A Site‐Selective Doping Strategy of Carbon Anodes with Remarkable K‐Ion Storage Capacity
The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configu...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 11; pp. 4448 - 4455 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.03.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.
Edge contributes more: A molecular scale edge‐nitrogen doping method is developed for synthesizing highly edge‐nitrogen‐doped carbons. This doped carbon shows a high nitrogen doping ratio of 10.5 at % (87.6 % edge‐nitrogen ratio), and a high, reversible, stable K‐ion storage capacity of 423 mAh g−1. |
---|---|
AbstractList | The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g−1, a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. Edge contributes more: A molecular scale edge‐nitrogen doping method is developed for synthesizing highly edge‐nitrogen‐doped carbons. This doped carbon shows a high nitrogen doping ratio of 10.5 at % (87.6 % edge‐nitrogen ratio), and a high, reversible, stable K‐ion storage capacity of 423 mAh g−1. The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective approach to enhance K‐ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge‐nitrogen configuration. Here, a molecular‐scale copolymer pyrolysis strategy is used to precisely control edge‐nitrogen doping in carbonaceous materials. This process results in defect‐rich, edge‐nitrogen doped carbons (ENDC) with a high nitrogen‐doping level (up to 10.5 at %) and a high edge‐nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g −1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge‐heteroatom‐rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g-1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions.The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g-1 , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective approach to enhance K-ion storage in carbonaceous materials. One shortcoming is the lack of precise control over producing the edge-nitrogen configuration. Here, a molecular-scale copolymer pyrolysis strategy is used to precisely control edge-nitrogen doping in carbonaceous materials. This process results in defect-rich, edge-nitrogen doped carbons (ENDC) with a high nitrogen-doping level (up to 10.5 at %) and a high edge-nitrogen ratio (87.6 %). The optimized ENDC exhibits a high reversible capacity of 423 mAh g , a high initial Coulombic efficiency of 65 %, superior rate capability, and long cycle life (93.8 % retention after three months). This strategy can be extended to design other edge-heteroatom-rich carbons through pyrolysis of copolymers for efficient storage of various mobile ions. |
Author | Alhajji, Eman Costa, Pedro M. F. J. Cavallo, Luigi Zhang, Wenli Emwas, Abdul‐Hamid Alshareef, Husam N. Cao, Zhen Wang, Wenxi |
Author_xml | – sequence: 1 givenname: Wenli orcidid: 0000-0002-6781-2826 surname: Zhang fullname: Zhang, Wenli organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Zhen surname: Cao fullname: Cao, Zhen organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Wenxi surname: Wang fullname: Wang, Wenxi organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Eman surname: Alhajji fullname: Alhajji, Eman organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Abdul‐Hamid orcidid: 0000-0002-9231-3850 surname: Emwas fullname: Emwas, Abdul‐Hamid organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Pedro M. F. J. surname: Costa fullname: Costa, Pedro M. F. J. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Luigi orcidid: 0000-0002-1398-338X surname: Cavallo fullname: Cavallo, Luigi organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31943603$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcuKFDEUhoOMOBfdupSAGzfV5laV1LJpR20cFGzdCcWp1Kk2Y3XSk6Qdeucj-Iw-iRl6HGFAhEAC-b5c_v-UHPngkZCnnM04Y-IleIczwXjLpWzMA3LCa8ErqbU8KmslZaVNzY_JaUqXhTeGNY_IseStkg2TJ-TLnK5cxl8_fq5wQpvdd6Svwtb5NV3lCBnXexpGuoDYB0_nPgyY6LXLX-lH3ED8Bv2E9F3Rl2V7lUOENRZ6C9bl_WPycIQp4ZPb-Yx8fn3-afG2uvjwZrmYX1RWcWYqxQQCINNqYLavETlwGKweZQsMFPYAjRCNHlqGsjZsNFZLa9SgmmHQKOQZeXE4dxvD1Q5T7jYuWZwm8Bh2qRNSttqUoQr6_B56GXbRl9cVqmkFqwtbqGe31K7f4NBtoyuf3Xd_civA7ADYGFKKON4hnHU3xXQ3xXR3xRRB3RNKQJBd8CVlN_1baw_atZtw_59Luvn75flf9zeC-6NS |
CitedBy_id | crossref_primary_10_1016_j_ces_2021_116709 crossref_primary_10_1002_ange_202013912 crossref_primary_10_1073_pnas_2315407121 crossref_primary_10_1088_1361_6528_ac8f9c crossref_primary_10_1002_admt_202100207 crossref_primary_10_1016_j_carbon_2022_02_039 crossref_primary_10_1016_j_jechem_2021_12_007 crossref_primary_10_1021_acsanm_3c02001 crossref_primary_10_1021_acsnano_0c09290 crossref_primary_10_1016_j_cej_2022_140418 crossref_primary_10_1002_smll_202004369 crossref_primary_10_1002_adfm_202006875 crossref_primary_10_1002_inf2_12176 crossref_primary_10_1007_s12274_021_3439_3 crossref_primary_10_1016_j_ijbiomac_2023_126095 crossref_primary_10_1016_j_jallcom_2024_173680 crossref_primary_10_1016_j_mtsust_2024_101060 crossref_primary_10_1039_D0TA04912C crossref_primary_10_1016_j_micromeso_2021_111004 crossref_primary_10_3390_molecules28247993 crossref_primary_10_1002_adma_202108621 crossref_primary_10_1002_eem2_12178 crossref_primary_10_1039_D3TA04468H crossref_primary_10_1002_adma_202000732 crossref_primary_10_1016_j_ensm_2022_11_008 crossref_primary_10_1002_ange_202016082 crossref_primary_10_1002_inf2_12225 crossref_primary_10_1016_j_cej_2022_134821 crossref_primary_10_1002_ange_202301396 crossref_primary_10_1016_j_matt_2023_07_009 crossref_primary_10_1002_adfm_202406540 crossref_primary_10_1016_j_jpowsour_2020_229223 crossref_primary_10_2139_ssrn_4133019 crossref_primary_10_1016_j_jcis_2024_04_118 crossref_primary_10_1007_s10853_021_06347_6 crossref_primary_10_1016_j_matt_2021_10_017 crossref_primary_10_1002_smll_202207821 crossref_primary_10_1016_j_cej_2024_148518 crossref_primary_10_1039_D2TA06038H crossref_primary_10_1016_j_jpowsour_2025_236543 crossref_primary_10_1007_s44246_022_00009_1 crossref_primary_10_1039_D2NR05885E crossref_primary_10_1002_anie_202011484 crossref_primary_10_3389_fchem_2020_00784 crossref_primary_10_1002_aenm_202101343 crossref_primary_10_1039_D1NJ00293G crossref_primary_10_1007_s10854_024_13985_4 crossref_primary_10_1039_D0EE02917C crossref_primary_10_1002_bte2_20230009 crossref_primary_10_1002_adfm_202211661 crossref_primary_10_1016_j_ensm_2024_103393 crossref_primary_10_1063_5_0192236 crossref_primary_10_2139_ssrn_4003121 crossref_primary_10_1002_adfm_202307205 crossref_primary_10_1002_cssc_202300215 crossref_primary_10_2139_ssrn_4003122 crossref_primary_10_1007_s12274_020_3191_0 crossref_primary_10_1016_j_cej_2022_139966 crossref_primary_10_1039_D3CC02322B crossref_primary_10_1002_adfm_202301987 crossref_primary_10_1002_aenm_202302055 crossref_primary_10_1002_cey2_99 crossref_primary_10_1021_acsnano_2c05745 crossref_primary_10_1002_smll_202300440 crossref_primary_10_1016_j_jpowsour_2021_230557 crossref_primary_10_1039_D1TA07962J crossref_primary_10_1007_s44246_024_00101_8 crossref_primary_10_3390_batteries9070363 crossref_primary_10_1016_j_est_2024_114192 crossref_primary_10_1021_acsami_1c07111 crossref_primary_10_1088_2053_1591_ac76a2 crossref_primary_10_1016_j_apsusc_2023_158321 crossref_primary_10_1016_j_jcis_2022_08_007 crossref_primary_10_1039_D1TA08981A crossref_primary_10_1002_anie_202005118 crossref_primary_10_1002_aenm_202201555 crossref_primary_10_1007_s40820_022_01006_0 crossref_primary_10_1016_j_jallcom_2022_164311 crossref_primary_10_1021_acsami_2c21638 crossref_primary_10_1002_ange_202011484 crossref_primary_10_1007_s11581_024_05656_5 crossref_primary_10_1002_smll_202406630 crossref_primary_10_1039_D3CS00601H crossref_primary_10_1039_D4EE00438H crossref_primary_10_1016_j_watres_2021_117984 crossref_primary_10_1002_adfm_202007158 crossref_primary_10_1016_j_nanoen_2024_109859 crossref_primary_10_1063_5_0161658 crossref_primary_10_1016_j_nanoen_2021_105792 crossref_primary_10_1016_j_carbon_2023_118451 crossref_primary_10_1002_asia_202300310 crossref_primary_10_1016_j_cej_2020_126991 crossref_primary_10_1002_batt_202200045 crossref_primary_10_1039_D0TA04513F crossref_primary_10_1039_D1QI00618E crossref_primary_10_1016_j_jallcom_2023_171494 crossref_primary_10_2139_ssrn_3943511 crossref_primary_10_1002_celc_202101715 crossref_primary_10_1039_D2TA00608A crossref_primary_10_1002_smtd_202101130 crossref_primary_10_1002_adma_202410132 crossref_primary_10_1016_j_coco_2020_100447 crossref_primary_10_1039_D2QM00443G crossref_primary_10_1002_advs_202401292 crossref_primary_10_1002_smll_202408792 crossref_primary_10_1002_slct_202201080 crossref_primary_10_1039_D1EE00370D crossref_primary_10_1002_cey2_390 crossref_primary_10_1002_eng2_12328 crossref_primary_10_1039_D2TA04883C crossref_primary_10_1016_j_nanoen_2023_108913 crossref_primary_10_1002_anie_202016082 crossref_primary_10_1039_D1TA07782A crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1016_j_indcrop_2022_114748 crossref_primary_10_1021_acsami_1c24275 crossref_primary_10_1021_acsami_2c14206 crossref_primary_10_1016_j_carbon_2021_03_039 crossref_primary_10_1002_anie_202301396 crossref_primary_10_1016_j_carbon_2024_119051 crossref_primary_10_1016_j_jechem_2021_07_025 crossref_primary_10_1002_smll_202300663 crossref_primary_10_1021_acssuschemeng_3c01633 crossref_primary_10_1088_1361_6528_ad7b3b crossref_primary_10_1002_adfm_202109969 crossref_primary_10_1002_anie_202013912 crossref_primary_10_1002_smll_202206588 crossref_primary_10_1016_j_nanoen_2021_106184 crossref_primary_10_1016_j_carbon_2021_08_015 crossref_primary_10_1016_j_carbon_2024_119731 crossref_primary_10_1002_aenm_202101650 crossref_primary_10_1002_advs_202200341 crossref_primary_10_1002_adfm_202402416 crossref_primary_10_1021_acsaem_1c01256 crossref_primary_10_1016_j_jechem_2021_08_049 crossref_primary_10_1002_ange_202005118 crossref_primary_10_1016_j_jpowsour_2022_231613 crossref_primary_10_1002_aenm_202101928 crossref_primary_10_1002_eem2_12402 crossref_primary_10_1002_celc_202001322 crossref_primary_10_1021_acsami_2c20170 crossref_primary_10_1002_smll_202302435 crossref_primary_10_1002_adfm_202209741 crossref_primary_10_1038_s41467_024_50899_5 crossref_primary_10_1002_smtd_202300714 crossref_primary_10_1039_D1TA03811G crossref_primary_10_1002_advs_202206077 crossref_primary_10_1016_j_carbon_2021_03_022 crossref_primary_10_1016_j_cej_2023_141489 crossref_primary_10_1016_j_carbon_2021_11_021 crossref_primary_10_2139_ssrn_4133020 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1016_j_cej_2022_140116 crossref_primary_10_1002_aenm_202101413 crossref_primary_10_1016_j_apmate_2022_100057 crossref_primary_10_1016_j_ensm_2023_102975 crossref_primary_10_1016_j_susmat_2023_e00672 crossref_primary_10_1039_D0QM00313A crossref_primary_10_1016_j_carbon_2023_118261 crossref_primary_10_3390_nano14060550 crossref_primary_10_1007_s40820_022_00791_y crossref_primary_10_1016_j_jechem_2021_11_027 crossref_primary_10_1016_j_carbon_2022_12_076 crossref_primary_10_1021_acsaem_2c03019 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1016_j_scitotenv_2023_169141 crossref_primary_10_1002_adma_202403033 crossref_primary_10_1016_j_jechem_2022_04_039 crossref_primary_10_1016_j_jpowsour_2025_236477 crossref_primary_10_1016_j_cej_2024_151214 crossref_primary_10_1016_j_xcrp_2021_100665 crossref_primary_10_1016_j_ensm_2022_03_041 crossref_primary_10_1002_aenm_202100856 crossref_primary_10_1002_smll_202302537 crossref_primary_10_1002_aenm_202202851 crossref_primary_10_1002_cey2_221 crossref_primary_10_1016_j_carbon_2022_08_060 crossref_primary_10_1016_j_cej_2023_145155 crossref_primary_10_1002_adfm_202001934 crossref_primary_10_1002_smll_202002771 |
Cites_doi | 10.1021/jacs.7b04945 10.1039/C9EE00536F 10.1016/0167-2738(88)90351-7 10.1021/jacs.5b06809 10.1002/adfm.201903496 10.1038/nnano.2015.48 10.1039/C8EE02836B 10.1002/adma.201604724 10.1002/aenm.201800171 10.1021/acs.nanolett.8b03845 10.1038/s41560-019-0388-0 10.1002/adma.201803444 10.1016/j.enchem.2019.100012 10.1002/adfm.201602248 10.1002/anie.201801389 10.1016/j.carbon.2018.11.001 10.1002/adma.201900429 10.1038/ncomms8221 10.1016/j.pmatsci.2018.04.006 10.1126/sciadv.aav7412 10.1002/adfm.201801989 10.1002/aenm.201900161 10.1002/aenm.201901427 10.1021/nl500970a 10.1002/aenm.201702869 10.1002/ange.201904258 10.1002/adma.201802074 10.1002/adma.201702268 10.1038/s41467-018-04190-z 10.1038/s41467-018-06923-6 10.1002/ange.201801389 10.1038/nnano.2017.16 10.1002/smll.201901285 10.1016/j.mattod.2018.12.040 10.1016/j.nanoen.2015.03.022 10.1002/aenm.201803894 10.1039/C8EE01611A 10.1002/aenm.201801149 10.1002/aenm.201801840 10.1002/anie.201904258 10.1021/jacs.8b02178 10.1038/natrevmats.2018.13 10.1038/s41560-018-0130-3 10.1016/0008-6223(96)00177-7 10.1002/adma.201602633 10.1021/acsnano.6b05998 10.1002/adma.201700104 10.1021/acs.chemmater.7b01764 10.1002/adfm.201903641 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201913368 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4455 |
ExternalDocumentID | 31943603 10_1002_anie_201913368 ANIE201913368 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: URF/1/2980-01-01 – fundername: King Abdullah University of Science and Technology grantid: URF/1/2980-01-01 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4108-402eaae074d0cb5ee1a1adc7f39a0a4ebaa62267d90e3580f8c73c84d46dd7e23 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:29:42 EDT 2025 Fri Jul 25 10:45:23 EDT 2025 Thu Apr 03 06:52:36 EDT 2025 Tue Jul 01 02:27:06 EDT 2025 Thu Apr 24 22:51:06 EDT 2025 Wed Jan 22 16:34:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | anodes potassium-ion batteries carbon nitrogen doping adsorption energy |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-402eaae074d0cb5ee1a1adc7f39a0a4ebaa62267d90e3580f8c73c84d46dd7e23 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1398-338X 0000-0002-6781-2826 0000-0001-5029-2142 0000-0002-9231-3850 |
PMID | 31943603 |
PQID | 2369205339 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2339789784 proquest_journals_2369205339 pubmed_primary_31943603 crossref_primary_10_1002_anie_201913368 crossref_citationtrail_10_1002_anie_201913368 wiley_primary_10_1002_anie_201913368_ANIE201913368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 9, 2020 |
PublicationDateYYYYMMDD | 2020-03-09 |
PublicationDate_xml | – month: 03 year: 2020 text: March 9, 2020 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 13 2019; 9 2018; 28 2019; 4 2015; 6 2018; 140 2019; 5 2019; 31 1988; 28–30 2019; 1 2019; 12 2019; 15 2015; 10 2016; 10 2017; 29 2019 2019; 58 131 2017; 139 1996; 34 2019; 143 2018; 9 2018; 18 2018; 8 2018; 3 2015; 137 2018 2018; 57 130 2019; 23 2017; 12 2014; 14 2019; 29 2018; 30 2016; 28 2018; 11 2018; 97 2016; 26 e_1_2_6_32_1 e_1_2_6_30_1 Mahmood A. (e_1_2_6_45_1) 2018; 30 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – volume: 8 start-page: 1800171 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 start-page: 7221 year: 2015 publication-title: Nat. Commun. – volume: 30 start-page: 1805430 year: 2018 publication-title: Adv. Mater. – volume: 143 start-page: 138 year: 2019 publication-title: Carbon – volume: 13 start-page: 709 year: 2015 publication-title: Nano Energy – volume: 97 start-page: 170 year: 2018 publication-title: Prog. Mater. Sci. – volume: 140 start-page: 7127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9608 year: 2016 publication-title: Adv. Mater. – volume: 4 start-page: 495 year: 2019 publication-title: Nat. Energy – volume: 8 start-page: 1801149 year: 2018 publication-title: Adv. Energy Mater. – volume: 58 131 start-page: 10500 10610 year: 2019 2019 end-page: 10615 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1900161 year: 2019 publication-title: Adv. Energy Mater. – volume: 15 start-page: 1901285 year: 2019 publication-title: Small – volume: 8 start-page: 1801840 year: 2018 publication-title: Adv. Energy Mater. – volume: 9 start-page: 1803894 year: 2019 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1903496 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1700104 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 1903641 year: 2019 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 7407 year: 2018 publication-title: Nano Lett. – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 100012 year: 2019 publication-title: EnergyChem – volume: 5 start-page: 7412 year: 2019 publication-title: Sci. Adv. – volume: 26 start-page: 8103 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1702869 year: 2018 publication-title: Adv. Energy Mater. – volume: 3 start-page: 290 year: 2018 publication-title: Nat. Energy – volume: 29 start-page: 1604724 year: 2017 publication-title: Adv. Mater. – volume: 34 start-page: 193 year: 1996 publication-title: Carbon – volume: 28–30 start-page: 1172 year: 1988 publication-title: Solid State Ionics – volume: 14 start-page: 3445 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 4469 year: 2018 publication-title: Nat. Commun. – volume: 29 start-page: 1702268 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 1801989 year: 2018 publication-title: Adv. Funct. Mater. – volume: 137 start-page: 11566 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 5031 year: 2017 publication-title: Chem. Mater. – volume: 139 start-page: 9475 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 3033 year: 2018 publication-title: Energy Environ. Sci. – volume: 23 start-page: 87 year: 2019 publication-title: Mater. Today – volume: 31 start-page: 1803444 year: 2019 publication-title: Adv. Mater. – volume: 12 start-page: 615 year: 2019 publication-title: Energy Environ. Sci. – volume: 57 130 start-page: 4687 4777 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 9738 year: 2016 publication-title: ACS Nano – volume: 10 start-page: 444 year: 2015 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 1802074 year: 2018 publication-title: Adv. Mater. – volume: 31 start-page: 1900429 year: 2019 publication-title: Adv. Mater. – volume: 3 start-page: 18013 year: 2018 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 1901427 year: 2019 publication-title: Adv. Energy Mater. – volume: 12 start-page: 1605 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_6_15_1 doi: 10.1021/jacs.7b04945 – ident: e_1_2_6_31_1 doi: 10.1039/C9EE00536F – ident: e_1_2_6_19_1 doi: 10.1016/0167-2738(88)90351-7 – ident: e_1_2_6_20_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_6_34_1 doi: 10.1002/adfm.201903496 – ident: e_1_2_6_40_1 doi: 10.1038/nnano.2015.48 – ident: e_1_2_6_18_1 doi: 10.1039/C8EE02836B – ident: e_1_2_6_37_1 doi: 10.1002/adma.201604724 – ident: e_1_2_6_48_1 doi: 10.1002/aenm.201800171 – ident: e_1_2_6_27_1 doi: 10.1021/acs.nanolett.8b03845 – ident: e_1_2_6_12_1 doi: 10.1038/s41560-019-0388-0 – ident: e_1_2_6_10_1 doi: 10.1002/adma.201803444 – ident: e_1_2_6_5_1 doi: 10.1016/j.enchem.2019.100012 – ident: e_1_2_6_22_1 doi: 10.1002/adfm.201602248 – ident: e_1_2_6_17_1 doi: 10.1002/anie.201801389 – ident: e_1_2_6_35_1 doi: 10.1016/j.carbon.2018.11.001 – ident: e_1_2_6_29_1 doi: 10.1002/adma.201900429 – ident: e_1_2_6_36_1 doi: 10.1038/ncomms8221 – ident: e_1_2_6_7_1 doi: 10.1016/j.pmatsci.2018.04.006 – ident: e_1_2_6_6_1 doi: 10.1126/sciadv.aav7412 – ident: e_1_2_6_46_1 doi: 10.1002/adfm.201801989 – ident: e_1_2_6_2_1 doi: 10.1002/aenm.201900161 – ident: e_1_2_6_14_1 doi: 10.1002/aenm.201901427 – ident: e_1_2_6_21_1 doi: 10.1021/nl500970a – ident: e_1_2_6_8_1 doi: 10.1002/aenm.201702869 – ident: e_1_2_6_25_2 doi: 10.1002/ange.201904258 – ident: e_1_2_6_24_1 doi: 10.1002/adma.201802074 – ident: e_1_2_6_43_1 doi: 10.1002/adma.201702268 – ident: e_1_2_6_32_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_6_4_1 doi: 10.1038/s41467-018-06923-6 – ident: e_1_2_6_17_2 doi: 10.1002/ange.201801389 – ident: e_1_2_6_3_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_33_1 doi: 10.1002/smll.201901285 – ident: e_1_2_6_38_1 doi: 10.1016/j.mattod.2018.12.040 – ident: e_1_2_6_42_1 doi: 10.1016/j.nanoen.2015.03.022 – ident: e_1_2_6_28_1 doi: 10.1002/aenm.201803894 – volume: 30 start-page: 1805430 year: 2018 ident: e_1_2_6_45_1 publication-title: Adv. Mater. – ident: e_1_2_6_16_1 doi: 10.1039/C8EE01611A – ident: e_1_2_6_26_1 doi: 10.1002/aenm.201801149 – ident: e_1_2_6_41_1 doi: 10.1002/aenm.201801840 – ident: e_1_2_6_25_1 doi: 10.1002/anie.201904258 – ident: e_1_2_6_47_1 doi: 10.1021/jacs.8b02178 – ident: e_1_2_6_9_1 doi: 10.1038/natrevmats.2018.13 – ident: e_1_2_6_1_1 doi: 10.1038/s41560-018-0130-3 – ident: e_1_2_6_39_1 doi: 10.1016/0008-6223(96)00177-7 – ident: e_1_2_6_13_1 doi: 10.1002/adma.201602633 – ident: e_1_2_6_30_1 doi: 10.1021/acsnano.6b05998 – ident: e_1_2_6_44_1 doi: 10.1002/adma.201700104 – ident: e_1_2_6_11_1 doi: 10.1021/acs.chemmater.7b01764 – ident: e_1_2_6_23_1 doi: 10.1002/adfm.201903641 |
SSID | ssj0028806 |
Score | 2.6633832 |
Snippet | The limited potassium‐ion intercalation capacity of graphite hampers development of potassium‐ion batteries (PIB). Edge‐nitrogen doping is an effective... The limited potassium-ion intercalation capacity of graphite hampers development of potassium-ion batteries (PIB). Edge-nitrogen doping is an effective... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4448 |
SubjectTerms | adsorption energy anodes carbon Carbonaceous materials Copolymers Doping Ion storage Nitrogen nitrogen doping Potassium potassium-ion batteries Pyrolysis Rechargeable batteries Storage capacity Strategy |
Title | A Site‐Selective Doping Strategy of Carbon Anodes with Remarkable K‐Ion Storage Capacity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201913368 https://www.ncbi.nlm.nih.gov/pubmed/31943603 https://www.proquest.com/docview/2369205339 https://www.proquest.com/docview/2339789784 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXOillEIhLVRGqsQp4LW9SXxcLSAeKge2SBwqRXbsXKBJtY8DnPoT-I38EmbyggUhJJByiWwrjscefzP2fAPw05jEJTxXIdk8oRLOhVa4JERjw1phdRZbcuj_Oo0Oz9XxRf_iURR_zQ_ROdxoZVT6mha4sZPdB9JQisCmq1karayIon3pwhahorOOP0rg5KzDi6QMKQt9y9rIxe588_ld6RnUnEeu1dZzsASm7XR94-RyZza1O9nNEz7H9_zVZ_jU4FI2qCfSMnzwxRdYHLbp4Fbgz4CNEJ7e_b8dValzUEuyvSraijUMt9eszNnQjG1ZsEFROj9h5OVlZ_6vGV9SiBY7weZHWDxCSx8VGdZGkx3tgFU4P9j_PTwMm9QMYaZ6PCGr0xvjEX84ntm-9z3TMy6Lc6kNN8pbYyIEdrHT3NNBa55kscwS5VTkXOyF_AoLRVn4dWAy507avkNZaUQz_cRr1NDcGcRWXikXQNiKJs0a3nJKn3GV1ozLIqUxS7sxC2C7q_-vZux4seZGK-m0WbmTVMhICwpQ1gFsdcU41nSQYgpfzqgOorgEHxXAWj1Duk-hSlMy4jIAUcn5lT6kg9Oj_e7t21safYePgpwAdDFOb8DCdDzzm4iUpvZHtRruAXs_CsY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcigX3o9AW4yExCmt1_Ym9nG1bbVL2z10W4kDUmTHzqWQoO3uAU78BH4jv4SZvKqlQpWolEvkseL4Mf5m7PkG4L212mteqJhsnlgJ72MnvI7R2HBOOJOnjhz6p7NkcqE-fhp2twkpFqbhh-gdbrQyan1NC5wc0vvXrKEUgk13swyaWYm-B_cprXdtVZ31DFICp2cTYCRlTHnoO95GLvbX66_vSzfA5jp2rTefo0fgumY3d04u91ZLt5f_-IvR8U7_9RgettCUjZq59AQ2QvkUtsZdRrhn8HnE5ohQf__8Na-z56CiZAd1wBVrSW6_s6pgY7twVclGZeXDFSNHLzsLX-3ikqK02DFWn2LxHI191GUojVY7mgLP4eLo8Hw8idvsDHGuBlyT4RmsDQhBPM_dMISBHVifp4U0llsVnLUJYrvUGx7orLXQeSpzrbxKvE-DkC9gs6zK8AqYLLiXbuhxsAwCmqEOBpU09xbhVVDKRxB3Y5PlLXU5ZdD4kjWkyyKjPsv6PovgQy__rSHt-KfkdjfUWbt4rzIhEyMoRtlE8K4vxr6msxRbhmpFMgjkND4qgpfNFOk_hVpNyYTLCEQ90Le0IRvNpof92-v_qfQWtibnpyfZyXR2_AYeCPIJ0D05sw2by8Uq7CBwWrrdemn8ASQ6DuE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkYAL5Z_QAkZC4pTWa3sT-7ja7apLYYW6VOoBKbJj51JIqu3uAU48As_IkzCTP7pFCAmkXCLbiuMZj7-xPd8AvLJWe80LFZPPEyvhfeyE1zE6G84JZ_LU0Yb-u3lyeKLenA5PL0XxN_wQ_YYbzYzaXtMEP_fF_i_SUIrApqtZBr2sRF-HGyrhmvR6ctwTSAnUzia-SMqY0tB3tI1c7G-231yWfsOam9C1Xnum22C7XjdXTs721iu3l3-9Quj4P791F-60wJSNGk26B9dCeR9ujbt8cA_g44gtEJ_--PZ9UefOQTPJJnW4FWspbr-wqmBju3RVyUZl5cMFo21edhw-2-UZxWixI2w-w-IFuvpoybA2-uzoCDyEk-nBh_Fh3OZmiHM14JrczmBtQADiee6GIQzswPo8LaSx3KrgrE0Q2aXe8EAnrYXOU5lr5VXifRqEfARbZVWGJ8Bkwb10Q4-yMghnhjoYNNHcWwRXQSkfQdyJJstb4nLKn_EpayiXRUZjlvVjFsHrvv55Q9nxx5q7naSzdupeZEImRlCEsongZV-MY00nKbYM1ZrqIIzT-KgIHjca0n8KbZqSCZcRiFrOf-lDNprPDvq3p__S6AXcfD-ZZm9n86MduC1oQ4AuyZld2Fot1-EZoqaVe15PjJ8DBg2Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Site%E2%80%90Selective+Doping+Strategy+of+Carbon+Anodes+with+Remarkable+K%E2%80%90Ion+Storage+Capacity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Wenli&rft.au=Cao%2C+Zhen&rft.au=Wang%2C+Wenxi&rft.au=Alhajji%2C+Eman&rft.date=2020-03-09&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=11&rft.spage=4448&rft.epage=4455&rft_id=info:doi/10.1002%2Fanie.201913368&rft.externalDBID=10.1002%252Fanie.201913368&rft.externalDocID=ANIE201913368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |