nanoparticles for drug delivery are discussed. Drug delivery systems based on functionalized polymeric nanoparticles have attracted considerable attention. For fabrication of polymeric nanoparticles, polymerization‐induced self‐assembly (PISA) offers decisive advantages over conventional protocols in terms of efficiency and cost‐effectiveness. Recently, the nascent investigation of functional PISA‐generated nanocarriers with stimulus‐responsive drug release has already found applications in the biomedical area, which is discussed in this review.
Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed.Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed.
Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed.
Author Pan, Cai‐Yuan
Zhang, Wen‐Jian
Hong, Chun‐Yan
Author_xml – sequence: 1
  givenname: Wen‐Jian
  surname: Zhang
  fullname: Zhang, Wen‐Jian
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Chun‐Yan
  surname: Hong
  fullname: Hong, Chun‐Yan
  email: hongcy@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Cai‐Yuan
  surname: Pan
  fullname: Pan, Cai‐Yuan
  email: pcy@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29968349$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWGT4dhOnHg5TClUKhdBWUeOL-DixMFOQOkGHoFn5EnwdFqQKiFWPkf6vl_y-Q_R3hAGg9BDAisCQJ_2MqoVBdLkpRZ30AGpKCmYoPVenoHSgjDG99FhShcA0JRA76F9KgRvWCkO0Pe3wS-9ie5STi4Mv378PB30rIzG7423eV2nZPrOLzhYfDIPaktJ7y4z8cwH9RlvwriLwK_lEEYZJ6e8SVgOGp9_Mi7i9Th6p67ysRvwcZw_4mPj3VcTl_vorpU-mQfX7xH6cPL8fPOyOHvz4nSzPitUSUAUzNa2E1JZyisCVaO4rgShihNtKksqwYGJjmtqhKx1R4npGDSgbMW1LsGyI_RklzvG8GU2aWp7l5TxXg4mzKmlwFlNGIgyo49voRdhjvnTmSK8AS6gqjL16Jqau97odowud7G0N6fNQLkDVAwpRWNb5aarI0xROt8SaLcNttsG2z8NZm11S7tJ_qcgdsI3583yH7p9tX63-ev-BlbMsWM
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215544
crossref_primary_10_1021_acsmacrolett_0c00151
crossref_primary_10_1016_j_jconrel_2020_12_027
crossref_primary_10_1039_D4PY01204F
crossref_primary_10_1002_marc_202100333
crossref_primary_10_1021_acsmacrolett_8b00839
crossref_primary_10_1021_acspolymersau_4c00074
crossref_primary_10_1021_acsmacrolett_3c00547
crossref_primary_10_3390_sym15020403
crossref_primary_10_1016_j_ultsonch_2024_106855
crossref_primary_10_3390_polym13162603
crossref_primary_10_1002_marc_202000720
crossref_primary_10_1002_anie_202211792
crossref_primary_10_1021_acs_langmuir_1c03430
crossref_primary_10_1021_acs_macromol_2c00379
crossref_primary_10_1039_D2PY01086K
crossref_primary_10_1080_17425247_2020_1767582
crossref_primary_10_1007_s10965_020_02290_3
crossref_primary_10_1080_00914037_2019_1706508
crossref_primary_10_1002_marc_202300334
crossref_primary_10_1039_C9CC00407F
crossref_primary_10_1002_marc_202100909
crossref_primary_10_1080_15583724_2020_1723022
crossref_primary_10_1021_acsmacrolett_4c00400
crossref_primary_10_1002_pol_20210292
crossref_primary_10_1016_j_eurpolymj_2020_109907
crossref_primary_10_1039_D0PY01389G
crossref_primary_10_1021_acs_macromol_1c00038
crossref_primary_10_1002_pi_6437
crossref_primary_10_1016_j_polymer_2021_123431
crossref_primary_10_1039_D0MH00354A
crossref_primary_10_1021_acs_macromol_3c01575
crossref_primary_10_1021_acs_chemrev_0c01338
crossref_primary_10_1021_acsmacrolett_9b00464
crossref_primary_10_1039_D2PY01148D
crossref_primary_10_1039_D3LP00135K
crossref_primary_10_1021_acs_macromol_0c02833
crossref_primary_10_1039_D1PY01667A
crossref_primary_10_3390_pharmaceutics15020501
crossref_primary_10_1002_pol_20240609
crossref_primary_10_1021_acs_jpclett_3c02392
crossref_primary_10_1021_acs_macromol_0c01624
crossref_primary_10_1021_acs_biomac_0c00685
crossref_primary_10_1021_acsapm_9b00280
crossref_primary_10_1002_marc_202100201
crossref_primary_10_1002_ange_202315849
crossref_primary_10_1016_j_critrevonc_2022_103895
crossref_primary_10_1016_j_polymer_2021_124095
crossref_primary_10_1002_marc_202300361
crossref_primary_10_1039_D0PY00678E
crossref_primary_10_1002_ange_202202448
crossref_primary_10_1007_s10904_024_03041_3
crossref_primary_10_1039_D1NJ01791H
crossref_primary_10_1002_marc_202000635
crossref_primary_10_1021_acs_macromol_9b00144
crossref_primary_10_1021_acsami_3c14144
crossref_primary_10_1039_D3PY00099K
crossref_primary_10_1039_D4SM00654B
crossref_primary_10_1039_D0PY01425G
crossref_primary_10_1039_D0PY01558J
crossref_primary_10_1007_s10118_021_2533_z
crossref_primary_10_3389_fchem_2019_00518
crossref_primary_10_1021_acs_chemrev_3c00350
crossref_primary_10_1039_D1AN00077B
crossref_primary_10_1002_pol_20230556
crossref_primary_10_1016_j_progpolymsci_2023_101739
crossref_primary_10_1021_acs_jpcb_2c06225
crossref_primary_10_1021_acsami_0c09054
crossref_primary_10_1021_acs_macromol_0c00959
crossref_primary_10_1021_acs_macromol_4c01334
crossref_primary_10_1021_acs_macromol_9b01689
crossref_primary_10_1016_j_eurpolymj_2023_111848
crossref_primary_10_1039_D0PY00826E
crossref_primary_10_1007_s10118_025_3275_0
crossref_primary_10_1016_j_ccr_2021_213846
crossref_primary_10_3389_fbioe_2020_576969
crossref_primary_10_1002_marc_202100791
crossref_primary_10_1039_D0PY00296H
crossref_primary_10_1039_C9PY01656B
crossref_primary_10_1039_D2SC00762B
crossref_primary_10_1007_s40820_020_00447_9
crossref_primary_10_1039_D2PY00180B
crossref_primary_10_1016_j_jddst_2023_105265
crossref_primary_10_1039_D1PY01473K
crossref_primary_10_1021_acsmacrolett_9b00427
crossref_primary_10_1016_j_addr_2020_06_021
crossref_primary_10_3390_en18040991
crossref_primary_10_1002_cjoc_202100134
crossref_primary_10_1002_pol_20230579
crossref_primary_10_1021_acs_macromol_1c01276
crossref_primary_10_1002_macp_202100349
crossref_primary_10_1021_acs_macromol_8b01456
crossref_primary_10_1021_acsmacrolett_1c00014
crossref_primary_10_1002_marc_202200071
crossref_primary_10_1016_j_heliyon_2024_e35562
crossref_primary_10_1021_acs_macromol_9b01664
crossref_primary_10_1039_D1PY00046B
crossref_primary_10_1039_D2PY01064J
crossref_primary_10_1021_acs_biomac_4c00292
crossref_primary_10_1080_17458080_2023_2281938
crossref_primary_10_1021_acs_chemmater_9b01635
crossref_primary_10_1002_marc_201800885
crossref_primary_10_1039_D2SC01611G
crossref_primary_10_1515_epoly_2023_0049
crossref_primary_10_1021_acs_macromol_1c02238
crossref_primary_10_1016_j_eurpolymj_2021_110806
crossref_primary_10_1039_D2RA05673A
crossref_primary_10_1016_j_ijpharm_2021_121088
crossref_primary_10_1016_j_polymer_2022_125160
crossref_primary_10_1021_acs_macromol_0c02008
crossref_primary_10_1039_D2SM00635A
crossref_primary_10_1002_pat_4812
crossref_primary_10_1002_marc_201900058
crossref_primary_10_1002_anie_202202448
crossref_primary_10_1039_D0PY00627K
crossref_primary_10_3390_nano10091872
crossref_primary_10_1021_acsmacrolett_3c00148
crossref_primary_10_1039_D4PY00263F
crossref_primary_10_1039_D0PY00368A
crossref_primary_10_1039_D4SC07746F
crossref_primary_10_1021_acs_chemrev_3c00705
crossref_primary_10_1134_S1560090422020087
crossref_primary_10_1021_acsabm_0c01552
crossref_primary_10_1021_acs_macromol_2c00772
crossref_primary_10_1039_D1RA05555K
crossref_primary_10_34133_research_0113
crossref_primary_10_1039_D0PY00465K
crossref_primary_10_1039_D3NJ05245A
crossref_primary_10_1002_advs_202401807
crossref_primary_10_1002_mco2_187
crossref_primary_10_3390_molecules26010012
crossref_primary_10_3390_polym13223920
crossref_primary_10_1002_macp_202200055
crossref_primary_10_1021_acs_macromol_8b02081
crossref_primary_10_3390_polym16152102
crossref_primary_10_1021_acs_macromol_0c00123
crossref_primary_10_3390_polym13203505
crossref_primary_10_1016_j_cplett_2022_139874
crossref_primary_10_1021_acs_chemmater_1c04151
crossref_primary_10_1039_D1PY00145K
crossref_primary_10_1016_j_biomaterials_2023_122191
crossref_primary_10_1039_D0PY00245C
crossref_primary_10_1080_20565623_2025_2467591
crossref_primary_10_1039_D4PY01048E
crossref_primary_10_1002_marc_202100155
crossref_primary_10_1021_acsmacrolett_9b00509
crossref_primary_10_1039_D0PY00407C
crossref_primary_10_1016_j_giant_2022_100126
crossref_primary_10_1021_acspolymersau_2c00027
crossref_primary_10_1039_D0PY00710B
crossref_primary_10_1002_aisy_201900157
crossref_primary_10_1021_acs_macromol_0c00371
crossref_primary_10_3762_bjoc_17_148
crossref_primary_10_1039_D0PY01697G
crossref_primary_10_1021_acs_macromol_3c00759
crossref_primary_10_1002_aic_18014
crossref_primary_10_1021_acs_langmuir_1c02720
crossref_primary_10_1016_j_progpolymsci_2022_101637
crossref_primary_10_18596_jotcsa_1439951
crossref_primary_10_1039_D0PY00084A
crossref_primary_10_1039_D0PY01311K
crossref_primary_10_1039_D2PY00391K
crossref_primary_10_1021_jacs_4c08206
crossref_primary_10_1016_j_ultsonch_2024_106901
crossref_primary_10_1016_j_jcis_2022_10_013
crossref_primary_10_1021_jacs_1c01963
crossref_primary_10_1039_C9NJ05638F
crossref_primary_10_1002_ange_202211792
crossref_primary_10_1016_j_bioorg_2021_105211
crossref_primary_10_1039_D2PY00606E
crossref_primary_10_1021_acsmacrolett_9b00870
crossref_primary_10_1080_09205063_2019_1687132
crossref_primary_10_1002_pol_20210430
crossref_primary_10_1021_acsabm_4c01167
crossref_primary_10_1016_j_eurpolymj_2025_113876
crossref_primary_10_1002_marc_202100498
crossref_primary_10_1021_acs_langmuir_4c02131
crossref_primary_10_1002_agt2_418
crossref_primary_10_1002_anie_202315849
crossref_primary_10_1002_anie_201911758
crossref_primary_10_1021_acsmacrolett_9b00606
crossref_primary_10_1002_macp_201800370
crossref_primary_10_1021_acsami_2c18928
crossref_primary_10_1039_D0PY00461H
crossref_primary_10_1002_ange_202108928
crossref_primary_10_1002_marc_202200010
crossref_primary_10_1002_cjoc_202200761
crossref_primary_10_1002_marc_202000260
crossref_primary_10_1039_D0PY01442G
crossref_primary_10_1021_acs_macromol_9b01295
crossref_primary_10_1080_17425247_2024_2403476
crossref_primary_10_1021_acsmacrolett_8b00741
crossref_primary_10_1021_acs_macromol_3c00681
crossref_primary_10_1021_acs_macromol_4c01863
crossref_primary_10_1039_D3PY01006F
crossref_primary_10_1039_D2SM00458E
crossref_primary_10_1039_D2CS01060G
crossref_primary_10_1002_cnma_202300475
crossref_primary_10_1021_acsanm_2c01001
crossref_primary_10_1002_ange_201911758
crossref_primary_10_1021_acs_macromol_4c01856
crossref_primary_10_1021_acs_macromol_4c00768
crossref_primary_10_1021_acsmacrolett_8b00853
crossref_primary_10_1021_acs_langmuir_3c03392
crossref_primary_10_1021_acsabm_3c01064
crossref_primary_10_1021_acsami_1c07168
crossref_primary_10_1021_acsnano_2c00539
crossref_primary_10_1002_smll_202207457
crossref_primary_10_1016_j_carbpol_2024_123186
crossref_primary_10_3390_molecules23102481
crossref_primary_10_1002_ange_202207376
crossref_primary_10_1002_cjoc_202200182
crossref_primary_10_3389_fbioe_2020_00127
crossref_primary_10_1021_acsomega_2c03299
crossref_primary_10_1002_marc_202100921
crossref_primary_10_1016_j_reactfunctpolym_2021_105042
crossref_primary_10_1039_D2PY00666A
crossref_primary_10_1002_anie_202207376
crossref_primary_10_1021_acs_biomac_2c00230
crossref_primary_10_1002_anie_202108928
crossref_primary_10_1039_D0SM00069H
Cites_doi 10.1021/ma0517897
10.1021/ja502843f
10.1021/acsmacrolett.6b00796
10.1021/ma100021a
10.1021/acsmacrolett.7b00408
10.1021/ja410593n
10.1016/j.progpolymsci.2016.05.005
10.1021/ma200074n
10.1038/nnano.2016.160
10.1039/c0sm00284d
10.1039/C3PY01306E
10.1021/acsmacrolett.7b00099
10.1021/acs.biomac.5b00470
10.1042/bj20031253
10.1002/marc.201600508
10.1021/acs.macromol.6b00688
10.1002/marc.201700202
10.1007/s10118-017-1907-8
10.1039/c4ta00465e
10.1002/marc.201700195
10.1021/acsami.7b02966
10.1021/acs.biomac.6b01788
10.1039/C2PY20612A
10.1002/macp.200500428
10.1002/chem.201403819
10.1002/marc.201600685
10.1021/acsami.6b14132
10.1002/macp.201500443
10.1039/C5CS00569H
10.1021/acs.biomac.6b01704
10.1002/anie.201409799
10.1021/acs.biomac.6b01887
10.1021/acsmacrolett.5b00748
10.1021/acs.macromol.6b01581
10.1039/b912804b
10.1021/ma501598k
10.1039/c2cs35115c
10.1021/acsmacrolett.7b00731
10.1021/acsmacrolett.7b00134
10.1039/b903040a
10.1021/ja0756974
10.1016/j.progpolymsci.2013.10.006
10.1016/j.polymer.2016.08.082
10.1021/acsmacrolett.7b00422
10.1039/C7PY00508C
10.1021/acs.macromol.6b00771
10.1021/ma200984h
10.1021/acsmacrolett.7b00069
10.1021/ma0712854
10.1039/C7PY00552K
10.1002/advs.201700137
10.1021/acsmacrolett.5b00699
10.1016/j.polymer.2010.03.036
10.1021/la304279y
10.1039/c2sm25537e
10.1039/C7RA02770B
10.1021/mz500650c
10.1021/ma301459y
10.1039/C7PY00339K
10.1002/marc.201600528
10.1002/marc.201500028
10.1021/acs.macromol.5b02602
10.1021/ma402497y
10.1039/C7CC07293G
10.1021/ja305789e
10.1016/j.progpolymsci.2015.10.002
10.1021/jacs.5b10415
10.1016/j.polymer.2015.02.024
10.1039/C4SM01724B
10.1039/C6PY01797E
10.1021/ja500092m
10.1021/acs.macromol.6b01966
10.1002/macp.201300428
10.1021/ma401797a
10.1021/acsmacrolett.6b00899
10.1021/acsmacrolett.5b00360
10.1021/ja409686x
10.1002/cjoc.201600890
10.1002/marc.201300730
10.1016/j.progpolymsci.2015.10.009
10.1002/marc.201500122
10.1039/C4PY01632G
10.1021/acs.macromol.7b01005
10.1002/anie.201710811
10.1021/acsami.6b04693
10.1021/acsmacrolett.6b00066
10.1021/acs.chemrev.5b00346
10.1002/anie.201709129
10.1021/ma300713f
10.1021/acs.biomac.6b00819
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.201800279
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 29968349
10_1002_marc_201800279
MARC201800279
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21704095; 21774113; 21525420
– fundername: National Natural Science Foundation of China
  grantid: 21525420
– fundername: National Natural Science Foundation of China
  grantid: 21704095
– fundername: National Natural Science Foundation of China
  grantid: 21774113
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c4109-3f7fb9acf2651058c6d5912c61de5f1596039b6d2e9a7db21eb3080cf56dd40f3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 03:42:39 EDT 2025
Fri Jul 25 12:15:20 EDT 2025
Thu Apr 03 07:09:28 EDT 2025
Tue Jul 01 03:31:38 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Wed Jan 22 16:48:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stimuli-responsive polymers
polymerization-induced self-assembly
drug delivery
crosslinking
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4109-3f7fb9acf2651058c6d5912c61de5f1596039b6d2e9a7db21eb3080cf56dd40f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 29968349
PQID 2168069055
PQPubID 1016394
PageCount 10
ParticipantIDs proquest_miscellaneous_2063713094
proquest_journals_2168069055
pubmed_primary_29968349
crossref_citationtrail_10_1002_marc_201800279
crossref_primary_10_1002_marc_201800279
wiley_primary_10_1002_marc_201800279_MARC201800279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 45
2017; 6
2013; 29
2017; 7
2015; 36
2017; 8
2013; 4
2017; 4
2015; 72
2006; 39
2016; 106
2014; 136
2017; 9
2014; 20
2014; 5
2006; 207
2014; 3
2012; 134
2014; 2
2004; 377
2015; 137
2017; 38
2017; 35
2016; 116
2016; 49
2010; 6
2016; 45
2014; 10
2015; 6
2007; 129
2015; 16
2015; 4
2013; 46
2015; 54
2016; 52
2014; 47
2016; 17
2016; 58
2016; 5
2017; 50
2010; 43
2017; 53
2016; 7
2016; 217
2013; 214
2017; 56
2017; 12
2011; 44
2014; 35
2013; 135
2017; 18
2016; 60
2007; 40
2014; 39
2012; 45
2016; 8
2010; 51
2012; 41
2012; 8
2018; 57
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_70_1
Qiao X. G. (e_1_2_9_50_1) 2017; 50
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 39
  start-page: 95
  year: 2006
  publication-title: Macromolecules
– volume: 6
  start-page: 5554
  year: 2010
  publication-title: Soft Matter
– volume: 136
  start-page: 1023
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 1664
  year: 2014
  publication-title: Macromolecules
– volume: 53
  start-page: 12894
  year: 2017
  publication-title: Chem. Commun.
– volume: 6
  start-page: 689
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 9
  start-page: 15086
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 45
  start-page: 2887
  year: 2009
  publication-title: Chem. Commun.
– volume: 46
  start-page: 128
  year: 2013
  publication-title: Macromolecules
– volume: 46
  start-page: 8545
  year: 2013
  publication-title: Macromolecules
– volume: 36
  start-page: 1458
  year: 2015
  publication-title: Macromol. Rapid Comm.
– volume: 8
  start-page: 2173
  year: 2017
  publication-title: Polym. Chem.
– volume: 8
  start-page: 3082
  year: 2017
  publication-title: Polym. Chem.
– volume: 38
  start-page: 1700195
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 17
  start-page: 2992
  year: 2016
  publication-title: Biomacromolecules
– volume: 60
  start-page: 86
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 4
  start-page: 1249
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 137
  start-page: 16098
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 207
  start-page: 216
  year: 2006
  publication-title: Macromol. Chem. Phys.
– volume: 38
  start-page: 1600685
  year: 2017
  publication-title: Macromol. Rapid Comm.
– volume: 38
  start-page: 1600528
  year: 2017
  publication-title: Macromol. Rapid Comm.
– volume: 57
  start-page: 1053
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 136
  start-page: 5824
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 755
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 43
  start-page: 2672
  year: 2010
  publication-title: Macromolecules
– volume: 40
  start-page: 8897
  year: 2007
  publication-title: Macromolecules
– volume: 49
  start-page: 3789
  year: 2016
  publication-title: Macromolecules
– volume: 50
  start-page: 3797
  year: 2017
  publication-title: Macromolecules
– volume: 135
  start-page: 17617
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1145
  year: 2017
  publication-title: Biomacromolecules
– volume: 8
  start-page: 18347
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 1293
  year: 2015
  publication-title: ACS Macro Lett.
– volume: 49
  start-page: 8605
  year: 2016
  publication-title: Macromolecules
– volume: 6
  start-page: 2249
  year: 2015
  publication-title: Polym. Chem.
– volume: 35
  start-page: 417
  year: 2014
  publication-title: Macromol. Rapid Commun.
– volume: 47
  start-page: 7442
  year: 2014
  publication-title: Macromolecules
– volume: 106
  start-page: 161
  year: 2016
  publication-title: Polymer
– volume: 7
  start-page: 23114
  year: 2017
  publication-title: RSC Adv.
– volume: 36
  start-page: 1428
  year: 2015
  publication-title: Macromol. Rapid Comm.
– volume: 377
  start-page: 159
  year: 2004
  publication-title: Biochem. J.
– volume: 35
  start-page: 1016
  year: 2017
  publication-title: Chinese J. Chem.
– volume: 2
  start-page: 7819
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 298
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 4
  start-page: 873
  year: 2013
  publication-title: Polym. Chem.
– volume: 52
  start-page: 1
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 58
  start-page: 1
  year: 2016
  publication-title: Prog. Polym. Sci.
– volume: 3
  start-page: 1220
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 29
  start-page: 7416
  year: 2013
  publication-title: Langmuir
– volume: 49
  start-page: 1985
  year: 2016
  publication-title: Macromolecules
– volume: 54
  start-page: 1279
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 350
  year: 2014
  publication-title: Polym. Chem.
– volume: 116
  start-page: 2602
  year: 2016
  publication-title: Chem. Rev.
– volume: 56
  start-page: 16541
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 134
  start-page: 12450
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1096
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 6
  start-page: 337
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 10
  start-page: 8615
  year: 2014
  publication-title: Soft Matter
– volume: 4
  start-page: 1700137
  year: 2017
  publication-title: Adv. Sci.
– volume: 5
  start-page: 1327
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 44
  start-page: 5237
  year: 2011
  publication-title: Macromolecules
– volume: 7
  start-page: 7325
  year: 2016
  publication-title: Polym. Chem.
– volume: 8
  start-page: 7753
  year: 2012
  publication-title: Soft Matter
– volume: 12
  start-page: 81
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 41
  start-page: 5969
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 455
  year: 2017
  publication-title: Chinese J. Polym. Sci.
– volume: 44
  start-page: 2524
  year: 2011
  publication-title: Macromolecules
– volume: 9
  start-page: 2023
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 2161
  year: 2010
  publication-title: Polymer
– volume: 45
  start-page: 6753
  year: 2012
  publication-title: Macromolecules
– volume: 18
  start-page: 649
  year: 2017
  publication-title: Biomacromolecules
– volume: 49
  start-page: 7277
  year: 2016
  publication-title: Macromolecules
– volume: 6
  start-page: 121
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 45
  start-page: 5883
  year: 2009
  publication-title: Chem. Commun.
– volume: 18
  start-page: 1210
  year: 2017
  publication-title: Biomacromolecules
– volume: 136
  start-page: 10174
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1700202
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 72
  start-page: 327
  year: 2015
  publication-title: Polymer
– volume: 45
  start-page: 377
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 49
  start-page: 4490
  year: 2016
  publication-title: Macromolecules
– volume: 6
  start-page: 1237
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 5
  start-page: 316
  year: 2016
  publication-title: ACS Macro Lett.
– volume: 214
  start-page: 2445
  year: 2013
  publication-title: Macromol. Chem. Phys.
– volume: 16
  start-page: 2040
  year: 2015
  publication-title: Biomacromolecules
– volume: 129
  start-page: 14493
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 304
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 3485
  year: 2017
  publication-title: Polym. Chem.
– volume: 217
  start-page: 1047
  year: 2016
  publication-title: Macromol. Chem. Phys.
– volume: 38
  start-page: 1600508
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 20
  start-page: 15505
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 925
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 50
  start-page: 6108
  year: 2017
  publication-title: Macromolecules
– ident: e_1_2_9_8_1
  doi: 10.1021/ma0517897
– ident: e_1_2_9_17_1
  doi: 10.1021/ja502843f
– ident: e_1_2_9_31_1
  doi: 10.1021/acsmacrolett.6b00796
– ident: e_1_2_9_37_1
  doi: 10.1021/ma100021a
– ident: e_1_2_9_53_1
  doi: 10.1021/acsmacrolett.7b00408
– ident: e_1_2_9_39_1
  doi: 10.1021/ja410593n
– ident: e_1_2_9_5_1
  doi: 10.1016/j.progpolymsci.2016.05.005
– ident: e_1_2_9_82_1
  doi: 10.1021/ma200074n
– ident: e_1_2_9_91_1
  doi: 10.1038/nnano.2016.160
– ident: e_1_2_9_36_1
  doi: 10.1039/c0sm00284d
– ident: e_1_2_9_74_1
  doi: 10.1039/C3PY01306E
– ident: e_1_2_9_24_1
  doi: 10.1021/acsmacrolett.7b00099
– ident: e_1_2_9_51_1
  doi: 10.1021/acs.biomac.5b00470
– ident: e_1_2_9_77_1
  doi: 10.1042/bj20031253
– ident: e_1_2_9_69_1
  doi: 10.1002/marc.201600508
– ident: e_1_2_9_43_1
  doi: 10.1021/acs.macromol.6b00688
– ident: e_1_2_9_78_1
  doi: 10.1002/marc.201700202
– ident: e_1_2_9_13_1
  doi: 10.1007/s10118-017-1907-8
– ident: e_1_2_9_23_1
  doi: 10.1039/c4ta00465e
– ident: e_1_2_9_48_1
  doi: 10.1002/marc.201700195
– ident: e_1_2_9_71_1
  doi: 10.1021/acsami.7b02966
– ident: e_1_2_9_61_1
  doi: 10.1021/acs.biomac.6b01788
– ident: e_1_2_9_11_1
  doi: 10.1039/C2PY20612A
– ident: e_1_2_9_83_1
  doi: 10.1002/macp.200500428
– ident: e_1_2_9_80_1
  doi: 10.1002/chem.201403819
– ident: e_1_2_9_3_1
  doi: 10.1002/marc.201600685
– ident: e_1_2_9_66_1
  doi: 10.1021/acsami.6b14132
– ident: e_1_2_9_73_1
  doi: 10.1002/macp.201500443
– ident: e_1_2_9_2_1
  doi: 10.1039/C5CS00569H
– ident: e_1_2_9_1_1
  doi: 10.1021/acs.biomac.6b01704
– ident: e_1_2_9_59_1
  doi: 10.1002/anie.201409799
– ident: e_1_2_9_72_1
  doi: 10.1021/acs.biomac.6b01887
– ident: e_1_2_9_47_1
  doi: 10.1021/acsmacrolett.5b00748
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.macromol.6b01581
– ident: e_1_2_9_10_1
  doi: 10.1039/b912804b
– ident: e_1_2_9_54_1
  doi: 10.1021/ma501598k
– ident: e_1_2_9_7_1
  doi: 10.1039/c2cs35115c
– ident: e_1_2_9_46_1
  doi: 10.1021/acsmacrolett.7b00731
– ident: e_1_2_9_35_1
  doi: 10.1021/acsmacrolett.7b00134
– ident: e_1_2_9_15_1
  doi: 10.1039/b903040a
– ident: e_1_2_9_85_1
  doi: 10.1021/ja0756974
– ident: e_1_2_9_90_1
  doi: 10.1016/j.progpolymsci.2013.10.006
– ident: e_1_2_9_20_1
  doi: 10.1016/j.polymer.2016.08.082
– ident: e_1_2_9_60_1
  doi: 10.1021/acsmacrolett.7b00422
– ident: e_1_2_9_25_1
  doi: 10.1039/C7PY00508C
– ident: e_1_2_9_41_1
  doi: 10.1021/acs.macromol.6b00771
– ident: e_1_2_9_81_1
  doi: 10.1021/ma200984h
– ident: e_1_2_9_27_1
  doi: 10.1021/acsmacrolett.7b00069
– ident: e_1_2_9_9_1
  doi: 10.1021/ma0712854
– ident: e_1_2_9_64_1
  doi: 10.1039/C7PY00552K
– ident: e_1_2_9_22_1
  doi: 10.1002/advs.201700137
– ident: e_1_2_9_32_1
  doi: 10.1021/acsmacrolett.5b00699
– ident: e_1_2_9_84_1
  doi: 10.1016/j.polymer.2010.03.036
– ident: e_1_2_9_28_1
  doi: 10.1021/la304279y
– ident: e_1_2_9_12_1
  doi: 10.1039/c2sm25537e
– ident: e_1_2_9_67_1
  doi: 10.1039/C7RA02770B
– ident: e_1_2_9_79_1
  doi: 10.1021/mz500650c
– ident: e_1_2_9_29_1
  doi: 10.1021/ma301459y
– ident: e_1_2_9_26_1
  doi: 10.1039/C7PY00339K
– ident: e_1_2_9_21_1
  doi: 10.1002/marc.201600528
– volume: 50
  start-page: 3797
  year: 2017
  ident: e_1_2_9_50_1
  publication-title: Macromolecules
– ident: e_1_2_9_16_1
  doi: 10.1002/marc.201500028
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.macromol.5b02602
– ident: e_1_2_9_38_1
  doi: 10.1021/ma402497y
– ident: e_1_2_9_45_1
  doi: 10.1039/C7CC07293G
– ident: e_1_2_9_88_1
  doi: 10.1021/ja305789e
– ident: e_1_2_9_19_1
  doi: 10.1016/j.progpolymsci.2015.10.002
– ident: e_1_2_9_68_1
  doi: 10.1021/jacs.5b10415
– ident: e_1_2_9_86_1
  doi: 10.1016/j.polymer.2015.02.024
– ident: e_1_2_9_87_1
  doi: 10.1039/C4SM01724B
– ident: e_1_2_9_55_1
  doi: 10.1039/C6PY01797E
– ident: e_1_2_9_62_1
  doi: 10.1021/ja500092m
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.macromol.6b01966
– ident: e_1_2_9_56_1
  doi: 10.1002/macp.201300428
– ident: e_1_2_9_42_1
  doi: 10.1021/ma401797a
– ident: e_1_2_9_52_1
  doi: 10.1021/acsmacrolett.6b00899
– ident: e_1_2_9_30_1
  doi: 10.1021/acsmacrolett.5b00360
– ident: e_1_2_9_76_1
  doi: 10.1021/ja409686x
– ident: e_1_2_9_57_1
  doi: 10.1002/cjoc.201600890
– ident: e_1_2_9_65_1
  doi: 10.1002/marc.201300730
– ident: e_1_2_9_6_1
  doi: 10.1016/j.progpolymsci.2015.10.009
– ident: e_1_2_9_40_1
  doi: 10.1002/marc.201500122
– ident: e_1_2_9_63_1
  doi: 10.1039/C4PY01632G
– ident: e_1_2_9_58_1
  doi: 10.1021/acs.macromol.7b01005
– ident: e_1_2_9_33_1
  doi: 10.1002/anie.201710811
– ident: e_1_2_9_75_1
  doi: 10.1021/acsami.6b04693
– ident: e_1_2_9_89_1
  doi: 10.1021/acsmacrolett.6b00066
– ident: e_1_2_9_4_1
  doi: 10.1021/acs.chemrev.5b00346
– ident: e_1_2_9_34_1
  doi: 10.1002/anie.201709129
– ident: e_1_2_9_14_1
  doi: 10.1021/ma300713f
– ident: e_1_2_9_70_1
  doi: 10.1021/acs.biomac.6b00819
SSID ssj0008402
Score 2.6327522
SecondaryResourceType review_article
Snippet Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800279
SubjectTerms Antibiotics, Antineoplastic - administration & dosage
Antibiotics, Antineoplastic - chemistry
Antibiotics, Antineoplastic - pharmacokinetics
Assembly
Block copolymers
Chemistry Techniques, Synthetic - methods
crosslinking
Doxorubicin - administration & dosage
Doxorubicin - chemistry
Doxorubicin - pharmacokinetics
Drug delivery
Drug delivery systems
Drug Delivery Systems - methods
Drug Liberation
Fabrication
Methacrylates - chemistry
Morphology
Nanoparticles
Nanoparticles - chemistry
Polymerization
polymerization‐induced self‐assembly
Polymers - chemical synthesis
Polymers - chemistry
Reproducibility
stimuli‐responsive polymers
Title Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800279
https://www.ncbi.nlm.nih.gov/pubmed/29968349
https://www.proquest.com/docview/2168069055
https://www.proquest.com/docview/2063713094
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL2WTkZA4BRLXcZJjKVQICYRYJG5RvCHUkiJoD-UCn8A38iXM1ElKQQgJbonieEk8njee8RtCdnwpI9ATgNzq3Ho8EYmXxQHGuiaag8aOuMDDyadn4vian9yEN59O8Tt-iGrDDSVjuF6jgGfyaX9EGopUDxiahYgnwhN8GLCFqOhixB8F1otzd4LFBcaYKFkbfbY__vq4VvoGNceR61D1tGZJVnbaRZy09_o9uaeev_A5_mdUc2SmwKW04SbSPJkw-QKZapbp4BbJy3m3M0D3jju3-f76hlk_lNH00nQs3KL7-F52BrRraQu0pdtkvHuGEgegMdu0ifkYsAoKSzrY6kVIHs1yTa_QX0EbI286vcvp4WP_lh7CgEDcBkvkunV01Tz2iuwNnuIBBlTYyMokU5YJBHGxEjpMAqZEoE1oAUUJv55IoZlJskhLFoBZD_BV2VBozX1bXyaTeTc3q4RKbYUfG1huNOeWgVFgAFbJOAhVpqCVGvHKv5eqgtocM2x0UkfKzFL8rGn1WWtktyr_4Eg9fiy5UU6GtBDup5QFIkaC5zCske3qMfwO9LVkuen2oQxAP7D_wXiukRU3iaqmAAGIuM6hcjacCr_0IT1tXDSru7W_vLROpuE6cVtHG2Sy99g3mwCmenJrKDAfKCkYTA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQL_z9bChgJxClt4nWc-MBh2WW1pd0Kla3UWxr_oarbpGp3hbYXeARehVfhEXgSZtZJVgtCSEg9cEziOI499nzjGX9DyItQqQT0BCC3NncBl0IGeRphrKs0HDR2wgUeTh7uicEBf3cYH66Qb_VZGM8P0Wy44cyYr9c4wXFDemvBGopcDxibhZAnkVVc5Y6dfQKr7eL1dg-G-CVj_bej7iCoEgsEmkfo63eJUzLXjgnEF6kWJpYR0yIyNnag4EXYlkoYZmWeGMUisDgBWWkXC2N46NpQ7zVyHdOII11_b3_BWAX2knewgo0H5p-oeSJDtrXc3mU9-Bu4XcbKc2XXv0W-193kY1xONqcTtakvf2GQ_K_68Ta5WUFv2vFz5Q5ZscVdstatM97dI5_fl-MZerD80dQfX75iYhNtDf1gxw4u0UN-qsYzWjraB0Dg91GPL6HEGwAFJ7SLKSewCgpaqzyrow5pXhg6QpcM7SwCBuhxQXvn04-0Bz0IK8rsPjm4kv9_QFaLsrCPCFXGiTC1sKIazh0Du8cCclRpFOtcw1daJKjFJdMVezsmERlnnneaZTiMWTOMLfKqKX_meUv-WHKjlr6sWr8uMhaJFDms47hFnjePYTjQnZQXtpxCGUC3CUAgyVvkoZfa5lMAckTa5lA5m8veX9qQDTv73eZq_V9eekbWBqPhbra7vbfzmNyA-9LvlG2Q1cn51D4B7DhRT-ezlZKjqxbrn2fpdhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pQ28TpOfOCwbFi1lFZVaaXe0vgPVd0mq3ZXaHuBR-BReBVegSdhvE6yWhBCQuqBYxLHceyx5xvP-BuAF6GUCeoJRG5dZgMmuAiKNHKxrkIz1NgJ4-5w8vYO3zhg7w7jwyX41pyF8fwQ7Yabmxmz9dpN8JG263PSUEf14EKzHOJJRB1WuWWmn9BoO3-9meEIv6R08Ha_vxHUeQUCxSLn6reJlaJQlnIHL1LFdSwiqnikTWxRv_OwKyTX1Igi0ZJGaHAisFI25lqz0Hax3itwlfFQuGQR2d6csArNJe9fRRMPrT_e0ESGdH2xvYtq8DdsuwiVZ7pucAu-N73kQ1xO1iZjuaYufiGQ_J-68TbcrIE36fmZcgeWTHkXrvebfHf34PNuNZw6_5U_mPrjy1eX1kQZTT6YocVL5x8_lcMpqSwZIBzwu6jHF1jiDUKCE9J3CSdcFQR1VjVqYg5JUWqy7xwypDcPFyDHJcnOJh9Jhh2I68n0Phxcyv8_gOWyKs0KEKktD1OD66lmzFK0egziRplGsSoUfqUDQSMtuaq5210KkWHuWadp7oYxb4exA6_a8iPPWvLHkquN8OX16nWe04injsE6jjvwvH2Mw-GcSUVpqgmWQWybIAASrAMPvdC2n0KIw9Muw8rpTPT-0oZ8u7fXb68e_ctLz-DabjbI32_ubD2GG3hb-G2yVVgen03MEwSOY_l0NlcJHF22VP8Eejp0yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymerization-Induced+Self-Assembly+of+Functionalized+Block+Copolymer+Nanoparticles+and+Their+Application+in+Drug+Delivery&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Wen-Jian&rft.au=Hong%2C+Chun-Yan&rft.au=Pan%2C+Cai-Yuan&rft.date=2019-01-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=40&rft.issue=2&rft.spage=e1800279&rft_id=info:doi/10.1002%2Fmarc.201800279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon