Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change

Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 10; no. 7
Main Authors Cao, Dan, Zhang, Jiahua, Han, Jiaqi, Zhang, Tian, Yang, Shanshan, Wang, Jingwen, Prodhan, Foyez Ahmed, Yao, Fengmei
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.07.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through the difference between the mean NPP in the drought and normal years during a specific time period (30 years). Then, the NPP effects in different vegetation types and climatic zones under baseline stage (1981–2010) and future climate scenarios (RCP2.6, RCP4.5, and RCP8.5) is assessed. The results indicate that the negative NPP extremes are captured in most regions, except for the high‐latitude in the Northern Hemisphere. The NPP loss caused by extreme droughts in 2071–2100 is largest under RCPs, followed by the effects of severe and moderate droughts. Regionally, central United States, southern Africa, central Asia, India, Amazon tropical rainforest, and Australia are projected to experience a significant increase in negative NPP extremes and most of these regions are in arid and semi‐arid and tropical rain forest areas. In contrast, tropical Asia suffers little drought effects. For different vegetation, Evergreen Broadleaf Forest, Closed Shrubland, Open Shrubland, Croplands, and Grassland are the most affected by drought. The largest NPP loss occurs in most part of regions under RCP4.5 scenario, not RCP8.5. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. And meanwhile, the adverse effects of drought on vegetation may be resisted through rational fertilizer utilization and land management in future. Plain Language Summary Drought is already the most widespread factor affecting terrestrial net primary productivity (NPP) via direct physiological effects, such as water limitation and heat stress. Nevertheless, the effects of drought on terrestrial ecosystems under future climate change are still highly uncertain. In this study, we assess and compare the present and future impact of drought on vegetation net primary productivity. The results suggest that global drought events are projected to be intensified and frequent in the coming decades. Drought‐related NPP reduction is prevalent especially in the arid and semi‐arid areas and tropical regions at the end of 21st century. Extreme drought depresses NPP most under RCPs, followed by severe and moderate droughts. For vegetation, the adverse impact on NPP induced by drought under RCPs is increasingly significant in Evergreen Broadleaf Forest, Grassland, Savanna, and Cropland. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. These results highlight the growing vulnerability of ecosystem productivity to droughts, implying increased adverse impacts of these climate extremes on terrestrial carbon sinks. Key Points Net primary productivity (NPP) reduction associated with drought is prevalent especially in the arid and semi‐arid areas and tropical regions Adverse impact of drought on NPP under RCPs is large in Evergreen Broadleaf Forest, Shrubland, Grassland, and Cropland The largest NPP loss occurs under RCP4.5. Climate change plays the largest role in aggravating the risk of drought‐induced NPP reduction
AbstractList Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through the difference between the mean NPP in the drought and normal years during a specific time period (30 years). Then, the NPP effects in different vegetation types and climatic zones under baseline stage (1981–2010) and future climate scenarios (RCP2.6, RCP4.5, and RCP8.5) is assessed. The results indicate that the negative NPP extremes are captured in most regions, except for the high‐latitude in the Northern Hemisphere. The NPP loss caused by extreme droughts in 2071–2100 is largest under RCPs, followed by the effects of severe and moderate droughts. Regionally, central United States, southern Africa, central Asia, India, Amazon tropical rainforest, and Australia are projected to experience a significant increase in negative NPP extremes and most of these regions are in arid and semi‐arid and tropical rain forest areas. In contrast, tropical Asia suffers little drought effects. For different vegetation, Evergreen Broadleaf Forest, Closed Shrubland, Open Shrubland, Croplands, and Grassland are the most affected by drought. The largest NPP loss occurs in most part of regions under RCP4.5 scenario, not RCP8.5. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. And meanwhile, the adverse effects of drought on vegetation may be resisted through rational fertilizer utilization and land management in future. Plain Language Summary Drought is already the most widespread factor affecting terrestrial net primary productivity (NPP) via direct physiological effects, such as water limitation and heat stress. Nevertheless, the effects of drought on terrestrial ecosystems under future climate change are still highly uncertain. In this study, we assess and compare the present and future impact of drought on vegetation net primary productivity. The results suggest that global drought events are projected to be intensified and frequent in the coming decades. Drought‐related NPP reduction is prevalent especially in the arid and semi‐arid areas and tropical regions at the end of 21st century. Extreme drought depresses NPP most under RCPs, followed by severe and moderate droughts. For vegetation, the adverse impact on NPP induced by drought under RCPs is increasingly significant in Evergreen Broadleaf Forest, Grassland, Savanna, and Cropland. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. These results highlight the growing vulnerability of ecosystem productivity to droughts, implying increased adverse impacts of these climate extremes on terrestrial carbon sinks. Key Points Net primary productivity (NPP) reduction associated with drought is prevalent especially in the arid and semi‐arid areas and tropical regions Adverse impact of drought on NPP under RCPs is large in Evergreen Broadleaf Forest, Shrubland, Grassland, and Cropland The largest NPP loss occurs under RCP4.5. Climate change plays the largest role in aggravating the risk of drought‐induced NPP reduction
Abstract Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through the difference between the mean NPP in the drought and normal years during a specific time period (30 years). Then, the NPP effects in different vegetation types and climatic zones under baseline stage (1981–2010) and future climate scenarios (RCP2.6, RCP4.5, and RCP8.5) is assessed. The results indicate that the negative NPP extremes are captured in most regions, except for the high‐latitude in the Northern Hemisphere. The NPP loss caused by extreme droughts in 2071–2100 is largest under RCPs, followed by the effects of severe and moderate droughts. Regionally, central United States, southern Africa, central Asia, India, Amazon tropical rainforest, and Australia are projected to experience a significant increase in negative NPP extremes and most of these regions are in arid and semi‐arid and tropical rain forest areas. In contrast, tropical Asia suffers little drought effects. For different vegetation, Evergreen Broadleaf Forest, Closed Shrubland, Open Shrubland, Croplands, and Grassland are the most affected by drought. The largest NPP loss occurs in most part of regions under RCP4.5 scenario, not RCP8.5. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. And meanwhile, the adverse effects of drought on vegetation may be resisted through rational fertilizer utilization and land management in future.
Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through the difference between the mean NPP in the drought and normal years during a specific time period (30 years). Then, the NPP effects in different vegetation types and climatic zones under baseline stage (1981–2010) and future climate scenarios (RCP2.6, RCP4.5, and RCP8.5) is assessed. The results indicate that the negative NPP extremes are captured in most regions, except for the high‐latitude in the Northern Hemisphere. The NPP loss caused by extreme droughts in 2071–2100 is largest under RCPs, followed by the effects of severe and moderate droughts. Regionally, central United States, southern Africa, central Asia, India, Amazon tropical rainforest, and Australia are projected to experience a significant increase in negative NPP extremes and most of these regions are in arid and semi‐arid and tropical rain forest areas. In contrast, tropical Asia suffers little drought effects. For different vegetation, Evergreen Broadleaf Forest, Closed Shrubland, Open Shrubland, Croplands, and Grassland are the most affected by drought. The largest NPP loss occurs in most part of regions under RCP4.5 scenario, not RCP8.5. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. And meanwhile, the adverse effects of drought on vegetation may be resisted through rational fertilizer utilization and land management in future. Drought is already the most widespread factor affecting terrestrial net primary productivity (NPP) via direct physiological effects, such as water limitation and heat stress. Nevertheless, the effects of drought on terrestrial ecosystems under future climate change are still highly uncertain. In this study, we assess and compare the present and future impact of drought on vegetation net primary productivity. The results suggest that global drought events are projected to be intensified and frequent in the coming decades. Drought‐related NPP reduction is prevalent especially in the arid and semi‐arid areas and tropical regions at the end of 21st century. Extreme drought depresses NPP most under RCPs, followed by severe and moderate droughts. For vegetation, the adverse impact on NPP induced by drought under RCPs is increasingly significant in Evergreen Broadleaf Forest, Grassland, Savanna, and Cropland. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. These results highlight the growing vulnerability of ecosystem productivity to droughts, implying increased adverse impacts of these climate extremes on terrestrial carbon sinks. Net primary productivity (NPP) reduction associated with drought is prevalent especially in the arid and semi‐arid areas and tropical regions Adverse impact of drought on NPP under RCPs is large in Evergreen Broadleaf Forest, Shrubland, Grassland, and Cropland The largest NPP loss occurs under RCP4.5. Climate change plays the largest role in aggravating the risk of drought‐induced NPP reduction
Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem disturbance and terrestrial carbon sink. Here, we evaluate the effect of vegetation net primary productivity (NPP) associated with drought through the difference between the mean NPP in the drought and normal years during a specific time period (30 years). Then, the NPP effects in different vegetation types and climatic zones under baseline stage (1981–2010) and future climate scenarios (RCP2.6, RCP4.5, and RCP8.5) is assessed. The results indicate that the negative NPP extremes are captured in most regions, except for the high‐latitude in the Northern Hemisphere. The NPP loss caused by extreme droughts in 2071–2100 is largest under RCPs, followed by the effects of severe and moderate droughts. Regionally, central United States, southern Africa, central Asia, India, Amazon tropical rainforest, and Australia are projected to experience a significant increase in negative NPP extremes and most of these regions are in arid and semi‐arid and tropical rain forest areas. In contrast, tropical Asia suffers little drought effects. For different vegetation, Evergreen Broadleaf Forest, Closed Shrubland, Open Shrubland, Croplands, and Grassland are the most affected by drought. The largest NPP loss occurs in most part of regions under RCP4.5 scenario, not RCP8.5. Climate change is projected to play the largest role in aggravating the risk of drought‐induced NPP reduction. And meanwhile, the adverse effects of drought on vegetation may be resisted through rational fertilizer utilization and land management in future.
Author Zhang, Jiahua
Yang, Shanshan
Wang, Jingwen
Han, Jiaqi
Yao, Fengmei
Prodhan, Foyez Ahmed
Cao, Dan
Zhang, Tian
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-3157-829X
  surname: Cao
  fullname: Cao, Dan
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Jiahua
  orcidid: 0000-0002-2894-9627
  surname: Zhang
  fullname: Zhang, Jiahua
  email: zhangjh@radi.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Jiaqi
  surname: Han
  fullname: Han, Jiaqi
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Tian
  surname: Zhang
  fullname: Zhang, Tian
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Shanshan
  orcidid: 0000-0002-7765-143X
  surname: Yang
  fullname: Yang, Shanshan
  organization: Qingdao University
– sequence: 6
  givenname: Jingwen
  surname: Wang
  fullname: Wang, Jingwen
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Foyez Ahmed
  surname: Prodhan
  fullname: Prodhan, Foyez Ahmed
  organization: Bangabandhu Sheikh Mujibur Rahman Agricultural University
– sequence: 8
  givenname: Fengmei
  surname: Yao
  fullname: Yao, Fengmei
  organization: University of Chinese Academy of Sciences
BookMark eNqFUU1vEzEQXaEitZTe-gMscSXgr13bR7QkJVJEe0jPlmOPU0eLXWwvVf49pkGo4gBzmdHMmzczb950ZzFF6Lprgj8QTNVHiildrjCmgySvugvKqFxwKsTZi_i8uyrlgJspgVkvLrp4l9MBbAWH1tFmMAUKChHdTGlnJrSFnKHUHFr8FSq6y-Gbycfmk5ttDT9CPaJNKgWNZi6NZHdEn3Oa9w8V3UcHGY1T66iAxgcT9_C2e-3NVODqt7_s7lfL7fhlsbm9WY-fNgvLCZYLJ7wHwbxyhBoyYBDGcG7BmYFIKSnlCkAxJR0zSvp2meWtyBgmDgvw7LJbn3hdMgf9eNpaJxP0cyLlvTa5BjuBNpw2fbjzRAycD3jHVW92ipJeKEf90Ljenbgec_o-NzX0Ic05tvU1HVTfY6Z62lDvTyibmxwZ_J-pBOtfD9IvH9Tg9C-4DdXUkGLNJkz_aXoKExz_OUAvV1tKsJDsJ8-Vodg
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_117513
crossref_primary_10_3390_f15101756
crossref_primary_10_3390_rs17050891
crossref_primary_10_3390_atmos14060989
crossref_primary_10_3390_rs16203787
crossref_primary_10_1016_j_agrformet_2023_109636
crossref_primary_10_1016_j_scitotenv_2023_165718
crossref_primary_10_1016_j_scitotenv_2023_162753
crossref_primary_10_3390_atmos14061026
crossref_primary_10_1111_ecog_07533
crossref_primary_10_1016_j_gloplacha_2024_104628
crossref_primary_10_3390_rs16111966
crossref_primary_10_1016_j_agrformet_2024_110060
crossref_primary_10_1007_s42729_025_02363_6
crossref_primary_10_1038_s43247_023_00869_4
crossref_primary_10_1016_j_wace_2024_100692
crossref_primary_10_1360_SSV_2023_0214
crossref_primary_10_3390_rs15194706
crossref_primary_10_3390_atmos14111613
crossref_primary_10_1007_s42106_024_00315_1
crossref_primary_10_1016_j_agwat_2025_109293
crossref_primary_10_1016_j_ecolind_2024_112663
crossref_primary_10_1016_j_rse_2024_114406
crossref_primary_10_1016_j_ecolind_2023_110241
crossref_primary_10_1016_j_ecolind_2024_113055
crossref_primary_10_1016_j_jenvman_2025_124139
crossref_primary_10_1016_j_scitotenv_2024_175299
crossref_primary_10_1029_2024EF004798
crossref_primary_10_3390_rs15030789
crossref_primary_10_1093_treephys_tpae121
crossref_primary_10_1016_j_geoderma_2025_117176
crossref_primary_10_1016_j_jia_2023_02_003
crossref_primary_10_3389_fevo_2022_1002397
crossref_primary_10_1146_annurev_ecolsys_110421_102101
crossref_primary_10_3390_agronomy13020469
crossref_primary_10_1016_j_jenvman_2023_118869
crossref_primary_10_1016_j_ecolind_2024_112605
crossref_primary_10_1098_rspb_2024_0266
crossref_primary_10_3390_atmos15050578
Cites_doi 10.1046/j.1365-2486.1999.00009.x
10.5194/hess-17-3885-2013
10.1016/j.quaint.2014.06.021
10.1038/nature12291
10.1007/s11430-018-9363-5
10.1126/science.1192666
10.5194/gmd-7-2875-2014
10.1016/j.agrformet.2015.02.007
10.1126/sciadv.aax1396
10.1002/joc.3822
10.1073/pnas.1604581113
10.1038/379718a0
10.1029/2018JG004520
10.1016/j.agrformet.2019.107703
10.1111/j.1469-8137.2008.02436.x
10.1016/j.agsy.2005.07.004
10.1016/j.gloplacha.2012.12.002
10.1016/j.scitotenv.2017.09.121
10.1016/j.scitotenv.2016.01.055
10.1007/s12571-013-0280-x
10.5194/bg-12-653-2015
10.1111/gcb.14302
10.1002/2014gl062409
10.1016/j.scitotenv.2017.12.120
10.1016/j.scitotenv.2021.148358
10.1016/j.scitotenv.2020.140649
10.1038/nature14213
10.1111/gcb.12945
10.1038/NGEO2413
10.1007/s11104-008-9617-1
10.1029/2020GL087820
10.2307/210739
10.1038/s41558-019-0630-6
10.1038/nature23021
10.1126/science.abb7772
10.1016/j.scitotenv.2017.03.226
10.1111/j.1365-2745.2011.01833.x
10.1175/2009jcli2909.1
10.1016/j.rse.2015.06.008
10.5194/bg-18-39-2021
10.1016/j.scitotenv.2021.145320
10.1016/j.jenvman.2020.111144
10.1038/nature11575
10.1038/nature10274
10.1016/j.rse.2019.111220
10.1111/gcb.12187
10.1016/j.scitotenv.2018.07.161
10.1038/ngeo1799
10.1071/BT07151
10.1111/gcb.16017
10.1016/j.agrformet.2017.06.011
10.1126/science.1082750
10.1111/j.1365-2745.2011.01817.x
10.1029/2018JG004760
10.1002/joc.4244
10.1002/2015JG003062
10.1111/ijlh.12426
10.1093/jxb/erq340
10.1111/j.1365-2486.2006.01305.x
10.1029/2006GL029019
10.1038/s41467-019-12257-8
10.1016/j.agrformet.2019.107623
10.1038/nature03972
10.1016/j.quaint.2011.10.020
10.1038/s41558-021-01112-8
10.1038/nature12350
10.1073/pnas.0505734102
10.1029/2010JG001348
10.1016/j.rse.2016.08.030
10.1175/JCLI-D-12-00579.1
10.1038/s41598-017-03818-2
10.1073/pnas.1700304115
10.5194/gmd-6-2121-2013
ContentType Journal Article
Copyright 2022 Aerospace Information Research Institute, Chinese Academy of Sciences.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Aerospace Information Research Institute, Chinese Academy of Sciences.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2022EF002681
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a422324df1764460b495ab921579d2f6
10_1029_2022EF002681
EFT21078
Genre article
GrantInformation_xml – fundername: Strategic Priority Research Program of Chinese Academy of Sciences‐A
  funderid: XDA19030402
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAMMB
AAZKR
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AENEX
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7ST
7TG
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c4108-d7ffe73f9d12a160e7aa44ceda618882249ee9398d3a98f277c4eda3301d07ef3
IEDL.DBID BENPR
ISSN 2328-4277
IngestDate Wed Aug 27 01:28:17 EDT 2025
Fri Jul 25 06:34:53 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Tue Jul 01 02:48:25 EDT 2025
Wed Aug 20 07:25:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-d7ffe73f9d12a160e7aa44ceda618882249ee9398d3a98f277c4eda3301d07ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3157-829X
0000-0002-2894-9627
0000-0002-7765-143X
OpenAccessLink https://www.proquest.com/docview/2695503952?pq-origsite=%requestingapplication%
PQID 2695503952
PQPubID 2034575
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_a422324df1764460b495ab921579d2f6
proquest_journals_2695503952
crossref_primary_10_1029_2022EF002681
crossref_citationtrail_10_1029_2022EF002681
wiley_primary_10_1029_2022EF002681_EFT21078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 35
2012; 282
2017; 7
2011; 476
2018; 645
2019; 10
2021; 28
2018; 123
2011; 62
2008; 308
2014; 27
2011; 99
2017; 595
2013; 5
2013; 6
2007; 34
2016; 186
2013; 19
2012; 491
2010; 23
2013; 17
2019; 62
2005; 102
2010; 115
2020; 370
2016; 113
2019; 278
2016; 550
2019; 279
2020; 47
2021; 791
2018; 615
1996; 379
2014; 7
2017; 246
2018; 38
2019; 231
2015; 12
2019; 9
2010; 329
2019; 5
2012
2018; 624
2015; 166
2013; 500
1998
2020; 743
2005; 437
2013; 101
2008; 56
2016; 121
2003
2015; 205
2014; 41
2015; 8
1999; 5
2007; 13
2018; 24
1948; 38
2017; 548
2014; 349
2021; 11
2020; 274
2006; 88
2021; 18
2018; 115
2015; 21
2015; 519
2018
2013; 499
2021; 770
2008; 178
2003; 300
2014; 34
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
IPCC (e_1_2_8_29_1) 2012
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
Allen R. G. (e_1_2_8_2_1) 1998
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_4_1
Burroughs W. (e_1_2_8_7_1) 2003
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 550
  start-page: 143
  year: 2016
  end-page: 156
  article-title: Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems
  publication-title: Science of the Total Environment
– volume: 379
  start-page: 718
  issue: 6567
  year: 1996
  end-page: 720
  article-title: Productivity and sustainability influenced by biodiversity in grassland ecosystems
  publication-title: Nature (London)
– volume: 308
  start-page: 175
  year: 2008
  end-page: 188
  article-title: Soil biotic processes remain remarkably stable after 100‐year extreme weather events in experimental grassland and heath
  publication-title: Plant and Soil
– volume: 24
  start-page: 4023
  issue: 9
  year: 2018
  end-page: 4037
  article-title: Satellite sun‐induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo‐Gangetic Plains
  publication-title: Global Change Biology
– volume: 38
  start-page: 55
  year: 1948
  end-page: 94
  article-title: An approach toward a rational classification of climate
  publication-title: Geographical Review
– volume: 645
  start-page: 827
  year: 2018
  end-page: 836
  article-title: The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China
  publication-title: Science of the Total Environment
– volume: 231
  year: 2019
  article-title: Determining variable weights for an optimal scaled drought condition index (OSDCI): Evaluation in central Asia
  publication-title: Remote Sensing of Environment
– volume: 8
  start-page: 441
  year: 2015
  end-page: 444
  article-title: Future productivity and carbon storage limited by terrestrial nutrient availability
  publication-title: Nature Geoscience
– volume: 102
  start-page: 15144
  year: 2005
  end-page: 15148
  article-title: Regional vegetation die‐off in response to global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 595
  start-page: 191
  year: 2017
  end-page: 200
  article-title: Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050
  publication-title: Science of the Total Environment
– volume: 115
  start-page: 4015
  year: 2018
  end-page: 4020
  article-title: Climate change, human impacts, and carbon sequestration in China
  publication-title: Proceedings of the National Academy of Sciences
– volume: 101
  start-page: 33
  issue: 2
  year: 2013
  end-page: 51
  article-title: Effect of heterogeneous atmospheric CO on simulated global carbon budget
  publication-title: Global and Planetary Change
– volume: 18
  start-page: 39
  issue: 1
  year: 2021
  end-page: 53
  article-title: Vegetation modulates the impact of climate extremes on gross primary production
  publication-title: Biogeosciences
– volume: 166
  start-page: 163
  year: 2015
  end-page: 177
  article-title: The 2010 Russian drought impact on satellite measurements of solar‐induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances
  publication-title: Remote Sensing of Environment
– volume: 282
  start-page: 5
  year: 2012
  end-page: 13
  article-title: Spatial patterns and temporal variability of dryness/wetness in the Yangtze River
  publication-title: Quaternary International
– volume: 186
  start-page: 528
  year: 2016
  end-page: 547
  article-title: Multi‐scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS)
  publication-title: Remote Sensing of Environment
– year: 1998
– volume: 7
  start-page: 2875
  year: 2014
  end-page: 2893
  article-title: The North American Carbon Program Multi‐scale Synthesis and Terrestrial Model Intercomparison project – Part 2: Environmental driver data
  publication-title: Geoscientific Model Development
– volume: 9
  start-page: 948
  year: 2019
  end-page: 953
  article-title: Increasing impacts of extreme droughts on vegetation productivity under climate change
  publication-title: Nature Climate Change
– volume: 11
  start-page: 772
  year: 2021
  end-page: 779
  article-title: Increasing impact of warm droughts on northern ecosystem productivity over recent decades
  publication-title: Nature Climate Change
– volume: 113
  start-page: 10019
  issue: 36
  year: 2016
  end-page: 10024
  article-title: Plant responses to increasing CO reduce estimates of climate impacts on drought severity
  publication-title: Proceedings of the National Academy of Sciences
– volume: 88
  start-page: 451
  year: 2006
  end-page: 471
  article-title: Evaluating uncertainty introduced to process‐based simulation model estimates by alternative sources of meteorological data
  publication-title: Agricultural Systems
– volume: 34
  start-page: 1
  year: 2007
  end-page: 6
  article-title: Impact of terrestrial biosphere carbon exchanges on the anomalous CO increase in 2002‐2003
  publication-title: Geophysical Research Letters
– volume: 41
  start-page: 8853
  issue: 24
  year: 2014
  end-page: 8861
  article-title: Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers
  publication-title: Geophysical Research Letters
– volume: 274
  year: 2020
  article-title: Net Primary Productivity Loss under different drought levels in different grassland ecosystems
  publication-title: Journal of Environmental Management
– volume: 123
  start-page: 3603
  year: 2018
  end-page: 3616
  article-title: Broad consistency between satellite and vegetation model estimates of net primary productivity across global and regional scales
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 437
  start-page: 529
  issue: 7058
  year: 2005
  end-page: 533
  article-title: Europe‐wide reduction in primary productivity caused by the heat and drought in 2003
  publication-title: Nature
– volume: 34
  start-page: 2059
  year: 2014
  end-page: 2078
  article-title: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China
  publication-title: International Journal of Climatology
– volume: 35
  start-page: 3760
  year: 2015
  end-page: 3769
  article-title: The alleviating trend of drought in the Huang‐Huai‐Hai Plain of China based on the daily SPEI
  publication-title: International Journal of Climatology
– volume: 28
  start-page: 1583
  issue: 4
  year: 2021
  end-page: 1595
  article-title: Tropical tall forests are more sensitive and vulnerable to drought than short forests
  publication-title: Global Change Biology
– volume: 279
  year: 2019
  article-title: Divergent vegetation responses to extreme spring and summer droughts in Southwestern China
  publication-title: Agricultural and Forest Meteorology
– volume: 56
  start-page: 1
  year: 2008
  end-page: 26
  article-title: Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems
  publication-title: Australian Journal of Botany
– volume: 178
  start-page: 719
  year: 2008
  end-page: 739
  article-title: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?
  publication-title: New Phytologist
– volume: 62
  start-page: 869
  year: 2011
  end-page: 882
  article-title: Photosynthesis and drought: Can we make metabolic connections from available data?
  publication-title: Journal of Experimental Botany
– volume: 12
  start-page: 653
  year: 2015
  end-page: 679
  article-title: Recent trends and drivers of regional sources and sinks of carbon
  publication-title: Biogeosciences
– volume: 205
  start-page: 11
  year: 2015
  end-page: 22
  article-title: Biotic and climatic controls on interannual variability in carbon fluxes across terrestrial ecosystems
  publication-title: Agricultural and Forest Meteorology
– volume: 743
  year: 2020
  article-title: Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades
  publication-title: Science of the Total Environment
– volume: 519
  start-page: 78
  year: 2015
  end-page: 82
  article-title: Drought impact on forest carbon dynamics and fluxes in Amazonia
  publication-title: Nature
– volume: 329
  start-page: 940
  issue: 5994
  year: 2010
  end-page: 943
  article-title: Drought‐induced reduction in global terrestrial net primary production from 2000 through 2009
  publication-title: Science
– volume: 491
  start-page: 435
  year: 2012
  end-page: 438
  article-title: Little change in global drought over the past 60 years
  publication-title: Nature
– volume: 62
  start-page: 1551
  year: 2019
  end-page: 1563
  article-title: The impacts of climate extremes on the terrestrial carbon cycle: A review
  publication-title: Science China Earth Sciences
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  article-title: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index
  publication-title: Journal of Climate
– volume: 115
  start-page: 1
  year: 2010
  end-page: 12
  article-title: Carbon dioxide exchange in a semidesert grassland through drought‐induced vegetation change
  publication-title: Journal of Geophysical Research
– volume: 47
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation
  publication-title: Geophysical Research Letters
– volume: 499
  start-page: 324
  issue: 7458
  year: 2013
  end-page: 327
  article-title: Increase in forest water‐use efficiency as atmospheric carbon dioxide concentrations rise
  publication-title: Nature
– volume: 121
  start-page: 1372
  year: 2016
  end-page: 1393
  article-title: Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901‐2005
  publication-title: Journal of Geophysical Research: Biogeosciences
– year: 2003
– volume: 10
  start-page: 4
  year: 2019
  end-page: 10
  article-title: Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink
  publication-title: Nature Communications
– volume: 500
  start-page: 287
  year: 2013
  end-page: 295
  article-title: Climate extremes and the carbon cycle
  publication-title: Nature
– year: 2018
  article-title: Large‐scale droughts responsible for dramatic reductions of terrestrial net carbon uptake over North America in 2011 and 2012
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 548
  start-page: 202
  year: 2017
  end-page: 205
  article-title: Global patterns of drought recovery
  publication-title: Nature
– volume: 624
  start-page: 1523
  year: 2018
  end-page: 1538
  article-title: Spatial and temporal characteristics of droughts in Central Asia
  publication-title: Science of the Total Environment
– volume: 278
  year: 2019
  article-title: Assessment of global drought propensity and its impacts on agricultural water use in future climate scenarios
  publication-title: Agricultural and Forest Meteorology
– volume: 19
  start-page: 2117
  issue: 7
  year: 2013
  end-page: 2132
  article-title: Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO trends
  publication-title: Global Change Biology
– volume: 99
  start-page: 651
  issue: 3
  year: 2011
  end-page: 655
  article-title: The ecological role of climate extremes: Current understanding and future prospects
  publication-title: Journal of Ecology
– volume: 38
  start-page: 42
  year: 2018
  end-page: 49
  article-title: Amazon droughts and forest responses: Largely reduced forest photosynthesis but slightly increased canopy greenness during the extreme drought of 2015/2016
  publication-title: Global Change Biology
– year: 2012
– volume: 300
  start-page: 1560
  year: 2003
  end-page: 1563
  article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999
  publication-title: Science
– volume: 5
  start-page: 499
  year: 2013
  end-page: 512
  article-title: Spatial‐temporal changes of cropland and climate potential productivity in northern China during 1990‐2010
  publication-title: Food Security
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  article-title: Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon‐climate feedback predictions
  publication-title: Scientific Reports
– volume: 99
  start-page: 689
  year: 2011
  end-page: 702
  article-title: Climate extremes initiate ecosystem‐regulating functions while maintaining productivity
  publication-title: Journal of Ecology
– volume: 27
  start-page: 511
  year: 2014
  end-page: 526
  article-title: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks
  publication-title: Journal of Climate
– volume: 6
  start-page: 2121
  year: 2013
  end-page: 2133
  article-title: The North American Carbon Program Multi‐scale synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design
  publication-title: Geoscientific Model Development
– volume: 6
  start-page: 447
  issue: 6
  year: 2013
  end-page: 451
  article-title: Robust direct effect of carbon dioxide on tropical circulation and regional precipitation
  publication-title: Nature Geoscience
– volume: 791
  issue: 14
  year: 2021
  article-title: Spatiotemporal variations and regional differences in air temperature in the permafrost regions in the northern hemisphere during 1980–2018
  publication-title: Science of the Total Environment
– volume: 370
  start-page: 1295
  issue: 6522
  year: 2020
  end-page: 1300
  article-title: Recent global decline of CO fertilization effects on vegetation photosynthesis
  publication-title: Science
– volume: 770
  year: 2021
  article-title: Spatiotemporal variations of global terrestrial vegetation climate potential productivity under climate change
  publication-title: Science of the Total Environment
– volume: 13
  start-page: 679
  year: 2007
  end-page: 706
  article-title: Modelling the role of agriculture for the 20th century global terrestrial carbon balance
  publication-title: Global Change Biology
– volume: 17
  start-page: 3885
  year: 2013
  end-page: 3894
  article-title: A global analysis of the impact of drought on net primary productivity
  publication-title: Hydrology and Earth System Sciences
– volume: 615
  start-page: 1557
  year: 2018
  end-page: 1565
  article-title: Spatiotemporal drought variability on the Mongolian Plateau from 1980–2014 based on the SPEI‐PM, intensity analysis and Hurst exponent
  publication-title: Science of the Total Environment
– volume: 5
  start-page: 1
  year: 1999
  end-page: 15
  article-title: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results
  publication-title: Global Change Biology
– volume: 349
  start-page: 10
  year: 2014
  end-page: 21
  article-title: Temporal‐spatial characteristics of severe drought events and their impact on agriculture on a global scale
  publication-title: Quaternary International
– volume: 5
  issue: 8
  year: 2019
  article-title: Increased atmospheric vapor pressure deficit reduces global vegetation growth
  publication-title: Science Advances
– volume: 21
  start-page: 3520
  year: 2015
  end-page: 3531
  article-title: Time‐lag effects of global vegetation responses to climate change
  publication-title: Global Change Biology
– volume: 476
  start-page: 202
  issue: 7359
  year: 2011
  end-page: 205
  article-title: C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi‐arid grassland
  publication-title: Nature
– volume: 246
  start-page: 123
  year: 2017
  end-page: 132
  article-title: Climate‐driven uncertainties in modeling terrestrial ecosystem net primary productivity in China
  publication-title: Agricultural and Forest Meteorology
– ident: e_1_2_8_13_1
  doi: 10.1046/j.1365-2486.1999.00009.x
– ident: e_1_2_8_11_1
  doi: 10.5194/hess-17-3885-2013
– ident: e_1_2_8_65_1
  doi: 10.1016/j.quaint.2014.06.021
– ident: e_1_2_8_32_1
  doi: 10.1038/nature12291
– ident: e_1_2_8_43_1
  doi: 10.1007/s11430-018-9363-5
– ident: e_1_2_8_76_1
  doi: 10.1126/science.1192666
– ident: e_1_2_8_67_1
  doi: 10.5194/gmd-7-2875-2014
– ident: e_1_2_8_50_1
  doi: 10.1016/j.agrformet.2015.02.007
– ident: e_1_2_8_73_1
  doi: 10.1126/sciadv.aax1396
– ident: e_1_2_8_63_1
  doi: 10.1002/joc.3822
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.1604581113
– ident: e_1_2_8_59_1
  doi: 10.1038/379718a0
– ident: e_1_2_8_25_1
  doi: 10.1029/2018JG004520
– ident: e_1_2_8_56_1
  doi: 10.1016/j.agrformet.2019.107703
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1469-8137.2008.02436.x
– ident: e_1_2_8_47_1
  doi: 10.1016/j.agsy.2005.07.004
– ident: e_1_2_8_74_1
  doi: 10.1016/j.gloplacha.2012.12.002
– ident: e_1_2_8_60_1
  doi: 10.1016/j.scitotenv.2017.09.121
– ident: e_1_2_8_15_1
  doi: 10.1016/j.scitotenv.2016.01.055
– ident: e_1_2_8_45_1
  doi: 10.1007/s12571-013-0280-x
– ident: e_1_2_8_53_1
  doi: 10.5194/bg-12-653-2015
– ident: e_1_2_8_55_1
  doi: 10.1111/gcb.14302
– ident: e_1_2_8_77_1
  doi: 10.1002/2014gl062409
– ident: e_1_2_8_23_1
  doi: 10.1016/j.scitotenv.2017.12.120
– ident: e_1_2_8_26_1
  doi: 10.1016/j.scitotenv.2021.148358
– ident: e_1_2_8_10_1
  doi: 10.1016/j.scitotenv.2020.140649
– ident: e_1_2_8_14_1
  doi: 10.1038/nature14213
– ident: e_1_2_8_69_1
  doi: 10.1111/gcb.12945
– ident: e_1_2_8_68_1
  doi: 10.1038/NGEO2413
– ident: e_1_2_8_34_1
  doi: 10.1007/s11104-008-9617-1
– ident: e_1_2_8_61_1
  doi: 10.1029/2020GL087820
– ident: e_1_2_8_58_1
  doi: 10.2307/210739
– ident: e_1_2_8_70_1
  doi: 10.1038/s41558-019-0630-6
– ident: e_1_2_8_48_1
  doi: 10.1038/nature23021
– ident: e_1_2_8_66_1
  doi: 10.1126/science.abb7772
– ident: e_1_2_8_21_1
  doi: 10.1016/j.scitotenv.2017.03.226
– volume-title: Special report on managing the risks of extreme events and disasters to advance climate change adaptation
  year: 2012
  ident: e_1_2_8_29_1
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2745.2011.01833.x
– ident: e_1_2_8_62_1
  doi: 10.1175/2009jcli2909.1
– ident: e_1_2_8_72_1
  doi: 10.1016/j.rse.2015.06.008
– ident: e_1_2_8_17_1
  doi: 10.5194/bg-18-39-2021
– ident: e_1_2_8_8_1
  doi: 10.1016/j.scitotenv.2021.145320
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jenvman.2020.111144
– ident: e_1_2_8_52_1
  doi: 10.1038/nature11575
– ident: e_1_2_8_40_1
  doi: 10.1038/nature10274
– ident: e_1_2_8_24_1
  doi: 10.1016/j.rse.2019.111220
– ident: e_1_2_8_42_1
  doi: 10.1111/gcb.12187
– ident: e_1_2_8_20_1
  doi: 10.1016/j.scitotenv.2018.07.161
– ident: e_1_2_8_5_1
  doi: 10.1038/ngeo1799
– ident: e_1_2_8_3_1
  doi: 10.1071/BT07151
– ident: e_1_2_8_36_1
  doi: 10.1111/gcb.16017
– ident: e_1_2_8_22_1
  doi: 10.1016/j.agrformet.2017.06.011
– ident: e_1_2_8_41_1
  doi: 10.1126/science.1082750
– ident: e_1_2_8_30_1
  doi: 10.1111/j.1365-2745.2011.01817.x
– ident: e_1_2_8_37_1
  doi: 10.1029/2018JG004760
– ident: e_1_2_8_64_1
  doi: 10.1002/joc.4244
– ident: e_1_2_8_51_1
  doi: 10.1002/2015JG003062
– ident: e_1_2_8_71_1
  doi: 10.1111/ijlh.12426
– ident: e_1_2_8_44_1
  doi: 10.1093/jxb/erq340
– ident: e_1_2_8_4_1
  doi: 10.1111/j.1365-2486.2006.01305.x
– ident: e_1_2_8_33_1
  doi: 10.1029/2006GL029019
– volume-title: Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and Drainage Paper No. 56
  year: 1998
  ident: e_1_2_8_2_1
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-019-12257-8
– ident: e_1_2_8_38_1
  doi: 10.1016/j.agrformet.2019.107623
– ident: e_1_2_8_12_1
  doi: 10.1038/nature03972
– ident: e_1_2_8_75_1
  doi: 10.1016/j.quaint.2011.10.020
– ident: e_1_2_8_19_1
  doi: 10.1038/s41558-021-01112-8
– ident: e_1_2_8_46_1
  doi: 10.1038/nature12350
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.0505734102
– ident: e_1_2_8_49_1
  doi: 10.1029/2010JG001348
– volume-title: Climate: Into the 21st century
  year: 2003
  ident: e_1_2_8_7_1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.rse.2016.08.030
– ident: e_1_2_8_18_1
  doi: 10.1175/JCLI-D-12-00579.1
– ident: e_1_2_8_27_1
  doi: 10.1038/s41598-017-03818-2
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.1700304115
– ident: e_1_2_8_28_1
  doi: 10.5194/gmd-6-2121-2013
SSID ssj0000970357
Score 2.435157
Snippet Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial ecosystem...
Abstract Understanding present and future impacts of drought on the terrestrial carbon budget is of great significance to the evaluation of terrestrial...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agricultural land
Carbon
Carbon budget
Carbon dioxide
Carbon sinks
Climate change
Climatic zones
Coniferous forests
Drought
Drought effects
drought sensitivity
Ecosystem disturbance
Evaluation
Extreme drought
Fertilizers
future climate scenarios
Future climates
Grasslands
Land management
Net Primary Productivity
Northern Hemisphere
NPP loss
Precipitation
Productivity
Rainforests
Regions
Simulation
Terrestrial ecosystems
Terrestrial environments
Tropical forests
Vegetation
Vegetation effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxbEV0WhIA8woQjHTuJ4hJKqQlB1aKVukZNcJKQqIJIO_HvOdlrSAViYIiWOdfHd5e4l53eEXKu4BBGUvqc0IEABpT3NfPAyREBM5CIAS-rzMo0mi-BpGS47rb5MTZijB3YLd6cDboJ-UfoSQ3fEMszodaYwUklV8NKSbWPM64Ap-w5WaMmhbCvdGVcG5PNkbCBH7O_EIEvVv5NfdrNUG2bGh-SgzQ_pvZPriOxBdUz6yfd2NLzY-mN9QqqZ-5ACBUVHN_XlUNPXijomfzoH23rD2BidQkNnjloCj5bm1faNoM8oIh3pdY2TZJ_00fbtaahtiERHK7yjAeo2IZySxTiZjyZe20HBywOfxV4hyxKkKFXhc-1HDKTWQZBDoSMfoS-GbwWghIoLoVFrXMo8wIsCvb5gEkrRJ73qrYIzQgXLweRimWKASZzWMYOQZTnEMueIsQfkdrOmad7Si5suF6vU_ubmKu1qYEButqPf3bP_MO7BqGc7xpBh2xNoImlrIulfJjIgw41y09ZD65RHCsGZUCFHya3CfxUkTcZzRMcyPv8PiS7Ivpnclf0OSa_5WMMlJjdNdmXt-Av7-PFy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iFy_ir-F0Sg56kmKaZE1z1LkxRMcOG-xW0vZVhNHJ2h38731Js7kdFDwVmjSkfXnJ96V53yPkVscFCFmEgTaABAW0CQwLIUiRATGRCQlO1OdtFA2n8mXWnfkNNxsL0-hDbDbcrGe4-do6uEkrLzZgNTKRtfP-wHIIG3l9YKNrrXY-l-PNHgvTOJ6d2CfihjiQXCl_9h2beNhuYGdVcuL9O4hzG7e6hWdwTI48YqSPjYlPyB6Up6TV_wlQw0LvodUZKcfN1grkFF3fnjiHin6UtNH2pxNwyTjsqKMjqOm4EZvAqxN-dZkk6Ct2kfbMqsJG0i_67DL51NSlSKK9OT5RA23CEs7JdNCf9IaBz6kQZDJkcZCrogAlCp2H3IQRA2WMlBnkJgqRDOOCrgG00HEuDNoRv1gmsVDgPJAzBYVokf1yUcIFoYJlYNFZqhkgrDMmZtBlaQaxyjiy7ja5X3_TJPOC4zbvxTxxP765TrYt0CZ3m9qfzbv_Uu_JmmdTx8pjuxuL5XvivS0xklukmBehQrwXsRRpoEk1whulc15EbdJZGzfxPlslPNJI14Tucuy5M_ifHUn6gwnyZRVf_qv2FTm095sTvx2yXy9XcI24pk5v3OD9Bi3E7FA
  priority: 102
  providerName: Wiley-Blackwell
Title Projected Increases in Global Terrestrial Net Primary Productivity Loss Caused by Drought Under Climate Change
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022EF002681
https://www.proquest.com/docview/2695503952
https://doaj.org/article/a422324df1764460b495ab921579d2f6
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT9swFLZWuOyCGAOtG6t82E5TNMd24_iERpeqmqCqUJG4RY79MiGhFEg48N_z7LilHOgpUvxDTp6f_X3Pz-8R8kPnNQhZp4k2gAQFtEkMSyGpkAExYYWEENTncp7NruW_m_FNNLi10a1yvSaGhdqtrLeR_-aZRjAt9Jif3T8kPmuUP12NKTQGZB-X4BzJ1_55MV9cbawsTOOMHqvo8c649mSfF1NPPfL0zV4UQva_wZnbaDVsN9NDchBxIv3TC_YT-QDNETkpXq-lYWHUy_YzaRa9QQUcRYX3fubQ0tuG9hH96RJCCg4_1-gcOrroQ0zgM4R7Dfkj6AUOkU7MU4udVM_0b8jf09GQGIlO7rBFB7S_jHBMrqfFcjJLYiaFxMqU5YlTdQ1K1Nql3KQZA2WMlBacyVKkwLiNawAtdO6EQelxpazEQoHa75iCWpyQvWbVwBdCBbPgMVmlGSCYMyZnMGaVhVxZjlx7SH6t_2lpY5hxn-3irgzH3VyX2xIYkp-b2vf9t79T79yLZ1PHB8UOL1aP_8uoY6WR3ONDV6cKUV7GKiR_ptIIapR2vM6G5HQt3DJqalu-zisceRD4zoGUxXSJLFnlX3d39o189M16x95Tstc9PsF3hC9dNSIDLhejOFNHwQjwAnN77ZM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BTtwwEB3R5dBeKmiLui0tPpRTFdWxs3F8QFVZslrKslpVi8QtdeIJqoSylARV_FS_sWMnWeBQbpwiJY5lZ8bj9xx7HsAnnZQoozIMtEEiKKhNYHiIQU4MiMtCRuiT-pzO4-lZ9P18dL4Bf_uzMG5bZR8TfaC2q8KtkX8RsSYwLfVIfL36HTjVKPd3tZfQaN3iBG__EGWrD46PyL77QkzS5XgadKoCQRGFPAmsKktUstQ2FCaMOSpjoqhAa-KQ6CBNaRpRS51YaagnQqkioofE-0PLFZaS6n0Gm5EkKjOAzcN0vvixXtXhmkbQSHU77LnQbnFBpBNHdZLwwdznJQIe4Nr76NhPb5MteNnhUvatdaRt2MDqFeykd8fg6GEXB-rXUC3aBRy0jAKM29eONftVsVZBgC3RS34432ZzbNiiTWlBV59e1utVsBk1kY3NTU2V5LfsyOsFNcwLMbHxJb3RIGsPP7yBsyf5xjswqFYVvgUmeYEOA-aaI4FHYxKOI54XmKhCELcfwuf-m2ZFl9bcqWtcZv73utDZfQsMYX9d-qrt-3_KHTrzrMu4JNz-xur6IuvGdGYi4fCoLUNFqDLmOZFNk2sCUUpbUcZD2O2Nm3WRoc7u_Jha7g3-aEOydLIkVq6Sd49XtgfPp8vTWTY7np-8hxeuinZT8S4Mmusb_EDQqck_dv7K4OdTD5F_g1oo3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6qfpC3UJbH8qpinDsbBwfqqrsJoJCV6tqkbilTjxBlVCWkiDEX-uv69hJFjiUG6dIiWPZmYe_ccbzAXzSSYUyqsJAG6QABbUJDA8xKCgC4rKUEfqiPj_m8cFJ9P10croBf4ezMC6tcvCJ3lHbVen2yPdErAlMSz0Re1WfFrGYZV8v_gSOQcr9aR3oNDoVOcKbawrfmi-HM5L1rhBZupweBD3DQFBGIU8Cq6oKlay0DYUJY47KmCgq0Zo4pNCQljeNqKVOrDQ0K6FUGdFDSVZhucJKUr9PYJOmpfgINvfT-eLneoeHa7Kmieqz7bnQbqNBpJkLe5Lw3jro6QLuYdy7SNkvddkLeN5jVPatU6qXsIH1K9hKb4_E0cPeJzSvoV50mzloGTkbl-OODftds45NgC3R0384PWdzbNmiK29BV19q1nNXsGMaIpuaq4Y6KW7YzHMHtcyTMrHpOb3RIusOQryBk0f5xlswqlc1vgUmeYkODxaaIwFJYxKOE16UmKhSUJw_hs_DN83LvsS5Y9o4z_2vdqHzuxIYw-669UU39_-023fiWbdxBbn9jdXlWd7bd24i4bCprUJFCDPmBQWeptAEqJS2oorHsDMIN--9RJPf6jSN3Av8wYHkabakCF0l7x7u7CM8JdPIjw_nR9vwzPXQ5RfvwKi9vML3hKLa4kOvrgx-PbaF_ANc2i0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projected+Increases+in+Global+Terrestrial+Net+Primary+Productivity+Loss+Caused+by+Drought+Under+Climate+Change&rft.jtitle=Earth%27s+future&rft.au=Cao%2C+Dan&rft.au=Zhang%2C+Jiahua&rft.au=Han%2C+Jiaqi&rft.au=Zhang%2C+Tian&rft.date=2022-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2328-4277&rft.volume=10&rft.issue=7&rft_id=info:doi/10.1029%2F2022EF002681&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon