Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery
Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic li...
Saved in:
Published in | Macromolecular rapid communications. Vol. 40; no. 2; pp. e1800279 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self‐assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self‐assembly method, which is usually called polymerization‐induced self‐assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self‐assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large‐scale production of polymeric nanoparticles. In this review, the developments of PISA‐based polymeric nanoparticles for drug delivery are discussed.
Drug delivery systems based on functionalized polymeric nanoparticles have attracted considerable attention. For fabrication of polymeric nanoparticles, polymerization‐induced self‐assembly (PISA) offers decisive advantages over conventional protocols in terms of efficiency and cost‐effectiveness. Recently, the nascent investigation of functional PISA‐generated nanocarriers with stimulus‐responsive drug release has already found applications in the biomedical area, which is discussed in this review. |
---|---|
AbstractList | Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self‐assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self‐assembly method, which is usually called polymerization‐induced self‐assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self‐assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large‐scale production of polymeric nanoparticles. In this review, the developments of PISA‐based polymeric nanoparticles for drug delivery are discussed.
Drug delivery systems based on functionalized polymeric nanoparticles have attracted considerable attention. For fabrication of polymeric nanoparticles, polymerization‐induced self‐assembly (PISA) offers decisive advantages over conventional protocols in terms of efficiency and cost‐effectiveness. Recently, the nascent investigation of functional PISA‐generated nanocarriers with stimulus‐responsive drug release has already found applications in the biomedical area, which is discussed in this review. Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed.Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed. Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported in the past decades, the fabrication efficiency and reproducibility of polymeric nanoparticles are barely satisfactory due to the intrinsic limitations of the traditional self-assembly method, which severely prevent further applications of the intelligent DDS. In the last decade, a new self-assembly method, which is usually called polymerization-induced self-assembly (PISA), has become a powerful strategy for the fabrication of the polymeric nanoparticles with bespoke morphology. The PISA strategy efficiently simplifies the fabrication of polymeric nanoparticles (combination of the polymerization and self-assembly in one pot) and allows the fabrication of polymeric nanoparticles at a relatively high concentration (up to 50 wt%), making it realistic for large-scale production of polymeric nanoparticles. In this review, the developments of PISA-based polymeric nanoparticles for drug delivery are discussed. |
Author | Pan, Cai‐Yuan Zhang, Wen‐Jian Hong, Chun‐Yan |
Author_xml | – sequence: 1 givenname: Wen‐Jian surname: Zhang fullname: Zhang, Wen‐Jian organization: University of Science and Technology of China – sequence: 2 givenname: Chun‐Yan surname: Hong fullname: Hong, Chun‐Yan email: hongcy@ustc.edu.cn organization: University of Science and Technology of China – sequence: 3 givenname: Cai‐Yuan surname: Pan fullname: Pan, Cai‐Yuan email: pcy@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29968349$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWGT4dhOnHg5TClUKhdBWUeOL-DixMFOQOkGHoFn5EnwdFqQKiFWPkf6vl_y-Q_R3hAGg9BDAisCQJ_2MqoVBdLkpRZ30AGpKCmYoPVenoHSgjDG99FhShcA0JRA76F9KgRvWCkO0Pe3wS-9ie5STi4Mv378PB30rIzG7423eV2nZPrOLzhYfDIPaktJ7y4z8cwH9RlvwriLwK_lEEYZJ6e8SVgOGp9_Mi7i9Th6p67ysRvwcZw_4mPj3VcTl_vorpU-mQfX7xH6cPL8fPOyOHvz4nSzPitUSUAUzNa2E1JZyisCVaO4rgShihNtKksqwYGJjmtqhKx1R4npGDSgbMW1LsGyI_RklzvG8GU2aWp7l5TxXg4mzKmlwFlNGIgyo49voRdhjvnTmSK8AS6gqjL16Jqau97odowud7G0N6fNQLkDVAwpRWNb5aarI0xROt8SaLcNttsG2z8NZm11S7tJ_qcgdsI3583yH7p9tX63-ev-BlbMsWM |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215544 crossref_primary_10_1021_acsmacrolett_0c00151 crossref_primary_10_1016_j_jconrel_2020_12_027 crossref_primary_10_1039_D4PY01204F crossref_primary_10_1002_marc_202100333 crossref_primary_10_1021_acsmacrolett_8b00839 crossref_primary_10_1021_acspolymersau_4c00074 crossref_primary_10_1021_acsmacrolett_3c00547 crossref_primary_10_3390_sym15020403 crossref_primary_10_1016_j_ultsonch_2024_106855 crossref_primary_10_3390_polym13162603 crossref_primary_10_1002_marc_202000720 crossref_primary_10_1002_anie_202211792 crossref_primary_10_1021_acs_langmuir_1c03430 crossref_primary_10_1021_acs_macromol_2c00379 crossref_primary_10_1039_D2PY01086K crossref_primary_10_1080_17425247_2020_1767582 crossref_primary_10_1007_s10965_020_02290_3 crossref_primary_10_1080_00914037_2019_1706508 crossref_primary_10_1002_marc_202300334 crossref_primary_10_1039_C9CC00407F crossref_primary_10_1002_marc_202100909 crossref_primary_10_1080_15583724_2020_1723022 crossref_primary_10_1021_acsmacrolett_4c00400 crossref_primary_10_1002_pol_20210292 crossref_primary_10_1016_j_eurpolymj_2020_109907 crossref_primary_10_1039_D0PY01389G crossref_primary_10_1021_acs_macromol_1c00038 crossref_primary_10_1002_pi_6437 crossref_primary_10_1016_j_polymer_2021_123431 crossref_primary_10_1039_D0MH00354A crossref_primary_10_1021_acs_macromol_3c01575 crossref_primary_10_1021_acs_chemrev_0c01338 crossref_primary_10_1021_acsmacrolett_9b00464 crossref_primary_10_1039_D2PY01148D crossref_primary_10_1039_D3LP00135K crossref_primary_10_1021_acs_macromol_0c02833 crossref_primary_10_1039_D1PY01667A crossref_primary_10_3390_pharmaceutics15020501 crossref_primary_10_1002_pol_20240609 crossref_primary_10_1021_acs_jpclett_3c02392 crossref_primary_10_1021_acs_macromol_0c01624 crossref_primary_10_1021_acs_biomac_0c00685 crossref_primary_10_1021_acsapm_9b00280 crossref_primary_10_1002_marc_202100201 crossref_primary_10_1002_ange_202315849 crossref_primary_10_1016_j_critrevonc_2022_103895 crossref_primary_10_1016_j_polymer_2021_124095 crossref_primary_10_1002_marc_202300361 crossref_primary_10_1039_D0PY00678E crossref_primary_10_1002_ange_202202448 crossref_primary_10_1007_s10904_024_03041_3 crossref_primary_10_1039_D1NJ01791H crossref_primary_10_1002_marc_202000635 crossref_primary_10_1021_acs_macromol_9b00144 crossref_primary_10_1021_acsami_3c14144 crossref_primary_10_1039_D3PY00099K crossref_primary_10_1039_D4SM00654B crossref_primary_10_1039_D0PY01425G crossref_primary_10_1039_D0PY01558J crossref_primary_10_1007_s10118_021_2533_z crossref_primary_10_3389_fchem_2019_00518 crossref_primary_10_1021_acs_chemrev_3c00350 crossref_primary_10_1039_D1AN00077B crossref_primary_10_1002_pol_20230556 crossref_primary_10_1016_j_progpolymsci_2023_101739 crossref_primary_10_1021_acs_jpcb_2c06225 crossref_primary_10_1021_acsami_0c09054 crossref_primary_10_1021_acs_macromol_0c00959 crossref_primary_10_1021_acs_macromol_4c01334 crossref_primary_10_1021_acs_macromol_9b01689 crossref_primary_10_1016_j_eurpolymj_2023_111848 crossref_primary_10_1039_D0PY00826E crossref_primary_10_1007_s10118_025_3275_0 crossref_primary_10_1016_j_ccr_2021_213846 crossref_primary_10_3389_fbioe_2020_576969 crossref_primary_10_1002_marc_202100791 crossref_primary_10_1039_D0PY00296H crossref_primary_10_1039_C9PY01656B crossref_primary_10_1039_D2SC00762B crossref_primary_10_1007_s40820_020_00447_9 crossref_primary_10_1039_D2PY00180B crossref_primary_10_1016_j_jddst_2023_105265 crossref_primary_10_1039_D1PY01473K crossref_primary_10_1021_acsmacrolett_9b00427 crossref_primary_10_1016_j_addr_2020_06_021 crossref_primary_10_3390_en18040991 crossref_primary_10_1002_cjoc_202100134 crossref_primary_10_1002_pol_20230579 crossref_primary_10_1021_acs_macromol_1c01276 crossref_primary_10_1002_macp_202100349 crossref_primary_10_1021_acs_macromol_8b01456 crossref_primary_10_1021_acsmacrolett_1c00014 crossref_primary_10_1002_marc_202200071 crossref_primary_10_1016_j_heliyon_2024_e35562 crossref_primary_10_1021_acs_macromol_9b01664 crossref_primary_10_1039_D1PY00046B crossref_primary_10_1039_D2PY01064J crossref_primary_10_1021_acs_biomac_4c00292 crossref_primary_10_1080_17458080_2023_2281938 crossref_primary_10_1021_acs_chemmater_9b01635 crossref_primary_10_1002_marc_201800885 crossref_primary_10_1039_D2SC01611G crossref_primary_10_1515_epoly_2023_0049 crossref_primary_10_1021_acs_macromol_1c02238 crossref_primary_10_1016_j_eurpolymj_2021_110806 crossref_primary_10_1039_D2RA05673A crossref_primary_10_1016_j_ijpharm_2021_121088 crossref_primary_10_1016_j_polymer_2022_125160 crossref_primary_10_1021_acs_macromol_0c02008 crossref_primary_10_1039_D2SM00635A crossref_primary_10_1002_pat_4812 crossref_primary_10_1002_marc_201900058 crossref_primary_10_1002_anie_202202448 crossref_primary_10_1039_D0PY00627K crossref_primary_10_3390_nano10091872 crossref_primary_10_1021_acsmacrolett_3c00148 crossref_primary_10_1039_D4PY00263F crossref_primary_10_1039_D0PY00368A crossref_primary_10_1039_D4SC07746F crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1134_S1560090422020087 crossref_primary_10_1021_acsabm_0c01552 crossref_primary_10_1021_acs_macromol_2c00772 crossref_primary_10_1039_D1RA05555K crossref_primary_10_34133_research_0113 crossref_primary_10_1039_D0PY00465K crossref_primary_10_1039_D3NJ05245A crossref_primary_10_1002_advs_202401807 crossref_primary_10_1002_mco2_187 crossref_primary_10_3390_molecules26010012 crossref_primary_10_3390_polym13223920 crossref_primary_10_1002_macp_202200055 crossref_primary_10_1021_acs_macromol_8b02081 crossref_primary_10_3390_polym16152102 crossref_primary_10_1021_acs_macromol_0c00123 crossref_primary_10_3390_polym13203505 crossref_primary_10_1016_j_cplett_2022_139874 crossref_primary_10_1021_acs_chemmater_1c04151 crossref_primary_10_1039_D1PY00145K crossref_primary_10_1016_j_biomaterials_2023_122191 crossref_primary_10_1039_D0PY00245C crossref_primary_10_1080_20565623_2025_2467591 crossref_primary_10_1039_D4PY01048E crossref_primary_10_1002_marc_202100155 crossref_primary_10_1021_acsmacrolett_9b00509 crossref_primary_10_1039_D0PY00407C crossref_primary_10_1016_j_giant_2022_100126 crossref_primary_10_1021_acspolymersau_2c00027 crossref_primary_10_1039_D0PY00710B crossref_primary_10_1002_aisy_201900157 crossref_primary_10_1021_acs_macromol_0c00371 crossref_primary_10_3762_bjoc_17_148 crossref_primary_10_1039_D0PY01697G crossref_primary_10_1021_acs_macromol_3c00759 crossref_primary_10_1002_aic_18014 crossref_primary_10_1021_acs_langmuir_1c02720 crossref_primary_10_1016_j_progpolymsci_2022_101637 crossref_primary_10_18596_jotcsa_1439951 crossref_primary_10_1039_D0PY00084A crossref_primary_10_1039_D0PY01311K crossref_primary_10_1039_D2PY00391K crossref_primary_10_1021_jacs_4c08206 crossref_primary_10_1016_j_ultsonch_2024_106901 crossref_primary_10_1016_j_jcis_2022_10_013 crossref_primary_10_1021_jacs_1c01963 crossref_primary_10_1039_C9NJ05638F crossref_primary_10_1002_ange_202211792 crossref_primary_10_1016_j_bioorg_2021_105211 crossref_primary_10_1039_D2PY00606E crossref_primary_10_1021_acsmacrolett_9b00870 crossref_primary_10_1080_09205063_2019_1687132 crossref_primary_10_1002_pol_20210430 crossref_primary_10_1021_acsabm_4c01167 crossref_primary_10_1016_j_eurpolymj_2025_113876 crossref_primary_10_1002_marc_202100498 crossref_primary_10_1021_acs_langmuir_4c02131 crossref_primary_10_1002_agt2_418 crossref_primary_10_1002_anie_202315849 crossref_primary_10_1002_anie_201911758 crossref_primary_10_1021_acsmacrolett_9b00606 crossref_primary_10_1002_macp_201800370 crossref_primary_10_1021_acsami_2c18928 crossref_primary_10_1039_D0PY00461H crossref_primary_10_1002_ange_202108928 crossref_primary_10_1002_marc_202200010 crossref_primary_10_1002_cjoc_202200761 crossref_primary_10_1002_marc_202000260 crossref_primary_10_1039_D0PY01442G crossref_primary_10_1021_acs_macromol_9b01295 crossref_primary_10_1080_17425247_2024_2403476 crossref_primary_10_1021_acsmacrolett_8b00741 crossref_primary_10_1021_acs_macromol_3c00681 crossref_primary_10_1021_acs_macromol_4c01863 crossref_primary_10_1039_D3PY01006F crossref_primary_10_1039_D2SM00458E crossref_primary_10_1039_D2CS01060G crossref_primary_10_1002_cnma_202300475 crossref_primary_10_1021_acsanm_2c01001 crossref_primary_10_1002_ange_201911758 crossref_primary_10_1021_acs_macromol_4c01856 crossref_primary_10_1021_acs_macromol_4c00768 crossref_primary_10_1021_acsmacrolett_8b00853 crossref_primary_10_1021_acs_langmuir_3c03392 crossref_primary_10_1021_acsabm_3c01064 crossref_primary_10_1021_acsami_1c07168 crossref_primary_10_1021_acsnano_2c00539 crossref_primary_10_1002_smll_202207457 crossref_primary_10_1016_j_carbpol_2024_123186 crossref_primary_10_3390_molecules23102481 crossref_primary_10_1002_ange_202207376 crossref_primary_10_1002_cjoc_202200182 crossref_primary_10_3389_fbioe_2020_00127 crossref_primary_10_1021_acsomega_2c03299 crossref_primary_10_1002_marc_202100921 crossref_primary_10_1016_j_reactfunctpolym_2021_105042 crossref_primary_10_1039_D2PY00666A crossref_primary_10_1002_anie_202207376 crossref_primary_10_1021_acs_biomac_2c00230 crossref_primary_10_1002_anie_202108928 crossref_primary_10_1039_D0SM00069H |
Cites_doi | 10.1021/ma0517897 10.1021/ja502843f 10.1021/acsmacrolett.6b00796 10.1021/ma100021a 10.1021/acsmacrolett.7b00408 10.1021/ja410593n 10.1016/j.progpolymsci.2016.05.005 10.1021/ma200074n 10.1038/nnano.2016.160 10.1039/c0sm00284d 10.1039/C3PY01306E 10.1021/acsmacrolett.7b00099 10.1021/acs.biomac.5b00470 10.1042/bj20031253 10.1002/marc.201600508 10.1021/acs.macromol.6b00688 10.1002/marc.201700202 10.1007/s10118-017-1907-8 10.1039/c4ta00465e 10.1002/marc.201700195 10.1021/acsami.7b02966 10.1021/acs.biomac.6b01788 10.1039/C2PY20612A 10.1002/macp.200500428 10.1002/chem.201403819 10.1002/marc.201600685 10.1021/acsami.6b14132 10.1002/macp.201500443 10.1039/C5CS00569H 10.1021/acs.biomac.6b01704 10.1002/anie.201409799 10.1021/acs.biomac.6b01887 10.1021/acsmacrolett.5b00748 10.1021/acs.macromol.6b01581 10.1039/b912804b 10.1021/ma501598k 10.1039/c2cs35115c 10.1021/acsmacrolett.7b00731 10.1021/acsmacrolett.7b00134 10.1039/b903040a 10.1021/ja0756974 10.1016/j.progpolymsci.2013.10.006 10.1016/j.polymer.2016.08.082 10.1021/acsmacrolett.7b00422 10.1039/C7PY00508C 10.1021/acs.macromol.6b00771 10.1021/ma200984h 10.1021/acsmacrolett.7b00069 10.1021/ma0712854 10.1039/C7PY00552K 10.1002/advs.201700137 10.1021/acsmacrolett.5b00699 10.1016/j.polymer.2010.03.036 10.1021/la304279y 10.1039/c2sm25537e 10.1039/C7RA02770B 10.1021/mz500650c 10.1021/ma301459y 10.1039/C7PY00339K 10.1002/marc.201600528 10.1002/marc.201500028 10.1021/acs.macromol.5b02602 10.1021/ma402497y 10.1039/C7CC07293G 10.1021/ja305789e 10.1016/j.progpolymsci.2015.10.002 10.1021/jacs.5b10415 10.1016/j.polymer.2015.02.024 10.1039/C4SM01724B 10.1039/C6PY01797E 10.1021/ja500092m 10.1021/acs.macromol.6b01966 10.1002/macp.201300428 10.1021/ma401797a 10.1021/acsmacrolett.6b00899 10.1021/acsmacrolett.5b00360 10.1021/ja409686x 10.1002/cjoc.201600890 10.1002/marc.201300730 10.1016/j.progpolymsci.2015.10.009 10.1002/marc.201500122 10.1039/C4PY01632G 10.1021/acs.macromol.7b01005 10.1002/anie.201710811 10.1021/acsami.6b04693 10.1021/acsmacrolett.6b00066 10.1021/acs.chemrev.5b00346 10.1002/anie.201709129 10.1021/ma300713f 10.1021/acs.biomac.6b00819 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.201800279 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 29968349 10_1002_marc_201800279 MARC201800279 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21704095; 21774113; 21525420 – fundername: National Natural Science Foundation of China grantid: 21525420 – fundername: National Natural Science Foundation of China grantid: 21704095 – fundername: National Natural Science Foundation of China grantid: 21774113 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4109-3f7fb9acf2651058c6d5912c61de5f1596039b6d2e9a7db21eb3080cf56dd40f3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 03:42:39 EDT 2025 Fri Jul 25 12:15:20 EDT 2025 Thu Apr 03 07:09:28 EDT 2025 Tue Jul 01 03:31:38 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Wed Jan 22 16:48:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | stimuli-responsive polymers polymerization-induced self-assembly drug delivery crosslinking |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4109-3f7fb9acf2651058c6d5912c61de5f1596039b6d2e9a7db21eb3080cf56dd40f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29968349 |
PQID | 2168069055 |
PQPubID | 1016394 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2063713094 proquest_journals_2168069055 pubmed_primary_29968349 crossref_citationtrail_10_1002_marc_201800279 crossref_primary_10_1002_marc_201800279 wiley_primary_10_1002_marc_201800279_MARC201800279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009; 45 2017; 6 2013; 29 2017; 7 2015; 36 2017; 8 2013; 4 2017; 4 2015; 72 2006; 39 2016; 106 2014; 136 2017; 9 2014; 20 2014; 5 2006; 207 2014; 3 2012; 134 2014; 2 2004; 377 2015; 137 2017; 38 2017; 35 2016; 116 2016; 49 2010; 6 2016; 45 2014; 10 2015; 6 2007; 129 2015; 16 2015; 4 2013; 46 2015; 54 2016; 52 2014; 47 2016; 17 2016; 58 2016; 5 2017; 50 2010; 43 2017; 53 2016; 7 2016; 217 2013; 214 2017; 56 2017; 12 2011; 44 2014; 35 2013; 135 2017; 18 2016; 60 2007; 40 2014; 39 2012; 45 2016; 8 2010; 51 2012; 41 2012; 8 2018; 57 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_70_1 Qiao X. G. (e_1_2_9_50_1) 2017; 50 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 39 start-page: 95 year: 2006 publication-title: Macromolecules – volume: 6 start-page: 5554 year: 2010 publication-title: Soft Matter – volume: 136 start-page: 1023 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 1664 year: 2014 publication-title: Macromolecules – volume: 53 start-page: 12894 year: 2017 publication-title: Chem. Commun. – volume: 6 start-page: 689 year: 2017 publication-title: ACS Macro Lett. – volume: 9 start-page: 15086 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 2887 year: 2009 publication-title: Chem. Commun. – volume: 46 start-page: 128 year: 2013 publication-title: Macromolecules – volume: 46 start-page: 8545 year: 2013 publication-title: Macromolecules – volume: 36 start-page: 1458 year: 2015 publication-title: Macromol. Rapid Comm. – volume: 8 start-page: 2173 year: 2017 publication-title: Polym. Chem. – volume: 8 start-page: 3082 year: 2017 publication-title: Polym. Chem. – volume: 38 start-page: 1700195 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 17 start-page: 2992 year: 2016 publication-title: Biomacromolecules – volume: 60 start-page: 86 year: 2016 publication-title: Prog. Polym. Sci. – volume: 4 start-page: 1249 year: 2015 publication-title: ACS Macro Lett. – volume: 137 start-page: 16098 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 207 start-page: 216 year: 2006 publication-title: Macromol. Chem. Phys. – volume: 38 start-page: 1600685 year: 2017 publication-title: Macromol. Rapid Comm. – volume: 38 start-page: 1600528 year: 2017 publication-title: Macromol. Rapid Comm. – volume: 57 start-page: 1053 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 136 start-page: 5824 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 755 year: 2015 publication-title: ACS Macro Lett. – volume: 43 start-page: 2672 year: 2010 publication-title: Macromolecules – volume: 40 start-page: 8897 year: 2007 publication-title: Macromolecules – volume: 49 start-page: 3789 year: 2016 publication-title: Macromolecules – volume: 50 start-page: 3797 year: 2017 publication-title: Macromolecules – volume: 135 start-page: 17617 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1145 year: 2017 publication-title: Biomacromolecules – volume: 8 start-page: 18347 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 1293 year: 2015 publication-title: ACS Macro Lett. – volume: 49 start-page: 8605 year: 2016 publication-title: Macromolecules – volume: 6 start-page: 2249 year: 2015 publication-title: Polym. Chem. – volume: 35 start-page: 417 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 47 start-page: 7442 year: 2014 publication-title: Macromolecules – volume: 106 start-page: 161 year: 2016 publication-title: Polymer – volume: 7 start-page: 23114 year: 2017 publication-title: RSC Adv. – volume: 36 start-page: 1428 year: 2015 publication-title: Macromol. Rapid Comm. – volume: 377 start-page: 159 year: 2004 publication-title: Biochem. J. – volume: 35 start-page: 1016 year: 2017 publication-title: Chinese J. Chem. – volume: 2 start-page: 7819 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 start-page: 298 year: 2017 publication-title: ACS Macro Lett. – volume: 4 start-page: 873 year: 2013 publication-title: Polym. Chem. – volume: 52 start-page: 1 year: 2016 publication-title: Prog. Polym. Sci. – volume: 58 start-page: 1 year: 2016 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 1220 year: 2014 publication-title: ACS Macro Lett. – volume: 29 start-page: 7416 year: 2013 publication-title: Langmuir – volume: 49 start-page: 1985 year: 2016 publication-title: Macromolecules – volume: 54 start-page: 1279 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 350 year: 2014 publication-title: Polym. Chem. – volume: 116 start-page: 2602 year: 2016 publication-title: Chem. Rev. – volume: 56 start-page: 16541 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 134 start-page: 12450 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1096 year: 2014 publication-title: Prog. Polym. Sci. – volume: 6 start-page: 337 year: 2017 publication-title: ACS Macro Lett. – volume: 10 start-page: 8615 year: 2014 publication-title: Soft Matter – volume: 4 start-page: 1700137 year: 2017 publication-title: Adv. Sci. – volume: 5 start-page: 1327 year: 2016 publication-title: ACS Macro Lett. – volume: 44 start-page: 5237 year: 2011 publication-title: Macromolecules – volume: 7 start-page: 7325 year: 2016 publication-title: Polym. Chem. – volume: 8 start-page: 7753 year: 2012 publication-title: Soft Matter – volume: 12 start-page: 81 year: 2017 publication-title: Nat. Nanotechnol. – volume: 41 start-page: 5969 year: 2012 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 455 year: 2017 publication-title: Chinese J. Polym. Sci. – volume: 44 start-page: 2524 year: 2011 publication-title: Macromolecules – volume: 9 start-page: 2023 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 2161 year: 2010 publication-title: Polymer – volume: 45 start-page: 6753 year: 2012 publication-title: Macromolecules – volume: 18 start-page: 649 year: 2017 publication-title: Biomacromolecules – volume: 49 start-page: 7277 year: 2016 publication-title: Macromolecules – volume: 6 start-page: 121 year: 2017 publication-title: ACS Macro Lett. – volume: 45 start-page: 5883 year: 2009 publication-title: Chem. Commun. – volume: 18 start-page: 1210 year: 2017 publication-title: Biomacromolecules – volume: 136 start-page: 10174 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1700202 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 72 start-page: 327 year: 2015 publication-title: Polymer – volume: 45 start-page: 377 year: 2016 publication-title: Chem. Soc. Rev. – volume: 49 start-page: 4490 year: 2016 publication-title: Macromolecules – volume: 6 start-page: 1237 year: 2017 publication-title: ACS Macro Lett. – volume: 5 start-page: 316 year: 2016 publication-title: ACS Macro Lett. – volume: 214 start-page: 2445 year: 2013 publication-title: Macromol. Chem. Phys. – volume: 16 start-page: 2040 year: 2015 publication-title: Biomacromolecules – volume: 129 start-page: 14493 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 304 year: 2017 publication-title: ACS Macro Lett. – volume: 8 start-page: 3485 year: 2017 publication-title: Polym. Chem. – volume: 217 start-page: 1047 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 38 start-page: 1600508 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 20 start-page: 15505 year: 2014 publication-title: Chem. Eur. J. – volume: 6 start-page: 925 year: 2017 publication-title: ACS Macro Lett. – volume: 50 start-page: 6108 year: 2017 publication-title: Macromolecules – ident: e_1_2_9_8_1 doi: 10.1021/ma0517897 – ident: e_1_2_9_17_1 doi: 10.1021/ja502843f – ident: e_1_2_9_31_1 doi: 10.1021/acsmacrolett.6b00796 – ident: e_1_2_9_37_1 doi: 10.1021/ma100021a – ident: e_1_2_9_53_1 doi: 10.1021/acsmacrolett.7b00408 – ident: e_1_2_9_39_1 doi: 10.1021/ja410593n – ident: e_1_2_9_5_1 doi: 10.1016/j.progpolymsci.2016.05.005 – ident: e_1_2_9_82_1 doi: 10.1021/ma200074n – ident: e_1_2_9_91_1 doi: 10.1038/nnano.2016.160 – ident: e_1_2_9_36_1 doi: 10.1039/c0sm00284d – ident: e_1_2_9_74_1 doi: 10.1039/C3PY01306E – ident: e_1_2_9_24_1 doi: 10.1021/acsmacrolett.7b00099 – ident: e_1_2_9_51_1 doi: 10.1021/acs.biomac.5b00470 – ident: e_1_2_9_77_1 doi: 10.1042/bj20031253 – ident: e_1_2_9_69_1 doi: 10.1002/marc.201600508 – ident: e_1_2_9_43_1 doi: 10.1021/acs.macromol.6b00688 – ident: e_1_2_9_78_1 doi: 10.1002/marc.201700202 – ident: e_1_2_9_13_1 doi: 10.1007/s10118-017-1907-8 – ident: e_1_2_9_23_1 doi: 10.1039/c4ta00465e – ident: e_1_2_9_48_1 doi: 10.1002/marc.201700195 – ident: e_1_2_9_71_1 doi: 10.1021/acsami.7b02966 – ident: e_1_2_9_61_1 doi: 10.1021/acs.biomac.6b01788 – ident: e_1_2_9_11_1 doi: 10.1039/C2PY20612A – ident: e_1_2_9_83_1 doi: 10.1002/macp.200500428 – ident: e_1_2_9_80_1 doi: 10.1002/chem.201403819 – ident: e_1_2_9_3_1 doi: 10.1002/marc.201600685 – ident: e_1_2_9_66_1 doi: 10.1021/acsami.6b14132 – ident: e_1_2_9_73_1 doi: 10.1002/macp.201500443 – ident: e_1_2_9_2_1 doi: 10.1039/C5CS00569H – ident: e_1_2_9_1_1 doi: 10.1021/acs.biomac.6b01704 – ident: e_1_2_9_59_1 doi: 10.1002/anie.201409799 – ident: e_1_2_9_72_1 doi: 10.1021/acs.biomac.6b01887 – ident: e_1_2_9_47_1 doi: 10.1021/acsmacrolett.5b00748 – ident: e_1_2_9_44_1 doi: 10.1021/acs.macromol.6b01581 – ident: e_1_2_9_10_1 doi: 10.1039/b912804b – ident: e_1_2_9_54_1 doi: 10.1021/ma501598k – ident: e_1_2_9_7_1 doi: 10.1039/c2cs35115c – ident: e_1_2_9_46_1 doi: 10.1021/acsmacrolett.7b00731 – ident: e_1_2_9_35_1 doi: 10.1021/acsmacrolett.7b00134 – ident: e_1_2_9_15_1 doi: 10.1039/b903040a – ident: e_1_2_9_85_1 doi: 10.1021/ja0756974 – ident: e_1_2_9_90_1 doi: 10.1016/j.progpolymsci.2013.10.006 – ident: e_1_2_9_20_1 doi: 10.1016/j.polymer.2016.08.082 – ident: e_1_2_9_60_1 doi: 10.1021/acsmacrolett.7b00422 – ident: e_1_2_9_25_1 doi: 10.1039/C7PY00508C – ident: e_1_2_9_41_1 doi: 10.1021/acs.macromol.6b00771 – ident: e_1_2_9_81_1 doi: 10.1021/ma200984h – ident: e_1_2_9_27_1 doi: 10.1021/acsmacrolett.7b00069 – ident: e_1_2_9_9_1 doi: 10.1021/ma0712854 – ident: e_1_2_9_64_1 doi: 10.1039/C7PY00552K – ident: e_1_2_9_22_1 doi: 10.1002/advs.201700137 – ident: e_1_2_9_32_1 doi: 10.1021/acsmacrolett.5b00699 – ident: e_1_2_9_84_1 doi: 10.1016/j.polymer.2010.03.036 – ident: e_1_2_9_28_1 doi: 10.1021/la304279y – ident: e_1_2_9_12_1 doi: 10.1039/c2sm25537e – ident: e_1_2_9_67_1 doi: 10.1039/C7RA02770B – ident: e_1_2_9_79_1 doi: 10.1021/mz500650c – ident: e_1_2_9_29_1 doi: 10.1021/ma301459y – ident: e_1_2_9_26_1 doi: 10.1039/C7PY00339K – ident: e_1_2_9_21_1 doi: 10.1002/marc.201600528 – volume: 50 start-page: 3797 year: 2017 ident: e_1_2_9_50_1 publication-title: Macromolecules – ident: e_1_2_9_16_1 doi: 10.1002/marc.201500028 – ident: e_1_2_9_18_1 doi: 10.1021/acs.macromol.5b02602 – ident: e_1_2_9_38_1 doi: 10.1021/ma402497y – ident: e_1_2_9_45_1 doi: 10.1039/C7CC07293G – ident: e_1_2_9_88_1 doi: 10.1021/ja305789e – ident: e_1_2_9_19_1 doi: 10.1016/j.progpolymsci.2015.10.002 – ident: e_1_2_9_68_1 doi: 10.1021/jacs.5b10415 – ident: e_1_2_9_86_1 doi: 10.1016/j.polymer.2015.02.024 – ident: e_1_2_9_87_1 doi: 10.1039/C4SM01724B – ident: e_1_2_9_55_1 doi: 10.1039/C6PY01797E – ident: e_1_2_9_62_1 doi: 10.1021/ja500092m – ident: e_1_2_9_49_1 doi: 10.1021/acs.macromol.6b01966 – ident: e_1_2_9_56_1 doi: 10.1002/macp.201300428 – ident: e_1_2_9_42_1 doi: 10.1021/ma401797a – ident: e_1_2_9_52_1 doi: 10.1021/acsmacrolett.6b00899 – ident: e_1_2_9_30_1 doi: 10.1021/acsmacrolett.5b00360 – ident: e_1_2_9_76_1 doi: 10.1021/ja409686x – ident: e_1_2_9_57_1 doi: 10.1002/cjoc.201600890 – ident: e_1_2_9_65_1 doi: 10.1002/marc.201300730 – ident: e_1_2_9_6_1 doi: 10.1016/j.progpolymsci.2015.10.009 – ident: e_1_2_9_40_1 doi: 10.1002/marc.201500122 – ident: e_1_2_9_63_1 doi: 10.1039/C4PY01632G – ident: e_1_2_9_58_1 doi: 10.1021/acs.macromol.7b01005 – ident: e_1_2_9_33_1 doi: 10.1002/anie.201710811 – ident: e_1_2_9_75_1 doi: 10.1021/acsami.6b04693 – ident: e_1_2_9_89_1 doi: 10.1021/acsmacrolett.6b00066 – ident: e_1_2_9_4_1 doi: 10.1021/acs.chemrev.5b00346 – ident: e_1_2_9_34_1 doi: 10.1002/anie.201709129 – ident: e_1_2_9_14_1 doi: 10.1021/ma300713f – ident: e_1_2_9_70_1 doi: 10.1021/acs.biomac.6b00819 |
SSID | ssj0008402 |
Score | 2.6327522 |
SecondaryResourceType | review_article |
Snippet | Drug delivery systems (DDS) based on functionalized polymeric nanoparticles have attracted considerable attention. Although great advances have been reported... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800279 |
SubjectTerms | Antibiotics, Antineoplastic - administration & dosage Antibiotics, Antineoplastic - chemistry Antibiotics, Antineoplastic - pharmacokinetics Assembly Block copolymers Chemistry Techniques, Synthetic - methods crosslinking Doxorubicin - administration & dosage Doxorubicin - chemistry Doxorubicin - pharmacokinetics Drug delivery Drug delivery systems Drug Delivery Systems - methods Drug Liberation Fabrication Methacrylates - chemistry Morphology Nanoparticles Nanoparticles - chemistry Polymerization polymerization‐induced self‐assembly Polymers - chemical synthesis Polymers - chemistry Reproducibility stimuli‐responsive polymers |
Title | Polymerization‐Induced Self‐Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.201800279 https://www.ncbi.nlm.nih.gov/pubmed/29968349 https://www.proquest.com/docview/2168069055 https://www.proquest.com/docview/2063713094 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL2WTkZA4BRLXcZJjKVQICYRYJG5RvCHUkiJoD-UCn8A38iXM1ElKQQgJbonieEk8njee8RtCdnwpI9ATgNzq3Ho8EYmXxQHGuiaag8aOuMDDyadn4vian9yEN59O8Tt-iGrDDSVjuF6jgGfyaX9EGopUDxiahYgnwhN8GLCFqOhixB8F1otzd4LFBcaYKFkbfbY__vq4VvoGNceR61D1tGZJVnbaRZy09_o9uaeev_A5_mdUc2SmwKW04SbSPJkw-QKZapbp4BbJy3m3M0D3jju3-f76hlk_lNH00nQs3KL7-F52BrRraQu0pdtkvHuGEgegMdu0ifkYsAoKSzrY6kVIHs1yTa_QX0EbI286vcvp4WP_lh7CgEDcBkvkunV01Tz2iuwNnuIBBlTYyMokU5YJBHGxEjpMAqZEoE1oAUUJv55IoZlJskhLFoBZD_BV2VBozX1bXyaTeTc3q4RKbYUfG1huNOeWgVFgAFbJOAhVpqCVGvHKv5eqgtocM2x0UkfKzFL8rGn1WWtktyr_4Eg9fiy5UU6GtBDup5QFIkaC5zCske3qMfwO9LVkuen2oQxAP7D_wXiukRU3iaqmAAGIuM6hcjacCr_0IT1tXDSru7W_vLROpuE6cVtHG2Sy99g3mwCmenJrKDAfKCkYTA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKOZQL_z9bChgJxClt4nWc-MBh2WW1pd0Kla3UWxr_oarbpGp3hbYXeARehVfhEXgSZtZJVgtCSEg9cEziOI499nzjGX9DyItQqQT0BCC3NncBl0IGeRphrKs0HDR2wgUeTh7uicEBf3cYH66Qb_VZGM8P0Wy44cyYr9c4wXFDemvBGopcDxibhZAnkVVc5Y6dfQKr7eL1dg-G-CVj_bej7iCoEgsEmkfo63eJUzLXjgnEF6kWJpYR0yIyNnag4EXYlkoYZmWeGMUisDgBWWkXC2N46NpQ7zVyHdOII11_b3_BWAX2knewgo0H5p-oeSJDtrXc3mU9-Bu4XcbKc2XXv0W-193kY1xONqcTtakvf2GQ_K_68Ta5WUFv2vFz5Q5ZscVdstatM97dI5_fl-MZerD80dQfX75iYhNtDf1gxw4u0UN-qsYzWjraB0Dg91GPL6HEGwAFJ7SLKSewCgpaqzyrow5pXhg6QpcM7SwCBuhxQXvn04-0Bz0IK8rsPjm4kv9_QFaLsrCPCFXGiTC1sKIazh0Du8cCclRpFOtcw1daJKjFJdMVezsmERlnnneaZTiMWTOMLfKqKX_meUv-WHKjlr6sWr8uMhaJFDms47hFnjePYTjQnZQXtpxCGUC3CUAgyVvkoZfa5lMAckTa5lA5m8veX9qQDTv73eZq_V9eekbWBqPhbra7vbfzmNyA-9LvlG2Q1cn51D4B7DhRT-ezlZKjqxbrn2fpdhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_qELBYwE4pQ28TpOfOCwbFi1lFZVaaXe0vgPVd0mq3ZXaHuBR-BReBVegSdhvE6yWhBCQuqBYxLHceyx5xvP-BuAF6GUCeoJRG5dZgMmuAiKNHKxrkIz1NgJ4-5w8vYO3zhg7w7jwyX41pyF8fwQ7Yabmxmz9dpN8JG263PSUEf14EKzHOJJRB1WuWWmn9BoO3-9meEIv6R08Ha_vxHUeQUCxSLn6reJlaJQlnIHL1LFdSwiqnikTWxRv_OwKyTX1Igi0ZJGaHAisFI25lqz0Hax3itwlfFQuGQR2d6csArNJe9fRRMPrT_e0ESGdH2xvYtq8DdsuwiVZ7pucAu-N73kQ1xO1iZjuaYufiGQ_J-68TbcrIE36fmZcgeWTHkXrvebfHf34PNuNZw6_5U_mPrjy1eX1kQZTT6YocVL5x8_lcMpqSwZIBzwu6jHF1jiDUKCE9J3CSdcFQR1VjVqYg5JUWqy7xwypDcPFyDHJcnOJh9Jhh2I68n0Phxcyv8_gOWyKs0KEKktD1OD66lmzFK0egziRplGsSoUfqUDQSMtuaq5210KkWHuWadp7oYxb4exA6_a8iPPWvLHkquN8OX16nWe04injsE6jjvwvH2Mw-GcSUVpqgmWQWybIAASrAMPvdC2n0KIw9Muw8rpTPT-0oZ8u7fXb68e_ctLz-DabjbI32_ubD2GG3hb-G2yVVgen03MEwSOY_l0NlcJHF22VP8Eejp0yw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymerization-Induced+Self-Assembly+of+Functionalized+Block+Copolymer+Nanoparticles+and+Their+Application+in+Drug+Delivery&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Zhang%2C+Wen-Jian&rft.au=Hong%2C+Chun-Yan&rft.au=Pan%2C+Cai-Yuan&rft.date=2019-01-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=40&rft.issue=2&rft.spage=e1800279&rft_id=info:doi/10.1002%2Fmarc.201800279&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |