Controllable Modular Growth of Hierarchical MOF‐on‐MOF Architectures

Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications....

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 49; pp. 15658 - 15662
Main Authors Gu, Yifan, Wu, Yi‐nan, Li, Liangchun, Chen, Wei, Li, Fengting, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 04.12.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core–satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. A general strategy, the internal extended growth method (IEGM), was applied to design modular hierarchically structured MOF composites, thereby overcoming the limitation of lattice matching. The number of MOF crystals interspersed and the size of the MOF matrix can be well‐controlled. IEGM can optimize the design of novel multicompositional MOFs systems with great flexibility. TTIP=Ti(OiPr4), BDC=benzenedicarboxylic acid.
AbstractList Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.
Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core–satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions. A general strategy, the internal extended growth method (IEGM), was applied to design modular hierarchically structured MOF composites, thereby overcoming the limitation of lattice matching. The number of MOF crystals interspersed and the size of the MOF matrix can be well‐controlled. IEGM can optimize the design of novel multicompositional MOFs systems with great flexibility. TTIP=Ti(OiPr4), BDC=benzenedicarboxylic acid.
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.
Author Chen, Wei
Gu, Yifan
Li, Fengting
Kitagawa, Susumu
Li, Liangchun
Wu, Yi‐nan
Author_xml – sequence: 1
  givenname: Yifan
  surname: Gu
  fullname: Gu, Yifan
  organization: Tongji University
– sequence: 2
  givenname: Yi‐nan
  surname: Wu
  fullname: Wu, Yi‐nan
  organization: Tongji University
– sequence: 3
  givenname: Liangchun
  surname: Li
  fullname: Li, Liangchun
  organization: Tongji University
– sequence: 4
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Tongji University
– sequence: 5
  givenname: Fengting
  surname: Li
  fullname: Li, Fengting
  email: fengting@tongji.edu.cn
  organization: Tongji University
– sequence: 6
  givenname: Susumu
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@iCeMS.kyoto-u.ac.jp
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29048720$$D View this record in MEDLINE/PubMed
BookMark eNqFkclKBDEQhoMo7leP0uDFS4_ZOstxGNQRXC56Dul0NUZ6Opp0I958BJ_RJzHDuIAgXpIifF9RqX8HrfehB4QOCJ4QjOmJ7T1MKCYSa8nUGtomFSUlk5Kt55ozVkpVkS20k9JD5pXCYhNtUY25khRvo_ks9EMMXWfrDoqr0IydjcV5DM_DfRHaYu4h2ujuvbNdcXVz9v76Fvp85LKYLt8HcMMYIe2hjdZ2CfY_7110d3Z6O5uXlzfnF7PpZek4waq0opbgSNWQijnBdM2paFktrLCSsLoBwbXAtGmFrSxVjQYpJAAwR0ARWbNddLzq-xjD0whpMAufHOQP9BDGZIiuGNWKVzKjR7_QhzDGPk-XKaE4ZlzpTB1-UmO9gMY8Rr-w8cV87SgDfAW4GFKK0BrnBzv45eKs7wzBZhmFWUZhvqPI2uSX9tX5T0GvhGffwcs_tJleX5z-uB9Go5wr
CitedBy_id crossref_primary_10_1016_j_chemosphere_2024_141143
crossref_primary_10_1021_acs_inorgchem_3c03425
crossref_primary_10_1039_D1TA06006F
crossref_primary_10_3390_nano11102665
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1002_bkcs_12335
crossref_primary_10_1002_smll_201907641
crossref_primary_10_1007_s12274_020_2823_8
crossref_primary_10_1021_acs_inorgchem_3c02210
crossref_primary_10_1016_j_seppur_2023_124061
crossref_primary_10_1039_C9TC05941E
crossref_primary_10_1002_ange_202409799
crossref_primary_10_1007_s40242_022_2148_0
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1039_D2QM00557C
crossref_primary_10_1002_ange_202414229
crossref_primary_10_1016_j_apmt_2024_102247
crossref_primary_10_1039_D3EE03282E
crossref_primary_10_1016_j_jcat_2022_01_031
crossref_primary_10_1016_j_seppur_2024_128942
crossref_primary_10_1002_ange_202416884
crossref_primary_10_1016_j_jechem_2024_03_042
crossref_primary_10_1016_j_mtcomm_2024_109384
crossref_primary_10_1002_chem_202401540
crossref_primary_10_1016_j_cej_2024_148827
crossref_primary_10_1002_adsc_201800875
crossref_primary_10_1016_j_bios_2018_09_079
crossref_primary_10_1021_acs_nanolett_4c01555
crossref_primary_10_1021_acsmaterialslett_1c00070
crossref_primary_10_1021_acsnano_4c04022
crossref_primary_10_1007_s00604_024_06601_z
crossref_primary_10_1016_j_ijhydene_2023_06_129
crossref_primary_10_1021_acsnano_4c16480
crossref_primary_10_1039_C9NR00790C
crossref_primary_10_1016_j_memsci_2023_122023
crossref_primary_10_1016_j_jece_2020_104386
crossref_primary_10_1016_j_cej_2024_155468
crossref_primary_10_1039_D3QI00570D
crossref_primary_10_1016_j_snb_2024_135715
crossref_primary_10_1007_s12161_022_02332_0
crossref_primary_10_1002_anie_202409150
crossref_primary_10_1038_s41467_025_55991_y
crossref_primary_10_1016_j_matt_2019_08_022
crossref_primary_10_1002_anie_202204568
crossref_primary_10_1002_batt_202400522
crossref_primary_10_1016_j_nanoen_2024_110177
crossref_primary_10_1002_chem_202403746
crossref_primary_10_1021_acs_inorgchem_1c03948
crossref_primary_10_1016_j_cej_2024_156303
crossref_primary_10_1016_j_jallcom_2023_172850
crossref_primary_10_1021_acssuschemeng_4c07408
crossref_primary_10_1039_C9TA10264G
crossref_primary_10_1016_j_ijhydene_2022_11_080
crossref_primary_10_6023_A24010040
crossref_primary_10_1016_j_seppur_2024_126986
crossref_primary_10_1039_C8CE00822A
crossref_primary_10_1007_s12274_021_4006_7
crossref_primary_10_1016_j_aca_2022_340309
crossref_primary_10_1039_C9TA05383B
crossref_primary_10_2139_ssrn_4046853
crossref_primary_10_1007_s10562_022_04259_x
crossref_primary_10_1038_s41598_019_41374_z
crossref_primary_10_1002_ange_202211031
crossref_primary_10_1039_D2CE01123A
crossref_primary_10_1093_nsr_nwz170
crossref_primary_10_1002_aoc_7383
crossref_primary_10_1016_j_inoche_2023_111897
crossref_primary_10_1002_ange_202210067
crossref_primary_10_1021_acs_analchem_2c04302
crossref_primary_10_1021_acsami_0c23163
crossref_primary_10_1016_j_enchem_2023_100115
crossref_primary_10_1016_j_cej_2021_129124
crossref_primary_10_1039_C8TA06809G
crossref_primary_10_1039_D0DT03930F
crossref_primary_10_1016_j_reactfunctpolym_2021_104954
crossref_primary_10_1021_acsnano_3c09261
crossref_primary_10_1016_j_aca_2020_02_023
crossref_primary_10_1002_sstr_202000078
crossref_primary_10_1016_j_compositesb_2022_109839
crossref_primary_10_1016_j_apsusc_2023_159227
crossref_primary_10_1016_j_coco_2024_101933
crossref_primary_10_1021_acs_iecr_2c03011
crossref_primary_10_1016_j_mtchem_2024_102420
crossref_primary_10_1016_j_apcatb_2019_04_074
crossref_primary_10_1016_j_envint_2020_106273
crossref_primary_10_1016_j_apcatb_2019_118101
crossref_primary_10_1016_j_talanta_2024_127237
crossref_primary_10_1039_D3QI00102D
crossref_primary_10_1002_smo_20240002
crossref_primary_10_1016_j_cej_2023_141668
crossref_primary_10_1016_j_jtice_2022_104524
crossref_primary_10_1021_acscentsci_8b00722
crossref_primary_10_1039_C9CC08206A
crossref_primary_10_1016_j_cej_2024_150098
crossref_primary_10_1002_smtd_202201413
crossref_primary_10_1039_D2TA02026B
crossref_primary_10_1039_D3MA01024D
crossref_primary_10_1021_acs_jpcc_1c08054
crossref_primary_10_1007_s00604_020_04664_2
crossref_primary_10_1016_j_talanta_2025_127522
crossref_primary_10_1016_j_cej_2022_140454
crossref_primary_10_1016_j_ijbiomac_2023_129042
crossref_primary_10_1016_j_cej_2024_149665
crossref_primary_10_1002_smll_202307976
crossref_primary_10_1016_j_apsusc_2021_152305
crossref_primary_10_1021_acs_analchem_3c04590
crossref_primary_10_1002_ange_201907433
crossref_primary_10_1016_j_cej_2023_144926
crossref_primary_10_1039_C9CS00250B
crossref_primary_10_1016_j_jece_2022_108029
crossref_primary_10_1002_advs_201902590
crossref_primary_10_1016_j_foodchem_2024_140570
crossref_primary_10_1021_acsami_3c10962
crossref_primary_10_1016_j_ensm_2018_08_015
crossref_primary_10_1016_j_jece_2022_108944
crossref_primary_10_1016_j_jssc_2022_123797
crossref_primary_10_1002_anie_202416884
crossref_primary_10_1021_acs_chemmater_3c00334
crossref_primary_10_1002_anie_202414229
crossref_primary_10_1002_smll_202204914
crossref_primary_10_1016_j_cej_2022_136094
crossref_primary_10_1021_jacs_0c02489
crossref_primary_10_1002_admt_201800413
crossref_primary_10_1007_s00604_022_05222_8
crossref_primary_10_20964_2021_03_52
crossref_primary_10_1039_D4DT00021H
crossref_primary_10_1016_j_apsusc_2020_148473
crossref_primary_10_1016_j_jece_2025_116076
crossref_primary_10_1016_j_jechem_2024_03_024
crossref_primary_10_1021_acsami_9b17637
crossref_primary_10_1002_celc_202001135
crossref_primary_10_3866_PKU_WHXB202308020
crossref_primary_10_1021_jacs_3c03883
crossref_primary_10_1021_acsomega_9b02899
crossref_primary_10_1016_j_aca_2022_339586
crossref_primary_10_1016_j_jhazmat_2022_128967
crossref_primary_10_1021_jacs_9b03707
crossref_primary_10_1016_j_chemosphere_2022_135728
crossref_primary_10_1016_j_jcis_2023_05_039
crossref_primary_10_1016_j_ijhydene_2024_09_365
crossref_primary_10_1002_aenm_202100061
crossref_primary_10_1016_j_molstruc_2024_139959
crossref_primary_10_1021_acs_jpclett_3c02859
crossref_primary_10_1016_j_microc_2024_110924
crossref_primary_10_1016_j_microc_2023_109641
crossref_primary_10_1021_acsnano_7b08868
crossref_primary_10_1016_j_inoche_2018_03_020
crossref_primary_10_59717_j_xinn_mater_2024_100047
crossref_primary_10_1007_s10853_024_10537_3
crossref_primary_10_1002_smtd_202401070
crossref_primary_10_1039_D0CE00120A
crossref_primary_10_1016_j_matlet_2024_136463
crossref_primary_10_1016_j_cej_2023_143000
crossref_primary_10_1016_j_seppur_2023_124903
crossref_primary_10_1016_j_talanta_2021_122263
crossref_primary_10_1021_acs_inorgchem_2c02522
crossref_primary_10_1021_acsami_4c15634
crossref_primary_10_1016_j_jtice_2024_105893
crossref_primary_10_1002_adma_202412637
crossref_primary_10_1039_C9CC01363F
crossref_primary_10_1016_j_cej_2024_154780
crossref_primary_10_1016_j_jelechem_2019_05_033
crossref_primary_10_1039_C9CC03716K
crossref_primary_10_34133_2021_9854946
crossref_primary_10_1016_j_apcata_2024_119884
crossref_primary_10_1002_anie_202210067
crossref_primary_10_1021_jacs_9b12408
crossref_primary_10_1021_acsami_4c02440
crossref_primary_10_1002_anie_202211031
crossref_primary_10_1039_D4TA01357C
crossref_primary_10_1002_ange_202301021
crossref_primary_10_2139_ssrn_4058893
crossref_primary_10_1021_acsami_2c14489
crossref_primary_10_1021_acs_inorgchem_8b02230
crossref_primary_10_1038_s41467_020_14671_9
crossref_primary_10_1021_acsbiomaterials_3c00740
crossref_primary_10_1021_acsnano_1c06207
crossref_primary_10_3390_catal15010069
crossref_primary_10_1021_acsami_8b02986
crossref_primary_10_1002_advs_202103361
crossref_primary_10_1021_acsami_3c06032
crossref_primary_10_1016_j_jtice_2024_105643
crossref_primary_10_1016_j_cej_2022_135236
crossref_primary_10_1016_j_microc_2023_109147
crossref_primary_10_3390_bios12070508
crossref_primary_10_1002_ange_202306726
crossref_primary_10_1007_s12274_023_5563_8
crossref_primary_10_1038_s41467_023_36832_2
crossref_primary_10_1002_smll_202308732
crossref_primary_10_1002_adma_202211523
crossref_primary_10_1016_j_nanoen_2022_107297
crossref_primary_10_1039_C9QI01120J
crossref_primary_10_1002_anie_202423939
crossref_primary_10_1016_j_jhazmat_2021_125122
crossref_primary_10_1002_cssc_202401229
crossref_primary_10_1016_j_cej_2023_141288
crossref_primary_10_1021_acs_langmuir_4c02230
crossref_primary_10_1007_s12613_022_2562_9
crossref_primary_10_1002_anie_202409799
crossref_primary_10_1039_D4CC02991G
crossref_primary_10_1016_j_ccr_2021_213786
crossref_primary_10_1016_j_matdes_2020_109235
crossref_primary_10_1007_s00604_022_05458_4
crossref_primary_10_1002_anie_201907433
crossref_primary_10_1016_j_jssc_2024_124887
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1002_anie_202009295
crossref_primary_10_1021_acs_inorgchem_1c02455
crossref_primary_10_1039_D1CE01344K
crossref_primary_10_1002_smll_202402819
crossref_primary_10_1002_ente_202300147
crossref_primary_10_1002_ange_202409150
crossref_primary_10_1039_D4NR02835J
crossref_primary_10_1021_acs_jpclett_4c02521
crossref_primary_10_1021_acs_accounts_4c00469
crossref_primary_10_1039_D4NR03774J
crossref_primary_10_1016_j_compositesb_2024_111424
crossref_primary_10_1002_adfm_202308376
crossref_primary_10_1016_j_matchemphys_2023_128759
crossref_primary_10_1002_asia_201900328
crossref_primary_10_1002_smtd_202000486
crossref_primary_10_1021_acsami_4c06914
crossref_primary_10_1038_s41467_020_18776_z
crossref_primary_10_1038_s41524_025_01540_6
crossref_primary_10_1039_D2CE01272C
crossref_primary_10_1016_j_colsurfa_2022_129873
crossref_primary_10_1016_j_jssc_2024_124703
crossref_primary_10_3390_molecules28083622
crossref_primary_10_1002_ange_202009295
crossref_primary_10_1021_acs_cgd_1c00443
crossref_primary_10_1021_acs_analchem_3c01905
crossref_primary_10_1016_j_bios_2019_111536
crossref_primary_10_1039_C9TA05409J
crossref_primary_10_1016_j_seppur_2024_128071
crossref_primary_10_1021_acs_langmuir_2c02070
crossref_primary_10_1002_anie_202008858
crossref_primary_10_1039_D3TC01718D
crossref_primary_10_1002_advs_202204036
crossref_primary_10_1002_smll_202405436
crossref_primary_10_1016_j_jwpe_2025_107467
crossref_primary_10_1016_j_microc_2024_111833
crossref_primary_10_1002_aic_17707
crossref_primary_10_1016_j_foodchem_2022_132607
crossref_primary_10_1016_j_jece_2021_105961
crossref_primary_10_1002_ange_202109336
crossref_primary_10_1002_anie_202306726
crossref_primary_10_1016_j_mtchem_2022_100885
crossref_primary_10_1021_acscentsci_0c00158
crossref_primary_10_1002_anie_201912972
crossref_primary_10_1039_D1QM00034A
crossref_primary_10_1016_j_bios_2024_116556
crossref_primary_10_1016_j_rser_2023_113561
crossref_primary_10_1016_j_ccr_2023_215118
crossref_primary_10_1002_smll_202103106
crossref_primary_10_1016_j_cjche_2024_02_007
crossref_primary_10_1016_j_ccr_2024_216144
crossref_primary_10_1016_j_jhazmat_2020_122765
crossref_primary_10_1039_D3CC05381D
crossref_primary_10_1016_j_cej_2023_145858
crossref_primary_10_1016_j_jhazmat_2020_123979
crossref_primary_10_1002_ange_202204568
crossref_primary_10_1021_acsami_0c16428
crossref_primary_10_1039_D2ME00211F
crossref_primary_10_1039_D1NJ05561E
crossref_primary_10_1016_j_jece_2022_108300
crossref_primary_10_1039_D2CC04954F
crossref_primary_10_1016_j_seppur_2024_129948
crossref_primary_10_1021_acs_inorgchem_8b01055
crossref_primary_10_1002_cplu_202200396
crossref_primary_10_1038_s41467_023_40973_9
crossref_primary_10_1002_ange_202423939
crossref_primary_10_1002_anie_202301021
crossref_primary_10_1002_smll_202303884
crossref_primary_10_1002_ange_201912972
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1007_s40242_024_4179_1
crossref_primary_10_1016_j_cej_2020_124023
crossref_primary_10_1007_s40820_024_01584_1
crossref_primary_10_1016_j_envres_2023_116752
crossref_primary_10_1016_j_seppur_2023_125938
crossref_primary_10_1039_D1SC06430D
crossref_primary_10_1002_adma_201901744
crossref_primary_10_1002_ange_202115443
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_1016_j_cej_2020_126205
crossref_primary_10_1039_D0CE01883J
crossref_primary_10_1016_j_sampre_2025_100157
crossref_primary_10_1016_j_ccr_2020_213743
crossref_primary_10_1007_s11783_024_1911_5
crossref_primary_10_1016_j_jcis_2025_01_125
crossref_primary_10_1039_C8TA07349J
crossref_primary_10_1039_D1TB01120K
crossref_primary_10_1016_j_surfin_2024_104959
crossref_primary_10_1016_j_snb_2021_130017
crossref_primary_10_1016_j_jece_2022_107686
crossref_primary_10_1007_s11051_022_05531_2
crossref_primary_10_1039_C8DT04563A
crossref_primary_10_1002_ange_202008858
crossref_primary_10_1039_C9DT01710K
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1039_C8NR09777A
crossref_primary_10_1002_adma_201800202
crossref_primary_10_1016_j_jssc_2019_07_044
crossref_primary_10_1016_j_mtchem_2022_100867
crossref_primary_10_1002_anie_202115443
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1016_j_solidstatesciences_2024_107498
crossref_primary_10_1039_D0DT02062A
crossref_primary_10_1016_j_apcatb_2024_124097
crossref_primary_10_1016_j_colsurfa_2023_131005
crossref_primary_10_1002_ange_202209433
crossref_primary_10_1016_j_jhazmat_2024_136530
crossref_primary_10_1016_j_cej_2022_136144
crossref_primary_10_1016_j_apsusc_2024_159590
crossref_primary_10_1002_anie_202209433
crossref_primary_10_1016_j_talanta_2024_127177
crossref_primary_10_1039_D1CC00548K
crossref_primary_10_1002_anie_202109336
crossref_primary_10_1016_j_foodchem_2024_142339
crossref_primary_10_1002_admt_202200238
crossref_primary_10_1002_smll_202100607
Cites_doi 10.1038/nchem.627
10.1039/b904526k
10.1007/s10948-012-1805-9
10.1002/anie.200804836
10.1039/C4CS00103F
10.1039/C5TA04154F
10.1039/C6CE00733C
10.1021/ja802035e
10.1021/ja507274n
10.1021/ja503215w
10.1021/ja405086e
10.1126/science.1192160
10.1002/anie.200462515
10.1039/C4CS00106K
10.1002/ange.200804836
10.1039/C2CS35320B
10.1039/C4CS00089G
10.1021/cm4034319
10.1021/ja1099006
10.1039/C4CS00003J
10.1021/ja500362w
10.1021/nn304597h
10.1021/ja0276974
10.1039/C4CC09596K
10.1039/C4CC04458D
10.1039/C6EE02171A
10.1002/chem.201503052
10.1039/C0CC02271C
10.1039/c3ce40653a
10.1039/b903811f
10.1021/acsami.5b10078
10.1039/b807086p
10.1021/ja403008j
10.1021/ja710973k
10.1038/nmat2608
10.1021/ja0627444
10.1021/cr300014x
10.1039/C4CS00101J
10.1039/b909993j
10.1038/nchem.883
10.1002/ange.200462515
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201709738
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 15662
ExternalDocumentID 29048720
10_1002_anie_201709738
ANIE201709738
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4108-a6b7ec15d153c639b426f3b6a6a713bde649602df6a5a28d9e767eee3c1e817b3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:06:34 EDT 2025
Fri Jul 25 10:45:54 EDT 2025
Thu Apr 03 07:08:38 EDT 2025
Tue Jul 01 02:26:13 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Wed Jan 22 17:06:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords functionalization
modular growth
nanostructures
synthesis design
metal-organic frameworks
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-a6b7ec15d153c639b426f3b6a6a713bde649602df6a5a28d9e767eee3c1e817b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29048720
PQID 1968403489
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1953298457
proquest_journals_1968403489
pubmed_primary_29048720
crossref_citationtrail_10_1002_anie_201709738
crossref_primary_10_1002_anie_201709738
wiley_primary_10_1002_anie_201709738_ANIE201709738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 4, 2017
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: December 4, 2017
  day: 04
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 26
2010; 329
2015; 3
2009 2009; 48 121
2015; 51
2013; 42
2009
2014; 26
2013; 7
2016; 18
2014; 136
2011; 133
2014; 43
2013; 15
2012; 112
2002; 124
2015; 21
2005 2005; 44 117
2013; 135
2011; 47
2010; 2
2006; 128
2009; 38
2008; 130
2016; 8
2016; 9
2010; 9
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_3
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_35_1
References_xml – volume: 9
  start-page: 3092
  year: 2016
  end-page: 3096
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 5700
  year: 2014
  end-page: 5734
  publication-title: Chem. Soc. Rev.
– volume: 48 121
  start-page: 1766 1798
  year: 2009 2009
  end-page: 1770 1802
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 6718
  year: 2008
  end-page: 6719
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 6786
  year: 2014
  end-page: 6789
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  publication-title: Chem. Rev.
– volume: 43
  start-page: 5561
  year: 2014
  end-page: 5593
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 410
  year: 2010
  end-page: 416
  publication-title: Nat. Chem.
– volume: 329
  start-page: 424
  year: 2010
  end-page: 428
  publication-title: Science
– start-page: 5097
  year: 2009
  end-page: 5099
  publication-title: Chem. Commun.
– volume: 130
  start-page: 6774
  year: 2008
  end-page: 6780
  publication-title: J. Am. Chem. Soc.
– start-page: 6162
  year: 2009
  end-page: 6164
  publication-title: Chem. Commun.
– volume: 135
  start-page: 9984
  year: 2013
  end-page: 9987
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 14488
  year: 2013
  end-page: 14491
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5982
  year: 2014
  end-page: 5993
  publication-title: Chem. Soc. Rev.
– volume: 51
  start-page: 3501
  year: 2015
  end-page: 3510
  publication-title: Chem. Commun.
– volume: 2
  start-page: 909
  year: 2010
  end-page: 911
  publication-title: Nat. Chem.
– volume: 42
  start-page: 1807
  year: 2013
  end-page: 1824
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 7261
  year: 2014
  end-page: 7264
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 491
  year: 2013
  end-page: 499
  publication-title: ACS Nano
– volume: 47
  start-page: 442
  year: 2011
  end-page: 444
  publication-title: Chem. Commun.
– volume: 44 117
  start-page: 6237 6394
  year: 2005 2005
  end-page: 6241 6397
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 19822
  year: 2015
  end-page: 19831
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 6003
  year: 2013
  end-page: 6008
  publication-title: CrystEngComm
– volume: 21
  start-page: 17485
  year: 2015
  end-page: 17490
  publication-title: Chem. Eur. J.
– volume: 26
  start-page: 1119
  year: 2014
  end-page: 1125
  publication-title: Chem. Mater.
– volume: 8
  start-page: 2552
  year: 2016
  end-page: 2561
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 5199
  year: 2015
  end-page: 5217
  publication-title: Chem. Commun.
– volume: 9
  start-page: 172
  year: 2010
  publication-title: Nat. Mater.
– volume: 133
  start-page: 1304
  year: 2011
  end-page: 1306
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 6062
  year: 2014
  end-page: 6096
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1400
  year: 2009
  end-page: 1417
  publication-title: Chem. Soc. Rev.
– volume: 136
  start-page: 13471
  year: 2014
  end-page: 13473
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 9024
  year: 2006
  end-page: 9025
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 5262
  year: 2016
  end-page: 5266
  publication-title: CrystEngComm
– volume: 26
  start-page: 725
  year: 2013
  end-page: 731
  publication-title: J. Supercond. Novel Magn.
– volume: 124
  start-page: 13519
  year: 2002
  end-page: 13526
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 5513
  year: 2014
  end-page: 5560
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1213
  year: 2009
  end-page: 1214
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_2_40_2
  doi: 10.1038/nchem.627
– ident: e_1_2_2_27_2
  doi: 10.1039/b904526k
– ident: e_1_2_2_34_1
  doi: 10.1007/s10948-012-1805-9
– ident: e_1_2_2_25_1
  doi: 10.1002/anie.200804836
– ident: e_1_2_2_44_2
  doi: 10.1039/C4CS00103F
– ident: e_1_2_2_46_2
  doi: 10.1039/C5TA04154F
– ident: e_1_2_2_38_1
– ident: e_1_2_2_36_2
  doi: 10.1039/C6CE00733C
– ident: e_1_2_2_42_1
  doi: 10.1021/ja802035e
– ident: e_1_2_2_37_2
  doi: 10.1021/ja507274n
– ident: e_1_2_2_20_1
  doi: 10.1021/ja503215w
– ident: e_1_2_2_47_2
  doi: 10.1021/ja405086e
– ident: e_1_2_2_9_2
  doi: 10.1126/science.1192160
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.200462515
– ident: e_1_2_2_2_2
  doi: 10.1039/C4CS00106K
– ident: e_1_2_2_25_2
  doi: 10.1002/ange.200804836
– ident: e_1_2_2_16_2
  doi: 10.1039/C2CS35320B
– ident: e_1_2_2_14_1
– ident: e_1_2_2_10_2
  doi: 10.1039/C4CS00089G
– ident: e_1_2_2_17_2
  doi: 10.1021/cm4034319
– ident: e_1_2_2_15_2
  doi: 10.1021/ja1099006
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_13_2
  doi: 10.1039/C4CS00003J
– ident: e_1_2_2_24_1
  doi: 10.1021/ja500362w
– ident: e_1_2_2_35_1
– ident: e_1_2_2_30_2
  doi: 10.1021/nn304597h
– ident: e_1_2_2_11_2
  doi: 10.1021/ja0276974
– ident: e_1_2_2_45_2
  doi: 10.1039/C4CC09596K
– ident: e_1_2_2_32_1
  doi: 10.1039/C4CC04458D
– ident: e_1_2_2_33_1
  doi: 10.1039/C6EE02171A
– ident: e_1_2_2_26_1
– ident: e_1_2_2_19_2
  doi: 10.1002/chem.201503052
– ident: e_1_2_2_22_2
  doi: 10.1039/C0CC02271C
– ident: e_1_2_2_28_2
  doi: 10.1039/c3ce40653a
– ident: e_1_2_2_5_2
  doi: 10.1039/b903811f
– ident: e_1_2_2_8_1
– ident: e_1_2_2_23_2
  doi: 10.1021/acsami.5b10078
– ident: e_1_2_2_6_2
  doi: 10.1039/b807086p
– ident: e_1_2_2_31_2
  doi: 10.1021/ja403008j
– ident: e_1_2_2_12_2
  doi: 10.1021/ja710973k
– ident: e_1_2_2_39_2
  doi: 10.1038/nmat2608
– ident: e_1_2_2_41_2
  doi: 10.1021/ja0627444
– ident: e_1_2_2_21_1
– ident: e_1_2_2_3_2
  doi: 10.1021/cr300014x
– ident: e_1_2_2_4_2
  doi: 10.1039/C4CS00101J
– ident: e_1_2_2_29_2
  doi: 10.1039/b909993j
– ident: e_1_2_2_7_2
  doi: 10.1038/nchem.883
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.200462515
SSID ssj0028806
Score 2.652105
Snippet Fabrication of hybrid MOF‐on‐MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with...
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15658
SubjectTerms Crystallography
Crystals
Epitaxial growth
Fabrication
functionalization
Hybrid systems
Hybridization
metal–organic frameworks
modular growth
nanostructures
synthesis design
Title Controllable Modular Growth of Hierarchical MOF‐on‐MOF Architectures
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201709738
https://www.ncbi.nlm.nih.gov/pubmed/29048720
https://www.proquest.com/docview/1968403489
https://www.proquest.com/docview/1953298457
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCoKnapu0SXtcFtdV2BVEwVvJqygurbi7F0_-BH-jv8RMu627igh6KSlN2zSZTGaa-b4BOFImMpqxxIsERQdFRF4cZNoaclpKXyRScsQO9_qsexte3kV3Uyj-ih-i-eGGM6PU1zjBhRyefpKGIgIbQ7M4Es4g2hcDttAqum74o4gVzgpeRKmHWehr1kafnM7ePrsqfTM1Zy3XcunpLIOoG11FnDyejEfyRL184XP8z1etwNLELnVblSCtwpzJ12ChXaeDW4duuwpqHyDWyu0VGuNX3XPrxY_u3SJzuw8IZS4zqwzc3lXn_fWtyO3BFt3W1G7FcANuO2c37a43ScPgqTDwY08wyY0KIm2Vo7IGjbSLekYlE0xYD1dqw0LrBhGdMREJEuvEcMaNMVQFJg64pJswnxe52QZXqCxjfmYEYSTUjCcBDRSRKrFPCbmSDnj1MKRqwlGOqTIGacWuTFLsn7TpHweOm_pPFTvHjzX36lFNJ7N0mFrtY_1bGsaJA4fNZduvuGkiclOMsU5ESRKHEXdgq5KG5lUksfqPE98BUo7pL21IW_2Ls-Zs5y837cIilst4mnAP5kfPY7NvraKRPCgl_wOWhAVY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb5tAEB6lzsG99JG0KYnbEqlST9iwC7twtKw4OI0dKbKl3tC-UKtYUDX2Jaf8hPzG_pLsgKF1oypSc0E8dmHZ3XntznwD8EmZyGjGEi8SFA0UEXlxkGuryGkpfZFIyTF2eDpj6SI8-xo13oQYC1PjQ7QLbkgZFb9GAscF6cFv1FAMwUbfLI6IM_Ez2MW03pVVddkiSBE7PesAI0o9zEPf4Db6ZLBdf1suPVA2t3XXSviMX4Jsml37nFz11yvZVzd_ITo-6b9ewYuNauoO67n0GnZMsQfdUZMRbh_SUe3XvsRwK3daanRhdU-tIb_65pa5m37HaOYqucrSnV6Mf93elYU92FN3-MeGxfUbWIxP5qPU22Ri8FQY-LEnmORGBZG2_FFZnUZauZ5TyQQT1siV2rDQWkJE50xEgsQ6MZxxYwxVgYkDLulb6BRlYd6BK1SeMz83gjASasaTgAaKSJXYt4RcSQe8ZhwytYEpx2wZy6wGWCYZ9k_W9o8Dn9vyP2qAjn-W7DXDmm0I9TqzDMiauDSMEweO28e2X3HfRBSmXGOZiJIkDiPuwEE9HdpPkcSyQE58B0g1qI-0IRvOJift1eH_VPoI3XQ-Pc_OJ7MvR_Ac71fuNWEPOqufa_PeKkkr-aEig3vnvglz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRWq5tFBeAQqpVKmnQGI7dnJcLSxL291WFUjcIr8iEKsEsbuXnvoT-hv5JXiSTcq2QpXoJcrDdhx7ZjwTz3wD8EHb2BrO0yCWFA0UGQdJlBunyBmlQpkqJTB2eDjigwv26TK-fBTFX-NDtD_ckDMqeY0Mfmvyo9-goRiBja5ZAgFnkhewzHiYIF0ff28BpIijzjq-iNIA09A3sI0hOVqsv7gs_aVrLqqu1drTfwOy6XXtcnJzOJuqQ_3jD0DH__msVXg9V0z9bk1Ja7Bki7fwqtfkg1uHQa_2ah9jsJU_LA06sPqnzoyfXvll7g-uMZa5Sq0y9odf-_c_f5WFO7hTv_tou2KyARf9k_PeIJjnYQg0i8IkkFwJq6PYOOmonUaj3KqeU8Ull87EVcZy5uwgYnIuY0kSk1rBhbWW6sgmkVB0EzpFWdht8KXOcx7mVhJOmOEijWikidKpa4UJrTwImmnI9BykHHNljLMaXplkOD5ZOz4efGzL39bwHE-W3GtmNZuz6SRz4scZuJQlqQfv28duXHHXRBa2nGGZmJI0YbHwYKumhvZVJHUCUJDQA1LN6T_6kHVHZyft1c5zKh3Ay2_H_ezL2ejzLqzg7cq3hu1BZ3o3s--chjRV-xUTPADdhQgr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+Modular+Growth+of+Hierarchical+MOF%E2%80%90on%E2%80%90MOF+Architectures&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gu%2C+Yifan&rft.au=Yi%E2%80%90nan+Wu&rft.au=Li%2C+Liangchun&rft.au=Chen%2C+Wei&rft.date=2017-12-04&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=49&rft.spage=15658&rft.epage=15662&rft_id=info:doi/10.1002%2Fanie.201709738&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon