Controllable Modular Growth of Hierarchical MOF‐on‐MOF Architectures
Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications....
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 49; pp. 15658 - 15662 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
04.12.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core–satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.
A general strategy, the internal extended growth method (IEGM), was applied to design modular hierarchically structured MOF composites, thereby overcoming the limitation of lattice matching. The number of MOF crystals interspersed and the size of the MOF matrix can be well‐controlled. IEGM can optimize the design of novel multicompositional MOFs systems with great flexibility. TTIP=Ti(OiPr4), BDC=benzenedicarboxylic acid. |
---|---|
AbstractList | Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core–satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. A general strategy, the internal extended growth method (IEGM), was applied to design modular hierarchically structured MOF composites, thereby overcoming the limitation of lattice matching. The number of MOF crystals interspersed and the size of the MOF matrix can be well‐controlled. IEGM can optimize the design of novel multicompositional MOFs systems with great flexibility. TTIP=Ti(OiPr4), BDC=benzenedicarboxylic acid. Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. |
Author | Chen, Wei Gu, Yifan Li, Fengting Kitagawa, Susumu Li, Liangchun Wu, Yi‐nan |
Author_xml | – sequence: 1 givenname: Yifan surname: Gu fullname: Gu, Yifan organization: Tongji University – sequence: 2 givenname: Yi‐nan surname: Wu fullname: Wu, Yi‐nan organization: Tongji University – sequence: 3 givenname: Liangchun surname: Li fullname: Li, Liangchun organization: Tongji University – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei organization: Tongji University – sequence: 5 givenname: Fengting surname: Li fullname: Li, Fengting email: fengting@tongji.edu.cn organization: Tongji University – sequence: 6 givenname: Susumu surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@iCeMS.kyoto-u.ac.jp organization: Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29048720$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkclKBDEQhoMo7leP0uDFS4_ZOstxGNQRXC56Dul0NUZ6Opp0I958BJ_RJzHDuIAgXpIifF9RqX8HrfehB4QOCJ4QjOmJ7T1MKCYSa8nUGtomFSUlk5Kt55ozVkpVkS20k9JD5pXCYhNtUY25khRvo_ks9EMMXWfrDoqr0IydjcV5DM_DfRHaYu4h2ujuvbNdcXVz9v76Fvp85LKYLt8HcMMYIe2hjdZ2CfY_7110d3Z6O5uXlzfnF7PpZek4waq0opbgSNWQijnBdM2paFktrLCSsLoBwbXAtGmFrSxVjQYpJAAwR0ARWbNddLzq-xjD0whpMAufHOQP9BDGZIiuGNWKVzKjR7_QhzDGPk-XKaE4ZlzpTB1-UmO9gMY8Rr-w8cV87SgDfAW4GFKK0BrnBzv45eKs7wzBZhmFWUZhvqPI2uSX9tX5T0GvhGffwcs_tJleX5z-uB9Go5wr |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_141143 crossref_primary_10_1021_acs_inorgchem_3c03425 crossref_primary_10_1039_D1TA06006F crossref_primary_10_3390_nano11102665 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1002_bkcs_12335 crossref_primary_10_1002_smll_201907641 crossref_primary_10_1007_s12274_020_2823_8 crossref_primary_10_1021_acs_inorgchem_3c02210 crossref_primary_10_1016_j_seppur_2023_124061 crossref_primary_10_1039_C9TC05941E crossref_primary_10_1002_ange_202409799 crossref_primary_10_1007_s40242_022_2148_0 crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1039_D2QM00557C crossref_primary_10_1002_ange_202414229 crossref_primary_10_1016_j_apmt_2024_102247 crossref_primary_10_1039_D3EE03282E crossref_primary_10_1016_j_jcat_2022_01_031 crossref_primary_10_1016_j_seppur_2024_128942 crossref_primary_10_1002_ange_202416884 crossref_primary_10_1016_j_jechem_2024_03_042 crossref_primary_10_1016_j_mtcomm_2024_109384 crossref_primary_10_1002_chem_202401540 crossref_primary_10_1016_j_cej_2024_148827 crossref_primary_10_1002_adsc_201800875 crossref_primary_10_1016_j_bios_2018_09_079 crossref_primary_10_1021_acs_nanolett_4c01555 crossref_primary_10_1021_acsmaterialslett_1c00070 crossref_primary_10_1021_acsnano_4c04022 crossref_primary_10_1007_s00604_024_06601_z crossref_primary_10_1016_j_ijhydene_2023_06_129 crossref_primary_10_1021_acsnano_4c16480 crossref_primary_10_1039_C9NR00790C crossref_primary_10_1016_j_memsci_2023_122023 crossref_primary_10_1016_j_jece_2020_104386 crossref_primary_10_1016_j_cej_2024_155468 crossref_primary_10_1039_D3QI00570D crossref_primary_10_1016_j_snb_2024_135715 crossref_primary_10_1007_s12161_022_02332_0 crossref_primary_10_1002_anie_202409150 crossref_primary_10_1038_s41467_025_55991_y crossref_primary_10_1016_j_matt_2019_08_022 crossref_primary_10_1002_anie_202204568 crossref_primary_10_1002_batt_202400522 crossref_primary_10_1016_j_nanoen_2024_110177 crossref_primary_10_1002_chem_202403746 crossref_primary_10_1021_acs_inorgchem_1c03948 crossref_primary_10_1016_j_cej_2024_156303 crossref_primary_10_1016_j_jallcom_2023_172850 crossref_primary_10_1021_acssuschemeng_4c07408 crossref_primary_10_1039_C9TA10264G crossref_primary_10_1016_j_ijhydene_2022_11_080 crossref_primary_10_6023_A24010040 crossref_primary_10_1016_j_seppur_2024_126986 crossref_primary_10_1039_C8CE00822A crossref_primary_10_1007_s12274_021_4006_7 crossref_primary_10_1016_j_aca_2022_340309 crossref_primary_10_1039_C9TA05383B crossref_primary_10_2139_ssrn_4046853 crossref_primary_10_1007_s10562_022_04259_x crossref_primary_10_1038_s41598_019_41374_z crossref_primary_10_1002_ange_202211031 crossref_primary_10_1039_D2CE01123A crossref_primary_10_1093_nsr_nwz170 crossref_primary_10_1002_aoc_7383 crossref_primary_10_1016_j_inoche_2023_111897 crossref_primary_10_1002_ange_202210067 crossref_primary_10_1021_acs_analchem_2c04302 crossref_primary_10_1021_acsami_0c23163 crossref_primary_10_1016_j_enchem_2023_100115 crossref_primary_10_1016_j_cej_2021_129124 crossref_primary_10_1039_C8TA06809G crossref_primary_10_1039_D0DT03930F crossref_primary_10_1016_j_reactfunctpolym_2021_104954 crossref_primary_10_1021_acsnano_3c09261 crossref_primary_10_1016_j_aca_2020_02_023 crossref_primary_10_1002_sstr_202000078 crossref_primary_10_1016_j_compositesb_2022_109839 crossref_primary_10_1016_j_apsusc_2023_159227 crossref_primary_10_1016_j_coco_2024_101933 crossref_primary_10_1021_acs_iecr_2c03011 crossref_primary_10_1016_j_mtchem_2024_102420 crossref_primary_10_1016_j_apcatb_2019_04_074 crossref_primary_10_1016_j_envint_2020_106273 crossref_primary_10_1016_j_apcatb_2019_118101 crossref_primary_10_1016_j_talanta_2024_127237 crossref_primary_10_1039_D3QI00102D crossref_primary_10_1002_smo_20240002 crossref_primary_10_1016_j_cej_2023_141668 crossref_primary_10_1016_j_jtice_2022_104524 crossref_primary_10_1021_acscentsci_8b00722 crossref_primary_10_1039_C9CC08206A crossref_primary_10_1016_j_cej_2024_150098 crossref_primary_10_1002_smtd_202201413 crossref_primary_10_1039_D2TA02026B crossref_primary_10_1039_D3MA01024D crossref_primary_10_1021_acs_jpcc_1c08054 crossref_primary_10_1007_s00604_020_04664_2 crossref_primary_10_1016_j_talanta_2025_127522 crossref_primary_10_1016_j_cej_2022_140454 crossref_primary_10_1016_j_ijbiomac_2023_129042 crossref_primary_10_1016_j_cej_2024_149665 crossref_primary_10_1002_smll_202307976 crossref_primary_10_1016_j_apsusc_2021_152305 crossref_primary_10_1021_acs_analchem_3c04590 crossref_primary_10_1002_ange_201907433 crossref_primary_10_1016_j_cej_2023_144926 crossref_primary_10_1039_C9CS00250B crossref_primary_10_1016_j_jece_2022_108029 crossref_primary_10_1002_advs_201902590 crossref_primary_10_1016_j_foodchem_2024_140570 crossref_primary_10_1021_acsami_3c10962 crossref_primary_10_1016_j_ensm_2018_08_015 crossref_primary_10_1016_j_jece_2022_108944 crossref_primary_10_1016_j_jssc_2022_123797 crossref_primary_10_1002_anie_202416884 crossref_primary_10_1021_acs_chemmater_3c00334 crossref_primary_10_1002_anie_202414229 crossref_primary_10_1002_smll_202204914 crossref_primary_10_1016_j_cej_2022_136094 crossref_primary_10_1021_jacs_0c02489 crossref_primary_10_1002_admt_201800413 crossref_primary_10_1007_s00604_022_05222_8 crossref_primary_10_20964_2021_03_52 crossref_primary_10_1039_D4DT00021H crossref_primary_10_1016_j_apsusc_2020_148473 crossref_primary_10_1016_j_jece_2025_116076 crossref_primary_10_1016_j_jechem_2024_03_024 crossref_primary_10_1021_acsami_9b17637 crossref_primary_10_1002_celc_202001135 crossref_primary_10_3866_PKU_WHXB202308020 crossref_primary_10_1021_jacs_3c03883 crossref_primary_10_1021_acsomega_9b02899 crossref_primary_10_1016_j_aca_2022_339586 crossref_primary_10_1016_j_jhazmat_2022_128967 crossref_primary_10_1021_jacs_9b03707 crossref_primary_10_1016_j_chemosphere_2022_135728 crossref_primary_10_1016_j_jcis_2023_05_039 crossref_primary_10_1016_j_ijhydene_2024_09_365 crossref_primary_10_1002_aenm_202100061 crossref_primary_10_1016_j_molstruc_2024_139959 crossref_primary_10_1021_acs_jpclett_3c02859 crossref_primary_10_1016_j_microc_2024_110924 crossref_primary_10_1016_j_microc_2023_109641 crossref_primary_10_1021_acsnano_7b08868 crossref_primary_10_1016_j_inoche_2018_03_020 crossref_primary_10_59717_j_xinn_mater_2024_100047 crossref_primary_10_1007_s10853_024_10537_3 crossref_primary_10_1002_smtd_202401070 crossref_primary_10_1039_D0CE00120A crossref_primary_10_1016_j_matlet_2024_136463 crossref_primary_10_1016_j_cej_2023_143000 crossref_primary_10_1016_j_seppur_2023_124903 crossref_primary_10_1016_j_talanta_2021_122263 crossref_primary_10_1021_acs_inorgchem_2c02522 crossref_primary_10_1021_acsami_4c15634 crossref_primary_10_1016_j_jtice_2024_105893 crossref_primary_10_1002_adma_202412637 crossref_primary_10_1039_C9CC01363F crossref_primary_10_1016_j_cej_2024_154780 crossref_primary_10_1016_j_jelechem_2019_05_033 crossref_primary_10_1039_C9CC03716K crossref_primary_10_34133_2021_9854946 crossref_primary_10_1016_j_apcata_2024_119884 crossref_primary_10_1002_anie_202210067 crossref_primary_10_1021_jacs_9b12408 crossref_primary_10_1021_acsami_4c02440 crossref_primary_10_1002_anie_202211031 crossref_primary_10_1039_D4TA01357C crossref_primary_10_1002_ange_202301021 crossref_primary_10_2139_ssrn_4058893 crossref_primary_10_1021_acsami_2c14489 crossref_primary_10_1021_acs_inorgchem_8b02230 crossref_primary_10_1038_s41467_020_14671_9 crossref_primary_10_1021_acsbiomaterials_3c00740 crossref_primary_10_1021_acsnano_1c06207 crossref_primary_10_3390_catal15010069 crossref_primary_10_1021_acsami_8b02986 crossref_primary_10_1002_advs_202103361 crossref_primary_10_1021_acsami_3c06032 crossref_primary_10_1016_j_jtice_2024_105643 crossref_primary_10_1016_j_cej_2022_135236 crossref_primary_10_1016_j_microc_2023_109147 crossref_primary_10_3390_bios12070508 crossref_primary_10_1002_ange_202306726 crossref_primary_10_1007_s12274_023_5563_8 crossref_primary_10_1038_s41467_023_36832_2 crossref_primary_10_1002_smll_202308732 crossref_primary_10_1002_adma_202211523 crossref_primary_10_1016_j_nanoen_2022_107297 crossref_primary_10_1039_C9QI01120J crossref_primary_10_1002_anie_202423939 crossref_primary_10_1016_j_jhazmat_2021_125122 crossref_primary_10_1002_cssc_202401229 crossref_primary_10_1016_j_cej_2023_141288 crossref_primary_10_1021_acs_langmuir_4c02230 crossref_primary_10_1007_s12613_022_2562_9 crossref_primary_10_1002_anie_202409799 crossref_primary_10_1039_D4CC02991G crossref_primary_10_1016_j_ccr_2021_213786 crossref_primary_10_1016_j_matdes_2020_109235 crossref_primary_10_1007_s00604_022_05458_4 crossref_primary_10_1002_anie_201907433 crossref_primary_10_1016_j_jssc_2024_124887 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1002_anie_202009295 crossref_primary_10_1021_acs_inorgchem_1c02455 crossref_primary_10_1039_D1CE01344K crossref_primary_10_1002_smll_202402819 crossref_primary_10_1002_ente_202300147 crossref_primary_10_1002_ange_202409150 crossref_primary_10_1039_D4NR02835J crossref_primary_10_1021_acs_jpclett_4c02521 crossref_primary_10_1021_acs_accounts_4c00469 crossref_primary_10_1039_D4NR03774J crossref_primary_10_1016_j_compositesb_2024_111424 crossref_primary_10_1002_adfm_202308376 crossref_primary_10_1016_j_matchemphys_2023_128759 crossref_primary_10_1002_asia_201900328 crossref_primary_10_1002_smtd_202000486 crossref_primary_10_1021_acsami_4c06914 crossref_primary_10_1038_s41467_020_18776_z crossref_primary_10_1038_s41524_025_01540_6 crossref_primary_10_1039_D2CE01272C crossref_primary_10_1016_j_colsurfa_2022_129873 crossref_primary_10_1016_j_jssc_2024_124703 crossref_primary_10_3390_molecules28083622 crossref_primary_10_1002_ange_202009295 crossref_primary_10_1021_acs_cgd_1c00443 crossref_primary_10_1021_acs_analchem_3c01905 crossref_primary_10_1016_j_bios_2019_111536 crossref_primary_10_1039_C9TA05409J crossref_primary_10_1016_j_seppur_2024_128071 crossref_primary_10_1021_acs_langmuir_2c02070 crossref_primary_10_1002_anie_202008858 crossref_primary_10_1039_D3TC01718D crossref_primary_10_1002_advs_202204036 crossref_primary_10_1002_smll_202405436 crossref_primary_10_1016_j_jwpe_2025_107467 crossref_primary_10_1016_j_microc_2024_111833 crossref_primary_10_1002_aic_17707 crossref_primary_10_1016_j_foodchem_2022_132607 crossref_primary_10_1016_j_jece_2021_105961 crossref_primary_10_1002_ange_202109336 crossref_primary_10_1002_anie_202306726 crossref_primary_10_1016_j_mtchem_2022_100885 crossref_primary_10_1021_acscentsci_0c00158 crossref_primary_10_1002_anie_201912972 crossref_primary_10_1039_D1QM00034A crossref_primary_10_1016_j_bios_2024_116556 crossref_primary_10_1016_j_rser_2023_113561 crossref_primary_10_1016_j_ccr_2023_215118 crossref_primary_10_1002_smll_202103106 crossref_primary_10_1016_j_cjche_2024_02_007 crossref_primary_10_1016_j_ccr_2024_216144 crossref_primary_10_1016_j_jhazmat_2020_122765 crossref_primary_10_1039_D3CC05381D crossref_primary_10_1016_j_cej_2023_145858 crossref_primary_10_1016_j_jhazmat_2020_123979 crossref_primary_10_1002_ange_202204568 crossref_primary_10_1021_acsami_0c16428 crossref_primary_10_1039_D2ME00211F crossref_primary_10_1039_D1NJ05561E crossref_primary_10_1016_j_jece_2022_108300 crossref_primary_10_1039_D2CC04954F crossref_primary_10_1016_j_seppur_2024_129948 crossref_primary_10_1021_acs_inorgchem_8b01055 crossref_primary_10_1002_cplu_202200396 crossref_primary_10_1038_s41467_023_40973_9 crossref_primary_10_1002_ange_202423939 crossref_primary_10_1002_anie_202301021 crossref_primary_10_1002_smll_202303884 crossref_primary_10_1002_ange_201912972 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1007_s40242_024_4179_1 crossref_primary_10_1016_j_cej_2020_124023 crossref_primary_10_1007_s40820_024_01584_1 crossref_primary_10_1016_j_envres_2023_116752 crossref_primary_10_1016_j_seppur_2023_125938 crossref_primary_10_1039_D1SC06430D crossref_primary_10_1002_adma_201901744 crossref_primary_10_1002_ange_202115443 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_1016_j_cej_2020_126205 crossref_primary_10_1039_D0CE01883J crossref_primary_10_1016_j_sampre_2025_100157 crossref_primary_10_1016_j_ccr_2020_213743 crossref_primary_10_1007_s11783_024_1911_5 crossref_primary_10_1016_j_jcis_2025_01_125 crossref_primary_10_1039_C8TA07349J crossref_primary_10_1039_D1TB01120K crossref_primary_10_1016_j_surfin_2024_104959 crossref_primary_10_1016_j_snb_2021_130017 crossref_primary_10_1016_j_jece_2022_107686 crossref_primary_10_1007_s11051_022_05531_2 crossref_primary_10_1039_C8DT04563A crossref_primary_10_1002_ange_202008858 crossref_primary_10_1039_C9DT01710K crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1039_C8NR09777A crossref_primary_10_1002_adma_201800202 crossref_primary_10_1016_j_jssc_2019_07_044 crossref_primary_10_1016_j_mtchem_2022_100867 crossref_primary_10_1002_anie_202115443 crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1016_j_solidstatesciences_2024_107498 crossref_primary_10_1039_D0DT02062A crossref_primary_10_1016_j_apcatb_2024_124097 crossref_primary_10_1016_j_colsurfa_2023_131005 crossref_primary_10_1002_ange_202209433 crossref_primary_10_1016_j_jhazmat_2024_136530 crossref_primary_10_1016_j_cej_2022_136144 crossref_primary_10_1016_j_apsusc_2024_159590 crossref_primary_10_1002_anie_202209433 crossref_primary_10_1016_j_talanta_2024_127177 crossref_primary_10_1039_D1CC00548K crossref_primary_10_1002_anie_202109336 crossref_primary_10_1016_j_foodchem_2024_142339 crossref_primary_10_1002_admt_202200238 crossref_primary_10_1002_smll_202100607 |
Cites_doi | 10.1038/nchem.627 10.1039/b904526k 10.1007/s10948-012-1805-9 10.1002/anie.200804836 10.1039/C4CS00103F 10.1039/C5TA04154F 10.1039/C6CE00733C 10.1021/ja802035e 10.1021/ja507274n 10.1021/ja503215w 10.1021/ja405086e 10.1126/science.1192160 10.1002/anie.200462515 10.1039/C4CS00106K 10.1002/ange.200804836 10.1039/C2CS35320B 10.1039/C4CS00089G 10.1021/cm4034319 10.1021/ja1099006 10.1039/C4CS00003J 10.1021/ja500362w 10.1021/nn304597h 10.1021/ja0276974 10.1039/C4CC09596K 10.1039/C4CC04458D 10.1039/C6EE02171A 10.1002/chem.201503052 10.1039/C0CC02271C 10.1039/c3ce40653a 10.1039/b903811f 10.1021/acsami.5b10078 10.1039/b807086p 10.1021/ja403008j 10.1021/ja710973k 10.1038/nmat2608 10.1021/ja0627444 10.1021/cr300014x 10.1039/C4CS00101J 10.1039/b909993j 10.1038/nchem.883 10.1002/ange.200462515 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201709738 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 15662 |
ExternalDocumentID | 29048720 10_1002_anie_201709738 ANIE201709738 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4108-a6b7ec15d153c639b426f3b6a6a713bde649602df6a5a28d9e767eee3c1e817b3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:06:34 EDT 2025 Fri Jul 25 10:45:54 EDT 2025 Thu Apr 03 07:08:38 EDT 2025 Tue Jul 01 02:26:13 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Wed Jan 22 17:06:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | functionalization modular growth nanostructures synthesis design metal-organic frameworks |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-a6b7ec15d153c639b426f3b6a6a713bde649602df6a5a28d9e767eee3c1e817b3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29048720 |
PQID | 1968403489 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1953298457 proquest_journals_1968403489 pubmed_primary_29048720 crossref_citationtrail_10_1002_anie_201709738 crossref_primary_10_1002_anie_201709738 wiley_primary_10_1002_anie_201709738_ANIE201709738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 4, 2017 |
PublicationDateYYYYMMDD | 2017-12-04 |
PublicationDate_xml | – month: 12 year: 2017 text: December 4, 2017 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 26 2010; 329 2015; 3 2009 2009; 48 121 2015; 51 2013; 42 2009 2014; 26 2013; 7 2016; 18 2014; 136 2011; 133 2014; 43 2013; 15 2012; 112 2002; 124 2015; 21 2005 2005; 44 117 2013; 135 2011; 47 2010; 2 2006; 128 2009; 38 2008; 130 2016; 8 2016; 9 2010; 9 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_45_2 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_18_3 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_35_1 |
References_xml | – volume: 9 start-page: 3092 year: 2016 end-page: 3096 publication-title: Energy Environ. Sci. – volume: 43 start-page: 5700 year: 2014 end-page: 5734 publication-title: Chem. Soc. Rev. – volume: 48 121 start-page: 1766 1798 year: 2009 2009 end-page: 1770 1802 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 130 start-page: 6718 year: 2008 end-page: 6719 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 6786 year: 2014 end-page: 6789 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 673 year: 2012 end-page: 674 publication-title: Chem. Rev. – volume: 43 start-page: 5561 year: 2014 end-page: 5593 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 410 year: 2010 end-page: 416 publication-title: Nat. Chem. – volume: 329 start-page: 424 year: 2010 end-page: 428 publication-title: Science – start-page: 5097 year: 2009 end-page: 5099 publication-title: Chem. Commun. – volume: 130 start-page: 6774 year: 2008 end-page: 6780 publication-title: J. Am. Chem. Soc. – start-page: 6162 year: 2009 end-page: 6164 publication-title: Chem. Commun. – volume: 135 start-page: 9984 year: 2013 end-page: 9987 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 14488 year: 2013 end-page: 14491 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5982 year: 2014 end-page: 5993 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 3501 year: 2015 end-page: 3510 publication-title: Chem. Commun. – volume: 2 start-page: 909 year: 2010 end-page: 911 publication-title: Nat. Chem. – volume: 42 start-page: 1807 year: 2013 end-page: 1824 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 7261 year: 2014 end-page: 7264 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 491 year: 2013 end-page: 499 publication-title: ACS Nano – volume: 47 start-page: 442 year: 2011 end-page: 444 publication-title: Chem. Commun. – volume: 44 117 start-page: 6237 6394 year: 2005 2005 end-page: 6241 6397 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 19822 year: 2015 end-page: 19831 publication-title: J. Mater. Chem. A – volume: 15 start-page: 6003 year: 2013 end-page: 6008 publication-title: CrystEngComm – volume: 21 start-page: 17485 year: 2015 end-page: 17490 publication-title: Chem. Eur. J. – volume: 26 start-page: 1119 year: 2014 end-page: 1125 publication-title: Chem. Mater. – volume: 8 start-page: 2552 year: 2016 end-page: 2561 publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 5199 year: 2015 end-page: 5217 publication-title: Chem. Commun. – volume: 9 start-page: 172 year: 2010 publication-title: Nat. Mater. – volume: 133 start-page: 1304 year: 2011 end-page: 1306 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 6062 year: 2014 end-page: 6096 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1400 year: 2009 end-page: 1417 publication-title: Chem. Soc. Rev. – volume: 136 start-page: 13471 year: 2014 end-page: 13473 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 9024 year: 2006 end-page: 9025 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 5262 year: 2016 end-page: 5266 publication-title: CrystEngComm – volume: 26 start-page: 725 year: 2013 end-page: 731 publication-title: J. Supercond. Novel Magn. – volume: 124 start-page: 13519 year: 2002 end-page: 13526 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 5513 year: 2014 end-page: 5560 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1213 year: 2009 end-page: 1214 publication-title: Chem. Soc. Rev. – ident: e_1_2_2_40_2 doi: 10.1038/nchem.627 – ident: e_1_2_2_27_2 doi: 10.1039/b904526k – ident: e_1_2_2_34_1 doi: 10.1007/s10948-012-1805-9 – ident: e_1_2_2_25_1 doi: 10.1002/anie.200804836 – ident: e_1_2_2_44_2 doi: 10.1039/C4CS00103F – ident: e_1_2_2_46_2 doi: 10.1039/C5TA04154F – ident: e_1_2_2_38_1 – ident: e_1_2_2_36_2 doi: 10.1039/C6CE00733C – ident: e_1_2_2_42_1 doi: 10.1021/ja802035e – ident: e_1_2_2_37_2 doi: 10.1021/ja507274n – ident: e_1_2_2_20_1 doi: 10.1021/ja503215w – ident: e_1_2_2_47_2 doi: 10.1021/ja405086e – ident: e_1_2_2_9_2 doi: 10.1126/science.1192160 – ident: e_1_2_2_18_2 doi: 10.1002/anie.200462515 – ident: e_1_2_2_2_2 doi: 10.1039/C4CS00106K – ident: e_1_2_2_25_2 doi: 10.1002/ange.200804836 – ident: e_1_2_2_16_2 doi: 10.1039/C2CS35320B – ident: e_1_2_2_14_1 – ident: e_1_2_2_10_2 doi: 10.1039/C4CS00089G – ident: e_1_2_2_17_2 doi: 10.1021/cm4034319 – ident: e_1_2_2_15_2 doi: 10.1021/ja1099006 – ident: e_1_2_2_43_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_13_2 doi: 10.1039/C4CS00003J – ident: e_1_2_2_24_1 doi: 10.1021/ja500362w – ident: e_1_2_2_35_1 – ident: e_1_2_2_30_2 doi: 10.1021/nn304597h – ident: e_1_2_2_11_2 doi: 10.1021/ja0276974 – ident: e_1_2_2_45_2 doi: 10.1039/C4CC09596K – ident: e_1_2_2_32_1 doi: 10.1039/C4CC04458D – ident: e_1_2_2_33_1 doi: 10.1039/C6EE02171A – ident: e_1_2_2_26_1 – ident: e_1_2_2_19_2 doi: 10.1002/chem.201503052 – ident: e_1_2_2_22_2 doi: 10.1039/C0CC02271C – ident: e_1_2_2_28_2 doi: 10.1039/c3ce40653a – ident: e_1_2_2_5_2 doi: 10.1039/b903811f – ident: e_1_2_2_8_1 – ident: e_1_2_2_23_2 doi: 10.1021/acsami.5b10078 – ident: e_1_2_2_6_2 doi: 10.1039/b807086p – ident: e_1_2_2_31_2 doi: 10.1021/ja403008j – ident: e_1_2_2_12_2 doi: 10.1021/ja710973k – ident: e_1_2_2_39_2 doi: 10.1038/nmat2608 – ident: e_1_2_2_41_2 doi: 10.1021/ja0627444 – ident: e_1_2_2_21_1 – ident: e_1_2_2_3_2 doi: 10.1021/cr300014x – ident: e_1_2_2_4_2 doi: 10.1039/C4CS00101J – ident: e_1_2_2_29_2 doi: 10.1039/b909993j – ident: e_1_2_2_7_2 doi: 10.1038/nchem.883 – ident: e_1_2_2_18_3 doi: 10.1002/ange.200462515 |
SSID | ssj0028806 |
Score | 2.652105 |
Snippet | Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with... Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15658 |
SubjectTerms | Crystallography Crystals Epitaxial growth Fabrication functionalization Hybrid systems Hybridization metal–organic frameworks modular growth nanostructures synthesis design |
Title | Controllable Modular Growth of Hierarchical MOF‐on‐MOF Architectures |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201709738 https://www.ncbi.nlm.nih.gov/pubmed/29048720 https://www.proquest.com/docview/1968403489 https://www.proquest.com/docview/1953298457 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCoKnapu0SXtcFtdV2BVEwVvJqygurbi7F0_-BH-jv8RMu627igh6KSlN2zSZTGaa-b4BOFImMpqxxIsERQdFRF4cZNoaclpKXyRScsQO9_qsexte3kV3Uyj-ih-i-eGGM6PU1zjBhRyefpKGIgIbQ7M4Es4g2hcDttAqum74o4gVzgpeRKmHWehr1kafnM7ePrsqfTM1Zy3XcunpLIOoG11FnDyejEfyRL184XP8z1etwNLELnVblSCtwpzJ12ChXaeDW4duuwpqHyDWyu0VGuNX3XPrxY_u3SJzuw8IZS4zqwzc3lXn_fWtyO3BFt3W1G7FcANuO2c37a43ScPgqTDwY08wyY0KIm2Vo7IGjbSLekYlE0xYD1dqw0LrBhGdMREJEuvEcMaNMVQFJg64pJswnxe52QZXqCxjfmYEYSTUjCcBDRSRKrFPCbmSDnj1MKRqwlGOqTIGacWuTFLsn7TpHweOm_pPFTvHjzX36lFNJ7N0mFrtY_1bGsaJA4fNZduvuGkiclOMsU5ESRKHEXdgq5KG5lUksfqPE98BUo7pL21IW_2Ls-Zs5y837cIilst4mnAP5kfPY7NvraKRPCgl_wOWhAVY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEB6lzsG99JG0KYnbEqlST9iwC7twtKw4OI0dKbKl3tC-UKtYUDX2Jaf8hPzG_pLsgKF1oypSc0E8dmHZ3XntznwD8EmZyGjGEi8SFA0UEXlxkGuryGkpfZFIyTF2eDpj6SI8-xo13oQYC1PjQ7QLbkgZFb9GAscF6cFv1FAMwUbfLI6IM_Ez2MW03pVVddkiSBE7PesAI0o9zEPf4Db6ZLBdf1suPVA2t3XXSviMX4Jsml37nFz11yvZVzd_ITo-6b9ewYuNauoO67n0GnZMsQfdUZMRbh_SUe3XvsRwK3daanRhdU-tIb_65pa5m37HaOYqucrSnV6Mf93elYU92FN3-MeGxfUbWIxP5qPU22Ri8FQY-LEnmORGBZG2_FFZnUZauZ5TyQQT1siV2rDQWkJE50xEgsQ6MZxxYwxVgYkDLulb6BRlYd6BK1SeMz83gjASasaTgAaKSJXYt4RcSQe8ZhwytYEpx2wZy6wGWCYZ9k_W9o8Dn9vyP2qAjn-W7DXDmm0I9TqzDMiauDSMEweO28e2X3HfRBSmXGOZiJIkDiPuwEE9HdpPkcSyQE58B0g1qI-0IRvOJift1eH_VPoI3XQ-Pc_OJ7MvR_Ac71fuNWEPOqufa_PeKkkr-aEig3vnvglz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWq5tFBeAQqpVKmnQGI7dnJcLSxL291WFUjcIr8iEKsEsbuXnvoT-hv5JXiSTcq2QpXoJcrDdhx7ZjwTz3wD8EHb2BrO0yCWFA0UGQdJlBunyBmlQpkqJTB2eDjigwv26TK-fBTFX-NDtD_ckDMqeY0Mfmvyo9-goRiBja5ZAgFnkhewzHiYIF0ff28BpIijzjq-iNIA09A3sI0hOVqsv7gs_aVrLqqu1drTfwOy6XXtcnJzOJuqQ_3jD0DH__msVXg9V0z9bk1Ja7Bki7fwqtfkg1uHQa_2ah9jsJU_LA06sPqnzoyfXvll7g-uMZa5Sq0y9odf-_c_f5WFO7hTv_tou2KyARf9k_PeIJjnYQg0i8IkkFwJq6PYOOmonUaj3KqeU8Ull87EVcZy5uwgYnIuY0kSk1rBhbWW6sgmkVB0EzpFWdht8KXOcx7mVhJOmOEijWikidKpa4UJrTwImmnI9BykHHNljLMaXplkOD5ZOz4efGzL39bwHE-W3GtmNZuz6SRz4scZuJQlqQfv28duXHHXRBa2nGGZmJI0YbHwYKumhvZVJHUCUJDQA1LN6T_6kHVHZyft1c5zKh3Ay2_H_ezL2ejzLqzg7cq3hu1BZ3o3s--chjRV-xUTPADdhQgr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Modular+Growth+of+Hierarchical+MOF%E2%80%90on%E2%80%90MOF+Architectures&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gu%2C+Yifan&rft.au=Yi%E2%80%90nan+Wu&rft.au=Li%2C+Liangchun&rft.au=Chen%2C+Wei&rft.date=2017-12-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=49&rft.spage=15658&rft.epage=15662&rft_id=info:doi/10.1002%2Fanie.201709738&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |