Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks
Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the L...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 18; pp. 10147 - 10154 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
26.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies.
A two‐step photoinduced heat‐assisted processing (PHAP) method is proposed to fabricate a kind of metal–organic framework (MOF)‐based triple‐layer membrane with stepped channels. The membrane can be applied as a high performance separator in a lithium–sulfur battery. |
---|---|
AbstractList | Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies.
A two‐step photoinduced heat‐assisted processing (PHAP) method is proposed to fabricate a kind of metal–organic framework (MOF)‐based triple‐layer membrane with stepped channels. The membrane can be applied as a high performance separator in a lithium–sulfur battery. Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies. Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies. Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li + /electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li + transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g −1 ) and cycling performance (0.03 % fading per cycle from 100 th to 700 th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies. Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g ) and cycling performance (0.03 % fading per cycle from 100 to 700 cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies. |
Author | Chen, Yifa Jiang, Cheng Ma, Huiyuan Wang, Si‐Bo Lan, Ya‐Qian Zhang, Yu Gao, Guang‐Kuo Yang, Ru‐Xin Wang, Yi‐Rong Wei, Mei‐Jie |
Author_xml | – sequence: 1 givenname: Guang‐Kuo surname: Gao fullname: Gao, Guang‐Kuo organization: Harbin University of Science and Technology – sequence: 2 givenname: Yi‐Rong surname: Wang fullname: Wang, Yi‐Rong organization: Nanjing Normal University – sequence: 3 givenname: Si‐Bo surname: Wang fullname: Wang, Si‐Bo organization: Nanjing Normal University – sequence: 4 givenname: Ru‐Xin surname: Yang fullname: Yang, Ru‐Xin organization: Nanjing Normal University – sequence: 5 givenname: Yifa surname: Chen fullname: Chen, Yifa email: chyf927821@163.com organization: Nanjing Normal University – sequence: 6 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Nanjing Normal University – sequence: 7 givenname: Cheng surname: Jiang fullname: Jiang, Cheng organization: Nanjing Normal University – sequence: 8 givenname: Mei‐Jie surname: Wei fullname: Wei, Mei‐Jie organization: Nanjing Normal University – sequence: 9 givenname: Huiyuan surname: Ma fullname: Ma, Huiyuan organization: Harbin University of Science and Technology – sequence: 10 givenname: Ya‐Qian orcidid: 0000-0002-2140-7980 surname: Lan fullname: Lan, Ya‐Qian email: yqlan@m.scnu.edu.cn, yqlan@njnu.edu.cn organization: Nanjing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33511739$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkisWGTwbfEzrIadWCkaYs0sI5c56Tj4tjBdlp1h3gF3pAnwdPpRaqEWPn2fcf2-Q_RnvMOEHpL8IxgTD8qZ2BGMcWkrrF8gQ5IRUnJhGB7ec4ZK4WsyD46jPEq81Li-hXaZ6wiRLDmAP1aJxhH6Ir5RjkHNhZLl-AyqJT3ViZtzDT8-fl7Pdl-CsUaRpWPfCiujSq-bHzyxnWTzuzpZJPpzAAuGu-ULRbqIhitUl4Vvi9OISmbK52Hy_xmXSyCGuDGh-_xNXrZKxvhzf14hL4tTr7OP5er80_L-fGq1JxgWSqBeVeznlLSNH1FdCc0F1xqLBTXFJqqrwCASdbxhhLKNaF9LzrdkQpUQ9gR-rCrOwb_Y4KY2sFEDdYqB36KLeWSSSIlFRl9_wy98lPIv8pURWpZN5RtqXf31HQxQNeOwQwq3LYP3c3AbAfo4GMM0D8iBLfb-NptfO1jfFngzwRt0l0LU1DG_ltrdtqNsXD7n0va47PlyZP7F5Rnspg |
CitedBy_id | crossref_primary_10_2139_ssrn_4094625 crossref_primary_10_1007_s11426_024_2458_3 crossref_primary_10_1088_1361_6528_ac3703 crossref_primary_10_1021_acsami_2c10917 crossref_primary_10_1016_j_jallcom_2022_165375 crossref_primary_10_1039_D3CC03535B crossref_primary_10_1016_j_ccr_2025_216478 crossref_primary_10_1016_j_jechem_2023_08_020 crossref_primary_10_1039_D2TA04592C crossref_primary_10_1002_cnl2_31 crossref_primary_10_1088_1361_6528_ac5443 crossref_primary_10_1016_j_jallcom_2023_171389 crossref_primary_10_1002_cey2_352 crossref_primary_10_1016_j_electacta_2022_141788 crossref_primary_10_1016_j_jelechem_2023_117474 crossref_primary_10_1016_j_jssc_2022_123093 crossref_primary_10_1002_ange_202212797 crossref_primary_10_1002_smsc_202300056 crossref_primary_10_1002_adfm_202201430 crossref_primary_10_1039_D1TA06745A crossref_primary_10_1016_j_apsusc_2025_162828 crossref_primary_10_1021_acs_nanolett_4c05596 crossref_primary_10_1016_j_est_2022_104981 crossref_primary_10_1021_acs_energyfuels_1c02081 crossref_primary_10_1007_s40820_021_00726_z crossref_primary_10_1002_adma_202208470 crossref_primary_10_1016_j_ensm_2021_05_034 crossref_primary_10_1021_acs_inorgchem_3c00087 crossref_primary_10_1002_idm2_12143 crossref_primary_10_1021_acsami_1c16498 crossref_primary_10_1002_ange_202204327 crossref_primary_10_1002_aenm_202204378 crossref_primary_10_1016_j_apsusc_2022_153628 crossref_primary_10_1016_j_jallcom_2023_170783 crossref_primary_10_1016_j_mtnano_2022_100231 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_adfm_202310301 crossref_primary_10_1002_adma_202211168 crossref_primary_10_1016_j_jallcom_2024_176146 crossref_primary_10_1021_acsaem_2c00111 crossref_primary_10_1002_smll_202304898 crossref_primary_10_1016_j_cclet_2024_110247 crossref_primary_10_1016_j_cej_2022_137819 crossref_primary_10_1002_smll_202207547 crossref_primary_10_3390_batteries8080089 crossref_primary_10_1016_j_jallcom_2021_162327 crossref_primary_10_1039_D4NJ02613F crossref_primary_10_1021_acsami_3c01558 crossref_primary_10_1021_acs_inorgchem_3c01747 crossref_primary_10_1002_smll_202401457 crossref_primary_10_1002_anie_202204327 crossref_primary_10_1002_batt_202400522 crossref_primary_10_1002_smll_202206616 crossref_primary_10_3389_fchem_2021_703354 crossref_primary_10_1016_j_cej_2022_135125 crossref_primary_10_1021_acs_iecr_4c02291 crossref_primary_10_1007_s40820_022_00960_z crossref_primary_10_1016_j_apsusc_2021_151479 crossref_primary_10_1016_j_cej_2022_136258 crossref_primary_10_3390_molecules27238168 crossref_primary_10_1016_j_mtsust_2023_100392 crossref_primary_10_1002_tcr_202200142 crossref_primary_10_1016_j_cej_2024_149000 crossref_primary_10_1016_j_electacta_2021_139317 crossref_primary_10_1002_anie_202302220 crossref_primary_10_1002_smll_202306503 crossref_primary_10_1002_advs_202404834 crossref_primary_10_1016_j_ccr_2024_215877 crossref_primary_10_1016_j_mtsust_2022_100174 crossref_primary_10_1007_s12274_022_4933_y crossref_primary_10_1016_j_nanoen_2024_109571 crossref_primary_10_1016_j_cej_2024_150488 crossref_primary_10_1039_D1TA04943G crossref_primary_10_1016_j_enchem_2022_100092 crossref_primary_10_1039_D3EE04183B crossref_primary_10_1002_aenm_202202600 crossref_primary_10_1039_D3DT01783D crossref_primary_10_1002_anie_202212797 crossref_primary_10_1002_smll_202408688 crossref_primary_10_1088_1361_6528_ac3ce5 crossref_primary_10_1039_D2CE00932C crossref_primary_10_1002_ange_202302220 crossref_primary_10_1002_adma_202212116 crossref_primary_10_1002_cjoc_202200816 crossref_primary_10_1016_j_cis_2023_103022 crossref_primary_10_1002_smll_202100607 crossref_primary_10_1016_j_mattod_2023_03_019 crossref_primary_10_1016_j_cej_2022_140043 crossref_primary_10_1016_j_joule_2023_02_010 |
Cites_doi | 10.1016/j.cej.2020.124241 10.1016/j.joule.2017.12.003 10.1002/chem.201705562 10.1002/adfm.201901730 10.1016/j.joule.2019.01.003 10.1016/j.ensm.2018.12.016 10.1073/pnas.0602439103 10.1021/jacs.5b07071 10.1038/s41928-019-0235-0 10.1016/j.ensm.2020.03.022 10.1002/aenm.201901397 10.1002/smtd.202000082 10.1021/ja909263x 10.1016/j.jechem.2019.06.014 10.1038/nnano.2017.16 10.1039/D0SE00309C 10.1126/sciadv.aay5098 10.1007/s11581-013-0898-x 10.1002/adma.201302877 10.1016/j.ensm.2019.05.005 10.1002/ange.201902413 10.1021/cm900166h 10.1002/adfm.201902499 10.1002/adma.201808392 10.1016/j.jpowsour.2014.10.184 10.1038/s41560-019-0351-0 10.1002/adma.201606817 10.1021/jacs.6b06959 10.1021/ja308170k 10.1002/advs.201700503 10.1039/C8EE03651A 10.1002/adma.201808338 10.1002/adfm.201905467 10.1039/C6TA07337A 10.1039/C8TA08843H 10.1002/adma.201707629 10.1002/advs.202002190 10.1126/sciadv.aay2757 10.1038/ncomms5759 10.1038/ncomms2163 10.1038/507026a 10.1002/anie.201902413 10.1039/C8SC02356E 10.1038/nenergy.2016.94 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202016608 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 10154 |
ExternalDocumentID | 33511739 10_1002_anie_202016608 ANIE202016608 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials – fundername: Natural Science Fundation of Jiangsu Province of China funderid: No. BK20171032 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China funderid: No. 17KJB150025 and 19KJB150011 – fundername: National Natural Science Foundation of China funderid: No. 21871141, 21871142, 21701085 and 21901122 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Project funded by China Postdoctoral Science Foundation funderid: No. 2018M630572 and 2019M651873 – fundername: Natural Science Research of Jiangsu Higher Education Institutions of China grantid: No. 17KJB150025 and 19KJB150011 – fundername: Project funded by China Postdoctoral Science Foundation grantid: No. 2018M630572 and 2019M651873 – fundername: National Natural Science Foundation of China grantid: No. 21871141, 21871142, 21701085 and 21901122 – fundername: Natural Science Fundation of Jiangsu Province of China grantid: No. BK20171032 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4108-a704d63f22199f51cd7c4748c07a4c2e95f5eee383d492124c12ff7dcd15ea913 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:26:56 EDT 2025 Sun Jul 13 04:46:32 EDT 2025 Thu Apr 03 07:06:20 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Tue Jul 01 01:17:55 EDT 2025 Wed Jan 22 16:29:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Li-S battery stepped channel separators mixed matrix membranes metal-organic frameworks |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-a704d63f22199f51cd7c4748c07a4c2e95f5eee383d492124c12ff7dcd15ea913 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2140-7980 |
PMID | 33511739 |
PQID | 2516869237 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2483818827 proquest_journals_2516869237 pubmed_primary_33511739 crossref_primary_10_1002_anie_202016608 crossref_citationtrail_10_1002_anie_202016608 wiley_primary_10_1002_anie_202016608_ANIE202016608 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 26, 2021 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: April 26, 2021 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 9 2019; 4 2019; 3 2009; 21 2020; 42 2019; 31 2019; 2 2019; 12 2014; 26 2017; 29 2020; 388 2019 2019; 58 131 2018; 24 2016; 4 2013; 19 2020; 7 2018; 6 2020; 6 2018; 9 2014; 507 2014; 5 2020; 4 2012; 3 2018; 2 2016; 1 2018; 5 2012; 134 2015; 137 2020; 30 2019; 21 2019; 23 2017; 12 2015; 274 2010; 132 2020; 28 2019; 29 2018; 30 2016; 138 2006; 103 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_13_2 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 507 start-page: 26 year: 2014 end-page: 28 publication-title: Nature – volume: 2 start-page: 323 year: 2018 end-page: 336 publication-title: Joule – volume: 23 start-page: 261 year: 2019 end-page: 268 publication-title: Energy Storage Mater. – volume: 3 start-page: 1166 year: 2012 publication-title: Nat. Commun. – volume: 2 start-page: 144 year: 2019 end-page: 150 publication-title: Nat. Electron. – volume: 4 start-page: 16812 year: 2016 end-page: 16817 publication-title: J. Mater. Chem. A – volume: 24 start-page: 5728 year: 2018 end-page: 5733 publication-title: Chem. Eur. J. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 19 start-page: 1811 year: 2013 end-page: 1823 publication-title: Ionics – volume: 12 start-page: 2327 year: 2019 end-page: 2344 publication-title: Energy Environ. Sci. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 9 start-page: 8842 year: 2018 end-page: 8849 publication-title: Chem. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 start-page: 24971 year: 2018 end-page: 24978 publication-title: J. Mater. Chem. A – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 4 start-page: 374 year: 2019 end-page: 382 publication-title: Nat. Energy – volume: 274 start-page: 1239 year: 2015 end-page: 1248 publication-title: J. Power Sources – volume: 4 start-page: 2760 year: 2020 end-page: 2767 publication-title: Sustainable Energy Fuels – volume: 103 start-page: 10186 year: 2006 end-page: 10191 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 12946 year: 2015 end-page: 12953 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 18746 18920 year: 2019 2019 end-page: 18757 18931 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 76 year: 2010 end-page: 78 publication-title: J. Am. Chem. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 21 start-page: 14 year: 2019 end-page: 21 publication-title: Energy Storage Mater. – volume: 28 start-page: 350 year: 2020 end-page: 356 publication-title: Energy Storage Mater. – volume: 4 year: 2020 publication-title: Small Methods – volume: 388 year: 2020 publication-title: Chem. Eng. J. – volume: 1 start-page: 16094 year: 2016 publication-title: Nat. Energy – volume: 5 start-page: 4759 year: 2014 publication-title: Nat. Commun. – volume: 134 start-page: 18510 year: 2012 end-page: 18513 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 10810 year: 2016 end-page: 10813 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 1410 year: 2009 end-page: 1412 publication-title: Chem. Mater. – volume: 26 start-page: 625 year: 2014 end-page: 631 publication-title: Adv. Mater. – volume: 42 start-page: 116 year: 2020 end-page: 125 publication-title: J. Energy Chem. – volume: 12 start-page: 194 year: 2017 end-page: 206 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 361 year: 2019 end-page: 386 publication-title: Joule – ident: e_1_2_6_26_1 doi: 10.1016/j.cej.2020.124241 – ident: e_1_2_6_15_1 doi: 10.1016/j.joule.2017.12.003 – ident: e_1_2_6_29_1 doi: 10.1002/chem.201705562 – ident: e_1_2_6_10_1 doi: 10.1002/adfm.201901730 – ident: e_1_2_6_16_1 doi: 10.1016/j.joule.2019.01.003 – ident: e_1_2_6_23_1 doi: 10.1016/j.ensm.2018.12.016 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.0602439103 – ident: e_1_2_6_38_1 doi: 10.1021/jacs.5b07071 – ident: e_1_2_6_32_1 doi: 10.1038/s41928-019-0235-0 – ident: e_1_2_6_37_1 doi: 10.1016/j.ensm.2020.03.022 – ident: e_1_2_6_43_1 doi: 10.1002/aenm.201901397 – ident: e_1_2_6_18_1 doi: 10.1002/smtd.202000082 – ident: e_1_2_6_35_1 doi: 10.1021/ja909263x – ident: e_1_2_6_7_1 doi: 10.1016/j.jechem.2019.06.014 – ident: e_1_2_6_8_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_33_1 doi: 10.1039/D0SE00309C – ident: e_1_2_6_2_1 doi: 10.1126/sciadv.aay5098 – ident: e_1_2_6_22_1 doi: 10.1007/s11581-013-0898-x – ident: e_1_2_6_40_1 doi: 10.1002/adma.201302877 – ident: e_1_2_6_41_1 doi: 10.1016/j.ensm.2019.05.005 – ident: e_1_2_6_13_2 doi: 10.1002/ange.201902413 – ident: e_1_2_6_36_1 doi: 10.1021/cm900166h – ident: e_1_2_6_9_1 doi: 10.1002/adfm.201902499 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201808392 – ident: e_1_2_6_14_1 doi: 10.1016/j.jpowsour.2014.10.184 – ident: e_1_2_6_6_1 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_6_42_1 doi: 10.1002/adma.201606817 – ident: e_1_2_6_31_1 doi: 10.1021/jacs.6b06959 – ident: e_1_2_6_39_1 doi: 10.1021/ja308170k – ident: e_1_2_6_11_1 doi: 10.1002/advs.201700503 – ident: e_1_2_6_17_1 doi: 10.1039/C8EE03651A – ident: e_1_2_6_25_1 doi: 10.1002/adma.201808338 – ident: e_1_2_6_12_1 doi: 10.1002/adfm.201905467 – ident: e_1_2_6_21_1 doi: 10.1039/C6TA07337A – ident: e_1_2_6_24_1 doi: 10.1039/C8TA08843H – ident: e_1_2_6_27_1 doi: 10.1002/adma.201707629 – ident: e_1_2_6_19_1 doi: 10.1002/advs.202002190 – ident: e_1_2_6_4_1 doi: 10.1126/sciadv.aay2757 – ident: e_1_2_6_3_1 doi: 10.1038/ncomms5759 – ident: e_1_2_6_5_1 doi: 10.1038/ncomms2163 – ident: e_1_2_6_1_1 doi: 10.1038/507026a – ident: e_1_2_6_13_1 doi: 10.1002/anie.201902413 – ident: e_1_2_6_30_1 doi: 10.1039/C8SC02356E – ident: e_1_2_6_20_1 doi: 10.1038/nenergy.2016.94 |
SSID | ssj0028806 |
Score | 2.6117203 |
Snippet | Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such... Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10147 |
SubjectTerms | Channels Energy storage Fabrication Li-S battery Lithium Membranes Metal-organic frameworks mixed matrix membranes Polysulfides Separators Specific capacity stepped channel separators Sulfur |
Title | Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202016608 https://www.ncbi.nlm.nih.gov/pubmed/33511739 https://www.proquest.com/docview/2516869237 https://www.proquest.com/docview/2483818827 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-VCKY9224KMhMTJreP4kRxXq67aqlSIUqm3yPFDXbXdVLsJh54Qf4F_yC9hHCeBBSGkcowyTpxkxvONM_MNQm-11VQYQUmpmSHcUU60p5QYYXKjbKqlb7N8z-TRBT-5FJe_VPFHfohhwy1YRrteBwPX5fLgJ2loqMCG-A4cmJRttW9I2Aqo6OPAH8VAOWN5UZqS0IW-Z22k7GB1-KpX-gNqriLX1vVMN5DuJx0zTq73m7rcN_e_8Tn-z1M9RU86XIrHUZE20SM3f4bWJ307uOfoa8gHu3MWh3oEuMsSH_dMExafzuqrWXP7_cu38-bGNwt87lpO8WqBP880_nBV1RUE_6BGFrclvzY0FYiEIHiqy0W3c4grj987iAfgSrFK1OBpnz62fIEupoefJkeka-BADE9oRrSi3MrUM1gWcy8SY5XhimeGKs0Nc7nwwjkHQbLlOfhQbhLmvbLGJsLpPElforV5NXfbCDMLOAuWD-uF4bnnJfhUSRUr8xQkVT5CpP-AhenYzUOTjZsi8jKzIrzZYnizI_RukL-LvB5_ldzr9aHo7HtZACqUmQRwrEbozXAavkj43aLnrmpAhmcBDmUMZLaiHg23SsP_W5XCtFmrDf-YQzE-Oz4cjnYeMmgXPWYhHQeMkck9tFYvGvcK8FRdvm5t5gcVRhpr |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQL78dCKUZC4uTWcfxIjlXV1S5sV4i2ErfI8UNdUTbVbsKBE-Iv9B_2lzCOk6AtQkhwjDKOHXvGM2PPfIPQG201FUZQUmpmCHeUE-0pJUaY3CibaunbKN-5nJzxd59EH00YcmEiPsRw4BYko92vg4CHA-n9X6ihIQUbHDzQYFKGdN_boax361V9HBCkGLBnTDBKUxLq0Pe4jZTtb7bf1Eu_GZubtmurfMb3UNkPO8acfN5r6nLPfLuB6Phf_3Uf3e1MU3wQeekBuuWWD9H2YV8R7hH6EULCLp3FISUBulnjaQ82YfFsUZ8vmi_X369OmgvfrPCJa2HFqxX-utD4w3lVV-D_AydZ3Gb92lBXIGKC4LEuV93hIa48PnbgEsCXYqKoweM-gmz9GJ2Nj04PJ6Sr4UAMT2hGtKLcytQz2BlzLxJjleGKZ4YqzQ1zufDCOQd-suU5qFFuEua9ssYmwuk8SZ-grWW1dM8QZhZMLdhBrBeG556XoFYlVazMU6BU-QiRfgUL0wGchzobF0WEZmZFmNlimNkRejvQX0Zojz9S7vQMUXQivi7AMJSZBPtYjdDr4TWsSLhx0UtXNUDDs2ARZQxonkZGGrpKwxWuSmHYrGWHv4yhOJhPj4an5__S6BXanpwez4rZdP7-BbrDQnQOyCaTO2irXjXuJZhXdbnbCtBPqLEehg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEXWl5loQUjIXFK6zh-JMeqbdSFsqoolXqLHD_UFWWz2k04cEL8Bf4hv6TjOElZEEKCUxRlnDj2jGfGnvkGoVfKKMI1J1GpqI6YJSxSjpBIc51paRIlXBvlOxHH5-zNBb_4KYs_4EMMG25eMtr12gv43Li9G9BQn4EN_h0oMCF8tu86g4vn68P3A4AUBe4M-UVJEvky9D1sI6F7q-1X1dJvtuaq6drqnnwDqb7XIeTk425Tl7v6yy-Ajv_zW5voXmeY4v3ASffRLTt7gO4c9PXgHqJvPiBsbg32CQnwlSUe91ATBp9M68tp8-nH1-9nzZVrFvjMtqDi1QJ_nip8elnVFXj_wEcGtzm_xlcVCIggOFflots6xJXD7yw4BPCmkCaqcd7Hjy0fofP86MPBcdRVcIg0i0kaKUmYEYmjsC5mjsfaSM0kSzWRimlqM-64tRa8ZMMyUKJMx9Q5abSJuVVZnDxGa7NqZp8gTA0YWrB-GMc1yxwrQakKImmZJUApsxGK-gksdAdv7qtsXBUBmJkWfmSLYWRH6PVAPw_AHn-k3O75oegEfFmAWShSAdaxHKGXw2OYEX_eoma2aoCGpd4eSinQbAU-Gj6V-ANcmUC3acsNf-lDsT8ZHw13T_-l0Qt0-_QwL07Gk7fP0F3qQ3NAMKnYRmv1orE7YFvV5fNWfK4BU9UdPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stepped+Channels+Integrated+Lithium%E2%80%93Sulfur+Separator+via+Photoinduced+Multidimensional+Fabrication+of+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Guang%E2%80%90Kuo&rft.au=Wang%2C+Yi%E2%80%90Rong&rft.au=Wang%2C+Si%E2%80%90Bo&rft.au=Yang%2C+Ru%E2%80%90Xin&rft.date=2021-04-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=10147&rft.epage=10154&rft_id=info:doi/10.1002%2Fanie.202016608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202016608 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |