A Site‐Selective Doping Strategy of Carbon Anodes with Remarkable K‐Ion Storage Capacity

The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 11; pp. 4448 - 4455
Main Authors Zhang, Wenli, Cao, Zhen, Wang, Wenxi, Alhajji, Eman, Emwas, Abdul‐Hamid, Costa, Pedro M. F. J., Cavallo, Luigi, Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.03.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. Edge contributes more: A molecular scale edge‐nitrogen doping method is developed for synthesizing highly edge‐nitrogen‐doped carbons. This doped carbon shows a high nitrogen doping ratio of 10.5 at % (87.6 % edge‐nitrogen ratio), and a high, reversible, stable K‐ion storage capacity of 423 mAh g−1.
AbstractList The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.
The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. Edge contributes more: A molecular scale edge‐nitrogen doping method is developed for synthesizing highly edge‐nitrogen‐doped carbons. This doped carbon shows a high nitrogen doping ratio of 10.5 at % (87.6 % edge‐nitrogen ratio), and a high, reversible, stable K‐ion storage capacity of 423 mAh g−1.
The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g −1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.
The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g-1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g-1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.
The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.
Author Alhajji, Eman
Costa, Pedro M. F. J.
Cavallo, Luigi
Zhang, Wenli
Emwas, Abdul‐Hamid
Alshareef, Husam N.
Cao, Zhen
Wang, Wenxi
Author_xml – sequence: 1
  givenname: Wenli
  orcidid: 0000-0002-6781-2826
  surname: Zhang
  fullname: Zhang, Wenli
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Zhen
  surname: Cao
  fullname: Cao, Zhen
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Wenxi
  surname: Wang
  fullname: Wang, Wenxi
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Eman
  surname: Alhajji
  fullname: Alhajji, Eman
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Abdul‐Hamid
  orcidid: 0000-0002-9231-3850
  surname: Emwas
  fullname: Emwas, Abdul‐Hamid
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Pedro M. F. J.
  surname: Costa
  fullname: Costa, Pedro M. F. J.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Luigi
  orcidid: 0000-0002-1398-338X
  surname: Cavallo
  fullname: Cavallo, Luigi
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31943603$$D View this record in MEDLINE/PubMed
BookMark eNqFkcuKFDEUhoOMOBfdupSAGzfV5laV1LJpR20cFGzdCcWp1Kk2Y3XSk6Qdeucj-Iw-iRl6HGFAhEAC-b5c_v-UHPngkZCnnM04Y-IleIczwXjLpWzMA3LCa8ErqbU8KmslZaVNzY_JaUqXhTeGNY_IseStkg2TJ-TLnK5cxl8_fq5wQpvdd6Svwtb5NV3lCBnXexpGuoDYB0_nPgyY6LXLX-lH3ED8Bv2E9F3Rl2V7lUOENRZ6C9bl_WPycIQp4ZPb-Yx8fn3-afG2uvjwZrmYX1RWcWYqxQQCINNqYLavETlwGKweZQsMFPYAjRCNHlqGsjZsNFZLa9SgmmHQKOQZeXE4dxvD1Q5T7jYuWZwm8Bh2qRNSttqUoQr6_B56GXbRl9cVqmkFqwtbqGe31K7f4NBtoyuf3Xd_civA7ADYGFKKON4hnHU3xXQ3xXR3xRRB3RNKQJBd8CVlN_1baw_atZtw_59Luvn75flf9zeC-6NS
CitedBy_id crossref_primary_10_1016_j_ces_2021_116709
crossref_primary_10_1002_ange_202013912
crossref_primary_10_1073_pnas_2315407121
crossref_primary_10_1088_1361_6528_ac8f9c
crossref_primary_10_1002_admt_202100207
crossref_primary_10_1016_j_carbon_2022_02_039
crossref_primary_10_1016_j_jechem_2021_12_007
crossref_primary_10_1021_acsanm_3c02001
crossref_primary_10_1021_acsnano_0c09290
crossref_primary_10_1016_j_cej_2022_140418
crossref_primary_10_1002_smll_202004369
crossref_primary_10_1002_adfm_202006875
crossref_primary_10_1002_inf2_12176
crossref_primary_10_1007_s12274_021_3439_3
crossref_primary_10_1016_j_ijbiomac_2023_126095
crossref_primary_10_1016_j_jallcom_2024_173680
crossref_primary_10_1016_j_mtsust_2024_101060
crossref_primary_10_1039_D0TA04912C
crossref_primary_10_1016_j_micromeso_2021_111004
crossref_primary_10_3390_molecules28247993
crossref_primary_10_1002_adma_202108621
crossref_primary_10_1002_eem2_12178
crossref_primary_10_1039_D3TA04468H
crossref_primary_10_1002_adma_202000732
crossref_primary_10_1016_j_ensm_2022_11_008
crossref_primary_10_1002_ange_202016082
crossref_primary_10_1002_inf2_12225
crossref_primary_10_1016_j_cej_2022_134821
crossref_primary_10_1002_ange_202301396
crossref_primary_10_1016_j_matt_2023_07_009
crossref_primary_10_1002_adfm_202406540
crossref_primary_10_1016_j_jpowsour_2020_229223
crossref_primary_10_2139_ssrn_4133019
crossref_primary_10_1016_j_jcis_2024_04_118
crossref_primary_10_1007_s10853_021_06347_6
crossref_primary_10_1016_j_matt_2021_10_017
crossref_primary_10_1002_smll_202207821
crossref_primary_10_1016_j_cej_2024_148518
crossref_primary_10_1039_D2TA06038H
crossref_primary_10_1016_j_jpowsour_2025_236543
crossref_primary_10_1007_s44246_022_00009_1
crossref_primary_10_1039_D2NR05885E
crossref_primary_10_1002_anie_202011484
crossref_primary_10_3389_fchem_2020_00784
crossref_primary_10_1002_aenm_202101343
crossref_primary_10_1039_D1NJ00293G
crossref_primary_10_1007_s10854_024_13985_4
crossref_primary_10_1039_D0EE02917C
crossref_primary_10_1002_bte2_20230009
crossref_primary_10_1002_adfm_202211661
crossref_primary_10_1016_j_ensm_2024_103393
crossref_primary_10_1063_5_0192236
crossref_primary_10_2139_ssrn_4003121
crossref_primary_10_1002_adfm_202307205
crossref_primary_10_1002_cssc_202300215
crossref_primary_10_2139_ssrn_4003122
crossref_primary_10_1007_s12274_020_3191_0
crossref_primary_10_1016_j_cej_2022_139966
crossref_primary_10_1039_D3CC02322B
crossref_primary_10_1002_adfm_202301987
crossref_primary_10_1002_aenm_202302055
crossref_primary_10_1002_cey2_99
crossref_primary_10_1021_acsnano_2c05745
crossref_primary_10_1002_smll_202300440
crossref_primary_10_1016_j_jpowsour_2021_230557
crossref_primary_10_1039_D1TA07962J
crossref_primary_10_1007_s44246_024_00101_8
crossref_primary_10_3390_batteries9070363
crossref_primary_10_1016_j_est_2024_114192
crossref_primary_10_1021_acsami_1c07111
crossref_primary_10_1088_2053_1591_ac76a2
crossref_primary_10_1016_j_apsusc_2023_158321
crossref_primary_10_1016_j_jcis_2022_08_007
crossref_primary_10_1039_D1TA08981A
crossref_primary_10_1002_anie_202005118
crossref_primary_10_1002_aenm_202201555
crossref_primary_10_1007_s40820_022_01006_0
crossref_primary_10_1016_j_jallcom_2022_164311
crossref_primary_10_1021_acsami_2c21638
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1007_s11581_024_05656_5
crossref_primary_10_1002_smll_202406630
crossref_primary_10_1039_D3CS00601H
crossref_primary_10_1039_D4EE00438H
crossref_primary_10_1016_j_watres_2021_117984
crossref_primary_10_1002_adfm_202007158
crossref_primary_10_1016_j_nanoen_2024_109859
crossref_primary_10_1063_5_0161658
crossref_primary_10_1016_j_nanoen_2021_105792
crossref_primary_10_1016_j_carbon_2023_118451
crossref_primary_10_1002_asia_202300310
crossref_primary_10_1016_j_cej_2020_126991
crossref_primary_10_1002_batt_202200045
crossref_primary_10_1039_D0TA04513F
crossref_primary_10_1039_D1QI00618E
crossref_primary_10_1016_j_jallcom_2023_171494
crossref_primary_10_2139_ssrn_3943511
crossref_primary_10_1002_celc_202101715
crossref_primary_10_1039_D2TA00608A
crossref_primary_10_1002_smtd_202101130
crossref_primary_10_1002_adma_202410132
crossref_primary_10_1016_j_coco_2020_100447
crossref_primary_10_1039_D2QM00443G
crossref_primary_10_1002_advs_202401292
crossref_primary_10_1002_smll_202408792
crossref_primary_10_1002_slct_202201080
crossref_primary_10_1039_D1EE00370D
crossref_primary_10_1002_cey2_390
crossref_primary_10_1002_eng2_12328
crossref_primary_10_1039_D2TA04883C
crossref_primary_10_1016_j_nanoen_2023_108913
crossref_primary_10_1002_anie_202016082
crossref_primary_10_1039_D1TA07782A
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1016_j_indcrop_2022_114748
crossref_primary_10_1021_acsami_1c24275
crossref_primary_10_1021_acsami_2c14206
crossref_primary_10_1016_j_carbon_2021_03_039
crossref_primary_10_1002_anie_202301396
crossref_primary_10_1016_j_carbon_2024_119051
crossref_primary_10_1016_j_jechem_2021_07_025
crossref_primary_10_1002_smll_202300663
crossref_primary_10_1021_acssuschemeng_3c01633
crossref_primary_10_1088_1361_6528_ad7b3b
crossref_primary_10_1002_adfm_202109969
crossref_primary_10_1002_anie_202013912
crossref_primary_10_1002_smll_202206588
crossref_primary_10_1016_j_nanoen_2021_106184
crossref_primary_10_1016_j_carbon_2021_08_015
crossref_primary_10_1016_j_carbon_2024_119731
crossref_primary_10_1002_aenm_202101650
crossref_primary_10_1002_advs_202200341
crossref_primary_10_1002_adfm_202402416
crossref_primary_10_1021_acsaem_1c01256
crossref_primary_10_1016_j_jechem_2021_08_049
crossref_primary_10_1002_ange_202005118
crossref_primary_10_1016_j_jpowsour_2022_231613
crossref_primary_10_1002_aenm_202101928
crossref_primary_10_1002_eem2_12402
crossref_primary_10_1002_celc_202001322
crossref_primary_10_1021_acsami_2c20170
crossref_primary_10_1002_smll_202302435
crossref_primary_10_1002_adfm_202209741
crossref_primary_10_1038_s41467_024_50899_5
crossref_primary_10_1002_smtd_202300714
crossref_primary_10_1039_D1TA03811G
crossref_primary_10_1002_advs_202206077
crossref_primary_10_1016_j_carbon_2021_03_022
crossref_primary_10_1016_j_cej_2023_141489
crossref_primary_10_1016_j_carbon_2021_11_021
crossref_primary_10_2139_ssrn_4133020
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1016_j_cej_2022_140116
crossref_primary_10_1002_aenm_202101413
crossref_primary_10_1016_j_apmate_2022_100057
crossref_primary_10_1016_j_ensm_2023_102975
crossref_primary_10_1016_j_susmat_2023_e00672
crossref_primary_10_1039_D0QM00313A
crossref_primary_10_1016_j_carbon_2023_118261
crossref_primary_10_3390_nano14060550
crossref_primary_10_1007_s40820_022_00791_y
crossref_primary_10_1016_j_jechem_2021_11_027
crossref_primary_10_1016_j_carbon_2022_12_076
crossref_primary_10_1021_acsaem_2c03019
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1016_j_scitotenv_2023_169141
crossref_primary_10_1002_adma_202403033
crossref_primary_10_1016_j_jechem_2022_04_039
crossref_primary_10_1016_j_jpowsour_2025_236477
crossref_primary_10_1016_j_cej_2024_151214
crossref_primary_10_1016_j_xcrp_2021_100665
crossref_primary_10_1016_j_ensm_2022_03_041
crossref_primary_10_1002_aenm_202100856
crossref_primary_10_1002_smll_202302537
crossref_primary_10_1002_aenm_202202851
crossref_primary_10_1002_cey2_221
crossref_primary_10_1016_j_carbon_2022_08_060
crossref_primary_10_1016_j_cej_2023_145155
crossref_primary_10_1002_adfm_202001934
crossref_primary_10_1002_smll_202002771
Cites_doi 10.1021/jacs.7b04945
10.1039/C9EE00536F
10.1016/0167-2738(88)90351-7
10.1021/jacs.5b06809
10.1002/adfm.201903496
10.1038/nnano.2015.48
10.1039/C8EE02836B
10.1002/adma.201604724
10.1002/aenm.201800171
10.1021/acs.nanolett.8b03845
10.1038/s41560-019-0388-0
10.1002/adma.201803444
10.1016/j.enchem.2019.100012
10.1002/adfm.201602248
10.1002/anie.201801389
10.1016/j.carbon.2018.11.001
10.1002/adma.201900429
10.1038/ncomms8221
10.1016/j.pmatsci.2018.04.006
10.1126/sciadv.aav7412
10.1002/adfm.201801989
10.1002/aenm.201900161
10.1002/aenm.201901427
10.1021/nl500970a
10.1002/aenm.201702869
10.1002/ange.201904258
10.1002/adma.201802074
10.1002/adma.201702268
10.1038/s41467-018-04190-z
10.1038/s41467-018-06923-6
10.1002/ange.201801389
10.1038/nnano.2017.16
10.1002/smll.201901285
10.1016/j.mattod.2018.12.040
10.1016/j.nanoen.2015.03.022
10.1002/aenm.201803894
10.1039/C8EE01611A
10.1002/aenm.201801149
10.1002/aenm.201801840
10.1002/anie.201904258
10.1021/jacs.8b02178
10.1038/natrevmats.2018.13
10.1038/s41560-018-0130-3
10.1016/0008-6223(96)00177-7
10.1002/adma.201602633
10.1021/acsnano.6b05998
10.1002/adma.201700104
10.1021/acs.chemmater.7b01764
10.1002/adfm.201903641
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201913368
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4455
ExternalDocumentID 31943603
10_1002_anie_201913368
ANIE201913368
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: URF/1/2980-01-01
– fundername: King Abdullah University of Science and Technology
  grantid: URF/1/2980-01-01
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4108-402eaae074d0cb5ee1a1adc7f39a0a4ebaa62267d90e3580f8c73c84d46dd7e23
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:29:42 EDT 2025
Fri Jul 25 10:45:23 EDT 2025
Thu Apr 03 06:52:36 EDT 2025
Tue Jul 01 02:27:06 EDT 2025
Thu Apr 24 22:51:06 EDT 2025
Wed Jan 22 16:34:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords anodes
potassium-ion batteries
carbon
nitrogen doping
adsorption energy
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-402eaae074d0cb5ee1a1adc7f39a0a4ebaa62267d90e3580f8c73c84d46dd7e23
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1398-338X
0000-0002-6781-2826
0000-0001-5029-2142
0000-0002-9231-3850
PMID 31943603
PQID 2369205339
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2339789784
proquest_journals_2369205339
pubmed_primary_31943603
crossref_primary_10_1002_anie_201913368
crossref_citationtrail_10_1002_anie_201913368
wiley_primary_10_1002_anie_201913368_ANIE201913368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 9, 2020
PublicationDateYYYYMMDD 2020-03-09
PublicationDate_xml – month: 03
  year: 2020
  text: March 9, 2020
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 13
2019; 9
2018; 28
2019; 4
2015; 6
2018; 140
2019; 5
2019; 31
1988; 28–30
2019; 1
2019; 12
2019; 15
2015; 10
2016; 10
2017; 29
2019 2019; 58 131
2017; 139
1996; 34
2019; 143
2018; 9
2018; 18
2018; 8
2018; 3
2015; 137
2018 2018; 57 130
2019; 23
2017; 12
2014; 14
2019; 29
2018; 30
2016; 28
2018; 11
2018; 97
2016; 26
e_1_2_6_32_1
e_1_2_6_30_1
Mahmood A. (e_1_2_6_45_1) 2018; 30
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – volume: 8
  start-page: 1800171
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 7221
  year: 2015
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1805430
  year: 2018
  publication-title: Adv. Mater.
– volume: 143
  start-page: 138
  year: 2019
  publication-title: Carbon
– volume: 13
  start-page: 709
  year: 2015
  publication-title: Nano Energy
– volume: 97
  start-page: 170
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 140
  start-page: 7127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9608
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 495
  year: 2019
  publication-title: Nat. Energy
– volume: 8
  start-page: 1801149
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 58 131
  start-page: 10500 10610
  year: 2019 2019
  end-page: 10615
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1900161
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 1901285
  year: 2019
  publication-title: Small
– volume: 8
  start-page: 1801840
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1803894
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1903496
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1700104
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1903641
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 7407
  year: 2018
  publication-title: Nano Lett.
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 100012
  year: 2019
  publication-title: EnergyChem
– volume: 5
  start-page: 7412
  year: 2019
  publication-title: Sci. Adv.
– volume: 26
  start-page: 8103
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1702869
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 290
  year: 2018
  publication-title: Nat. Energy
– volume: 29
  start-page: 1604724
  year: 2017
  publication-title: Adv. Mater.
– volume: 34
  start-page: 193
  year: 1996
  publication-title: Carbon
– volume: 28–30
  start-page: 1172
  year: 1988
  publication-title: Solid State Ionics
– volume: 14
  start-page: 3445
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 4469
  year: 2018
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1702268
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1801989
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 137
  start-page: 11566
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 5031
  year: 2017
  publication-title: Chem. Mater.
– volume: 139
  start-page: 9475
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 3033
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 23
  start-page: 87
  year: 2019
  publication-title: Mater. Today
– volume: 31
  start-page: 1803444
  year: 2019
  publication-title: Adv. Mater.
– volume: 12
  start-page: 615
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 57 130
  start-page: 4687 4777
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 9738
  year: 2016
  publication-title: ACS Nano
– volume: 10
  start-page: 444
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 1802074
  year: 2018
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1900429
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 18013
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 1901427
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 1605
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_6_15_1
  doi: 10.1021/jacs.7b04945
– ident: e_1_2_6_31_1
  doi: 10.1039/C9EE00536F
– ident: e_1_2_6_19_1
  doi: 10.1016/0167-2738(88)90351-7
– ident: e_1_2_6_20_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_6_34_1
  doi: 10.1002/adfm.201903496
– ident: e_1_2_6_40_1
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_6_18_1
  doi: 10.1039/C8EE02836B
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201604724
– ident: e_1_2_6_48_1
  doi: 10.1002/aenm.201800171
– ident: e_1_2_6_27_1
  doi: 10.1021/acs.nanolett.8b03845
– ident: e_1_2_6_12_1
  doi: 10.1038/s41560-019-0388-0
– ident: e_1_2_6_10_1
  doi: 10.1002/adma.201803444
– ident: e_1_2_6_5_1
  doi: 10.1016/j.enchem.2019.100012
– ident: e_1_2_6_22_1
  doi: 10.1002/adfm.201602248
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201801389
– ident: e_1_2_6_35_1
  doi: 10.1016/j.carbon.2018.11.001
– ident: e_1_2_6_29_1
  doi: 10.1002/adma.201900429
– ident: e_1_2_6_36_1
  doi: 10.1038/ncomms8221
– ident: e_1_2_6_7_1
  doi: 10.1016/j.pmatsci.2018.04.006
– ident: e_1_2_6_6_1
  doi: 10.1126/sciadv.aav7412
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.201801989
– ident: e_1_2_6_2_1
  doi: 10.1002/aenm.201900161
– ident: e_1_2_6_14_1
  doi: 10.1002/aenm.201901427
– ident: e_1_2_6_21_1
  doi: 10.1021/nl500970a
– ident: e_1_2_6_8_1
  doi: 10.1002/aenm.201702869
– ident: e_1_2_6_25_2
  doi: 10.1002/ange.201904258
– ident: e_1_2_6_24_1
  doi: 10.1002/adma.201802074
– ident: e_1_2_6_43_1
  doi: 10.1002/adma.201702268
– ident: e_1_2_6_32_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_6_4_1
  doi: 10.1038/s41467-018-06923-6
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.201801389
– ident: e_1_2_6_3_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_33_1
  doi: 10.1002/smll.201901285
– ident: e_1_2_6_38_1
  doi: 10.1016/j.mattod.2018.12.040
– ident: e_1_2_6_42_1
  doi: 10.1016/j.nanoen.2015.03.022
– ident: e_1_2_6_28_1
  doi: 10.1002/aenm.201803894
– volume: 30
  start-page: 1805430
  year: 2018
  ident: e_1_2_6_45_1
  publication-title: Adv. Mater.
– ident: e_1_2_6_16_1
  doi: 10.1039/C8EE01611A
– ident: e_1_2_6_26_1
  doi: 10.1002/aenm.201801149
– ident: e_1_2_6_41_1
  doi: 10.1002/aenm.201801840
– ident: e_1_2_6_25_1
  doi: 10.1002/anie.201904258
– ident: e_1_2_6_47_1
  doi: 10.1021/jacs.8b02178
– ident: e_1_2_6_9_1
  doi: 10.1038/natrevmats.2018.13
– ident: e_1_2_6_1_1
  doi: 10.1038/s41560-018-0130-3
– ident: e_1_2_6_39_1
  doi: 10.1016/0008-6223(96)00177-7
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201602633
– ident: e_1_2_6_30_1
  doi: 10.1021/acsnano.6b05998
– ident: e_1_2_6_44_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.chemmater.7b01764
– ident: e_1_2_6_23_1
  doi: 10.1002/adfm.201903641
SSID ssj0028806
Score 2.6633832
Snippet The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective...
The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4448
SubjectTerms adsorption energy
anodes
carbon
Carbonaceous materials
Copolymers
Doping
Ion storage
Nitrogen
nitrogen doping
Potassium
potassium-ion batteries
Pyrolysis
Rechargeable batteries
Storage capacity
Strategy
Title A Site‐Selective Doping Strategy of Carbon Anodes with Remarkable K‐Ion Storage Capacity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913368
https://www.ncbi.nlm.nih.gov/pubmed/31943603
https://www.proquest.com/docview/2369205339
https://www.proquest.com/docview/2339789784
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXOillEIhLVRGqsQp4LW9SXxcLSAeKge2SBwqRXbsXKBJtY8DnPoT-I38EmbyggUhJJByiWwrjscefzP2fAPw05jEJTxXIdk8oRLOhVa4JERjw1phdRZbcuj_Oo0Oz9XxRf_iURR_zQ_ROdxoZVT6mha4sZPdB9JQisCmq1karayIon3pwhahorOOP0rg5KzDi6QMKQt9y9rIxe588_ld6RnUnEeu1dZzsASm7XR94-RyZza1O9nNEz7H9_zVZ_jU4FI2qCfSMnzwxRdYHLbp4Fbgz4CNEJ7e_b8dValzUEuyvSraijUMt9eszNnQjG1ZsEFROj9h5OVlZ_6vGV9SiBY7weZHWDxCSx8VGdZGkx3tgFU4P9j_PTwMm9QMYaZ6PCGr0xvjEX84ntm-9z3TMy6Lc6kNN8pbYyIEdrHT3NNBa55kscwS5VTkXOyF_AoLRVn4dWAy507avkNZaUQz_cRr1NDcGcRWXikXQNiKJs0a3nJKn3GV1ozLIqUxS7sxC2C7q_-vZux4seZGK-m0WbmTVMhICwpQ1gFsdcU41nSQYgpfzqgOorgEHxXAWj1Duk-hSlMy4jIAUcn5lT6kg9Oj_e7t21safYePgpwAdDFOb8DCdDzzm4iUpvZHtRruAXs_CsY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcigX3o9AW4yExCmt1_Ym9nG1bbVL2z10W4kDUmTHzqWQoO3uAU78BH4jv4SZvKqlQpWolEvkseL4Mf5m7PkG4L212mteqJhsnlgJ72MnvI7R2HBOOJOnjhz6p7NkcqE-fhp2twkpFqbhh-gdbrQyan1NC5wc0vvXrKEUgk13swyaWYm-B_cprXdtVZ31DFICp2cTYCRlTHnoO95GLvbX66_vSzfA5jp2rTefo0fgumY3d04u91ZLt5f_-IvR8U7_9RgettCUjZq59AQ2QvkUtsZdRrhn8HnE5ohQf__8Na-z56CiZAd1wBVrSW6_s6pgY7twVclGZeXDFSNHLzsLX-3ikqK02DFWn2LxHI191GUojVY7mgLP4eLo8Hw8idvsDHGuBlyT4RmsDQhBPM_dMISBHVifp4U0llsVnLUJYrvUGx7orLXQeSpzrbxKvE-DkC9gs6zK8AqYLLiXbuhxsAwCmqEOBpU09xbhVVDKRxB3Y5PlLXU5ZdD4kjWkyyKjPsv6PovgQy__rSHt-KfkdjfUWbt4rzIhEyMoRtlE8K4vxr6msxRbhmpFMgjkND4qgpfNFOk_hVpNyYTLCEQ90Le0IRvNpof92-v_qfQWtibnpyfZyXR2_AYeCPIJ0D05sw2by8Uq7CBwWrrdemn8ASQ6DuE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL5Z_QAkZC4pTWa3sT-7ja7apLYYW6VOoBKbJj51JIqu3uAU48As_IkzCTP7pFCAmkXCLbiuMZj7-xPd8AvLJWe80LFZPPEyvhfeyE1zE6G84JZ_LU0Yb-u3lyeKLenA5PL0XxN_wQ_YYbzYzaXtMEP_fF_i_SUIrApqtZBr2sRF-HGyrhmvR6ctwTSAnUzia-SMqY0tB3tI1c7G-231yWfsOam9C1Xnum22C7XjdXTs721iu3l3-9Quj4P791F-60wJSNGk26B9dCeR9ujbt8cA_g44gtEJ_--PZ9UefOQTPJJnW4FWspbr-wqmBju3RVyUZl5cMFo21edhw-2-UZxWixI2w-w-IFuvpoybA2-uzoCDyEk-nBh_Fh3OZmiHM14JrczmBtQADiee6GIQzswPo8LaSx3KrgrE0Q2aXe8EAnrYXOU5lr5VXifRqEfARbZVWGJ8Bkwb10Q4-yMghnhjoYNNHcWwRXQSkfQdyJJstb4nLKn_EpayiXRUZjlvVjFsHrvv55Q9nxx5q7naSzdupeZEImRlCEsongZV-MY00nKbYM1ZrqIIzT-KgIHjca0n8KbZqSCZcRiFrOf-lDNprPDvq3p__S6AXcfD-ZZm9n86MduC1oQ4AuyZld2Fot1-EZoqaVe15PjJ8DBg2Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Site%E2%80%90Selective+Doping+Strategy+of+Carbon+Anodes+with+Remarkable+K%E2%80%90Ion+Storage+Capacity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Wenli&rft.au=Cao%2C+Zhen&rft.au=Wang%2C+Wenxi&rft.au=Alhajji%2C+Eman&rft.date=2020-03-09&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=11&rft.spage=4448&rft.epage=4455&rft_id=info:doi/10.1002%2Fanie.201913368&rft.externalDBID=10.1002%252Fanie.201913368&rft.externalDocID=ANIE201913368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon