Multiarm Star‐Crosslinked Hydrogel: Polymer Network with Thermoresponsive Free‐End Chains Densely Connected to Crosslinking Points
Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi‐components is desired. This communication presents a novel hydrogel having highly dens...
Saved in:
Published in | Macromolecular rapid communications. Vol. 42; no. 8; pp. e2000558 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi‐components is desired. This communication presents a novel hydrogel having highly dense stimuli‐responsive free‐end chains around crosslinking structure. A key molecule is a core‐crosslinked star‐shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition–fragmentation chain transfer polymerization of divinyl crosslinker with poly(N‐isopropylacrylamide) (PNIPAAm) macro‐chain transfer agent and have a number of unreacted carbon–carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star‐crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star‐crosslinked gel has thermoresponsive mechanical toughening property.
In order to approach a sophisticated system of biological soft tissue, precise construction of a network with multi‐components is desired. In this work, a novel hydrogel having highly dense thermoresponsive free‐end chains around crosslinking structure is designed utilizing core‐crosslinked star polymers as crosslinking points. The obtained gel exhibits unique mechanical properties and thermoresponsive behavior. |
---|---|
AbstractList | Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi-components is desired. This communication presents a novel hydrogel having highly dense stimuli-responsive free-end chains around crosslinking structure. A key molecule is a core-crosslinked star-shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition-fragmentation chain transfer polymerization of divinyl crosslinker with poly(N-isopropylacrylamide) (PNIPAAm) macro-chain transfer agent and have a number of unreacted carbon-carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star-crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star-crosslinked gel has thermoresponsive mechanical toughening property. Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi‐components is desired. This communication presents a novel hydrogel having highly dense stimuli‐responsive free‐end chains around crosslinking structure. A key molecule is a core‐crosslinked star‐shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition–fragmentation chain transfer polymerization of divinyl crosslinker with poly(N‐isopropylacrylamide) (PNIPAAm) macro‐chain transfer agent and have a number of unreacted carbon–carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star‐crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star‐crosslinked gel has thermoresponsive mechanical toughening property. Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi‐components is desired. This communication presents a novel hydrogel having highly dense stimuli‐responsive free‐end chains around crosslinking structure. A key molecule is a core‐crosslinked star‐shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition–fragmentation chain transfer polymerization of divinyl crosslinker with poly(N‐isopropylacrylamide) (PNIPAAm) macro‐chain transfer agent and have a number of unreacted carbon–carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star‐crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star‐crosslinked gel has thermoresponsive mechanical toughening property. In order to approach a sophisticated system of biological soft tissue, precise construction of a network with multi‐components is desired. In this work, a novel hydrogel having highly dense thermoresponsive free‐end chains around crosslinking structure is designed utilizing core‐crosslinked star polymers as crosslinking points. The obtained gel exhibits unique mechanical properties and thermoresponsive behavior. Abstract Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi‐components is desired. This communication presents a novel hydrogel having highly dense stimuli‐responsive free‐end chains around crosslinking structure. A key molecule is a core‐crosslinked star‐shaped polymer with multiple thermoresponsive arms, which can be prepared by reversible addition–fragmentation chain transfer polymerization of divinyl crosslinker with poly( N ‐isopropylacrylamide) (PNIPAAm) macro‐chain transfer agent and have a number of unreacted carbon–carbon double bonds in the core. These unreacted double bonds can be utilized as a crosslinker for poly(acrylamide) (PAAm) gel synthesis by free radical polymerization. The obtained gel contains homogeneously dispersed star PNIPAAms as crosslinking points and exhibits thermoresponsive swelling behavior in water depending on the star contents. In particular, the gel with low content of the star crosslinker shows localized responsive behavior with expansion and shrinkage of the star in one molecule. The mechanical properties of the star‐crosslinked gel are significantly high compared to the conventional PAAm gels particularly in compressive strength (≈9 MPa). Moreover, the star‐crosslinked gel has thermoresponsive mechanical toughening property. |
Author | Oyama, Masatoshi Toda, Shogo Ida, Shohei Takeshita, Hiroki Kanaoka, Shokyoku |
Author_xml | – sequence: 1 givenname: Shohei orcidid: 0000-0002-1821-9022 surname: Ida fullname: Ida, Shohei email: ida.s@mat.usp.ac.jp organization: The University of Shiga Prefecture – sequence: 2 givenname: Shogo surname: Toda fullname: Toda, Shogo organization: The University of Shiga Prefecture – sequence: 3 givenname: Masatoshi surname: Oyama fullname: Oyama, Masatoshi organization: Industrial Research Center of Shiga Prefecture – sequence: 4 givenname: Hiroki surname: Takeshita fullname: Takeshita, Hiroki organization: The University of Shiga Prefecture – sequence: 5 givenname: Shokyoku surname: Kanaoka fullname: Kanaoka, Shokyoku email: kanaoka.s@mat.usp.ac.jp organization: The University of Shiga Prefecture |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33244811$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1v1DAYgC1URD9gZUSWWFhy-DPnsFWhH0gtICizlcRve24d-2onnLIxdeY38ktwdOWQWJhsWY8f-9VziPZ88IDQS0oWlBD2tm9it2CEEUKkVE_QAZWMFrxiy728J4wVlPNyHx2mdJsZJQh7hvY5Z0IoSg_Qw-XoBtvEHn8dmvjrx886hpSc9Xdg8PlkYrgB9w5_Dm7qIeKPMGxCvMMbO6zw1QpiHyKkdfDJfgd8GgGy4sQbXK8a6xN-Dz6Bm3AdvIduyM4h4N0T1t9ks_VDeo6eXjcuwYvH9Qh9Oz25qs-Li09nH-rji6ITlKhCUtExBiVfmsqYVkAeThrVyNZUrGMgqJwPiQSlWialUEtVNow1vJO0rYAfoTdb7zqG-xHSoHubOnCu8RDGpJkopeBKViqjr_9Bb8MYff6dZpIqUipBZ2qxpbp5qAjXeh1tjjJpSvRcSM-F9K5QvvDqUTu2PZgd_idJBqotsLEOpv_o9OXxl_qv_De0c6Hw |
CitedBy_id | crossref_primary_10_1002_marc_202300643 crossref_primary_10_1016_j_cej_2022_135756 crossref_primary_10_1039_D2PY00423B crossref_primary_10_1039_D2SM00402J crossref_primary_10_1080_14686996_2024_2302795 crossref_primary_10_1039_D2PY01518H crossref_primary_10_1002_advs_202303326 crossref_primary_10_1021_acs_macromol_1c00446 crossref_primary_10_1021_acs_macromol_3c01631 crossref_primary_10_1002_mren_202300006 |
Cites_doi | 10.1021/acsmacrolett.5b00127 10.1021/acsmacrolett.8b00792 10.1021/acs.chemrev.6b00008 10.1002/adma.201503130 10.1039/C3SM52272E 10.1021/acs.macromol.6b00798 10.1021/ma100365n 10.1039/C9PY01417A 10.1016/j.polymer.2020.122735 10.1039/C7PY01793F 10.1016/S1359-0294(03)00005-0 10.1002/adma.201600514 10.1007/3-540-09199-8_2 10.1021/ma000751l 10.1021/ma00009a029 10.1021/acs.macromol.7b02475 10.1021/acsmacrolett.9b00276 10.1038/374240a0 10.1021/acsmacrolett.5b00608 10.1038/s41428-019-0204-5 10.1016/j.progpolymsci.2011.08.004 10.1071/CH05072 10.1021/acs.macromol.9b01616 10.1021/acs.macromol.0c00238 10.1038/s41428-019-0285-1 10.1002/pi.6138 10.1016/j.progpolymsci.2005.11.001 10.1002/pola.29176 10.1021/acsmacrolett.5b00936 10.1039/9781788015769 10.1021/acs.macromol.7b00486 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | NPM AAYXX CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202000558 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 10_1002_marc_202000558 33244811 MARC202000558 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 19K05602 – fundername: Japan Society for the Promotion of Science grantid: 19K05602 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT NPM AAYXX CITATION 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c4108-514c22e637d9ddb4e1335d8a5bd92c2e415b4e105e88b25548786a22a3c51b9e3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 |
IngestDate | Fri Aug 16 21:37:39 EDT 2024 Thu Oct 10 18:10:10 EDT 2024 Fri Aug 23 00:55:49 EDT 2024 Sat Sep 28 08:23:49 EDT 2024 Sat Aug 24 01:09:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | star polymers stimuli-sensitive polymers hydrogels reversible addition-fragmentation chain transfer mechanical properties |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-514c22e637d9ddb4e1335d8a5bd92c2e415b4e105e88b25548786a22a3c51b9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1821-9022 |
PMID | 33244811 |
PQID | 2518068418 |
PQPubID | 1016394 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2465438598 proquest_journals_2518068418 crossref_primary_10_1002_marc_202000558 pubmed_primary_33244811 wiley_primary_10_1002_marc_202000558_MARC202000558 |
PublicationCentury | 2000 |
PublicationDate | April 2021 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2006; 31 2019; 51 2015; 4 2019; 10 2020; 203 2012; 37 1995; 374 1979; 30 2018; 7 2016; 5 2017; 50 2018; 9 2010; 43 2015; 27 2020; 53 2020; 52 1991; 24 2020 2003; 8 2016; 116 2018; 51 2018; 56 2016; 28 2001; 34 2016; 49 2014; 10 2005; 58 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 8 start-page: 76 year: 2003 publication-title: Curr. Opin. Colloid Interface Sci. – volume: 34 start-page: 215 year: 2001 publication-title: Macromolecules – volume: 31 start-page: 1 year: 2006 publication-title: Prog. Polym. Sci. – volume: 58 start-page: 379 year: 2005 publication-title: Aust. J. Chem. – volume: 51 start-page: 803 year: 2019 publication-title: Polym. J. – volume: 7 start-page: 1438 year: 2018 publication-title: ACS Macro Lett. – volume: 10 start-page: 6122 year: 2019 publication-title: Polym. Chem. – volume: 5 start-page: 224 year: 2016 publication-title: ACS Macro Lett. – volume: 374 start-page: 240 year: 1995 publication-title: Nature – volume: 203 year: 2020 publication-title: Polymer – volume: 28 start-page: 5857 year: 2016 publication-title: Adv. Mater. – volume: 116 start-page: 6743 year: 2016 publication-title: Chem. Rev. – volume: 9 start-page: 1701 year: 2018 publication-title: Polym. Chem. – volume: 10 start-page: 672 year: 2014 publication-title: Soft Matter – volume: 53 start-page: 2769 year: 2020 publication-title: Macromolecules – volume: 56 start-page: 2161 year: 2018 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 50 start-page: 3388 year: 2017 publication-title: Macromolecules – volume: 53 start-page: 374 year: 2020 publication-title: Macromolecules – volume: 4 start-page: 377 year: 2015 publication-title: ACS Macro Lett. – volume: 43 start-page: 4133 year: 2010 publication-title: Macromolecules – volume: 4 start-page: 1163 year: 2015 publication-title: ACS Macro Lett. – volume: 49 start-page: 4295 year: 2016 publication-title: Macromolecules – volume: 30 start-page: 89 year: 1979 publication-title: Adv. Polym. Sci. – volume: 52 start-page: 359 year: 2020 publication-title: Polym. J. – volume: 27 start-page: 7407 year: 2015 publication-title: Adv. Mater. – volume: 51 start-page: 2476 year: 2018 publication-title: Macromolecules – year: 2020 – volume: 24 start-page: 2309 year: 1991 publication-title: Macromolecules – publication-title: Polym. Int. – volume: 8 start-page: 705 year: 2019 publication-title: ACS Macro Lett. – volume: 37 start-page: 38 year: 2012 publication-title: Prog. Polym. Sci. – ident: e_1_2_4_19_1 doi: 10.1021/acsmacrolett.5b00127 – ident: e_1_2_4_27_1 doi: 10.1021/acsmacrolett.8b00792 – ident: e_1_2_4_18_1 doi: 10.1021/acs.chemrev.6b00008 – ident: e_1_2_4_23_1 doi: 10.1002/adma.201503130 – ident: e_1_2_4_31_1 doi: 10.1039/C3SM52272E – ident: e_1_2_4_12_1 doi: 10.1021/acs.macromol.6b00798 – ident: e_1_2_4_20_1 doi: 10.1021/ma100365n – ident: e_1_2_4_9_1 doi: 10.1039/C9PY01417A – ident: e_1_2_4_14_1 doi: 10.1016/j.polymer.2020.122735 – ident: e_1_2_4_8_1 doi: 10.1039/C7PY01793F – ident: e_1_2_4_4_1 doi: 10.1016/S1359-0294(03)00005-0 – ident: e_1_2_4_11_1 doi: 10.1002/adma.201600514 – ident: e_1_2_4_15_1 doi: 10.1007/3-540-09199-8_2 – ident: e_1_2_4_17_1 doi: 10.1021/ma000751l – ident: e_1_2_4_16_1 doi: 10.1021/ma00009a029 – ident: e_1_2_4_28_1 doi: 10.1021/acs.macromol.7b02475 – ident: e_1_2_4_2_1 doi: 10.1021/acsmacrolett.9b00276 – ident: e_1_2_4_10_1 doi: 10.1038/374240a0 – ident: e_1_2_4_24_1 doi: 10.1021/acsmacrolett.5b00608 – ident: e_1_2_4_7_1 doi: 10.1038/s41428-019-0204-5 – ident: e_1_2_4_30_1 doi: 10.1016/j.progpolymsci.2011.08.004 – ident: e_1_2_4_29_1 doi: 10.1071/CH05072 – ident: e_1_2_4_22_1 doi: 10.1021/acs.macromol.9b01616 – ident: e_1_2_4_1_1 doi: 10.1021/acs.macromol.0c00238 – ident: e_1_2_4_13_1 doi: 10.1038/s41428-019-0285-1 – ident: e_1_2_4_6_1 doi: 10.1002/pi.6138 – ident: e_1_2_4_5_1 doi: 10.1016/j.progpolymsci.2005.11.001 – ident: e_1_2_4_21_1 doi: 10.1002/pola.29176 – ident: e_1_2_4_25_1 doi: 10.1021/acsmacrolett.5b00936 – ident: e_1_2_4_3_1 doi: 10.1039/9781788015769 – ident: e_1_2_4_26_1 doi: 10.1021/acs.macromol.7b00486 |
SSID | ssj0008402 |
Score | 2.4517515 |
Snippet | Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system,... Abstract Soft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2000558 |
SubjectTerms | Acrylamide Addition polymerization Bonding agents Carbon Chain transfer Chemical synthesis Compressive strength Crosslinking Free radical polymerization Free radicals Gels Hydrogels Mechanical properties Molecular structure Polyisopropyl acrylamide Polymerization Polymers reversible addition–fragmentation chain transfer Soft tissues star polymers stimuli‐sensitive polymers |
Title | Multiarm Star‐Crosslinked Hydrogel: Polymer Network with Thermoresponsive Free‐End Chains Densely Connected to Crosslinking Points |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202000558 https://www.ncbi.nlm.nih.gov/pubmed/33244811 https://www.proquest.com/docview/2518068418 https://search.proquest.com/docview/2465438598 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL-UCLc-FgoyExCltbMdZh1uVdrWq1ApVVOotsuNZqNomKJuttJw4ceY38kuYiTcpCwekcsghfr_9jT3zmbG3KSilxlpHdkyk2s7ayMxmKLV6dM0y_GKyHT4-SadnydG5Pv_Nij_wQwwHbjQzuvWaJrh1871b0lCiekD5jkxNtCZrX6HGpNN1cHrLH4XSS7juRIkLhbG0Z22M5d569PVd6S-ouY5cu61n8pDZvtBB4-Ryd9G63fLrH3yO_1OrLfZghUv5fhhI2-weVI_YZt4_B_eYfe9MdW1zzRGfNj-__cipJnT_C55Pl76pP8HVe_6hvlpeQ8NPgno5p3NejmOxIYXeoI57A3zSAGASh5Xn-Wd7Uc35AZBp_JJ3ijclwmDe1nzIAvdXTPmiaudP2Nnk8GM-jVaPOERlImITISArpYRUjX3mvUsA-0F7Y7XzmSwlIIAgx1iDMQ7lGxSgTGqltKrUwmWgnrKNqq7gOeMOF6CZKI0XDqNI76QoyRBWKpUQac2Ives7sfgSuDqKwMosC2rXYmjXEdvp-7hYzdl5gUjPxJiMQO83gze2Ml2h2ArqBYYh-jlldIZhnoWxMWSlEJsmRogRk10P_6MMxfH-aT78vbhLpJfsviQVm06RaIdttM0CXiFGat3rbh78ArtUCoQ |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL78dCASMhcUqb2HHW6a1Ku1qgu0JVK3GL7NhLq7YJymaRlhMnzv2N_BJm4k2qhQMSHHJIHD_i8cTf2DOfAd4kTggxlDLQQyLVNloHajZDq9Xi0zTFK6TY4ck0GZ_E7z_JzpuQYmE8P0S_4Eaa0f6vScFpQXrnmjWUuB7QwKNYEynVTbiFOi_oEIP9o2sGKbRf_IYn2lxojiUdb2PId9bzr89Lf4DNdezaTj6ju2C6Znufk_PtRWO2i2-_MTr-13fdgzsraMr2_Fi6Dzdc-QA2s-5EuIfwo43W1fUlQ4ha__x-ldGn0Baws2y8tHX12V3sso_VxfLS1WzqPcwZLfUyHI41-fR6j9yvjo1q57CIg9Ky7FSflXO27yg6fsla35sCkTBrKtZXgVMslnxWNvNHcDI6OM7Gweoch6CIo1AFiMkKzl0ihja11sQOBSGt0tLYlBfcIYagh6F0Shk0cdCGUonmXItCRiZ14jFslFXpngIz-A-aRYWykcEs3BoeFRQLy4WIibdmAG87KeZfPF1H7omZeU79mvf9OoCtTsj5Sm3nOYI9FWIxESa_7pOxl2kXRZeuWuA7xEAnlEzxnSd-cPRVCYSnsYqiAfBWxH9pQz7ZO8r6u2f_kukVbI6PJ4f54bvph-dwm5PHTetXtAUbTb1wLxAyNeZlqxS_AFVFDp4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSNALb8pCASMhcUqb2HHW4VZlu1oeXVUVlXqL7HgWKtqkymaRlhMnzvxGfgkz8SZl4YAEhxzi99vf2DOfGXuRgJRyqFRghkSqbY0J9GyGUqtD1zTFLyTb4YNpMjmO35yok1-s-D0_RH_gRjOjXa9pgl-42e4laShRPaB8R6YmSumr7FqcyJCUukZHlwRSKL74-04UuVAaSzraxlDsrsdf35b-wJrr0LXde8a3mOlK7VVOPu0sGrtTfPmN0PF_qnWb3VwBU77nR9IddgXKu-xG1r0Hd499a211TX3OEaDWP75-z6gmdAEMjk-Wrq4-wNkrflidLc-h5lOvX87poJfjYKxJo9fr434GPq4BMIn90vHsozkt53wEZBu_5K3mTYE4mDcV77PADRZTPi2b-X12PN5_n02C1SsOQRFHoQ4QkRVCQCKHLnXOxoD9oJw2yrpUFAIQQZBjqEBriwIOSlA6MUIYWajIpiAfsI2yKuEh4xZXoFlUaBdZjCKcFVFBlrBCyphYawbsZdeJ-YUn68g9LbPIqV3zvl0HbLvr43w1aec5Qj0dYjIRej_vvbGV6Q7FlFAtMAzxz0mtUgyz5cdGn5VEcBrrKBow0fbwX8qQH-wdZf3fo3-J9IxdPxyN83evp28fs01B6jatUtE222jqBTxBvNTYp-2U-AkfPw1N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiarm+Star-Crosslinked+Hydrogel%3A+Polymer+Network+with+Thermoresponsive+Free-End+Chains+Densely+Connected+to+Crosslinking+Points&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Ida%2C+Shohei&rft.au=Toda%2C+Shogo&rft.au=Oyama%2C+Masatoshi&rft.au=Takeshita%2C+Hiroki&rft.date=2021-04-01&rft.eissn=1521-3927&rft.volume=42&rft.issue=8&rft.spage=e2000558&rft_id=info:doi/10.1002%2Fmarc.202000558&rft_id=info%3Apmid%2F33244811&rft.externalDocID=33244811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |