Sample size calculation for clinical trials analyzed with the meta‐analytic‐predictive approach

The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available,...

Full description

Saved in:
Bibliographic Details
Published inResearch synthesis methods Vol. 14; no. 3; pp. 396 - 413
Main Authors Qi, Hongchao, Rizopoulos, Dimitris, Rosmalen, Joost
Format Journal Article
LanguageEnglish
Published England Wiley 01.05.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1759-2879
1759-2887
1759-2887
DOI10.1002/jrsm.1618

Cover

Loading…
Abstract The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real‐life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic.
AbstractList The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real‐life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic.
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real-life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic.The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real-life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic.
Author Qi, Hongchao
Rizopoulos, Dimitris
Rosmalen, Joost
Author_xml – sequence: 1
  givenname: Hongchao
  orcidid: 0000-0003-0932-2076
  surname: Qi
  fullname: Qi, Hongchao
  email: h.qi@erasmusmc.nl
  organization: Erasmus University Medical Center
– sequence: 2
  givenname: Dimitris
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
  organization: Erasmus University Medical Center
– sequence: 3
  givenname: Joost
  surname: Rosmalen
  fullname: Rosmalen, Joost
  organization: Erasmus University Medical Center
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1376285$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/36625478$$D View this record in MEDLINE/PubMed
BookMark eNp1kctOVTEUhhuDEUQGPoCmiRMZHOhl97KHhCBIMCai46a7Z-2cnnRfbLslh5GP4DP6JPRcYEC0k670__5_pWu9Rnv90ANCbyk5oYSw02VM3QmVVL9AB1SJesa0VntPtar30VFKS1IOryWT6hXa51IyUSl9gNyt7cYAOPl7wM4GNwWb_dDjdojYBd_78ohz9DYkbHsbVvcwx3c-L3BeAO4g27-__2yE7F0pxwhz77L_BdiOYxysW7xBL9tih6PdfYh-fLr4fn41u_l6-fn87GbmKkr0TDnbQGuFFcAFE40AalvF6nmjCVGysbWWla6trnlDOaPcKVoXA2tlw3gF_BB93OaWtj8nSNl0PjkIwfYwTMkwJTnnlRCqoB-eocthiuUXhdKkrkRhaaHe76ip6WBuxug7G1fmcXwFeLcFIHr3JF9cU64k06Lop1vdxSGlCK1xPm_mm6P1wVBi1js06x2a9Q6L4_iZ4zH1X-wu_c4HWP0fNNffbr9sHA8K46zk
CitedBy_id crossref_primary_10_1038_s41408_024_01037_3
crossref_primary_10_3390_stats7040068
crossref_primary_10_1007_s00520_023_07905_1
Cites_doi 10.1002/lt.21397
10.1111/j.1399-3046.2005.00371.x
10.1056/NEJMoa1102673
10.1016/0021-9681(76)90044-8
10.1002/sim.5730
10.1002/sim.5851
10.1001/jamanetworkopen.2019.19325
10.1002/jrsm.1434
10.1177/0962280212439578
10.1214/ss/1030550861
10.1214/06-BA117A
10.1016/j.csda.2016.08.007
10.1111/biom.13124
10.3233/JAD-170991
10.1016/j.ophtha.2012.10.014
10.1214/ss/1177011136
10.1002/sim.6608
10.1002/jrsm.1066
10.1177/0962280216631361
10.1016/j.ophtha.2012.09.006
10.1111/biom.12242
10.1016/0197-2456(86)90046-2
10.1001/jama.2014.13128
10.1111/j.1541-0420.2011.01561.x
10.1002/pst.1589
10.1002/sim.782
10.1002/0470092602
10.1002/jrsm.1561
10.1177/0962280217694506
10.1111/biom.13252
10.1002/9781119536604
10.1002/jrsm.1217
10.1001/jama.287.18.2335
10.1002/sim.2704
10.1111/biom.13247
10.1201/9781315183084
10.18637/jss.v100.i19
10.1185/03007995.2015.1084909
10.1111/j.1541-0420.2007.00888.x
10.1186/s13063-017-1791-0
10.1177/1740774513483934
10.1093/biostatistics/kxy009
10.1002/sim.4780142408
10.1177/1740774509356002
10.1177/1740774520944855
10.1002/sim.5745
10.1136/gut.2008.163527
10.1002/jrsm.1055
10.1097/01.TP.0000065740.69296.DA
10.1016/j.ejphar.2020.173554
10.1016/j.ophtha.2012.04.015
10.1002/pst.175
10.1002/sim.8086
10.1111/petr.12362
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
CGR
CUY
CVF
ECM
EIF
NPM
AHOVV
7X8
DOI 10.1002/jrsm.1618
DatabaseName Wiley Online Library Open Access
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Education Research Index
MEDLINE - Academic
DatabaseTitle CrossRef
ERIC
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
ERIC
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1759-2887
ERIC EJ1376285
EndPage 413
ExternalDocumentID 36625478
EJ1376285
10_1002_jrsm_1618
JRSM1618
Genre researchArticle
Meta-Analysis
Journal Article
GrantInformation_xml – fundername: Alzheimer's Disease Cooperative Study (ADCS)
– fundername: University of California, San Diego
– fundername: National Institutes of Aging
  funderid: U01AG010483
– fundername: National Institutes of Aging
  grantid: U01AG010483
GroupedDBID 05W
09C
0R~
1OC
24P
31~
33P
4.4
50Y
5DZ
8-0
8-1
8UM
A00
AAESR
AAHHS
AANHP
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ABIVO
ABJNI
ABLJU
ACBWZ
ACCFJ
ACCZN
ACDLN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
PQQKQ
RCA
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABGDZ
ABXHF
AGHNM
AGQPQ
AGTDA
CITATION
IPYYG
7SW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
CGR
CUY
CVF
ECM
EIF
NPM
AHOVV
7X8
ID FETCH-LOGICAL-c4108-7cabefa5a5e3525b5e1af729db80076ba986489a893b13213c719efa2f6b234e3
IEDL.DBID 24P
ISSN 1759-2879
1759-2887
IngestDate Thu Sep 04 17:33:00 EDT 2025
Sat Aug 23 12:38:23 EDT 2025
Wed Feb 19 02:23:15 EST 2025
Tue Sep 02 20:06:33 EDT 2025
Tue Jul 01 02:24:50 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Wed Jan 22 16:23:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords sample size calculation
Bayesian statistics
dynamic borrowing
meta-analytic-predictive
Language English
License Attribution
2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-7cabefa5a5e3525b5e1af729db80076ba986489a893b13213c719efa2f6b234e3
Notes The ADCS data used in this study were obtained from the University of California, San Diego Alzheimer's Disease Cooperative Study
.
https://www.adcs.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-0932-2076
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1618
PMID 36625478
PQID 2809452761
PQPubID 1046372
PageCount 18
ParticipantIDs proquest_miscellaneous_2763334557
proquest_journals_2809452761
pubmed_primary_36625478
eric_primary_EJ1376285
crossref_citationtrail_10_1002_jrsm_1618
crossref_primary_10_1002_jrsm_1618
wiley_primary_10_1002_jrsm_1618_JRSM1618
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
2023-May
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
PublicationTitle Research synthesis methods
PublicationTitleAlternate Res Synth Methods
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2002; 17
2017; 8
2014; 70
2013; 4
2013; 22
2015; 31
2020; 17
2020; 887
2020; 11
2013; 120
1976; 29
2017; 113
2016; 35
1992; 7
2009; 58
2020; 3
1986; 7
2019; 20
2013; 10
2014; 13
2011; 67
2014; 18
2008; 64
2010; 7
2011; 364
2007; 26
2011
1995; 14
2008; 14
2019; 38
2018; 63
2021; 100
2006; 1
2020; 76
2018; 27
2014; 312
2003; 75
2001; 20
2012; 3
2013; 32
2005; 9
2002; 287
2004; 13
2005; 4
2019
2022; 13
2017
2017; 18
2012; 119
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
Neuenschwander B (e_1_2_11_29_1) 2011
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 364
  start-page: 1897
  issue: 20
  year: 2011
  end-page: 1908
  article-title: Ranibizumab and bevacizumab for neovascular age‐related macular degeneration
  publication-title: N Engl J Med
– volume: 70
  start-page: 1023
  issue: 4
  year: 2014
  end-page: 1032
  article-title: Robust meta‐analytic‐predictive priors in clinical trials with historical control information
  publication-title: Biometrics
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
– volume: 113
  start-page: 100
  year: 2017
  end-page: 110
  article-title: Meta‐analytic‐predictive use of historical variance data for the design and analysis of clinical trials
  publication-title: Comput Stat Data Anal
– volume: 119
  start-page: 2537
  issue: 12
  year: 2012
  end-page: 2548
  article-title: Intravitreal aflibercept (VEGF trap‐eye) in wet age‐related macular degeneration
  publication-title: Ophthalmology
– volume: 100
  start-page: 1
  issue: 19
  year: 2021
  end-page: 32
  article-title: Applying meta‐analytic‐predictive priors with the R Bayesian evidence synthesis tools
  publication-title: J Stat Softw
– volume: 1
  start-page: 515
  issue: 3
  year: 2006
  end-page: 534
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Bayesian Anal
– volume: 32
  start-page: 2911
  issue: 17
  year: 2013
  end-page: 2934
  article-title: Bayesian multivariate meta‐analysis with multiple outcomes
  publication-title: Stat Med
– volume: 13
  year: 2004
– volume: 3
  start-page: e1919325
  issue: 1
  year: 2020
  article-title: Limitations of meta‐analyses of studies with high heterogeneity
  publication-title: JAMA Netw Open
– volume: 9
  start-page: 741
  issue: 6
  year: 2005
  end-page: 745
  article-title: Long‐term results of basiliximab induction immunosuppression in pediatric liver transplant recipients
  publication-title: Pediatr Transplant
– volume: 76
  start-page: 591
  issue: 2
  year: 2020
  end-page: 594
  article-title: Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan
  publication-title: Biometrics
– volume: 20
  start-page: 400
  issue: 3
  year: 2019
  end-page: 415
  article-title: Bayesian clinical trial design using historical data that inform the treatment effect
  publication-title: Biostatistics
– volume: 312
  start-page: 1342
  issue: 13
  year: 2014
  end-page: 1343
  article-title: Minimal clinically important difference: defining what really matters to patients
  publication-title: JAMA
– volume: 13
  start-page: 41
  issue: 1
  year: 2014
  end-page: 54
  article-title: Use of historical control data for assessing treatment effects in clinical trials
  publication-title: Pharm Stat
– volume: 14
  start-page: 2685
  issue: 24
  year: 1995
  end-page: 2699
  article-title: Bayesian approaches to random‐effects meta‐analysis: a comparative study
  publication-title: Stat Med
– volume: 7
  start-page: 5
  issue: 1
  year: 2010
  end-page: 18
  article-title: Summarizing historical information on controls in clinical trials
  publication-title: Clin Trials
– volume: 17
  start-page: 193
  issue: 2
  year: 2002
  end-page: 208
  article-title: A simulation‐based approach to Bayesian sample size determination for performance under a given model and for separating models
  publication-title: Stat Sci
– volume: 67
  start-page: 1163
  issue: 3
  year: 2011
  end-page: 1170
  article-title: Bayesian design of noninferiority trials for medical devices using historical data
  publication-title: Biometrics
– volume: 32
  start-page: 1621
  issue: 10
  year: 2013
  end-page: 1634
  article-title: Collection, synthesis, and interpretation of evidence: a proof‐of‐concept study in COPD
  publication-title: Stat Med
– volume: 10
  start-page: 430
  issue: 3
  year: 2013
  end-page: 440
  article-title: Adaptive adjustment of the randomization ratio using historical control data
  publication-title: Clin Trials
– volume: 8
  start-page: 79
  issue: 1
  year: 2017
  end-page: 91
  article-title: Meta‐analysis of few small studies in orphan diseases
  publication-title: Res Synth Methods
– volume: 287
  start-page: 2335
  issue: 18
  year: 2002
  end-page: 2338
  article-title: Alzheimer disease
  publication-title: JAMA
– year: 2019
– volume: 26
  start-page: 2479
  issue: 12
  year: 2007
  end-page: 2500
  article-title: Evidence‐based sample size calculations based upon updated meta‐analysis
  publication-title: Stat Med
– volume: 18
  start-page: 839
  issue: 8
  year: 2014
  end-page: 850
  article-title: Interleukin‐2 receptor antagonists for pediatric liver transplant recipients: a systematic review and meta‐analysis of controlled studies
  publication-title: Pediatr Transplant
– volume: 31
  start-page: 2031
  issue: 11
  year: 2015
  end-page: 2042
  article-title: Ranibizumab vs. aflibercept for wet age‐related macular degeneration: network meta‐analysis to understand the value of reduced frequency dosing
  publication-title: Curr Med Res Opin
– volume: 29
  start-page: 175
  issue: 3
  year: 1976
  end-page: 188
  article-title: The combination of randomized and historical controls in clinical trials
  publication-title: J Chronic Dis
– volume: 14
  start-page: 469
  issue: 4
  year: 2008
  end-page: 477
  article-title: Steroid‐free, tacrolimus‐basiliximab immunosuppression in pediatric liver transplantation: clinical and pharmacoeconomic study in 50 children
  publication-title: Liver Transpl
– volume: 27
  start-page: 3167
  issue: 10
  year: 2018
  end-page: 3182
  article-title: Including historical data in the analysis of clinical trials: is it worth the effort?
  publication-title: Stat Methods Med Res
– volume: 3
  start-page: 269
  issue: 4
  year: 2012
  end-page: 284
  article-title: Evidence‐based sample size estimation based upon an updated meta‐regression analysis
  publication-title: Res Synth Methods
– volume: 76
  start-page: 578
  issue: 2
  year: 2020
  end-page: 587
  article-title: Predictively consistent prior effective sample sizes
  publication-title: Biometrics
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  end-page: 21
  article-title: Sample size determination for a binary response in a superiority clinical trial using a hybrid classical and Bayesian procedure
  publication-title: Trials
– volume: 17
  start-page: 607
  issue: 6
  year: 2020
  end-page: 616
  article-title: Summarising salient information on historical controls: a structured assessment of validity and comparability across studies
  publication-title: Clin Trials
– volume: 119
  start-page: 1399
  issue: 7
  year: 2012
  end-page: 1411
  article-title: Ranibizumab versus bevacizumab to treat neovascular age‐related macular degeneration: one‐year findings from the ivan randomized trial
  publication-title: Ophthalmology
– volume: 11
  start-page: 780
  issue: 6
  year: 2020
  end-page: 794
  article-title: Meta‐analysis of continuous outcomes: using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment‐by‐baseline modification
  publication-title: Res Synth Methods
– volume: 63
  start-page: 423
  issue: 2
  year: 2018
  end-page: 444
  article-title: The Alzheimer's disease assessment scale–cognitive subscale (ADAS‐Cog): modifications and responsiveness in pre‐dementia populations. A narrative review
  publication-title: J Alzheimers Dis
– volume: 75
  start-page: 2040
  issue: 12
  year: 2003
  end-page: 2043
  article-title: Pediatric liver transplantation with daclizumab induction
  publication-title: Transplantation
– volume: 20
  start-page: 1811
  issue: 12
  year: 2001
  end-page: 1824
  article-title: A closer look at combining data among a small number of binomial experiments
  publication-title: Stat Med
– volume: 120
  start-page: 1046
  issue: 5
  year: 2013
  end-page: 1056
  article-title: Twelve‐month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age‐related macular degeneration
  publication-title: Ophthalmology
– volume: 58
  start-page: 452
  issue: 3
  year: 2009
  end-page: 463
  article-title: Immunosuppression for liver transplantation
  publication-title: Gut
– start-page: 3466
  year: 2011
  end-page: 3474
– volume: 35
  start-page: 978
  issue: 7
  year: 2016
  end-page: 1000
  article-title: Planning future studies based on the precision of network meta‐analysis results
  publication-title: Stat Med
– volume: 76
  start-page: 326
  issue: 1
  year: 2020
  end-page: 336
  article-title: Quantification of prior impact in terms of effective current sample size
  publication-title: Biometrics
– volume: 887
  year: 2020
  article-title: Alzheimer's disease: recent treatment strategies
  publication-title: Eur J Pharmacol
– volume: 64
  start-page: 595
  issue: 2
  year: 2008
  end-page: 602
  article-title: Determining the effective sample size of a parametric prior
  publication-title: Biometrics
– volume: 38
  start-page: 2074
  issue: 11
  year: 2019
  end-page: 2102
  article-title: Using simulation studies to evaluate statistical methods
  publication-title: Stat Med
– volume: 4
  start-page: 156
  issue: 2
  year: 2013
  end-page: 168
  article-title: Using meta‐analysis to inform the design of subsequent studies of diagnostic test accuracy
  publication-title: Res Synth Methods
– volume: 4
  start-page: 187
  issue: 3
  year: 2005
  end-page: 201
  article-title: Assurance in clinical trial design
  publication-title: Pharm Stat
– volume: 13
  start-page: 681
  year: 2022
  end-page: 696
  article-title: Incorporating historical control information in ANCOVA models using the meta‐analytic‐predictive approach
  publication-title: Res Synth Methods
– volume: 22
  start-page: 324
  issue: 3
  year: 2013
  end-page: 345
  article-title: Sample size and power calculations for medical studies by simulation when closed form expressions are not available
  publication-title: Stat Methods Med Res
– year: 2017
– volume: 7
  start-page: 177
  issue: 3
  year: 1986
  end-page: 188
  article-title: Meta‐analysis in clinical trials
  publication-title: Control Clin Trials
– volume: 27
  start-page: 428
  issue: 2
  year: 2018
  end-page: 450
  article-title: Bayesian bivariate meta‐analysis of correlated effects: impact of the prior distributions on the between‐study correlation, borrowing of strength, and joint inferences
  publication-title: Stat Methods Med Res
– volume: 32
  start-page: 3609
  issue: 21
  year: 2013
  end-page: 3622
  article-title: Using historical control information for the design and analysis of clinical trials with overdispersed count data
  publication-title: Stat Med
– ident: e_1_2_11_35_1
  doi: 10.1002/lt.21397
– ident: e_1_2_11_33_1
  doi: 10.1111/j.1399-3046.2005.00371.x
– ident: e_1_2_11_40_1
  doi: 10.1056/NEJMoa1102673
– ident: e_1_2_11_15_1
  doi: 10.1016/0021-9681(76)90044-8
– ident: e_1_2_11_7_1
  doi: 10.1002/sim.5730
– ident: e_1_2_11_6_1
  doi: 10.1002/sim.5851
– ident: e_1_2_11_24_1
  doi: 10.1001/jamanetworkopen.2019.19325
– ident: e_1_2_11_56_1
  doi: 10.1002/jrsm.1434
– ident: e_1_2_11_20_1
  doi: 10.1177/0962280212439578
– ident: e_1_2_11_53_1
  doi: 10.1214/ss/1030550861
– ident: e_1_2_11_44_1
  doi: 10.1214/06-BA117A
– ident: e_1_2_11_22_1
  doi: 10.1016/j.csda.2016.08.007
– ident: e_1_2_11_18_1
  doi: 10.1111/biom.13124
– ident: e_1_2_11_47_1
  doi: 10.3233/JAD-170991
– ident: e_1_2_11_43_1
  doi: 10.1016/j.ophtha.2012.10.014
– ident: e_1_2_11_37_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_11_13_1
  doi: 10.1002/sim.6608
– ident: e_1_2_11_51_1
  doi: 10.1002/jrsm.1066
– ident: e_1_2_11_49_1
  doi: 10.1177/0962280216631361
– ident: e_1_2_11_42_1
  doi: 10.1016/j.ophtha.2012.09.006
– ident: e_1_2_11_5_1
  doi: 10.1111/biom.12242
– ident: e_1_2_11_14_1
  doi: 10.1016/0197-2456(86)90046-2
– ident: e_1_2_11_25_1
  doi: 10.1001/jama.2014.13128
– ident: e_1_2_11_54_1
  doi: 10.1111/j.1541-0420.2011.01561.x
– ident: e_1_2_11_2_1
  doi: 10.1002/pst.1589
– ident: e_1_2_11_17_1
  doi: 10.1002/sim.782
– ident: e_1_2_11_36_1
  doi: 10.1002/0470092602
– ident: e_1_2_11_30_1
  doi: 10.1002/jrsm.1561
– ident: e_1_2_11_3_1
  doi: 10.1177/0962280217694506
– ident: e_1_2_11_9_1
  doi: 10.1111/biom.13252
– ident: e_1_2_11_23_1
  doi: 10.1002/9781119536604
– ident: e_1_2_11_27_1
  doi: 10.1002/jrsm.1217
– ident: e_1_2_11_45_1
  doi: 10.1001/jama.287.18.2335
– ident: e_1_2_11_12_1
  doi: 10.1002/sim.2704
– ident: e_1_2_11_19_1
  doi: 10.1111/biom.13247
– ident: e_1_2_11_10_1
  doi: 10.1201/9781315183084
– ident: e_1_2_11_38_1
  doi: 10.18637/jss.v100.i19
– ident: e_1_2_11_39_1
  doi: 10.1185/03007995.2015.1084909
– ident: e_1_2_11_8_1
  doi: 10.1111/j.1541-0420.2007.00888.x
– ident: e_1_2_11_11_1
  doi: 10.1186/s13063-017-1791-0
– ident: e_1_2_11_52_1
  doi: 10.1177/1740774513483934
– ident: e_1_2_11_55_1
  doi: 10.1093/biostatistics/kxy009
– ident: e_1_2_11_28_1
  doi: 10.1002/sim.4780142408
– ident: e_1_2_11_4_1
  doi: 10.1177/1740774509356002
– ident: e_1_2_11_16_1
  doi: 10.1177/1740774520944855
– start-page: 3466
  volume-title: Proceedings of Biopharmaceutical Section, Joint Statistical Meetings
  year: 2011
  ident: e_1_2_11_29_1
– ident: e_1_2_11_48_1
  doi: 10.1002/sim.5745
– ident: e_1_2_11_31_1
  doi: 10.1136/gut.2008.163527
– ident: e_1_2_11_50_1
  doi: 10.1002/jrsm.1055
– ident: e_1_2_11_34_1
  doi: 10.1097/01.TP.0000065740.69296.DA
– ident: e_1_2_11_46_1
  doi: 10.1016/j.ejphar.2020.173554
– ident: e_1_2_11_41_1
  doi: 10.1016/j.ophtha.2012.04.015
– ident: e_1_2_11_21_1
  doi: 10.1002/pst.175
– ident: e_1_2_11_26_1
  doi: 10.1002/sim.8086
– ident: e_1_2_11_32_1
  doi: 10.1111/petr.12362
SSID ssj0000396267
Score 2.2703974
SecondaryResourceType review_article
Snippet The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power...
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power...
SourceID proquest
pubmed
eric
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 396
SubjectTerms Bayes Theorem
Bayesian analysis
Bayesian Statistics
Clinical trials
Computation
Computer Simulation
dynamic borrowing
Humans
Mathematical analysis
Meta Analysis
meta‐analytic‐predictive
Models, Statistical
Monte Carlo Method
Monte Carlo Methods
Parameters
Prediction
Randomized Controlled Trials
Research Design
Sample Size
sample size calculation
Statistical power
Test Validity
Title Sample size calculation for clinical trials analyzed with the meta‐analytic‐predictive approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1618
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1376285
https://www.ncbi.nlm.nih.gov/pubmed/36625478
https://www.proquest.com/docview/2809452761
https://www.proquest.com/docview/2763334557
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxRBEK4gXLwYUdFR3LTEw3oY2enHTE88gbIhm0AISMJt0t1Tk2hkITvLhZM_wd_oL7FqXrCJJNw66erpTtVU91f9-Arg4wRVibIyMV9RjDWWSD5nktgnzuYUQDhd8QPno-P08FzPLszFGnzp38K0_BDDhht7RjNfs4M7X-_ekYb-XNSXn5nu_Qls8NNaTl8g9cmwwTJROYH1JrlKZnIaS5b3zEITuTu0XlmPVq8838Oaq9C1WXumz-FZBxrFXmvlTVjD-QvY7NyyFuOOO_rTSwhnjul-Rf3jFgWpP3TZuQRhU9G_ghRNqo5aOCYkucVS8GasICQoLnHp_v7-01RQX1S8XvBJDs-JoqcffwXn04PvXw_jLo9CHHQysXEWnMfKGWeQyU-9wcRVBKpLb_kgzjumaLc5GUd5Ck4TFbIkpwaySr1UGtUWrM-v5vgGhA2-rNIgc42VDkjgKiPIZpF545TFNIJxr80idCTjnOviV9HSI8uCFV-w4iPYGUSvW2aN_wltsUkGgYNZQjOitCaC7d5IRed1dSEtBatGZmkSwYehmvyFD0HcHK9uSIYmVKW0MVkEr1vjDl9XKUWDOqNex421Hx5XMTs9O-LC28eLvoOnnKu-vS25DevLxQ2-J0Sz9KPmzx3Bxt7-t_3pqInh_wFY5fWb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLRYFCSgGDOCyH0I0fiSNxqapWy9KtEG2l3iLbmUhU7bbabC898RP4jfwSZvKClUDiZsXj2PJ47G_8-Abg3RhVibIyMV9RjDWWSDZnktgnzubkQDhd8QPn2XE6OdPTc3O-Bh_7tzAtP8Sw4caW0czXbOC8Ib37mzX0YlFffWC-93twXxMu5zEt9Zdhh2WscvraRFfJTE6NyfKeWmgsd4fSKwvS6p3nP8DmKnZtFp_DR7DRoUax16p5E9Zw_hg2O7usxagjj37_BMKJY75fUX-7Q0H9H7rwXILAqeifQYomVkctHDOS3GEpeDdWEBQUV7h0P7__aDKoLkreLPgohydF0fOPP4Wzw4PT_UncBVKIg07GNs6C81g54wwy-6k3mLiKUHXpLZ_Eeccc7TYn7ShP3mmiQpbkVEBWqZdKo9qC9fn1HJ-DsMGXVRpkrrHSAQldZYTZLDJxnLKYRjDqe7MIHcs4B7u4LFp-ZFlwxxfc8RG8HURvWmqNvwltsUoGgYNpQlOitCaCnV5JRWd2dSEteatGZmkSwZshmwyGT0HcHK9vSYZmVKW0MVkEz1rlDn9XKbmDOqNaR422_92uYvr1ZMaJ7f8XfQ0PJqezo-Lo0_HnF_CQA9e3Vyd3YH25uMWXBG-W_lUzin8BNE72nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIiEuFQUKKS0YxGE5hG78kzjqCUFXZaFVRanUW2Q7E4mq3a4220tPPALPyJMwkz9YCSRuljyOLU9m_NkefwPweoyqRFmZmEMUY40lks2ZJPaJszltIJyu-IHz0XF6eKan5-Z8Dfb7tzAtP8Rw4MaW0fhrNvB5We39Jg29WNRXb5nu_Q7c5cs-jueT-mQ4YBmrnMB6k1wlMzmNJct7ZqGx3Btar6xHqyHPf2DNVejarD2TB7DRgUbxrtXyJqzh7CFsdmZZi1HHHf3mEYRTx3S_ov52i4KmP3TZuQRhU9G_ghRNqo5aOCYkucVS8GGsICQornDpfn7_0VRQX1ScL_gmh32i6OnHH8PZ5ODr-8O4y6MQB52MbZwF57Fyxhlk8lNvMHEVgerSW76I844p2m1OylGeNqeJClmSUwNZpV4qjWoL1mfXM3wKwgZfVmmQucZKByRwlRFks8i8ccpiGsGon80idCTjnOvismjpkWXBE1_wxEfwahCdt8wafxPaYpUMAgfThDyitCaCnV5JRWd1dSEtbVaNzNIkgpdDNdkLX4K4GV7fkAw5VKW0MVkET1rlDl9XKe0GdUa9jhpt_3tcxfTL6REXtv9f9AXcO_kwKT5_PP70DO5z2vo2cHIH1peLG9wlcLP0z5uf-Be2xfXG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+calculation+for+clinical+trials+analyzed+with+the+meta-analytic-predictive+approach&rft.jtitle=Research+synthesis+methods&rft.au=Qi%2C+Hongchao&rft.au=Rizopoulos%2C+Dimitris&rft.au=van+Rosmalen%2C+Joost&rft.date=2023-05-01&rft.issn=1759-2887&rft.eissn=1759-2887&rft.volume=14&rft.issue=3&rft.spage=396&rft_id=info:doi/10.1002%2Fjrsm.1618&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2879&client=summon