Sample size calculation for clinical trials analyzed with the meta‐analytic‐predictive approach
The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available,...
Saved in:
Published in | Research synthesis methods Vol. 14; no. 3; pp. 396 - 413 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.05.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1759-2879 1759-2887 1759-2887 |
DOI | 10.1002/jrsm.1618 |
Cover
Loading…
Abstract | The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real‐life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic. |
---|---|
AbstractList | The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real‐life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic. The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real-life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic.The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In previous applications of the MAP approach, the prior effective sample size (ESS) acted as a metric to quantify the number of subjects the historical information is worth. However, the validity of using the prior ESS in sample size calculation (i.e., reducing the number of randomized controls by the derived prior ESS) is questionable, because different approaches may yield different values for prior ESS. In this work, we propose a straightforward Monte Carlo approach to calculate the sample size that achieves the desired power in the new trial given available historical controls. To make full use of the available historical information to simulate the new trial data, the control parameters are not taken as a point estimate but sampled from the MAP prior. These sampled control parameters and the MAP prior based on the historical data are then used to derive the statistical power for the treatment effect and the resulting required sample size. The proposed sample size calculation approach is illustrated with real-life data sets with different outcomes from three studies. The results show that this approach to calculating the required sample size for the MAP analysis is straightforward and generic. |
Author | Qi, Hongchao Rizopoulos, Dimitris Rosmalen, Joost |
Author_xml | – sequence: 1 givenname: Hongchao orcidid: 0000-0003-0932-2076 surname: Qi fullname: Qi, Hongchao email: h.qi@erasmusmc.nl organization: Erasmus University Medical Center – sequence: 2 givenname: Dimitris surname: Rizopoulos fullname: Rizopoulos, Dimitris organization: Erasmus University Medical Center – sequence: 3 givenname: Joost surname: Rosmalen fullname: Rosmalen, Joost organization: Erasmus University Medical Center |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1376285$$DView record in ERIC https://www.ncbi.nlm.nih.gov/pubmed/36625478$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctOVTEUhhuDEUQGPoCmiRMZHOhl97KHhCBIMCai46a7Z-2cnnRfbLslh5GP4DP6JPRcYEC0k670__5_pWu9Rnv90ANCbyk5oYSw02VM3QmVVL9AB1SJesa0VntPtar30VFKS1IOryWT6hXa51IyUSl9gNyt7cYAOPl7wM4GNwWb_dDjdojYBd_78ohz9DYkbHsbVvcwx3c-L3BeAO4g27-__2yE7F0pxwhz77L_BdiOYxysW7xBL9tih6PdfYh-fLr4fn41u_l6-fn87GbmKkr0TDnbQGuFFcAFE40AalvF6nmjCVGysbWWla6trnlDOaPcKVoXA2tlw3gF_BB93OaWtj8nSNl0PjkIwfYwTMkwJTnnlRCqoB-eocthiuUXhdKkrkRhaaHe76ip6WBuxug7G1fmcXwFeLcFIHr3JF9cU64k06Lop1vdxSGlCK1xPm_mm6P1wVBi1js06x2a9Q6L4_iZ4zH1X-wu_c4HWP0fNNffbr9sHA8K46zk |
CitedBy_id | crossref_primary_10_1038_s41408_024_01037_3 crossref_primary_10_3390_stats7040068 crossref_primary_10_1007_s00520_023_07905_1 |
Cites_doi | 10.1002/lt.21397 10.1111/j.1399-3046.2005.00371.x 10.1056/NEJMoa1102673 10.1016/0021-9681(76)90044-8 10.1002/sim.5730 10.1002/sim.5851 10.1001/jamanetworkopen.2019.19325 10.1002/jrsm.1434 10.1177/0962280212439578 10.1214/ss/1030550861 10.1214/06-BA117A 10.1016/j.csda.2016.08.007 10.1111/biom.13124 10.3233/JAD-170991 10.1016/j.ophtha.2012.10.014 10.1214/ss/1177011136 10.1002/sim.6608 10.1002/jrsm.1066 10.1177/0962280216631361 10.1016/j.ophtha.2012.09.006 10.1111/biom.12242 10.1016/0197-2456(86)90046-2 10.1001/jama.2014.13128 10.1111/j.1541-0420.2011.01561.x 10.1002/pst.1589 10.1002/sim.782 10.1002/0470092602 10.1002/jrsm.1561 10.1177/0962280217694506 10.1111/biom.13252 10.1002/9781119536604 10.1002/jrsm.1217 10.1001/jama.287.18.2335 10.1002/sim.2704 10.1111/biom.13247 10.1201/9781315183084 10.18637/jss.v100.i19 10.1185/03007995.2015.1084909 10.1111/j.1541-0420.2007.00888.x 10.1186/s13063-017-1791-0 10.1177/1740774513483934 10.1093/biostatistics/kxy009 10.1002/sim.4780142408 10.1177/1740774509356002 10.1177/1740774520944855 10.1002/sim.5745 10.1136/gut.2008.163527 10.1002/jrsm.1055 10.1097/01.TP.0000065740.69296.DA 10.1016/j.ejphar.2020.173554 10.1016/j.ophtha.2012.04.015 10.1002/pst.175 10.1002/sim.8086 10.1111/petr.12362 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN CGR CUY CVF ECM EIF NPM AHOVV 7X8 |
DOI | 10.1002/jrsm.1618 |
DatabaseName | Wiley Online Library Open Access CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Education Research Index MEDLINE - Academic |
DatabaseTitle | CrossRef ERIC MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ERIC CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1759-2887 |
ERIC | EJ1376285 |
EndPage | 413 |
ExternalDocumentID | 36625478 EJ1376285 10_1002_jrsm_1618 JRSM1618 |
Genre | researchArticle Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: Alzheimer's Disease Cooperative Study (ADCS) – fundername: University of California, San Diego – fundername: National Institutes of Aging funderid: U01AG010483 – fundername: National Institutes of Aging grantid: U01AG010483 |
GroupedDBID | 05W 09C 0R~ 1OC 24P 31~ 33P 4.4 50Y 5DZ 8-0 8-1 8UM A00 AAESR AAHHS AANHP AANLZ AAYCA AAZKR ABCUV ABDBF ABIVO ABJNI ABLJU ACBWZ ACCFJ ACCZN ACDLN ACGFS ACIWK ACPOU ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY. MY~ O9- P2W P4E PQQKQ RCA ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABGDZ ABXHF AGHNM AGQPQ AGTDA CITATION IPYYG 7SW AAMMB AEFGJ AGXDD AIDQK AIDYY BJH BNH BNI BNJ BNO ERI PET REK WWN CGR CUY CVF ECM EIF NPM AHOVV 7X8 |
ID | FETCH-LOGICAL-c4108-7cabefa5a5e3525b5e1af729db80076ba986489a893b13213c719efa2f6b234e3 |
IEDL.DBID | 24P |
ISSN | 1759-2879 1759-2887 |
IngestDate | Thu Sep 04 17:33:00 EDT 2025 Sat Aug 23 12:38:23 EDT 2025 Wed Feb 19 02:23:15 EST 2025 Tue Sep 02 20:06:33 EDT 2025 Tue Jul 01 02:24:50 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Wed Jan 22 16:23:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | sample size calculation Bayesian statistics dynamic borrowing meta-analytic-predictive |
Language | English |
License | Attribution 2023 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-7cabefa5a5e3525b5e1af729db80076ba986489a893b13213c719efa2f6b234e3 |
Notes | The ADCS data used in this study were obtained from the University of California, San Diego Alzheimer's Disease Cooperative Study . https://www.adcs.org/ ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
ORCID | 0000-0003-0932-2076 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1618 |
PMID | 36625478 |
PQID | 2809452761 |
PQPubID | 1046372 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2763334557 proquest_journals_2809452761 pubmed_primary_36625478 eric_primary_EJ1376285 crossref_citationtrail_10_1002_jrsm_1618 crossref_primary_10_1002_jrsm_1618 wiley_primary_10_1002_jrsm_1618_JRSM1618 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-May 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Chichester |
PublicationTitle | Research synthesis methods |
PublicationTitleAlternate | Res Synth Methods |
PublicationYear | 2023 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2002; 17 2017; 8 2014; 70 2013; 4 2013; 22 2015; 31 2020; 17 2020; 887 2020; 11 2013; 120 1976; 29 2017; 113 2016; 35 1992; 7 2009; 58 2020; 3 1986; 7 2019; 20 2013; 10 2014; 13 2011; 67 2014; 18 2008; 64 2010; 7 2011; 364 2007; 26 2011 1995; 14 2008; 14 2019; 38 2018; 63 2021; 100 2006; 1 2020; 76 2018; 27 2014; 312 2003; 75 2001; 20 2012; 3 2013; 32 2005; 9 2002; 287 2004; 13 2005; 4 2019 2022; 13 2017 2017; 18 2012; 119 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 Neuenschwander B (e_1_2_11_29_1) 2011 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 364 start-page: 1897 issue: 20 year: 2011 end-page: 1908 article-title: Ranibizumab and bevacizumab for neovascular age‐related macular degeneration publication-title: N Engl J Med – volume: 70 start-page: 1023 issue: 4 year: 2014 end-page: 1032 article-title: Robust meta‐analytic‐predictive priors in clinical trials with historical control information publication-title: Biometrics – volume: 7 start-page: 457 issue: 4 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci – volume: 113 start-page: 100 year: 2017 end-page: 110 article-title: Meta‐analytic‐predictive use of historical variance data for the design and analysis of clinical trials publication-title: Comput Stat Data Anal – volume: 119 start-page: 2537 issue: 12 year: 2012 end-page: 2548 article-title: Intravitreal aflibercept (VEGF trap‐eye) in wet age‐related macular degeneration publication-title: Ophthalmology – volume: 100 start-page: 1 issue: 19 year: 2021 end-page: 32 article-title: Applying meta‐analytic‐predictive priors with the R Bayesian evidence synthesis tools publication-title: J Stat Softw – volume: 1 start-page: 515 issue: 3 year: 2006 end-page: 534 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Bayesian Anal – volume: 32 start-page: 2911 issue: 17 year: 2013 end-page: 2934 article-title: Bayesian multivariate meta‐analysis with multiple outcomes publication-title: Stat Med – volume: 13 year: 2004 – volume: 3 start-page: e1919325 issue: 1 year: 2020 article-title: Limitations of meta‐analyses of studies with high heterogeneity publication-title: JAMA Netw Open – volume: 9 start-page: 741 issue: 6 year: 2005 end-page: 745 article-title: Long‐term results of basiliximab induction immunosuppression in pediatric liver transplant recipients publication-title: Pediatr Transplant – volume: 76 start-page: 591 issue: 2 year: 2020 end-page: 594 article-title: Discussion on “Predictively consistent prior effective sample sizes,” by Beat Neuenschwander, Sebastian Weber, Heinz Schmidli, and Anthony O'Hagan publication-title: Biometrics – volume: 20 start-page: 400 issue: 3 year: 2019 end-page: 415 article-title: Bayesian clinical trial design using historical data that inform the treatment effect publication-title: Biostatistics – volume: 312 start-page: 1342 issue: 13 year: 2014 end-page: 1343 article-title: Minimal clinically important difference: defining what really matters to patients publication-title: JAMA – volume: 13 start-page: 41 issue: 1 year: 2014 end-page: 54 article-title: Use of historical control data for assessing treatment effects in clinical trials publication-title: Pharm Stat – volume: 14 start-page: 2685 issue: 24 year: 1995 end-page: 2699 article-title: Bayesian approaches to random‐effects meta‐analysis: a comparative study publication-title: Stat Med – volume: 7 start-page: 5 issue: 1 year: 2010 end-page: 18 article-title: Summarizing historical information on controls in clinical trials publication-title: Clin Trials – volume: 17 start-page: 193 issue: 2 year: 2002 end-page: 208 article-title: A simulation‐based approach to Bayesian sample size determination for performance under a given model and for separating models publication-title: Stat Sci – volume: 67 start-page: 1163 issue: 3 year: 2011 end-page: 1170 article-title: Bayesian design of noninferiority trials for medical devices using historical data publication-title: Biometrics – volume: 32 start-page: 1621 issue: 10 year: 2013 end-page: 1634 article-title: Collection, synthesis, and interpretation of evidence: a proof‐of‐concept study in COPD publication-title: Stat Med – volume: 10 start-page: 430 issue: 3 year: 2013 end-page: 440 article-title: Adaptive adjustment of the randomization ratio using historical control data publication-title: Clin Trials – volume: 8 start-page: 79 issue: 1 year: 2017 end-page: 91 article-title: Meta‐analysis of few small studies in orphan diseases publication-title: Res Synth Methods – volume: 287 start-page: 2335 issue: 18 year: 2002 end-page: 2338 article-title: Alzheimer disease publication-title: JAMA – year: 2019 – volume: 26 start-page: 2479 issue: 12 year: 2007 end-page: 2500 article-title: Evidence‐based sample size calculations based upon updated meta‐analysis publication-title: Stat Med – volume: 18 start-page: 839 issue: 8 year: 2014 end-page: 850 article-title: Interleukin‐2 receptor antagonists for pediatric liver transplant recipients: a systematic review and meta‐analysis of controlled studies publication-title: Pediatr Transplant – volume: 31 start-page: 2031 issue: 11 year: 2015 end-page: 2042 article-title: Ranibizumab vs. aflibercept for wet age‐related macular degeneration: network meta‐analysis to understand the value of reduced frequency dosing publication-title: Curr Med Res Opin – volume: 29 start-page: 175 issue: 3 year: 1976 end-page: 188 article-title: The combination of randomized and historical controls in clinical trials publication-title: J Chronic Dis – volume: 14 start-page: 469 issue: 4 year: 2008 end-page: 477 article-title: Steroid‐free, tacrolimus‐basiliximab immunosuppression in pediatric liver transplantation: clinical and pharmacoeconomic study in 50 children publication-title: Liver Transpl – volume: 27 start-page: 3167 issue: 10 year: 2018 end-page: 3182 article-title: Including historical data in the analysis of clinical trials: is it worth the effort? publication-title: Stat Methods Med Res – volume: 3 start-page: 269 issue: 4 year: 2012 end-page: 284 article-title: Evidence‐based sample size estimation based upon an updated meta‐regression analysis publication-title: Res Synth Methods – volume: 76 start-page: 578 issue: 2 year: 2020 end-page: 587 article-title: Predictively consistent prior effective sample sizes publication-title: Biometrics – volume: 18 start-page: 1 issue: 1 year: 2017 end-page: 21 article-title: Sample size determination for a binary response in a superiority clinical trial using a hybrid classical and Bayesian procedure publication-title: Trials – volume: 17 start-page: 607 issue: 6 year: 2020 end-page: 616 article-title: Summarising salient information on historical controls: a structured assessment of validity and comparability across studies publication-title: Clin Trials – volume: 119 start-page: 1399 issue: 7 year: 2012 end-page: 1411 article-title: Ranibizumab versus bevacizumab to treat neovascular age‐related macular degeneration: one‐year findings from the ivan randomized trial publication-title: Ophthalmology – volume: 11 start-page: 780 issue: 6 year: 2020 end-page: 794 article-title: Meta‐analysis of continuous outcomes: using pseudo IPD created from aggregate data to adjust for baseline imbalance and assess treatment‐by‐baseline modification publication-title: Res Synth Methods – volume: 63 start-page: 423 issue: 2 year: 2018 end-page: 444 article-title: The Alzheimer's disease assessment scale–cognitive subscale (ADAS‐Cog): modifications and responsiveness in pre‐dementia populations. A narrative review publication-title: J Alzheimers Dis – volume: 75 start-page: 2040 issue: 12 year: 2003 end-page: 2043 article-title: Pediatric liver transplantation with daclizumab induction publication-title: Transplantation – volume: 20 start-page: 1811 issue: 12 year: 2001 end-page: 1824 article-title: A closer look at combining data among a small number of binomial experiments publication-title: Stat Med – volume: 120 start-page: 1046 issue: 5 year: 2013 end-page: 1056 article-title: Twelve‐month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age‐related macular degeneration publication-title: Ophthalmology – volume: 58 start-page: 452 issue: 3 year: 2009 end-page: 463 article-title: Immunosuppression for liver transplantation publication-title: Gut – start-page: 3466 year: 2011 end-page: 3474 – volume: 35 start-page: 978 issue: 7 year: 2016 end-page: 1000 article-title: Planning future studies based on the precision of network meta‐analysis results publication-title: Stat Med – volume: 76 start-page: 326 issue: 1 year: 2020 end-page: 336 article-title: Quantification of prior impact in terms of effective current sample size publication-title: Biometrics – volume: 887 year: 2020 article-title: Alzheimer's disease: recent treatment strategies publication-title: Eur J Pharmacol – volume: 64 start-page: 595 issue: 2 year: 2008 end-page: 602 article-title: Determining the effective sample size of a parametric prior publication-title: Biometrics – volume: 38 start-page: 2074 issue: 11 year: 2019 end-page: 2102 article-title: Using simulation studies to evaluate statistical methods publication-title: Stat Med – volume: 4 start-page: 156 issue: 2 year: 2013 end-page: 168 article-title: Using meta‐analysis to inform the design of subsequent studies of diagnostic test accuracy publication-title: Res Synth Methods – volume: 4 start-page: 187 issue: 3 year: 2005 end-page: 201 article-title: Assurance in clinical trial design publication-title: Pharm Stat – volume: 13 start-page: 681 year: 2022 end-page: 696 article-title: Incorporating historical control information in ANCOVA models using the meta‐analytic‐predictive approach publication-title: Res Synth Methods – volume: 22 start-page: 324 issue: 3 year: 2013 end-page: 345 article-title: Sample size and power calculations for medical studies by simulation when closed form expressions are not available publication-title: Stat Methods Med Res – year: 2017 – volume: 7 start-page: 177 issue: 3 year: 1986 end-page: 188 article-title: Meta‐analysis in clinical trials publication-title: Control Clin Trials – volume: 27 start-page: 428 issue: 2 year: 2018 end-page: 450 article-title: Bayesian bivariate meta‐analysis of correlated effects: impact of the prior distributions on the between‐study correlation, borrowing of strength, and joint inferences publication-title: Stat Methods Med Res – volume: 32 start-page: 3609 issue: 21 year: 2013 end-page: 3622 article-title: Using historical control information for the design and analysis of clinical trials with overdispersed count data publication-title: Stat Med – ident: e_1_2_11_35_1 doi: 10.1002/lt.21397 – ident: e_1_2_11_33_1 doi: 10.1111/j.1399-3046.2005.00371.x – ident: e_1_2_11_40_1 doi: 10.1056/NEJMoa1102673 – ident: e_1_2_11_15_1 doi: 10.1016/0021-9681(76)90044-8 – ident: e_1_2_11_7_1 doi: 10.1002/sim.5730 – ident: e_1_2_11_6_1 doi: 10.1002/sim.5851 – ident: e_1_2_11_24_1 doi: 10.1001/jamanetworkopen.2019.19325 – ident: e_1_2_11_56_1 doi: 10.1002/jrsm.1434 – ident: e_1_2_11_20_1 doi: 10.1177/0962280212439578 – ident: e_1_2_11_53_1 doi: 10.1214/ss/1030550861 – ident: e_1_2_11_44_1 doi: 10.1214/06-BA117A – ident: e_1_2_11_22_1 doi: 10.1016/j.csda.2016.08.007 – ident: e_1_2_11_18_1 doi: 10.1111/biom.13124 – ident: e_1_2_11_47_1 doi: 10.3233/JAD-170991 – ident: e_1_2_11_43_1 doi: 10.1016/j.ophtha.2012.10.014 – ident: e_1_2_11_37_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_11_13_1 doi: 10.1002/sim.6608 – ident: e_1_2_11_51_1 doi: 10.1002/jrsm.1066 – ident: e_1_2_11_49_1 doi: 10.1177/0962280216631361 – ident: e_1_2_11_42_1 doi: 10.1016/j.ophtha.2012.09.006 – ident: e_1_2_11_5_1 doi: 10.1111/biom.12242 – ident: e_1_2_11_14_1 doi: 10.1016/0197-2456(86)90046-2 – ident: e_1_2_11_25_1 doi: 10.1001/jama.2014.13128 – ident: e_1_2_11_54_1 doi: 10.1111/j.1541-0420.2011.01561.x – ident: e_1_2_11_2_1 doi: 10.1002/pst.1589 – ident: e_1_2_11_17_1 doi: 10.1002/sim.782 – ident: e_1_2_11_36_1 doi: 10.1002/0470092602 – ident: e_1_2_11_30_1 doi: 10.1002/jrsm.1561 – ident: e_1_2_11_3_1 doi: 10.1177/0962280217694506 – ident: e_1_2_11_9_1 doi: 10.1111/biom.13252 – ident: e_1_2_11_23_1 doi: 10.1002/9781119536604 – ident: e_1_2_11_27_1 doi: 10.1002/jrsm.1217 – ident: e_1_2_11_45_1 doi: 10.1001/jama.287.18.2335 – ident: e_1_2_11_12_1 doi: 10.1002/sim.2704 – ident: e_1_2_11_19_1 doi: 10.1111/biom.13247 – ident: e_1_2_11_10_1 doi: 10.1201/9781315183084 – ident: e_1_2_11_38_1 doi: 10.18637/jss.v100.i19 – ident: e_1_2_11_39_1 doi: 10.1185/03007995.2015.1084909 – ident: e_1_2_11_8_1 doi: 10.1111/j.1541-0420.2007.00888.x – ident: e_1_2_11_11_1 doi: 10.1186/s13063-017-1791-0 – ident: e_1_2_11_52_1 doi: 10.1177/1740774513483934 – ident: e_1_2_11_55_1 doi: 10.1093/biostatistics/kxy009 – ident: e_1_2_11_28_1 doi: 10.1002/sim.4780142408 – ident: e_1_2_11_4_1 doi: 10.1177/1740774509356002 – ident: e_1_2_11_16_1 doi: 10.1177/1740774520944855 – start-page: 3466 volume-title: Proceedings of Biopharmaceutical Section, Joint Statistical Meetings year: 2011 ident: e_1_2_11_29_1 – ident: e_1_2_11_48_1 doi: 10.1002/sim.5745 – ident: e_1_2_11_31_1 doi: 10.1136/gut.2008.163527 – ident: e_1_2_11_50_1 doi: 10.1002/jrsm.1055 – ident: e_1_2_11_34_1 doi: 10.1097/01.TP.0000065740.69296.DA – ident: e_1_2_11_46_1 doi: 10.1016/j.ejphar.2020.173554 – ident: e_1_2_11_41_1 doi: 10.1016/j.ophtha.2012.04.015 – ident: e_1_2_11_21_1 doi: 10.1002/pst.175 – ident: e_1_2_11_26_1 doi: 10.1002/sim.8086 – ident: e_1_2_11_32_1 doi: 10.1111/petr.12362 |
SSID | ssj0000396267 |
Score | 2.2703974 |
SecondaryResourceType | review_article |
Snippet | The meta‐analytic‐predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power... The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power... |
SourceID | proquest pubmed eric crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 396 |
SubjectTerms | Bayes Theorem Bayesian analysis Bayesian Statistics Clinical trials Computation Computer Simulation dynamic borrowing Humans Mathematical analysis Meta Analysis meta‐analytic‐predictive Models, Statistical Monte Carlo Method Monte Carlo Methods Parameters Prediction Randomized Controlled Trials Research Design Sample Size sample size calculation Statistical power Test Validity |
Title | Sample size calculation for clinical trials analyzed with the meta‐analytic‐predictive approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1618 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1376285 https://www.ncbi.nlm.nih.gov/pubmed/36625478 https://www.proquest.com/docview/2809452761 https://www.proquest.com/docview/2763334557 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxRBEK4gXLwYUdFR3LTEw3oY2enHTE88gbIhm0AISMJt0t1Tk2hkITvLhZM_wd_oL7FqXrCJJNw66erpTtVU91f9-Arg4wRVibIyMV9RjDWWSD5nktgnzuYUQDhd8QPno-P08FzPLszFGnzp38K0_BDDhht7RjNfs4M7X-_ekYb-XNSXn5nu_Qls8NNaTl8g9cmwwTJROYH1JrlKZnIaS5b3zEITuTu0XlmPVq8838Oaq9C1WXumz-FZBxrFXmvlTVjD-QvY7NyyFuOOO_rTSwhnjul-Rf3jFgWpP3TZuQRhU9G_ghRNqo5aOCYkucVS8GasICQoLnHp_v7-01RQX1S8XvBJDs-JoqcffwXn04PvXw_jLo9CHHQysXEWnMfKGWeQyU-9wcRVBKpLb_kgzjumaLc5GUd5Ck4TFbIkpwaySr1UGtUWrM-v5vgGhA2-rNIgc42VDkjgKiPIZpF545TFNIJxr80idCTjnOviV9HSI8uCFV-w4iPYGUSvW2aN_wltsUkGgYNZQjOitCaC7d5IRed1dSEtBatGZmkSwYehmvyFD0HcHK9uSIYmVKW0MVkEr1vjDl9XKUWDOqNex421Hx5XMTs9O-LC28eLvoOnnKu-vS25DevLxQ2-J0Sz9KPmzx3Bxt7-t_3pqInh_wFY5fWb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoBLRYFCSgGDOCyH0I0fiSNxqapWy9KtEG2l3iLbmUhU7bbabC898RP4jfwSZvKClUDiZsXj2PJ47G_8-Abg3RhVibIyMV9RjDWWSDZnktgnzubkQDhd8QPn2XE6OdPTc3O-Bh_7tzAtP8Sw4caW0czXbOC8Ib37mzX0YlFffWC-93twXxMu5zEt9Zdhh2WscvraRFfJTE6NyfKeWmgsd4fSKwvS6p3nP8DmKnZtFp_DR7DRoUax16p5E9Zw_hg2O7usxagjj37_BMKJY75fUX-7Q0H9H7rwXILAqeifQYomVkctHDOS3GEpeDdWEBQUV7h0P7__aDKoLkreLPgohydF0fOPP4Wzw4PT_UncBVKIg07GNs6C81g54wwy-6k3mLiKUHXpLZ_Eeccc7TYn7ShP3mmiQpbkVEBWqZdKo9qC9fn1HJ-DsMGXVRpkrrHSAQldZYTZLDJxnLKYRjDqe7MIHcs4B7u4LFp-ZFlwxxfc8RG8HURvWmqNvwltsUoGgYNpQlOitCaCnV5JRWd2dSEteatGZmkSwZshmwyGT0HcHK9vSYZmVKW0MVkEz1rlDn9XKbmDOqNaR422_92uYvr1ZMaJ7f8XfQ0PJqezo-Lo0_HnF_CQA9e3Vyd3YH25uMWXBG-W_lUzin8BNE72nQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VIiEuFQUKKS0YxGE5hG78kzjqCUFXZaFVRanUW2Q7E4mq3a4220tPPALPyJMwkz9YCSRuljyOLU9m_NkefwPweoyqRFmZmEMUY40lks2ZJPaJszltIJyu-IHz0XF6eKan5-Z8Dfb7tzAtP8Rw4MaW0fhrNvB5We39Jg29WNRXb5nu_Q7c5cs-jueT-mQ4YBmrnMB6k1wlMzmNJct7ZqGx3Btar6xHqyHPf2DNVejarD2TB7DRgUbxrtXyJqzh7CFsdmZZi1HHHf3mEYRTx3S_ov52i4KmP3TZuQRhU9G_ghRNqo5aOCYkucVS8GGsICQornDpfn7_0VRQX1ScL_gmh32i6OnHH8PZ5ODr-8O4y6MQB52MbZwF57Fyxhlk8lNvMHEVgerSW76I844p2m1OylGeNqeJClmSUwNZpV4qjWoL1mfXM3wKwgZfVmmQucZKByRwlRFks8i8ccpiGsGon80idCTjnOvismjpkWXBE1_wxEfwahCdt8wafxPaYpUMAgfThDyitCaCnV5JRWd1dSEtbVaNzNIkgpdDNdkLX4K4GV7fkAw5VKW0MVkET1rlDl9XKe0GdUa9jhpt_3tcxfTL6REXtv9f9AXcO_kwKT5_PP70DO5z2vo2cHIH1peLG9wlcLP0z5uf-Be2xfXG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sample+size+calculation+for+clinical+trials+analyzed+with+the+meta-analytic-predictive+approach&rft.jtitle=Research+synthesis+methods&rft.au=Qi%2C+Hongchao&rft.au=Rizopoulos%2C+Dimitris&rft.au=van+Rosmalen%2C+Joost&rft.date=2023-05-01&rft.issn=1759-2887&rft.eissn=1759-2887&rft.volume=14&rft.issue=3&rft.spage=396&rft_id=info:doi/10.1002%2Fjrsm.1618&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2879&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2879&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2879&client=summon |