Highly Stable Phosphonate‐Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production
Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 16; pp. e1906368 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts.
Phosphonate metal–organic frameworks (MOFs) with tunable gaps are presented. Taking advantage of the controllable compositions and functionalities of MOFs, a titanium‐phosphonate‐based MOF for highly stable photocatalytic hydrogen evolution is showcased. The electron‐donating effect of the functional groups in the phosphonic ligands significantly modifies the electronic structure, thus promoting the photocatalytic activity. |
---|---|
AbstractList | Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts.Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron-donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full-spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF-based photocatalysts. Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts. Phosphonate metal–organic frameworks (MOFs) with tunable gaps are presented. Taking advantage of the controllable compositions and functionalities of MOFs, a titanium‐phosphonate‐based MOF for highly stable photocatalytic hydrogen evolution is showcased. The electron‐donating effect of the functional groups in the phosphonic ligands significantly modifies the electronic structure, thus promoting the photocatalytic activity. Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs have remained largely underdeveloped compared to other conventional MOFs. Herein, a photocatalyst of 1D titanium phosphonate MOF is designed through an easy and scalable stirring hydrothermal method. Homogeneous incorporation of organophosphonic linkers can narrow the bandgap, which is due to the strong electron‐donating ability of the OH functional group that can efficiently shift the top of the valence band, moving the light absorption to the visible portion of the spectrum. In addition, the unique 1D nanowire topology enhances the photoinduced charge carrier transport and separation. Accordingly, the titanium phosphonate nanowires deliver remarkably enhanced photocatalytic hydrogen evolution activity under irradiation of both visible light and a full‐spectrum simulator. Such concepts of engineering both nanostructures and electronic states herald a new paradigm for designing MOF‐based photocatalysts. |
Author | Chen, Wei Mohammed, Omar F. Zhu, Yun‐Pei Liu, Xiaokang Yin, Jun Alshareef, Husam N. Abou‐Hamad, Edy Yao, Tao |
Author_xml | – sequence: 1 givenname: Yun‐Pei surname: Zhu fullname: Zhu, Yun‐Pei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Jun surname: Yin fullname: Yin, Jun organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Edy surname: Abou‐Hamad fullname: Abou‐Hamad, Edy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Xiaokang surname: Liu fullname: Liu, Xiaokang organization: University of Science and Technology of China (USTC) – sequence: 5 givenname: Wei surname: Chen fullname: Chen, Wei organization: University of Science and Technology of China (USTC) – sequence: 6 givenname: Tao surname: Yao fullname: Yao, Tao organization: University of Science and Technology of China (USTC) – sequence: 7 givenname: Omar F. surname: Mohammed fullname: Mohammed, Omar F. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32129916$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1q3DAURkVJaSZpt10WQzfdeKo_a6zlJJlkCgkJtF2ba0meUfBIriQTvOsj9Bn7JNEwaQqB0pVAnKNP934n6Mh5ZxB6T_CcYEw_g97BnGIisWCifoVmpKKk5FhWR2iGJatKKXh9jE5ivMcYS4HFG3TMKKFSEjFDw9putv1UfE3Q9qa42_o4bL2DZH7__HUG0eji5vYyFg82bYuV21hnTMiXZ-D0BoZYdD4Uq66zyhqX9n7yChL0U7KqWE86-I1xxV3welTJevcWve6gj-bd03mKvl-uvp2vy-vbqy_ny-tScYLrUjIGTFct1JQsoDKc14s8ZoVrXhlWAWOCKuCtlhy6jhhOqGZcqY4DbZXg7BR9Orw7BP9jNDE1OxuV6Xtwxo-xoWxBSI6iIqMfX6D3fgwu_y5TkuYoKRaZ-vBEje3O6GYIdgdhav7sMgPzA6CCjzGY7hkhuNmX1ezLap7LygJ_ISibYL-kFMD2_9bkQXuwvZn-E9IsL26Wf91HfoSplw |
CitedBy_id | crossref_primary_10_1007_s10562_020_03526_z crossref_primary_10_3390_molecules27206828 crossref_primary_10_1016_j_cej_2021_129459 crossref_primary_10_1002_chem_202500065 crossref_primary_10_1016_j_cej_2022_138330 crossref_primary_10_1016_j_mtener_2024_101542 crossref_primary_10_1088_1674_4926_41_9_091707 crossref_primary_10_1007_s11426_020_9809_x crossref_primary_10_1016_j_ijhydene_2024_06_126 crossref_primary_10_1063_5_0202991 crossref_primary_10_1002_solr_202400607 crossref_primary_10_3390_coatings11070854 crossref_primary_10_1016_j_aca_2021_338870 crossref_primary_10_1016_j_matt_2022_07_014 crossref_primary_10_1039_D3LF00157A crossref_primary_10_1016_j_isci_2023_107132 crossref_primary_10_1021_acs_chemrev_2c00460 crossref_primary_10_1039_D0TA03749D crossref_primary_10_1016_j_cej_2023_145256 crossref_primary_10_1002_adfm_202104231 crossref_primary_10_1002_aoc_7765 crossref_primary_10_1002_ejic_202400789 crossref_primary_10_1016_j_jece_2025_115857 crossref_primary_10_1016_j_jcis_2024_02_083 crossref_primary_10_1002_smsc_202100060 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_fuel_2021_122172 crossref_primary_10_1088_1361_6528_ac493d crossref_primary_10_1016_j_cej_2024_155349 crossref_primary_10_1039_D2QM00314G crossref_primary_10_1039_D2TA05114A crossref_primary_10_1002_adfm_202305318 crossref_primary_10_1016_j_cej_2022_135759 crossref_primary_10_1039_D2TA03159K crossref_primary_10_1021_acsmaterialslett_0c00095 crossref_primary_10_1039_D0TC03302B crossref_primary_10_1021_acsnano_1c00477 crossref_primary_10_1002_adma_202308427 crossref_primary_10_1002_asia_202400896 crossref_primary_10_1039_D3TA02520A crossref_primary_10_1002_anie_202200123 crossref_primary_10_1002_cjoc_202200651 crossref_primary_10_1016_j_apsusc_2020_148308 crossref_primary_10_1039_D3QM00468F crossref_primary_10_1016_j_apsusc_2021_151553 crossref_primary_10_1021_acs_iecr_1c01838 crossref_primary_10_1016_j_seppur_2021_120409 crossref_primary_10_1016_j_nxmate_2023_100010 crossref_primary_10_1016_j_apsusc_2021_152004 crossref_primary_10_1016_j_jcis_2023_12_090 crossref_primary_10_1016_j_jiec_2022_03_027 crossref_primary_10_1088_1361_6463_ad7470 crossref_primary_10_1007_s11270_024_07161_x crossref_primary_10_1016_j_jcis_2022_10_015 crossref_primary_10_1002_cssc_202002103 crossref_primary_10_1016_j_ccr_2021_214123 crossref_primary_10_1016_j_chemosphere_2024_141296 crossref_primary_10_1088_2515_7655_abf721 crossref_primary_10_1039_D4QI01449A crossref_primary_10_1002_asia_202300033 crossref_primary_10_1016_j_apsusc_2022_153922 crossref_primary_10_1021_acsanm_4c05922 crossref_primary_10_1016_j_matre_2024_100284 crossref_primary_10_1149_1945_7111_ac6452 crossref_primary_10_1002_aenm_202403322 crossref_primary_10_1016_j_apcatb_2020_119688 crossref_primary_10_1016_j_jece_2025_115647 crossref_primary_10_1016_j_jcis_2023_09_145 crossref_primary_10_1016_j_ijhydene_2024_01_342 crossref_primary_10_1002_aenm_202500220 crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1039_D1QI00198A crossref_primary_10_1002_ange_202100002 crossref_primary_10_1016_j_apcatb_2024_124121 crossref_primary_10_1002_ejic_202300699 crossref_primary_10_1007_s10562_020_03472_w crossref_primary_10_1016_j_cherd_2024_06_042 crossref_primary_10_3390_en15166076 crossref_primary_10_1002_ange_202200123 crossref_primary_10_1016_j_cej_2022_139070 crossref_primary_10_1016_j_jhazmat_2022_129436 crossref_primary_10_1002_aoc_6995 crossref_primary_10_1002_smtd_202401689 crossref_primary_10_1016_j_esci_2023_100092 crossref_primary_10_1002_smll_202005304 crossref_primary_10_1016_j_cej_2022_136883 crossref_primary_10_1016_j_inoche_2024_112949 crossref_primary_10_1007_s11270_023_06255_2 crossref_primary_10_1002_smll_202300492 crossref_primary_10_1021_acscatal_3c02509 crossref_primary_10_1080_00958972_2021_1979528 crossref_primary_10_1016_j_fuproc_2023_107970 crossref_primary_10_1021_acs_chemmater_3c00054 crossref_primary_10_1021_acsanm_4c02276 crossref_primary_10_1016_j_colsurfa_2024_134929 crossref_primary_10_1021_acs_inorgchem_3c03446 crossref_primary_10_1039_D2ME00117A crossref_primary_10_1021_jacs_3c05279 crossref_primary_10_1039_D4NH00196F crossref_primary_10_1016_j_jcis_2024_02_095 crossref_primary_10_1016_j_jallcom_2020_157609 crossref_primary_10_1016_j_cej_2021_130140 crossref_primary_10_1039_D1QI00394A crossref_primary_10_1016_j_jcis_2024_09_200 crossref_primary_10_1039_D1EN00237F crossref_primary_10_1016_j_ccr_2024_216292 crossref_primary_10_1021_acs_inorgchem_4c03388 crossref_primary_10_1016_j_apcatb_2021_120106 crossref_primary_10_1016_j_jcis_2022_07_072 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_1039_D1GC03768D crossref_primary_10_1039_D2NR05341A crossref_primary_10_1038_s41467_021_25007_6 crossref_primary_10_1016_j_ensm_2021_10_040 crossref_primary_10_1016_j_jiec_2022_11_045 crossref_primary_10_1002_adsu_202200189 crossref_primary_10_1016_j_cej_2021_129447 crossref_primary_10_1016_j_surfin_2024_104327 crossref_primary_10_1021_acsnano_4c05370 crossref_primary_10_1016_j_jtice_2023_104911 crossref_primary_10_1039_D0RA07487J crossref_primary_10_3390_molecules27134241 crossref_primary_10_1002_smll_202100296 crossref_primary_10_1021_acs_inorgchem_2c00235 crossref_primary_10_1002_aic_17879 crossref_primary_10_1016_j_electacta_2021_139068 crossref_primary_10_1002_anie_202100002 crossref_primary_10_1007_s40820_021_00785_2 crossref_primary_10_1007_s10854_022_07717_9 crossref_primary_10_1016_j_mtener_2025_101834 crossref_primary_10_1016_j_jcat_2020_07_034 crossref_primary_10_1039_D2AY00167E crossref_primary_10_1515_epoly_2021_0010 crossref_primary_10_1016_j_cej_2021_132727 |
Cites_doi | 10.1002/chem.201301728 10.1002/anie.201406719 10.1021/ja0269643 10.1002/chem.200601003 10.1021/ja903726m 10.1039/C8CS00699G 10.1002/advs.201802059 10.1039/C4CP04162C 10.1021/acs.accounts.8b00521 10.1039/C2CS35266D 10.1038/ncomms6881 10.1021/ar5000314 10.1039/C8CS00829A 10.1002/anie.201411540 10.1021/acs.inorgchem.5b01593 10.1002/anie.201108357 10.1021/jacs.7b00266 10.1002/anie.201806077 10.1039/C8CP06811A 10.1021/cm050919n 10.1021/jp405335q 10.1021/ja074064m 10.1002/adma.201204453 10.1021/jacs.9b05964 10.1021/acs.accounts.5b00531 10.1021/acscatal.9b00332 10.1126/sciadv.aat9180 10.1002/anie.201904537 10.1021/ja405350u 10.1021/ja211271m 10.1039/C5CY00107B 10.1021/cm048988 10.1021/acs.langmuir.6b03592 10.1039/C5EE02443A 10.1039/C8SC05060K 10.1002/ange.200903886 10.1002/adma.201501939 10.1002/anie.201904347 10.1039/C8DT04106G 10.1021/cr2002257 10.1002/anie.201806862 10.1002/anie.201007277 10.1021/jp411346k 10.1039/C4TA04873C 10.1002/anie.201712925 10.1039/c0jm01212b 10.1016/j.apcatb.2007.12.015 10.1002/adfm.201500521 10.1039/C4CC02994A 10.1021/jacs.8b02076 10.1021/jp3046005 10.1039/C4CE00032C 10.1016/j.mattod.2018.05.001 10.1002/smll.201402420 10.1039/C8CS00542G |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201906368 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32129916 10_1002_adma_201906368 ADMA201906368 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: BSRF – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4108-933a3d5ba8217a5e448720150845e35a3362ca4bd94aff1e412d34ccf4a2bc643 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 09:00:07 EDT 2025 Sun Jul 13 04:20:03 EDT 2025 Wed Feb 19 02:30:06 EST 2025 Tue Jul 01 02:32:45 EDT 2025 Thu Apr 24 22:50:21 EDT 2025 Wed Jan 22 16:33:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | hydrogen evolution metal-organic frameworks (MOFs) photocatalysis bandgap engineering |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-933a3d5ba8217a5e448720150845e35a3362ca4bd94aff1e412d34ccf4a2bc643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5029-2142 |
PMID | 32129916 |
PQID | 2392336967 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2371141026 proquest_journals_2392336967 pubmed_primary_32129916 crossref_primary_10_1002_adma_201906368 crossref_citationtrail_10_1002_adma_201906368 wiley_primary_10_1002_adma_201906368_ADMA201906368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2019; 9 2015; 17 2007; 129 2015; 6 2015; 5 2013; 25 2019; 6 2018; 140 2015; 3 2019; 52 2019; 10 2015; 11 2013; 42 2015; 54 2019; 58 2010; 122 2014; 47 2009; 131 2019; 141 2015; 8 2007; 13 2017; 139 2012; 51 2013; 19 2010; 20 2015; 25 2015; 27 2012; 112 2012; 134 2018; 4 2004; 16 2019; 21 2017; 33 2002; 124 2019; 23 2019; 48 2013; 117 2011; 50 2014; 16 2013; 135 2012; 116 2008; 81 2016; 49 2005; 17 2014; 50 2018; 57 2014; 53 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 117 year: 2013 publication-title: J. Phys. Chem. C – volume: 16 start-page: 4919 year: 2014 publication-title: CrystEngComm – volume: 118 start-page: 4213 year: 2014 publication-title: J. Phys. Chem. C – volume: 52 start-page: 356 year: 2019 publication-title: Acc. Chem. Res. – volume: 140 start-page: 9434 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1908 year: 2019 publication-title: Chem. Soc. Rev. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 117 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 112 start-page: 1034 year: 2012 publication-title: Chem. Rev. – volume: 58 start-page: 9160 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 25 start-page: 3074 year: 2015 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 3222 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 122 start-page: 451 year: 2010 publication-title: Angew. Chem. – volume: 50 start-page: 5729 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 4123 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 5 start-page: 4258 year: 2015 publication-title: Catal. Sci. Technol. – volume: 16 start-page: 4359 year: 2004 publication-title: Chem. Mater. – volume: 8 start-page: 3539 year: 2015 publication-title: Energy Environ. Sci. – volume: 48 start-page: 2109 year: 2019 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 4834 year: 2019 publication-title: Chem. Sci. – volume: 81 start-page: 258 year: 2008 publication-title: Appl. Catal., B – volume: 3 start-page: 412 year: 2015 publication-title: J. Mater. Chem. A – volume: 134 start-page: 3991 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 66 year: 2017 publication-title: Langmuir – volume: 27 start-page: 4572 year: 2015 publication-title: Adv. Mater. – volume: 57 start-page: 9864 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1093 year: 2016 publication-title: Acc. Chem. Res. – volume: 19 year: 2013 publication-title: Chem. ‐ Eur. J. – volume: 54 year: 2015 publication-title: Inorg. Chem. – volume: 58 start-page: 9491 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 25 start-page: 2452 year: 2013 publication-title: Adv. Mater. – volume: 6 start-page: 5881 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 2115 year: 2015 publication-title: Small – volume: 47 start-page: 1555 year: 2014 publication-title: Acc. Chem. Res. – volume: 9 start-page: 4247 year: 2019 publication-title: ACS Catal. – volume: 51 start-page: 3364 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 23 start-page: 72 year: 2019 publication-title: Mater. Today – volume: 50 year: 2014 publication-title: Chem. Commun. – volume: 54 start-page: 7234 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 5521 year: 2005 publication-title: Chem. Mater. – volume: 48 start-page: 523 year: 2019 publication-title: Dalton Trans. – volume: 13 start-page: 5106 year: 2007 publication-title: Chem. ‐ Eur. J. – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 6484 year: 2010 publication-title: J. Mater. Chem. – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 124 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 6198 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 2783 year: 2019 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 2294 year: 2013 publication-title: Chem. Soc. Rev. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_4_18_1 doi: 10.1002/chem.201301728 – ident: e_1_2_4_31_1 doi: 10.1002/anie.201406719 – ident: e_1_2_4_43_1 doi: 10.1021/ja0269643 – ident: e_1_2_4_55_1 doi: 10.1002/chem.200601003 – ident: e_1_2_4_13_1 doi: 10.1021/ja903726m – ident: e_1_2_4_4_1 doi: 10.1039/C8CS00699G – ident: e_1_2_4_8_1 doi: 10.1002/advs.201802059 – ident: e_1_2_4_20_1 doi: 10.1039/C4CP04162C – ident: e_1_2_4_21_1 doi: 10.1021/acs.accounts.8b00521 – ident: e_1_2_4_28_1 doi: 10.1039/C2CS35266D – ident: e_1_2_4_46_1 doi: 10.1038/ncomms6881 – ident: e_1_2_4_32_1 doi: 10.1021/ar5000314 – ident: e_1_2_4_5_1 doi: 10.1039/C8CS00829A – ident: e_1_2_4_6_1 doi: 10.1002/anie.201411540 – ident: e_1_2_4_37_1 doi: 10.1021/acs.inorgchem.5b01593 – ident: e_1_2_4_14_1 doi: 10.1002/anie.201108357 – ident: e_1_2_4_50_1 doi: 10.1021/jacs.7b00266 – ident: e_1_2_4_15_1 doi: 10.1002/anie.201806077 – ident: e_1_2_4_39_1 doi: 10.1039/C8CP06811A – ident: e_1_2_4_35_1 doi: 10.1021/cm050919n – ident: e_1_2_4_19_1 doi: 10.1021/jp405335q – ident: e_1_2_4_40_1 doi: 10.1021/ja074064m – ident: e_1_2_4_49_1 doi: 10.1002/adma.201204453 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.9b05964 – ident: e_1_2_4_29_1 doi: 10.1021/acs.accounts.5b00531 – ident: e_1_2_4_2_1 doi: 10.1021/acscatal.9b00332 – ident: e_1_2_4_7_1 doi: 10.1126/sciadv.aat9180 – ident: e_1_2_4_9_1 doi: 10.1002/anie.201904537 – ident: e_1_2_4_17_1 doi: 10.1021/ja405350u – ident: e_1_2_4_53_1 doi: 10.1021/ja211271m – ident: e_1_2_4_24_1 doi: 10.1039/C5CY00107B – ident: e_1_2_4_34_1 doi: 10.1021/cm048988 – ident: e_1_2_4_36_1 doi: 10.1021/acs.langmuir.6b03592 – ident: e_1_2_4_45_1 doi: 10.1039/C5EE02443A – ident: e_1_2_4_12_1 doi: 10.1039/C8SC05060K – ident: e_1_2_4_44_1 doi: 10.1002/ange.200903886 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201501939 – ident: e_1_2_4_10_1 doi: 10.1002/anie.201904347 – ident: e_1_2_4_26_1 doi: 10.1039/C8DT04106G – ident: e_1_2_4_22_1 doi: 10.1021/cr2002257 – ident: e_1_2_4_51_1 doi: 10.1002/anie.201806862 – ident: e_1_2_4_54_1 doi: 10.1002/anie.201007277 – ident: e_1_2_4_33_1 doi: 10.1021/jp411346k – ident: e_1_2_4_38_1 doi: 10.1039/C4TA04873C – ident: e_1_2_4_23_1 doi: 10.1002/anie.201712925 – ident: e_1_2_4_30_1 doi: 10.1039/c0jm01212b – ident: e_1_2_4_25_1 doi: 10.1016/j.apcatb.2007.12.015 – ident: e_1_2_4_52_1 doi: 10.1002/adfm.201500521 – ident: e_1_2_4_47_1 doi: 10.1039/C4CC02994A – ident: e_1_2_4_42_1 doi: 10.1021/jacs.8b02076 – ident: e_1_2_4_16_1 doi: 10.1021/jp3046005 – ident: e_1_2_4_41_1 doi: 10.1039/C4CE00032C – ident: e_1_2_4_3_1 doi: 10.1016/j.mattod.2018.05.001 – ident: e_1_2_4_27_1 doi: 10.1002/smll.201402420 – ident: e_1_2_4_1_1 doi: 10.1039/C8CS00542G |
SSID | ssj0009606 |
Score | 2.6329756 |
Snippet | Photoactive metal–organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate‐based MOFs... Photoactive metal-organic frameworks (MOFs) represent one of the most promising materials for photocatalytic hydrogen production, but phosphonate-based MOFs... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1906368 |
SubjectTerms | bandgap engineering Carrier transport Charge transport Current carriers Electromagnetic absorption Electron states Energy gap Functional groups Hydrogen evolution Hydrogen production Materials science Metal-organic frameworks metal–organic frameworks (MOFs) Nanowires Phosphonates Photocatalysis Photocatalysts Titanium Topology Valence band |
Title | Highly Stable Phosphonate‐Based MOFs with Engineered Bandgaps for Efficient Photocatalytic Hydrogen Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201906368 https://www.ncbi.nlm.nih.gov/pubmed/32129916 https://www.proquest.com/docview/2392336967 https://www.proquest.com/docview/2371141026 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VPbUHoDxNC1okJE5u43042WMKjSKktBWiUm_WvgJSIzuqk0N66k_ob-SXMLOO3QaEkOBoe0de787sfDue_QbgfU_Fozwm1bl0FK3SqbaUCaBxC6RzpVysdTg5zccX8vOlunxwir_hh-gCbmQZcb0mAze2PronDTU-8gahQ8tFTqd9KWGLUNGXe_4ogueRbE8o6sygZW3s8aNN8U2v9BvU3ESu0fWMHoNpO91knFwdLhf20N38wuf4P1_1BB6tcSkbNoq0B1uhfAq7D9gKn8GcckJmK4b41M4CO_9e1ZTYjmD1x-3dMXpDzyZno5pRaJe1knjz2JT-m5nXDPExO4mUFejpSH5RxejRCt_Jxit_XaE2s_OGgxb15TlcjE6-fhyn64INqZNZDxdOIYzwypoBbnSMCrj163MKqQykCqgQAr2lM9J6Lc10mgWZcS-kc1NpuHWIjV7AdlmV4RWwgc-8MJnlXivEjMpqFbxDrGms80HLBNJ2wgq3ZjOnohqzouFh5gWNZNGNZAIfuvbzhsfjjy0P2vkv1vZcFxxhpKDSh_0E3nWP0RLp94opQ7WkNv2MsmZ5nsDLRm-6VwlECITEE-Bx9v_Sh2L4aTLsrl7_i9A-7HAKDcQkowPYXlwvwxvETwv7NtrIT7ojEPE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcgAO_P8YCiwSiJPbeNfr2AcOKWmU0qZUqJV6M_sXkIjsqEmEwolH4FV4FR6BJ2Fm_VMCQkhIPXC0vWvvemd2vhmPvwF42pH-Vx4VZklsKFqVhZmmTIAMXaAskdL4Woejg2R4HL86kSdr8LX5F6bih2gDbqQZfr8mBaeA9NYZa6iynjgILVoikrTOq9xzy4_otc1e7PZxiZ9xPtg5ejkM68ICoYmjDiq4EEpYqVWKgFxJhy5Kl5Prn8bS4cAF7upGxdpmsRqPIxdH3IrYmHGsuDZow_G-F-AilREnuv7-mzPGKnIIPL2fkDT9tOGJ7PCt1fGu2sHfwO0qVvbGbnANvjWvqcpx-bC5mOtN8-kXBsn_6j1eh6s19Ga9SlduwJorbsKVnwgZb8GU0l4mS4YQXE8cO3xfzih3H_H4989fttHgWzZ6PZgxil6zpiee3FaFfaemM4YuANvxrBxozKn_vPQBsiU-kw2X9rREhWWHFc0uqsRtOD6XKd-B9aIs3D1gqY2sUJHmNpMIi6XOpLMG4bTSxrosDiBsJCQ3NWE71Q2Z5BXVNM9p5fJ25QJ43rafVlQlf2y50QhcXm9Zs5wjUhZU3bEbwJP2Mm429AVJFa5cUJtuRInBPAngbiWo7aMEgiByNgLgXtz-Moa81x_12qP7_9LpMVwaHo328_3dg70HcJlTJMTnVG3A-vx04R4iXJzrR15BGbw9b0n-AV5ibUQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48H4YCiwSiJPbeB-O98AhJY1SSkqEqNSb2VdAIoqjOhEKJ34CP4W_wl_glzC7fpSAEBJSDxxt79q73pmdb8bjbwAed0T4lUfFMuXGR6tkLLXPBJDoAslUCBNqHY4O0-ERf3Esjjfga_MvTMUP0QbcvGaE_dor-NxOdk5JQ5UNvEFo0FKWZnVa5YFbfUSnrXy238cVfkLpYO_N82Fc1xWIDU86qN-MKWaFVhnicSUceihd6j3_jAuH42a4qRvFtZVcTSaJ4wm1jBsz4YpqgyYc73sOzvO0I32xiP7rU8Iq7w8Edj8m_OyzhiayQ3fWx7tuBn_DtutQOdi6wRX41rylKsXlw_ZyobfNp18IJP-n13gVLtfAm_QqTbkGG252HS79RMd4A-Y-6WW6IgjA9dSR8fui9Jn7iMa_f_6yi-bektGrQUl87Jo0PfHkrprZd2peEnQAyF7g5EBT7vsvihAeW-EzyXBlTwpUVzKuSHZRIW7C0ZlM-RZszoqZuwMks4llKtHUSoGgWGgpnDUIppU21kkeQdwISG5qunZfNWSaV0TTNPcrl7crF8HTtv28Iir5Y8utRt7yesMqc4o4mfnajt0IHrWXcavx34_UzBVL36ab-LRgmkZwu5LT9lEMIZB3NSKgQdr-Moa81x_12qO7_9LpIVwY9wf5y_3Dg3twkfowSEio2oLNxcnS3UesuNAPgnoSeHvWgvwDhoxr8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Stable+Phosphonate-Based+MOFs+with+Engineered+Bandgaps+for+Efficient+Photocatalytic+Hydrogen+Production&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhu%2C+Yun-Pei&rft.au=Yin%2C+Jun&rft.au=Abou-Hamad%2C+Edy&rft.au=Liu%2C+Xiaokang&rft.date=2020-04-01&rft.eissn=1521-4095&rft.volume=32&rft.issue=16&rft.spage=e1906368&rft_id=info:doi/10.1002%2Fadma.201906368&rft_id=info%3Apmid%2F32129916&rft.externalDocID=32129916 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |