Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks

Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the L...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 18; pp. 10147 - 10154
Main Authors Gao, Guang‐Kuo, Wang, Yi‐Rong, Wang, Si‐Bo, Yang, Ru‐Xin, Chen, Yifa, Zhang, Yu, Jiang, Cheng, Wei, Mei‐Jie, Ma, Huiyuan, Lan, Ya‐Qian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 26.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies. A two‐step photoinduced heat‐assisted processing (PHAP) method is proposed to fabricate a kind of metal–organic framework (MOF)‐based triple‐layer membrane with stepped channels. The membrane can be applied as a high performance separator in a lithium–sulfur battery.
AbstractList Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies. A two‐step photoinduced heat‐assisted processing (PHAP) method is proposed to fabricate a kind of metal–organic framework (MOF)‐based triple‐layer membrane with stepped channels. The membrane can be applied as a high performance separator in a lithium–sulfur battery.
Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+/electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g−1) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies.
Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li+ /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li+ transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g-1 ) and cycling performance (0.03 % fading per cycle from 100th to 700th cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.
Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such separators have advantages in pore‐engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li + /electrolyte transfer in Li‐S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li + transfer across the separators. A photoinduced heat‐assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double‐or triple‐layer membranes). For the first time, a triple‐layer separator with stepped‐channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g −1 ) and cycling performance (0.03 % fading per cycle from 100 th to 700 th cycle), which is superior to single/double‐layer and commercial separators. The findings may expedite the development of MOF‐based membranes and extend the scope of MOFs in energy‐storage technologies.
Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such separators have advantages in pore-engineering that might fulfill requirements such as intercepting the diffusing polysulfides and improving the Li /electrolyte transfer in Li-S batteries. However, most reported works focus on the roles of MOFs as ionic sieves for polysulfides while offering limited investigation on the tuning of Li transfer across the separators. A photoinduced heat-assisted processing strategy is proposed to fabricate MOFs into multidimensional devices (e.g., hollow/Janus fibers, double-or triple-layer membranes). For the first time, a triple-layer separator with stepped-channels has been designed and demonstrated as a powerful separator with outstanding specific capacity (1365.0 mAh g ) and cycling performance (0.03 % fading per cycle from 100 to 700 cycle), which is superior to single/double-layer and commercial separators. The findings may expedite the development of MOF-based membranes and extend the scope of MOFs in energy-storage technologies.
Author Chen, Yifa
Jiang, Cheng
Ma, Huiyuan
Wang, Si‐Bo
Lan, Ya‐Qian
Zhang, Yu
Gao, Guang‐Kuo
Yang, Ru‐Xin
Wang, Yi‐Rong
Wei, Mei‐Jie
Author_xml – sequence: 1
  givenname: Guang‐Kuo
  surname: Gao
  fullname: Gao, Guang‐Kuo
  organization: Harbin University of Science and Technology
– sequence: 2
  givenname: Yi‐Rong
  surname: Wang
  fullname: Wang, Yi‐Rong
  organization: Nanjing Normal University
– sequence: 3
  givenname: Si‐Bo
  surname: Wang
  fullname: Wang, Si‐Bo
  organization: Nanjing Normal University
– sequence: 4
  givenname: Ru‐Xin
  surname: Yang
  fullname: Yang, Ru‐Xin
  organization: Nanjing Normal University
– sequence: 5
  givenname: Yifa
  surname: Chen
  fullname: Chen, Yifa
  email: chyf927821@163.com
  organization: Nanjing Normal University
– sequence: 6
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Nanjing Normal University
– sequence: 7
  givenname: Cheng
  surname: Jiang
  fullname: Jiang, Cheng
  organization: Nanjing Normal University
– sequence: 8
  givenname: Mei‐Jie
  surname: Wei
  fullname: Wei, Mei‐Jie
  organization: Nanjing Normal University
– sequence: 9
  givenname: Huiyuan
  surname: Ma
  fullname: Ma, Huiyuan
  organization: Harbin University of Science and Technology
– sequence: 10
  givenname: Ya‐Qian
  orcidid: 0000-0002-2140-7980
  surname: Lan
  fullname: Lan, Ya‐Qian
  email: yqlan@m.scnu.edu.cn, yqlan@njnu.edu.cn
  organization: Nanjing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33511739$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkisWGTwbfEzrIadWCkaYs0sI5c56Tj4tjBdlp1h3gF3pAnwdPpRaqEWPn2fcf2-Q_RnvMOEHpL8IxgTD8qZ2BGMcWkrrF8gQ5IRUnJhGB7ec4ZK4WsyD46jPEq81Li-hXaZ6wiRLDmAP1aJxhH6Ir5RjkHNhZLl-AyqJT3ViZtzDT8-fl7Pdl-CsUaRpWPfCiujSq-bHzyxnWTzuzpZJPpzAAuGu-ULRbqIhitUl4Vvi9OISmbK52Hy_xmXSyCGuDGh-_xNXrZKxvhzf14hL4tTr7OP5er80_L-fGq1JxgWSqBeVeznlLSNH1FdCc0F1xqLBTXFJqqrwCASdbxhhLKNaF9LzrdkQpUQ9gR-rCrOwb_Y4KY2sFEDdYqB36KLeWSSSIlFRl9_wy98lPIv8pURWpZN5RtqXf31HQxQNeOwQwq3LYP3c3AbAfo4GMM0D8iBLfb-NptfO1jfFngzwRt0l0LU1DG_ltrdtqNsXD7n0va47PlyZP7F5Rnspg
CitedBy_id crossref_primary_10_2139_ssrn_4094625
crossref_primary_10_1007_s11426_024_2458_3
crossref_primary_10_1088_1361_6528_ac3703
crossref_primary_10_1021_acsami_2c10917
crossref_primary_10_1016_j_jallcom_2022_165375
crossref_primary_10_1039_D3CC03535B
crossref_primary_10_1016_j_ccr_2025_216478
crossref_primary_10_1016_j_jechem_2023_08_020
crossref_primary_10_1039_D2TA04592C
crossref_primary_10_1002_cnl2_31
crossref_primary_10_1088_1361_6528_ac5443
crossref_primary_10_1016_j_jallcom_2023_171389
crossref_primary_10_1002_cey2_352
crossref_primary_10_1016_j_electacta_2022_141788
crossref_primary_10_1016_j_jelechem_2023_117474
crossref_primary_10_1016_j_jssc_2022_123093
crossref_primary_10_1002_ange_202212797
crossref_primary_10_1002_smsc_202300056
crossref_primary_10_1002_adfm_202201430
crossref_primary_10_1039_D1TA06745A
crossref_primary_10_1016_j_apsusc_2025_162828
crossref_primary_10_1021_acs_nanolett_4c05596
crossref_primary_10_1016_j_est_2022_104981
crossref_primary_10_1021_acs_energyfuels_1c02081
crossref_primary_10_1007_s40820_021_00726_z
crossref_primary_10_1002_adma_202208470
crossref_primary_10_1016_j_ensm_2021_05_034
crossref_primary_10_1021_acs_inorgchem_3c00087
crossref_primary_10_1002_idm2_12143
crossref_primary_10_1021_acsami_1c16498
crossref_primary_10_1002_ange_202204327
crossref_primary_10_1002_aenm_202204378
crossref_primary_10_1016_j_apsusc_2022_153628
crossref_primary_10_1016_j_jallcom_2023_170783
crossref_primary_10_1016_j_mtnano_2022_100231
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_adfm_202310301
crossref_primary_10_1002_adma_202211168
crossref_primary_10_1016_j_jallcom_2024_176146
crossref_primary_10_1021_acsaem_2c00111
crossref_primary_10_1002_smll_202304898
crossref_primary_10_1016_j_cclet_2024_110247
crossref_primary_10_1016_j_cej_2022_137819
crossref_primary_10_1002_smll_202207547
crossref_primary_10_3390_batteries8080089
crossref_primary_10_1016_j_jallcom_2021_162327
crossref_primary_10_1039_D4NJ02613F
crossref_primary_10_1021_acsami_3c01558
crossref_primary_10_1021_acs_inorgchem_3c01747
crossref_primary_10_1002_smll_202401457
crossref_primary_10_1002_anie_202204327
crossref_primary_10_1002_batt_202400522
crossref_primary_10_1002_smll_202206616
crossref_primary_10_3389_fchem_2021_703354
crossref_primary_10_1016_j_cej_2022_135125
crossref_primary_10_1021_acs_iecr_4c02291
crossref_primary_10_1007_s40820_022_00960_z
crossref_primary_10_1016_j_apsusc_2021_151479
crossref_primary_10_1016_j_cej_2022_136258
crossref_primary_10_3390_molecules27238168
crossref_primary_10_1016_j_mtsust_2023_100392
crossref_primary_10_1002_tcr_202200142
crossref_primary_10_1016_j_cej_2024_149000
crossref_primary_10_1016_j_electacta_2021_139317
crossref_primary_10_1002_anie_202302220
crossref_primary_10_1002_smll_202306503
crossref_primary_10_1002_advs_202404834
crossref_primary_10_1016_j_ccr_2024_215877
crossref_primary_10_1016_j_mtsust_2022_100174
crossref_primary_10_1007_s12274_022_4933_y
crossref_primary_10_1016_j_nanoen_2024_109571
crossref_primary_10_1016_j_cej_2024_150488
crossref_primary_10_1039_D1TA04943G
crossref_primary_10_1016_j_enchem_2022_100092
crossref_primary_10_1039_D3EE04183B
crossref_primary_10_1002_aenm_202202600
crossref_primary_10_1039_D3DT01783D
crossref_primary_10_1002_anie_202212797
crossref_primary_10_1002_smll_202408688
crossref_primary_10_1088_1361_6528_ac3ce5
crossref_primary_10_1039_D2CE00932C
crossref_primary_10_1002_ange_202302220
crossref_primary_10_1002_adma_202212116
crossref_primary_10_1002_cjoc_202200816
crossref_primary_10_1016_j_cis_2023_103022
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1016_j_mattod_2023_03_019
crossref_primary_10_1016_j_cej_2022_140043
crossref_primary_10_1016_j_joule_2023_02_010
Cites_doi 10.1016/j.cej.2020.124241
10.1016/j.joule.2017.12.003
10.1002/chem.201705562
10.1002/adfm.201901730
10.1016/j.joule.2019.01.003
10.1016/j.ensm.2018.12.016
10.1073/pnas.0602439103
10.1021/jacs.5b07071
10.1038/s41928-019-0235-0
10.1016/j.ensm.2020.03.022
10.1002/aenm.201901397
10.1002/smtd.202000082
10.1021/ja909263x
10.1016/j.jechem.2019.06.014
10.1038/nnano.2017.16
10.1039/D0SE00309C
10.1126/sciadv.aay5098
10.1007/s11581-013-0898-x
10.1002/adma.201302877
10.1016/j.ensm.2019.05.005
10.1002/ange.201902413
10.1021/cm900166h
10.1002/adfm.201902499
10.1002/adma.201808392
10.1016/j.jpowsour.2014.10.184
10.1038/s41560-019-0351-0
10.1002/adma.201606817
10.1021/jacs.6b06959
10.1021/ja308170k
10.1002/advs.201700503
10.1039/C8EE03651A
10.1002/adma.201808338
10.1002/adfm.201905467
10.1039/C6TA07337A
10.1039/C8TA08843H
10.1002/adma.201707629
10.1002/advs.202002190
10.1126/sciadv.aay2757
10.1038/ncomms5759
10.1038/ncomms2163
10.1038/507026a
10.1002/anie.201902413
10.1039/C8SC02356E
10.1038/nenergy.2016.94
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202016608
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 10154
ExternalDocumentID 33511739
10_1002_anie_202016608
ANIE202016608
Genre article
Journal Article
GrantInformation_xml – fundername: Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
– fundername: Natural Science Fundation of Jiangsu Province of China
  funderid: No. BK20171032
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  funderid: No. 17KJB150025 and 19KJB150011
– fundername: National Natural Science Foundation of China
  funderid: No. 21871141, 21871142, 21701085 and 21901122
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Project funded by China Postdoctoral Science Foundation
  funderid: No. 2018M630572 and 2019M651873
– fundername: Natural Science Research of Jiangsu Higher Education Institutions of China
  grantid: No. 17KJB150025 and 19KJB150011
– fundername: Project funded by China Postdoctoral Science Foundation
  grantid: No. 2018M630572 and 2019M651873
– fundername: National Natural Science Foundation of China
  grantid: No. 21871141, 21871142, 21701085 and 21901122
– fundername: Natural Science Fundation of Jiangsu Province of China
  grantid: No. BK20171032
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4108-a704d63f22199f51cd7c4748c07a4c2e95f5eee383d492124c12ff7dcd15ea913
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:26:56 EDT 2025
Sun Jul 13 04:46:32 EDT 2025
Thu Apr 03 07:06:20 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Tue Jul 01 01:17:55 EDT 2025
Wed Jan 22 16:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Li-S battery
stepped channel separators
mixed matrix membranes
metal-organic frameworks
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-a704d63f22199f51cd7c4748c07a4c2e95f5eee383d492124c12ff7dcd15ea913
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2140-7980
PMID 33511739
PQID 2516869237
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2483818827
proquest_journals_2516869237
pubmed_primary_33511739
crossref_primary_10_1002_anie_202016608
crossref_citationtrail_10_1002_anie_202016608
wiley_primary_10_1002_anie_202016608_ANIE202016608
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 26, 2021
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 04
  year: 2021
  text: April 26, 2021
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 9
2019; 4
2019; 3
2009; 21
2020; 42
2019; 31
2019; 2
2019; 12
2014; 26
2017; 29
2020; 388
2019 2019; 58 131
2018; 24
2016; 4
2013; 19
2020; 7
2018; 6
2020; 6
2018; 9
2014; 507
2014; 5
2020; 4
2012; 3
2018; 2
2016; 1
2018; 5
2012; 134
2015; 137
2020; 30
2019; 21
2019; 23
2017; 12
2015; 274
2010; 132
2020; 28
2019; 29
2018; 30
2016; 138
2006; 103
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_13_2
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 507
  start-page: 26
  year: 2014
  end-page: 28
  publication-title: Nature
– volume: 2
  start-page: 323
  year: 2018
  end-page: 336
  publication-title: Joule
– volume: 23
  start-page: 261
  year: 2019
  end-page: 268
  publication-title: Energy Storage Mater.
– volume: 3
  start-page: 1166
  year: 2012
  publication-title: Nat. Commun.
– volume: 2
  start-page: 144
  year: 2019
  end-page: 150
  publication-title: Nat. Electron.
– volume: 4
  start-page: 16812
  year: 2016
  end-page: 16817
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 5728
  year: 2018
  end-page: 5733
  publication-title: Chem. Eur. J.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1811
  year: 2013
  end-page: 1823
  publication-title: Ionics
– volume: 12
  start-page: 2327
  year: 2019
  end-page: 2344
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 9
  start-page: 8842
  year: 2018
  end-page: 8849
  publication-title: Chem. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  start-page: 24971
  year: 2018
  end-page: 24978
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 374
  year: 2019
  end-page: 382
  publication-title: Nat. Energy
– volume: 274
  start-page: 1239
  year: 2015
  end-page: 1248
  publication-title: J. Power Sources
– volume: 4
  start-page: 2760
  year: 2020
  end-page: 2767
  publication-title: Sustainable Energy Fuels
– volume: 103
  start-page: 10186
  year: 2006
  end-page: 10191
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 12946
  year: 2015
  end-page: 12953
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 18746 18920
  year: 2019 2019
  end-page: 18757 18931
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 76
  year: 2010
  end-page: 78
  publication-title: J. Am. Chem. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 21
  start-page: 14
  year: 2019
  end-page: 21
  publication-title: Energy Storage Mater.
– volume: 28
  start-page: 350
  year: 2020
  end-page: 356
  publication-title: Energy Storage Mater.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 388
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 16094
  year: 2016
  publication-title: Nat. Energy
– volume: 5
  start-page: 4759
  year: 2014
  publication-title: Nat. Commun.
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 10810
  year: 2016
  end-page: 10813
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1410
  year: 2009
  end-page: 1412
  publication-title: Chem. Mater.
– volume: 26
  start-page: 625
  year: 2014
  end-page: 631
  publication-title: Adv. Mater.
– volume: 42
  start-page: 116
  year: 2020
  end-page: 125
  publication-title: J. Energy Chem.
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 361
  year: 2019
  end-page: 386
  publication-title: Joule
– ident: e_1_2_6_26_1
  doi: 10.1016/j.cej.2020.124241
– ident: e_1_2_6_15_1
  doi: 10.1016/j.joule.2017.12.003
– ident: e_1_2_6_29_1
  doi: 10.1002/chem.201705562
– ident: e_1_2_6_10_1
  doi: 10.1002/adfm.201901730
– ident: e_1_2_6_16_1
  doi: 10.1016/j.joule.2019.01.003
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ensm.2018.12.016
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.0602439103
– ident: e_1_2_6_38_1
  doi: 10.1021/jacs.5b07071
– ident: e_1_2_6_32_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ensm.2020.03.022
– ident: e_1_2_6_43_1
  doi: 10.1002/aenm.201901397
– ident: e_1_2_6_18_1
  doi: 10.1002/smtd.202000082
– ident: e_1_2_6_35_1
  doi: 10.1021/ja909263x
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jechem.2019.06.014
– ident: e_1_2_6_8_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_33_1
  doi: 10.1039/D0SE00309C
– ident: e_1_2_6_2_1
  doi: 10.1126/sciadv.aay5098
– ident: e_1_2_6_22_1
  doi: 10.1007/s11581-013-0898-x
– ident: e_1_2_6_40_1
  doi: 10.1002/adma.201302877
– ident: e_1_2_6_41_1
  doi: 10.1016/j.ensm.2019.05.005
– ident: e_1_2_6_13_2
  doi: 10.1002/ange.201902413
– ident: e_1_2_6_36_1
  doi: 10.1021/cm900166h
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.201902499
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201808392
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jpowsour.2014.10.184
– ident: e_1_2_6_6_1
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_6_42_1
  doi: 10.1002/adma.201606817
– ident: e_1_2_6_31_1
  doi: 10.1021/jacs.6b06959
– ident: e_1_2_6_39_1
  doi: 10.1021/ja308170k
– ident: e_1_2_6_11_1
  doi: 10.1002/advs.201700503
– ident: e_1_2_6_17_1
  doi: 10.1039/C8EE03651A
– ident: e_1_2_6_25_1
  doi: 10.1002/adma.201808338
– ident: e_1_2_6_12_1
  doi: 10.1002/adfm.201905467
– ident: e_1_2_6_21_1
  doi: 10.1039/C6TA07337A
– ident: e_1_2_6_24_1
  doi: 10.1039/C8TA08843H
– ident: e_1_2_6_27_1
  doi: 10.1002/adma.201707629
– ident: e_1_2_6_19_1
  doi: 10.1002/advs.202002190
– ident: e_1_2_6_4_1
  doi: 10.1126/sciadv.aay2757
– ident: e_1_2_6_3_1
  doi: 10.1038/ncomms5759
– ident: e_1_2_6_5_1
  doi: 10.1038/ncomms2163
– ident: e_1_2_6_1_1
  doi: 10.1038/507026a
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.201902413
– ident: e_1_2_6_30_1
  doi: 10.1039/C8SC02356E
– ident: e_1_2_6_20_1
  doi: 10.1038/nenergy.2016.94
SSID ssj0028806
Score 2.6117203
Snippet Multidimensional fabrication of metal–organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li‐S separators. Such...
Multidimensional fabrication of metal-organic frameworks (MOFs) into multilevel channel integrated devices are in high demanded for Li-S separators. Such...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10147
SubjectTerms Channels
Energy storage
Fabrication
Li-S battery
Lithium
Membranes
Metal-organic frameworks
mixed matrix membranes
Polysulfides
Separators
Specific capacity
stepped channel separators
Sulfur
Title Stepped Channels Integrated Lithium–Sulfur Separator via Photoinduced Multidimensional Fabrication of Metal–Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202016608
https://www.ncbi.nlm.nih.gov/pubmed/33511739
https://www.proquest.com/docview/2516869237
https://www.proquest.com/docview/2483818827
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-VCKY9224KMhMTJreP4kRxXq67aqlSIUqm3yPFDXbXdVLsJh54Qf4F_yC9hHCeBBSGkcowyTpxkxvONM_MNQm-11VQYQUmpmSHcUU60p5QYYXKjbKqlb7N8z-TRBT-5FJe_VPFHfohhwy1YRrteBwPX5fLgJ2loqMCG-A4cmJRttW9I2Aqo6OPAH8VAOWN5UZqS0IW-Z22k7GB1-KpX-gNqriLX1vVMN5DuJx0zTq73m7rcN_e_8Tn-z1M9RU86XIrHUZE20SM3f4bWJ307uOfoa8gHu3MWh3oEuMsSH_dMExafzuqrWXP7_cu38-bGNwt87lpO8WqBP880_nBV1RUE_6BGFrclvzY0FYiEIHiqy0W3c4grj987iAfgSrFK1OBpnz62fIEupoefJkeka-BADE9oRrSi3MrUM1gWcy8SY5XhimeGKs0Nc7nwwjkHQbLlOfhQbhLmvbLGJsLpPElforV5NXfbCDMLOAuWD-uF4bnnJfhUSRUr8xQkVT5CpP-AhenYzUOTjZsi8jKzIrzZYnizI_RukL-LvB5_ldzr9aHo7HtZACqUmQRwrEbozXAavkj43aLnrmpAhmcBDmUMZLaiHg23SsP_W5XCtFmrDf-YQzE-Oz4cjnYeMmgXPWYhHQeMkck9tFYvGvcK8FRdvm5t5gcVRhpr
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQL78dCKUZC4uTWcfxIjlXV1S5sV4i2ErfI8UNdUTbVbsKBE-Iv9B_2lzCOk6AtQkhwjDKOHXvGM2PPfIPQG201FUZQUmpmCHeUE-0pJUaY3CibaunbKN-5nJzxd59EH00YcmEiPsRw4BYko92vg4CHA-n9X6ihIQUbHDzQYFKGdN_boax361V9HBCkGLBnTDBKUxLq0Pe4jZTtb7bf1Eu_GZubtmurfMb3UNkPO8acfN5r6nLPfLuB6Phf_3Uf3e1MU3wQeekBuuWWD9H2YV8R7hH6EULCLp3FISUBulnjaQ82YfFsUZ8vmi_X369OmgvfrPCJa2HFqxX-utD4w3lVV-D_AydZ3Gb92lBXIGKC4LEuV93hIa48PnbgEsCXYqKoweM-gmz9GJ2Nj04PJ6Sr4UAMT2hGtKLcytQz2BlzLxJjleGKZ4YqzQ1zufDCOQd-suU5qFFuEua9ssYmwuk8SZ-grWW1dM8QZhZMLdhBrBeG556XoFYlVazMU6BU-QiRfgUL0wGchzobF0WEZmZFmNlimNkRejvQX0Zojz9S7vQMUXQivi7AMJSZBPtYjdDr4TWsSLhx0UtXNUDDs2ARZQxonkZGGrpKwxWuSmHYrGWHv4yhOJhPj4an5__S6BXanpwez4rZdP7-BbrDQnQOyCaTO2irXjXuJZhXdbnbCtBPqLEehg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEXWl5loQUjIXFK6zh-JMeqbdSFsqoolXqLHD_UFWWz2k04cEL8Bf4hv6TjOElZEEKCUxRlnDj2jGfGnvkGoVfKKMI1J1GpqI6YJSxSjpBIc51paRIlXBvlOxHH5-zNBb_4KYs_4EMMG25eMtr12gv43Li9G9BQn4EN_h0oMCF8tu86g4vn68P3A4AUBe4M-UVJEvky9D1sI6F7q-1X1dJvtuaq6drqnnwDqb7XIeTk425Tl7v6yy-Ajv_zW5voXmeY4v3ASffRLTt7gO4c9PXgHqJvPiBsbg32CQnwlSUe91ATBp9M68tp8-nH1-9nzZVrFvjMtqDi1QJ_nip8elnVFXj_wEcGtzm_xlcVCIggOFflots6xJXD7yw4BPCmkCaqcd7Hjy0fofP86MPBcdRVcIg0i0kaKUmYEYmjsC5mjsfaSM0kSzWRimlqM-64tRa8ZMMyUKJMx9Q5abSJuVVZnDxGa7NqZp8gTA0YWrB-GMc1yxwrQakKImmZJUApsxGK-gksdAdv7qtsXBUBmJkWfmSLYWRH6PVAPw_AHn-k3O75oegEfFmAWShSAdaxHKGXw2OYEX_eoma2aoCGpd4eSinQbAU-Gj6V-ANcmUC3acsNf-lDsT8ZHw13T_-l0Qt0-_QwL07Gk7fP0F3qQ3NAMKnYRmv1orE7YFvV5fNWfK4BU9UdPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stepped+Channels+Integrated+Lithium%E2%80%93Sulfur+Separator+via+Photoinduced+Multidimensional+Fabrication+of+Metal%E2%80%93Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Guang%E2%80%90Kuo&rft.au=Wang%2C+Yi%E2%80%90Rong&rft.au=Wang%2C+Si%E2%80%90Bo&rft.au=Yang%2C+Ru%E2%80%90Xin&rft.date=2021-04-26&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=18&rft.spage=10147&rft.epage=10154&rft_id=info:doi/10.1002%2Fanie.202016608&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202016608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon