Highly Stable Phosphonate‐Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production

Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 16; pp. e1906368 - n/a
Main Authors Zhu, Yun‐Pei, Yin, Jun, Abou‐Hamad, Edy, Liu, Xiaokang, Chen, Wei, Yao, Tao, Mohammed, Omar F., Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts. Phosphonate metal–organic frameworks (MOFs) with tunable gaps are presented. Taking advantage of the controllable compositions and functionalities of MOFs, a titanium‐phosphonate‐based MOF for highly stable photocatalytic hydrogen evolution is showcased. The electron‐donating effect of the functional groups in the phosphonic ligands significantly modifies the electronic structure, thus promoting the photocatalytic activity.
AbstractList Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts.Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts.
Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts. Phosphonate metal–organic frameworks (MOFs) with tunable gaps are presented. Taking advantage of the controllable compositions and functionalities of MOFs, a titanium‐phosphonate‐based MOF for highly stable photocatalytic hydrogen evolution is showcased. The electron‐donating effect of the functional groups in the phosphonic ligands significantly modifies the electronic structure, thus promoting the photocatalytic activity.
Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts.
Author Chen, Wei
Mohammed, Omar F.
Zhu, Yun‐Pei
Liu, Xiaokang
Yin, Jun
Alshareef, Husam N.
Abou‐Hamad, Edy
Yao, Tao
Author_xml – sequence: 1
  givenname: Yun‐Pei
  surname: Zhu
  fullname: Zhu, Yun‐Pei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Jun
  surname: Yin
  fullname: Yin, Jun
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Edy
  surname: Abou‐Hamad
  fullname: Abou‐Hamad, Edy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Xiaokang
  surname: Liu
  fullname: Liu, Xiaokang
  organization: University of Science and Technology of China (USTC)
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: University of Science and Technology of China (USTC)
– sequence: 6
  givenname: Tao
  surname: Yao
  fullname: Yao, Tao
  organization: University of Science and Technology of China (USTC)
– sequence: 7
  givenname: Omar F.
  surname: Mohammed
  fullname: Mohammed, Omar F.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32129916$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAURkVJaSZpt10WQzfdeKo_a6zlJJlkCgkJtF2ba0meUfBIriQTvOsj9Bn7JNEwaQqB0pVAnKNP934n6Mh5ZxB6T_CcYEw_g97BnGIisWCifoVmpKKk5FhWR2iGJatKKXh9jE5ivMcYS4HFG3TMKKFSEjFDw9putv1UfE3Q9qa42_o4bL2DZH7__HUG0eji5vYyFg82bYuV21hnTMiXZ-D0BoZYdD4Uq66zyhqX9n7yChL0U7KqWE86-I1xxV3welTJevcWve6gj-bd03mKvl-uvp2vy-vbqy_ny-tScYLrUjIGTFct1JQsoDKc14s8ZoVrXhlWAWOCKuCtlhy6jhhOqGZcqY4DbZXg7BR9Orw7BP9jNDE1OxuV6Xtwxo-xoWxBSI6iIqMfX6D3fgwu_y5TkuYoKRaZ-vBEje3O6GYIdgdhav7sMgPzA6CCjzGY7hkhuNmX1ezLap7LygJ_ISibYL-kFMD2_9bkQXuwvZn-E9IsL26Wf91HfoSplw
CitedBy_id crossref_primary_10_1007_s10562_020_03526_z
crossref_primary_10_3390_molecules27206828
crossref_primary_10_1016_j_cej_2021_129459
crossref_primary_10_1002_chem_202500065
crossref_primary_10_1016_j_cej_2022_138330
crossref_primary_10_1016_j_mtener_2024_101542
crossref_primary_10_1088_1674_4926_41_9_091707
crossref_primary_10_1007_s11426_020_9809_x
crossref_primary_10_1016_j_ijhydene_2024_06_126
crossref_primary_10_1063_5_0202991
crossref_primary_10_1002_solr_202400607
crossref_primary_10_3390_coatings11070854
crossref_primary_10_1016_j_aca_2021_338870
crossref_primary_10_1016_j_matt_2022_07_014
crossref_primary_10_1039_D3LF00157A
crossref_primary_10_1016_j_isci_2023_107132
crossref_primary_10_1021_acs_chemrev_2c00460
crossref_primary_10_1039_D0TA03749D
crossref_primary_10_1016_j_cej_2023_145256
crossref_primary_10_1002_adfm_202104231
crossref_primary_10_1002_aoc_7765
crossref_primary_10_1002_ejic_202400789
crossref_primary_10_1016_j_jece_2025_115857
crossref_primary_10_1016_j_jcis_2024_02_083
crossref_primary_10_1002_smsc_202100060
crossref_primary_10_1016_j_enchem_2022_100078
crossref_primary_10_1016_j_fuel_2021_122172
crossref_primary_10_1088_1361_6528_ac493d
crossref_primary_10_1016_j_cej_2024_155349
crossref_primary_10_1039_D2QM00314G
crossref_primary_10_1039_D2TA05114A
crossref_primary_10_1002_adfm_202305318
crossref_primary_10_1016_j_cej_2022_135759
crossref_primary_10_1039_D2TA03159K
crossref_primary_10_1021_acsmaterialslett_0c00095
crossref_primary_10_1039_D0TC03302B
crossref_primary_10_1021_acsnano_1c00477
crossref_primary_10_1002_adma_202308427
crossref_primary_10_1002_asia_202400896
crossref_primary_10_1039_D3TA02520A
crossref_primary_10_1002_anie_202200123
crossref_primary_10_1002_cjoc_202200651
crossref_primary_10_1016_j_apsusc_2020_148308
crossref_primary_10_1039_D3QM00468F
crossref_primary_10_1016_j_apsusc_2021_151553
crossref_primary_10_1021_acs_iecr_1c01838
crossref_primary_10_1016_j_seppur_2021_120409
crossref_primary_10_1016_j_nxmate_2023_100010
crossref_primary_10_1016_j_apsusc_2021_152004
crossref_primary_10_1016_j_jcis_2023_12_090
crossref_primary_10_1016_j_jiec_2022_03_027
crossref_primary_10_1088_1361_6463_ad7470
crossref_primary_10_1007_s11270_024_07161_x
crossref_primary_10_1016_j_jcis_2022_10_015
crossref_primary_10_1002_cssc_202002103
crossref_primary_10_1016_j_ccr_2021_214123
crossref_primary_10_1016_j_chemosphere_2024_141296
crossref_primary_10_1088_2515_7655_abf721
crossref_primary_10_1039_D4QI01449A
crossref_primary_10_1002_asia_202300033
crossref_primary_10_1016_j_apsusc_2022_153922
crossref_primary_10_1021_acsanm_4c05922
crossref_primary_10_1016_j_matre_2024_100284
crossref_primary_10_1149_1945_7111_ac6452
crossref_primary_10_1002_aenm_202403322
crossref_primary_10_1016_j_apcatb_2020_119688
crossref_primary_10_1016_j_jece_2025_115647
crossref_primary_10_1016_j_jcis_2023_09_145
crossref_primary_10_1016_j_ijhydene_2024_01_342
crossref_primary_10_1002_aenm_202500220
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1039_D1QI00198A
crossref_primary_10_1002_ange_202100002
crossref_primary_10_1016_j_apcatb_2024_124121
crossref_primary_10_1002_ejic_202300699
crossref_primary_10_1007_s10562_020_03472_w
crossref_primary_10_1016_j_cherd_2024_06_042
crossref_primary_10_3390_en15166076
crossref_primary_10_1002_ange_202200123
crossref_primary_10_1016_j_cej_2022_139070
crossref_primary_10_1016_j_jhazmat_2022_129436
crossref_primary_10_1002_aoc_6995
crossref_primary_10_1002_smtd_202401689
crossref_primary_10_1016_j_esci_2023_100092
crossref_primary_10_1002_smll_202005304
crossref_primary_10_1016_j_cej_2022_136883
crossref_primary_10_1016_j_inoche_2024_112949
crossref_primary_10_1007_s11270_023_06255_2
crossref_primary_10_1002_smll_202300492
crossref_primary_10_1021_acscatal_3c02509
crossref_primary_10_1080_00958972_2021_1979528
crossref_primary_10_1016_j_fuproc_2023_107970
crossref_primary_10_1021_acs_chemmater_3c00054
crossref_primary_10_1021_acsanm_4c02276
crossref_primary_10_1016_j_colsurfa_2024_134929
crossref_primary_10_1021_acs_inorgchem_3c03446
crossref_primary_10_1039_D2ME00117A
crossref_primary_10_1021_jacs_3c05279
crossref_primary_10_1039_D4NH00196F
crossref_primary_10_1016_j_jcis_2024_02_095
crossref_primary_10_1016_j_jallcom_2020_157609
crossref_primary_10_1016_j_cej_2021_130140
crossref_primary_10_1039_D1QI00394A
crossref_primary_10_1016_j_jcis_2024_09_200
crossref_primary_10_1039_D1EN00237F
crossref_primary_10_1016_j_ccr_2024_216292
crossref_primary_10_1021_acs_inorgchem_4c03388
crossref_primary_10_1016_j_apcatb_2021_120106
crossref_primary_10_1016_j_jcis_2022_07_072
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_1039_D1GC03768D
crossref_primary_10_1039_D2NR05341A
crossref_primary_10_1038_s41467_021_25007_6
crossref_primary_10_1016_j_ensm_2021_10_040
crossref_primary_10_1016_j_jiec_2022_11_045
crossref_primary_10_1002_adsu_202200189
crossref_primary_10_1016_j_cej_2021_129447
crossref_primary_10_1016_j_surfin_2024_104327
crossref_primary_10_1021_acsnano_4c05370
crossref_primary_10_1016_j_jtice_2023_104911
crossref_primary_10_1039_D0RA07487J
crossref_primary_10_3390_molecules27134241
crossref_primary_10_1002_smll_202100296
crossref_primary_10_1021_acs_inorgchem_2c00235
crossref_primary_10_1002_aic_17879
crossref_primary_10_1016_j_electacta_2021_139068
crossref_primary_10_1002_anie_202100002
crossref_primary_10_1007_s40820_021_00785_2
crossref_primary_10_1007_s10854_022_07717_9
crossref_primary_10_1016_j_mtener_2025_101834
crossref_primary_10_1016_j_jcat_2020_07_034
crossref_primary_10_1039_D2AY00167E
crossref_primary_10_1515_epoly_2021_0010
crossref_primary_10_1016_j_cej_2021_132727
Cites_doi 10.1002/chem.201301728
10.1002/anie.201406719
10.1021/ja0269643
10.1002/chem.200601003
10.1021/ja903726m
10.1039/C8CS00699G
10.1002/advs.201802059
10.1039/C4CP04162C
10.1021/acs.accounts.8b00521
10.1039/C2CS35266D
10.1038/ncomms6881
10.1021/ar5000314
10.1039/C8CS00829A
10.1002/anie.201411540
10.1021/acs.inorgchem.5b01593
10.1002/anie.201108357
10.1021/jacs.7b00266
10.1002/anie.201806077
10.1039/C8CP06811A
10.1021/cm050919n
10.1021/jp405335q
10.1021/ja074064m
10.1002/adma.201204453
10.1021/jacs.9b05964
10.1021/acs.accounts.5b00531
10.1021/acscatal.9b00332
10.1126/sciadv.aat9180
10.1002/anie.201904537
10.1021/ja405350u
10.1021/ja211271m
10.1039/C5CY00107B
10.1021/cm048988
10.1021/acs.langmuir.6b03592
10.1039/C5EE02443A
10.1039/C8SC05060K
10.1002/ange.200903886
10.1002/adma.201501939
10.1002/anie.201904347
10.1039/C8DT04106G
10.1021/cr2002257
10.1002/anie.201806862
10.1002/anie.201007277
10.1021/jp411346k
10.1039/C4TA04873C
10.1002/anie.201712925
10.1039/c0jm01212b
10.1016/j.apcatb.2007.12.015
10.1002/adfm.201500521
10.1039/C4CC02994A
10.1021/jacs.8b02076
10.1021/jp3046005
10.1039/C4CE00032C
10.1016/j.mattod.2018.05.001
10.1002/smll.201402420
10.1039/C8CS00542G
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201906368
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32129916
10_1002_adma_201906368
ADMA201906368
Genre article
Journal Article
GrantInformation_xml – fundername: BSRF
– fundername: King Abdullah University of Science and Technology
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4108-933a3d5ba8217a5e448720150845e35a3362ca4bd94aff1e412d34ccf4a2bc643
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 09:00:07 EDT 2025
Sun Jul 13 04:20:03 EDT 2025
Wed Feb 19 02:30:06 EST 2025
Tue Jul 01 02:32:45 EDT 2025
Thu Apr 24 22:50:21 EDT 2025
Wed Jan 22 16:33:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords hydrogen evolution
metal-organic frameworks (MOFs)
photocatalysis
bandgap engineering
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-933a3d5ba8217a5e448720150845e35a3362ca4bd94aff1e412d34ccf4a2bc643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5029-2142
PMID 32129916
PQID 2392336967
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2371141026
proquest_journals_2392336967
pubmed_primary_32129916
crossref_primary_10_1002_adma_201906368
crossref_citationtrail_10_1002_adma_201906368
wiley_primary_10_1002_adma_201906368_ADMA201906368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2019; 9
2015; 17
2007; 129
2015; 6
2015; 5
2013; 25
2019; 6
2018; 140
2015; 3
2019; 52
2019; 10
2015; 11
2013; 42
2015; 54
2019; 58
2010; 122
2014; 47
2009; 131
2019; 141
2015; 8
2007; 13
2017; 139
2012; 51
2013; 19
2010; 20
2015; 25
2015; 27
2012; 112
2012; 134
2018; 4
2004; 16
2019; 21
2017; 33
2002; 124
2019; 23
2019; 48
2013; 117
2011; 50
2014; 16
2013; 135
2012; 116
2008; 81
2016; 49
2005; 17
2014; 50
2018; 57
2014; 53
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 117
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 4919
  year: 2014
  publication-title: CrystEngComm
– volume: 118
  start-page: 4213
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 52
  start-page: 356
  year: 2019
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 9434
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1908
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 117
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 112
  start-page: 1034
  year: 2012
  publication-title: Chem. Rev.
– volume: 58
  start-page: 9160
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 25
  start-page: 3074
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 3222
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 122
  start-page: 451
  year: 2010
  publication-title: Angew. Chem.
– volume: 50
  start-page: 5729
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  start-page: 4123
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 5
  start-page: 4258
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 16
  start-page: 4359
  year: 2004
  publication-title: Chem. Mater.
– volume: 8
  start-page: 3539
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 48
  start-page: 2109
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 4834
  year: 2019
  publication-title: Chem. Sci.
– volume: 81
  start-page: 258
  year: 2008
  publication-title: Appl. Catal., B
– volume: 3
  start-page: 412
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 3991
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 66
  year: 2017
  publication-title: Langmuir
– volume: 27
  start-page: 4572
  year: 2015
  publication-title: Adv. Mater.
– volume: 57
  start-page: 9864
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1093
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 19
  year: 2013
  publication-title: Chem. ‐ Eur. J.
– volume: 54
  year: 2015
  publication-title: Inorg. Chem.
– volume: 58
  start-page: 9491
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 25
  start-page: 2452
  year: 2013
  publication-title: Adv. Mater.
– volume: 6
  start-page: 5881
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2115
  year: 2015
  publication-title: Small
– volume: 47
  start-page: 1555
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 4247
  year: 2019
  publication-title: ACS Catal.
– volume: 51
  start-page: 3364
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  start-page: 72
  year: 2019
  publication-title: Mater. Today
– volume: 50
  year: 2014
  publication-title: Chem. Commun.
– volume: 54
  start-page: 7234
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 5521
  year: 2005
  publication-title: Chem. Mater.
– volume: 48
  start-page: 523
  year: 2019
  publication-title: Dalton Trans.
– volume: 13
  start-page: 5106
  year: 2007
  publication-title: Chem. ‐ Eur. J.
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 6484
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 124
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 6198
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 2783
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 2294
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_4_18_1
  doi: 10.1002/chem.201301728
– ident: e_1_2_4_31_1
  doi: 10.1002/anie.201406719
– ident: e_1_2_4_43_1
  doi: 10.1021/ja0269643
– ident: e_1_2_4_55_1
  doi: 10.1002/chem.200601003
– ident: e_1_2_4_13_1
  doi: 10.1021/ja903726m
– ident: e_1_2_4_4_1
  doi: 10.1039/C8CS00699G
– ident: e_1_2_4_8_1
  doi: 10.1002/advs.201802059
– ident: e_1_2_4_20_1
  doi: 10.1039/C4CP04162C
– ident: e_1_2_4_21_1
  doi: 10.1021/acs.accounts.8b00521
– ident: e_1_2_4_28_1
  doi: 10.1039/C2CS35266D
– ident: e_1_2_4_46_1
  doi: 10.1038/ncomms6881
– ident: e_1_2_4_32_1
  doi: 10.1021/ar5000314
– ident: e_1_2_4_5_1
  doi: 10.1039/C8CS00829A
– ident: e_1_2_4_6_1
  doi: 10.1002/anie.201411540
– ident: e_1_2_4_37_1
  doi: 10.1021/acs.inorgchem.5b01593
– ident: e_1_2_4_14_1
  doi: 10.1002/anie.201108357
– ident: e_1_2_4_50_1
  doi: 10.1021/jacs.7b00266
– ident: e_1_2_4_15_1
  doi: 10.1002/anie.201806077
– ident: e_1_2_4_39_1
  doi: 10.1039/C8CP06811A
– ident: e_1_2_4_35_1
  doi: 10.1021/cm050919n
– ident: e_1_2_4_19_1
  doi: 10.1021/jp405335q
– ident: e_1_2_4_40_1
  doi: 10.1021/ja074064m
– ident: e_1_2_4_49_1
  doi: 10.1002/adma.201204453
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.9b05964
– ident: e_1_2_4_29_1
  doi: 10.1021/acs.accounts.5b00531
– ident: e_1_2_4_2_1
  doi: 10.1021/acscatal.9b00332
– ident: e_1_2_4_7_1
  doi: 10.1126/sciadv.aat9180
– ident: e_1_2_4_9_1
  doi: 10.1002/anie.201904537
– ident: e_1_2_4_17_1
  doi: 10.1021/ja405350u
– ident: e_1_2_4_53_1
  doi: 10.1021/ja211271m
– ident: e_1_2_4_24_1
  doi: 10.1039/C5CY00107B
– ident: e_1_2_4_34_1
  doi: 10.1021/cm048988
– ident: e_1_2_4_36_1
  doi: 10.1021/acs.langmuir.6b03592
– ident: e_1_2_4_45_1
  doi: 10.1039/C5EE02443A
– ident: e_1_2_4_12_1
  doi: 10.1039/C8SC05060K
– ident: e_1_2_4_44_1
  doi: 10.1002/ange.200903886
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201501939
– ident: e_1_2_4_10_1
  doi: 10.1002/anie.201904347
– ident: e_1_2_4_26_1
  doi: 10.1039/C8DT04106G
– ident: e_1_2_4_22_1
  doi: 10.1021/cr2002257
– ident: e_1_2_4_51_1
  doi: 10.1002/anie.201806862
– ident: e_1_2_4_54_1
  doi: 10.1002/anie.201007277
– ident: e_1_2_4_33_1
  doi: 10.1021/jp411346k
– ident: e_1_2_4_38_1
  doi: 10.1039/C4TA04873C
– ident: e_1_2_4_23_1
  doi: 10.1002/anie.201712925
– ident: e_1_2_4_30_1
  doi: 10.1039/c0jm01212b
– ident: e_1_2_4_25_1
  doi: 10.1016/j.apcatb.2007.12.015
– ident: e_1_2_4_52_1
  doi: 10.1002/adfm.201500521
– ident: e_1_2_4_47_1
  doi: 10.1039/C4CC02994A
– ident: e_1_2_4_42_1
  doi: 10.1021/jacs.8b02076
– ident: e_1_2_4_16_1
  doi: 10.1021/jp3046005
– ident: e_1_2_4_41_1
  doi: 10.1039/C4CE00032C
– ident: e_1_2_4_3_1
  doi: 10.1016/j.mattod.2018.05.001
– ident: e_1_2_4_27_1
  doi: 10.1002/smll.201402420
– ident: e_1_2_4_1_1
  doi: 10.1039/C8CS00542G
SSID ssj0009606
Score 2.6329756
Snippet Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs...
Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1906368
SubjectTerms bandgap engineering
Carrier transport
Charge transport
Current carriers
Electromagnetic absorption
Electron states
Energy gap
Functional groups
Hydrogen evolution
Hydrogen production
Materials science
Metal-organic frameworks
metal–organic frameworks (MOFs)
Nanowires
Phosphonates
Photocatalysis
Photocatalysts
Titanium
Topology
Valence band
Title Highly Stable Phosphonate‐Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201906368
https://www.ncbi.nlm.nih.gov/pubmed/32129916
https://www.proquest.com/docview/2392336967
https://www.proquest.com/docview/2371141026
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VPbUHoDxNC1okJE5u43042WMKjSKktBWiUm_WvgJSIzuqk0N66k_ob-SXMLOO3QaEkOBoe0de787sfDue_QbgfU_Fozwm1bl0FK3SqbaUCaBxC6RzpVysdTg5zccX8vOlunxwir_hh-gCbmQZcb0mAze2PronDTU-8gahQ8tFTqd9KWGLUNGXe_4ogueRbE8o6sygZW3s8aNN8U2v9BvU3ESu0fWMHoNpO91knFwdLhf20N38wuf4P1_1BB6tcSkbNoq0B1uhfAq7D9gKn8GcckJmK4b41M4CO_9e1ZTYjmD1x-3dMXpDzyZno5pRaJe1knjz2JT-m5nXDPExO4mUFejpSH5RxejRCt_Jxit_XaE2s_OGgxb15TlcjE6-fhyn64INqZNZDxdOIYzwypoBbnSMCrj163MKqQykCqgQAr2lM9J6Lc10mgWZcS-kc1NpuHWIjV7AdlmV4RWwgc-8MJnlXivEjMpqFbxDrGms80HLBNJ2wgq3ZjOnohqzouFh5gWNZNGNZAIfuvbzhsfjjy0P2vkv1vZcFxxhpKDSh_0E3nWP0RLp94opQ7WkNv2MsmZ5nsDLRm-6VwlECITEE-Bx9v_Sh2L4aTLsrl7_i9A-7HAKDcQkowPYXlwvwxvETwv7NtrIT7ojEPE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO_P8YCiwSiJPbeNfr2AcOKWmU0qZUqJV6M_sXkIjsqEmEwolH4FV4FR6BJ2Fm_VMCQkhIPXC0vWvvemd2vhmPvwF42pH-Vx4VZklsKFqVhZmmTIAMXaAskdL4Woejg2R4HL86kSdr8LX5F6bih2gDbqQZfr8mBaeA9NYZa6iynjgILVoikrTOq9xzy4_otc1e7PZxiZ9xPtg5ejkM68ICoYmjDiq4EEpYqVWKgFxJhy5Kl5Prn8bS4cAF7upGxdpmsRqPIxdH3IrYmHGsuDZow_G-F-AilREnuv7-mzPGKnIIPL2fkDT9tOGJ7PCt1fGu2sHfwO0qVvbGbnANvjWvqcpx-bC5mOtN8-kXBsn_6j1eh6s19Ga9SlduwJorbsKVnwgZb8GU0l4mS4YQXE8cO3xfzih3H_H4989fttHgWzZ6PZgxil6zpiee3FaFfaemM4YuANvxrBxozKn_vPQBsiU-kw2X9rREhWWHFc0uqsRtOD6XKd-B9aIs3D1gqY2sUJHmNpMIi6XOpLMG4bTSxrosDiBsJCQ3NWE71Q2Z5BXVNM9p5fJ25QJ43rafVlQlf2y50QhcXm9Zs5wjUhZU3bEbwJP2Mm429AVJFa5cUJtuRInBPAngbiWo7aMEgiByNgLgXtz-Moa81x_12qP7_9LpMVwaHo328_3dg70HcJlTJMTnVG3A-vx04R4iXJzrR15BGbw9b0n-AV5ibUQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48H4YCiwSiJPbeB-O98AhJY1SSkqEqNSb2VdAIoqjOhEKJ34CP4W_wl_glzC7fpSAEBJSDxxt79q73pmdb8bjbwAed0T4lUfFMuXGR6tkLLXPBJDoAslUCBNqHY4O0-ERf3Esjjfga_MvTMUP0QbcvGaE_dor-NxOdk5JQ5UNvEFo0FKWZnVa5YFbfUSnrXy238cVfkLpYO_N82Fc1xWIDU86qN-MKWaFVhnicSUceihd6j3_jAuH42a4qRvFtZVcTSaJ4wm1jBsz4YpqgyYc73sOzvO0I32xiP7rU8Iq7w8Edj8m_OyzhiayQ3fWx7tuBn_DtutQOdi6wRX41rylKsXlw_ZyobfNp18IJP-n13gVLtfAm_QqTbkGG252HS79RMd4A-Y-6WW6IgjA9dSR8fui9Jn7iMa_f_6yi-bektGrQUl87Jo0PfHkrprZd2peEnQAyF7g5EBT7vsvihAeW-EzyXBlTwpUVzKuSHZRIW7C0ZlM-RZszoqZuwMks4llKtHUSoGgWGgpnDUIppU21kkeQdwISG5qunZfNWSaV0TTNPcrl7crF8HTtv28Iir5Y8utRt7yesMqc4o4mfnajt0IHrWXcavx34_UzBVL36ab-LRgmkZwu5LT9lEMIZB3NSKgQdr-Moa81x_12qO7_9LpIVwY9wf5y_3Dg3twkfowSEio2oLNxcnS3UesuNAPgnoSeHvWgvwDhoxr8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stable+Phosphonate-Based+MOFs+with+Engineered+Bandgaps+for+Efficient+Photocatalytic+Hydrogen+Production&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Yun-Pei&rft.au=Yin%2C+Jun&rft.au=Abou-Hamad%2C+Edy&rft.au=Liu%2C+Xiaokang&rft.date=2020-04-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft.spage=e1906368&rft_id=info:doi/10.1002%2Fadma.201906368&rft_id=info%3Apmid%2F32129916&rft.externalDocID=32129916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon