Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma

Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGyl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced healthcare materials Vol. 8; no. 8; pp. e1801318 - n/a
Main Authors Yang, Chengbin, Yin, Mingjie, Xu, Gaixia, Lin, Wei‐Jen, Chen, Jiajie, Zhang, Yinling, Feng, Tao, Huang, Peng, Chen, Chih‐Kuang, Yong, Ken‐Tye
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC. PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) can effectively encapsulate miRNAs to form the capsule‐like structure nanocomplexes by self‐assembly. In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells.
AbstractList Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC.
Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC. PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) can effectively encapsulate miRNAs to form the capsule‐like structure nanocomplexes by self‐assembly. In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells.
Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC.Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC.
Author Zhang, Yinling
Xu, Gaixia
Yang, Chengbin
Chen, Chih‐Kuang
Chen, Jiajie
Lin, Wei‐Jen
Yong, Ken‐Tye
Yin, Mingjie
Huang, Peng
Feng, Tao
Author_xml – sequence: 1
  givenname: Chengbin
  orcidid: 0000-0001-9672-7412
  surname: Yang
  fullname: Yang, Chengbin
  organization: Shenzhen University
– sequence: 2
  givenname: Mingjie
  surname: Yin
  fullname: Yin, Mingjie
  organization: Nanyang Technological University
– sequence: 3
  givenname: Gaixia
  surname: Xu
  fullname: Xu, Gaixia
  organization: Shenzhen University
– sequence: 4
  givenname: Wei‐Jen
  surname: Lin
  fullname: Lin, Wei‐Jen
  organization: Feng Chia University
– sequence: 5
  givenname: Jiajie
  surname: Chen
  fullname: Chen, Jiajie
  organization: Shenzhen University
– sequence: 6
  givenname: Yinling
  surname: Zhang
  fullname: Zhang, Yinling
  organization: Shenzhen University
– sequence: 7
  givenname: Tao
  surname: Feng
  fullname: Feng, Tao
  organization: Shenzhen University
– sequence: 8
  givenname: Peng
  surname: Huang
  fullname: Huang, Peng
  email: peng.huang@szu.edu.cn
  organization: Shenzhen University
– sequence: 9
  givenname: Chih‐Kuang
  surname: Chen
  fullname: Chen, Chih‐Kuang
  email: chihkuan@yuntech.edu.tw
  organization: National Yunlin University of Science and Technology
– sequence: 10
  givenname: Ken‐Tye
  surname: Yong
  fullname: Yong, Ken‐Tye
  email: ktyong@ntu.edu.sg
  organization: Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30829008$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9r2zAUx8VoWX-s1x2HYJddkkmyZUvHLGuXQZuNkZ3Fs_WcqsiSJ9ts-e_rkC6DQpl48HT4fKTH-16QkxADEvKWszlnTHwEe9_OBeOK8YyrV-RccC1mopD65HjP2Rm56vsHNp1C8kLx1-QsY0poxtQ5-fPJRYvbBBYqj_R79LsWU09hKrqOoY7WhS1t3Y_1gq4hxBpScphoExO9G_3guknbQNrisAc395ig29HY0NXYQqAr7GCINXo_ekh0Cal2Ibbwhpw24Hu8euqX5OfN9Wa5mt1--_J1ubid1TlnaibAZjVAUTGZS40KRWbLusxLKbnKZcGVaBiwSmZWNhlKVakC8nxqVmssILskHw7vdin-GrEfTOv6_TgQMI69EVyVWmrN5YS-f4Y-xDGFaTojBM9KybguJurdEzVWLVrTJddC2pm_O52A-QGoU-z7hM0R4czsczP73Mwxt0nInwm1G2BwMQwJnH9Z0wftt_O4-88nZvF5dffPfQTqeKvO
CitedBy_id crossref_primary_10_1002_mabi_202300362
crossref_primary_10_1021_acs_biomac_1c01498
crossref_primary_10_1186_s12951_022_01615_2
crossref_primary_10_3389_fcvm_2022_980718
crossref_primary_10_1016_j_envres_2023_116490
crossref_primary_10_1039_D2BM01001A
crossref_primary_10_1002_jbm_a_36739
crossref_primary_10_1007_s12010_023_04597_5
crossref_primary_10_1002_adhm_202201306
crossref_primary_10_1016_j_actbio_2024_04_013
crossref_primary_10_1002_adhm_202002143
crossref_primary_10_3390_ijms21093253
crossref_primary_10_1016_j_nanoen_2019_103901
crossref_primary_10_3390_nano11092312
crossref_primary_10_1002_adhm_202302409
crossref_primary_10_1016_j_eurpolymj_2024_113624
crossref_primary_10_1021_acs_analchem_9b04752
crossref_primary_10_3389_fonc_2020_01509
crossref_primary_10_1016_j_snb_2024_135372
crossref_primary_10_1002_nano_202000130
crossref_primary_10_1016_j_cej_2024_155189
crossref_primary_10_3390_cancers15235557
crossref_primary_10_1039_D0PY01755H
crossref_primary_10_1002_mabi_202100349
crossref_primary_10_1016_j_bioorg_2021_105299
crossref_primary_10_1186_s12951_022_01472_z
crossref_primary_10_1155_2020_9593254
crossref_primary_10_1007_s12672_024_01341_1
crossref_primary_10_1016_j_jcis_2024_11_146
Cites_doi 10.1113/expphysiol.2012.065854
10.1016/j.drudis.2012.10.002
10.1002/hep.26305
10.1038/mt.2011.64
10.1016/j.canlet.2017.03.004
10.1039/C7AN01026E
10.1007/s12274-017-1521-7
10.1039/C6NR00996D
10.1021/acssensors.7b00045
10.1016/j.biomaterials.2012.12.016
10.1016/j.drudis.2016.10.014
10.1039/C4BM00306C
10.1039/C4TB01623H
10.1007/s12274-014-0642-5
10.1016/j.addr.2014.10.031
10.1158/0008-5472.CAN-06-4607
10.1038/s41928-017-0004-x
10.1016/j.cell.2009.04.021
10.1016/j.biomaterials.2011.03.035
10.1016/j.ijpharm.2006.06.029
10.1038/nrd.2016.246
10.1038/nature13905
10.1186/s12951-015-0070-z
10.1021/mp900107v
10.1002/adhm.201700695
10.1371/journal.pone.0065138
10.1371/journal.pone.0077957
10.1002/smll.201503352
10.1016/j.addr.2014.05.009
10.1016/j.biomaterials.2014.10.036
10.1158/0008-5472.CAN-10-4645
10.1053/j.gastro.2007.04.061
10.1016/j.addr.2009.04.018
10.1016/j.addr.2015.09.012
10.1002/jcp.26514
10.1016/j.biomaterials.2013.08.063
10.1038/ncomms11012
10.1088/0957-4484/26/36/365101
10.1038/nrc3932
10.1111/j.2042-7158.2012.01567.x
10.3322/caac.21442
10.1002/hep.22160
10.1016/S0142-9612(03)00420-4
10.1016/j.jconrel.2006.11.028
10.1080/10611860701849058
10.1038/nature03702
10.1016/j.addr.2016.06.011
10.1039/C3BM60325C
10.1039/C6TB03116A
10.1038/onc.2009.211
10.1158/0008-5472.CAN-10-1850
10.1021/acsami.8b16168
10.2147/IJN.S148142
10.1136/gutjnl-2013-306627
10.1002/hep.22806
10.1074/jbc.M109.016774
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
DOI 10.1002/adhm.201801318
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Immunology Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Immunology Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2192-2659
EndPage n/a
ExternalDocumentID 30829008
10_1002_adhm_201801318
ADHM201801318
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NEWRI seed funding
  funderid: NEWRI SF20140901
– fundername: Ministry of Science and Technology of Taiwan
  funderid: MOST 106‐2221‐E‐224‐058; MOST 107‐2632‐E‐035‐001; MOST 106‐2113‐M‐039‐002‐MY2; MOST 107‐2221‐E‐224‐059‐MY2
– fundername: NTU–A*STAR Silicon Technologies
– fundername: Centre of Excellence
  funderid: 11235100003
– fundername: School of Electrical and Electronic Engineering at NTU
– fundername: National Natural Science Foundation of China
  funderid: 81400591
– fundername: NEWRI seed funding
  grantid: NEWRI SF20140901
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 107-2632-E-035-001
– fundername: Centre of Excellence
  grantid: 11235100003
– fundername: NTU-A*STAR Silicon Technologies
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 106-2113-M-039-002-MY2
– fundername: National Natural Science Foundation of China
  grantid: 81400591
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 106-2221-E-224-058
– fundername: Ministry of Science and Technology of Taiwan
  grantid: MOST 107-2221-E-224-059-MY2
GroupedDBID 05W
0R~
1OC
33P
53G
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
D-A
D-B
DCZOG
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXMAN
MXSTM
MY.
MY~
O9-
OVD
P2W
PQQKQ
ROL
SUPJJ
SV3
TEORI
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
GODZA
NPM
7QF
7QP
7QQ
7SC
7SE
7SP
7SR
7T5
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c4108-2ad3caa6b05459e8e23d7c7475518456182f0a0b53d5f3e58b86a448b8d99e6a3
ISSN 2192-2640
2192-2659
IngestDate Fri Jul 11 06:18:34 EDT 2025
Fri Jul 25 11:57:58 EDT 2025
Thu Apr 03 06:59:37 EDT 2025
Tue Jul 01 03:06:33 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:35:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords miRNA delivery
biodegradable
PEGylation
multiple targeting
hepatocellular carcinoma
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4108-2ad3caa6b05459e8e23d7c7475518456182f0a0b53d5f3e58b86a448b8d99e6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9672-7412
PMID 30829008
PQID 2213750196
PQPubID 2032434
PageCount 15
ParticipantIDs proquest_miscellaneous_2187959915
proquest_journals_2213750196
pubmed_primary_30829008
crossref_primary_10_1002_adhm_201801318
crossref_citationtrail_10_1002_adhm_201801318
wiley_primary_10_1002_adhm_201801318_ADHM201801318
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced healthcare materials
PublicationTitleAlternate Adv Healthc Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 13
2017; 5
2015; 15
2015; 38
2015; 3
2013; 65
2019; 11
2009; 61
2017; 22
2005; 435
2011; 32
2015 2017; 26 142
2016; 104
2018 2017; 1 2
2014; 63
2013; 8
2011; 19
2009; 49
2011; 310
2009; 137
2016; 12
2018; 68
2009; 28
2016; 99
2018; 7
2013; 18
2009 2008; 6 16
2016; 7
2007; 118
2013; 58
2014; 2
2015; 81
2017; 16
2013; 34
2007; 132
2011; 71
2018; 233
2017; 10
2003; 24
2015; 518
2017 2008; 397 47
2009; 284
2012 2015; 97 8
2006; 324
2012; 7
2007; 67
2016; 8
2018; 13
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Zheng S. Y. (e_1_2_7_46_1) 2012; 7
e_1_2_7_50_1
e_1_2_7_52_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
Xu Y. (e_1_2_7_43_1) 2011; 310
References_xml – volume: 118
  start-page: 7
  year: 2007
  publication-title: J. Controlled Release
– volume: 11
  start-page: 2768
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 518
  start-page: 107
  year: 2015
  publication-title: Nature
– volume: 435
  start-page: 834
  year: 2005
  publication-title: Nature
– volume: 8
  start-page: 9405
  year: 2016
  publication-title: Nanoscale
– volume: 397 47
  start-page: 33 897
  year: 2017 2008
  publication-title: Cancer Lett. Hepatology
– volume: 7
  start-page: 11012
  year: 2016
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3327
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 310
  start-page: 160
  year: 2011
  publication-title: Cancer Lett.
– volume: 99
  start-page: 28
  year: 2016
  publication-title: Adv. Drug Delivery Rev.
– volume: 68
  start-page: 7
  year: 2018
  publication-title: Ca‐Cancer J. Clin.
– volume: 137
  start-page: 1005
  year: 2009
  publication-title: Cell
– volume: 10
  start-page: 3049
  year: 2017
  publication-title: Nano Res.
– volume: 12
  start-page: 534
  year: 2016
  publication-title: Small
– volume: 1 2
  start-page: 79 468
  year: 2018 2017
  publication-title: Nat. Electron. ACS Sens.
– volume: 13
  start-page: 12
  year: 2015
  publication-title: J. Nanobiotechnol.
– volume: 7
  start-page: 1700695
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 16
  start-page: 203
  year: 2017
  publication-title: Nat. Rev. Drug Discovery
– volume: 49
  start-page: 1571
  year: 2009
  publication-title: Hepatology
– volume: 6 16
  start-page: 1246 124
  year: 2009 2008
  publication-title: Mol. Pharmaceutics J. Drug Targeting
– volume: 7
  start-page: 3939
  year: 2012
  publication-title: Int. J. Nanomed.
– volume: 2
  start-page: 1007
  year: 2014
  publication-title: Biomater. Sci.
– volume: 3
  start-page: 2163
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 38
  start-page: 97
  year: 2015
  publication-title: Biomaterials
– volume: 81
  start-page: 142
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 15
  start-page: 321
  year: 2015
  publication-title: Nat. Rev. Cancer
– volume: 71
  start-page: 225
  year: 2011
  publication-title: Cancer Res.
– volume: 58
  start-page: 158
  year: 2013
  publication-title: Hepatology
– volume: 34
  start-page: 9688
  year: 2013
  publication-title: Biomaterials
– volume: 132
  start-page: 2557
  year: 2007
  publication-title: Gastroenterology
– volume: 284
  start-page: 32015
  year: 2009
  publication-title: J. Biol. Chem.
– volume: 32
  start-page: 4936
  year: 2011
  publication-title: Biomaterials
– volume: 67
  start-page: 6092
  year: 2007
  publication-title: Cancer Res.
– volume: 13
  start-page: 209
  year: 2018
  publication-title: Int. J. Nanomed.
– volume: 3
  start-page: 192
  year: 2015
  publication-title: Biomater. Sci.
– volume: 61
  start-page: 850
  year: 2009
  publication-title: Adv. Drug Delivery Rev.
– volume: 26 142
  start-page: 365101 3579
  year: 2015 2017
  publication-title: Nanotechnology Analyst
– volume: 81
  start-page: 128
  year: 2015
  publication-title: Adv. Drug Delivery Rev.
– volume: 233
  start-page: 5574
  year: 2018
  publication-title: J. Cell. Physiol.
– volume: 65
  start-page: 157
  year: 2013
  publication-title: J. Pharm. Pharmacol.
– volume: 19
  start-page: 1521
  year: 2011
  publication-title: Mol. Ther.
– volume: 63
  start-page: 844
  year: 2014
  publication-title: Gut
– volume: 24
  start-page: 4949
  year: 2003
  publication-title: Biomaterials
– volume: 8
  start-page: e77957
  year: 2013
  publication-title: PLoS One
– volume: 22
  start-page: 424
  year: 2017
  publication-title: Drug Discovery Today
– volume: 104
  start-page: 61
  year: 2016
  publication-title: Adv. Drug Delivery Rev.
– volume: 324
  start-page: 185
  year: 2006
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 282
  year: 2013
  publication-title: Drug Discovery Today
– volume: 71
  start-page: 5214
  year: 2011
  publication-title: Cancer Res.
– volume: 97 8
  start-page: 1315 1563
  year: 2012 2015
  publication-title: Exp. Physiol. Nano Res.
– volume: 28
  start-page: 3526
  year: 2009
  publication-title: Oncogene
– volume: 8
  start-page: e65138
  year: 2013
  publication-title: PLoS One
– volume: 34
  start-page: 2265
  year: 2013
  publication-title: Biomaterials
– ident: e_1_2_7_53_1
  doi: 10.1113/expphysiol.2012.065854
– ident: e_1_2_7_7_1
  doi: 10.1016/j.drudis.2012.10.002
– ident: e_1_2_7_16_1
  doi: 10.1002/hep.26305
– ident: e_1_2_7_18_1
  doi: 10.1038/mt.2011.64
– ident: e_1_2_7_42_1
  doi: 10.1016/j.canlet.2017.03.004
– ident: e_1_2_7_52_2
  doi: 10.1039/C7AN01026E
– ident: e_1_2_7_9_1
  doi: 10.1007/s12274-017-1521-7
– ident: e_1_2_7_28_1
  doi: 10.1039/C6NR00996D
– ident: e_1_2_7_29_2
  doi: 10.1021/acssensors.7b00045
– ident: e_1_2_7_4_1
  doi: 10.1016/j.biomaterials.2012.12.016
– ident: e_1_2_7_15_1
  doi: 10.1016/j.drudis.2016.10.014
– ident: e_1_2_7_47_1
  doi: 10.1039/C4BM00306C
– ident: e_1_2_7_25_1
  doi: 10.1039/C4TB01623H
– ident: e_1_2_7_53_2
  doi: 10.1007/s12274-014-0642-5
– ident: e_1_2_7_24_1
  doi: 10.1016/j.addr.2014.10.031
– ident: e_1_2_7_48_1
  doi: 10.1158/0008-5472.CAN-06-4607
– volume: 310
  start-page: 160
  year: 2011
  ident: e_1_2_7_43_1
  publication-title: Cancer Lett.
– ident: e_1_2_7_29_1
  doi: 10.1038/s41928-017-0004-x
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cell.2009.04.021
– ident: e_1_2_7_36_1
  doi: 10.1016/j.biomaterials.2011.03.035
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ijpharm.2006.06.029
– ident: e_1_2_7_1_1
  doi: 10.1038/nrd.2016.246
– ident: e_1_2_7_5_1
  doi: 10.1038/nature13905
– ident: e_1_2_7_22_1
  doi: 10.1186/s12951-015-0070-z
– ident: e_1_2_7_34_1
  doi: 10.1021/mp900107v
– ident: e_1_2_7_3_1
  doi: 10.1002/adhm.201700695
– ident: e_1_2_7_44_1
  doi: 10.1371/journal.pone.0065138
– ident: e_1_2_7_17_1
  doi: 10.1371/journal.pone.0077957
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201503352
– ident: e_1_2_7_6_1
  doi: 10.1016/j.addr.2014.05.009
– ident: e_1_2_7_33_1
  doi: 10.1016/j.biomaterials.2014.10.036
– ident: e_1_2_7_39_1
  doi: 10.1158/0008-5472.CAN-10-4645
– ident: e_1_2_7_13_1
  doi: 10.1053/j.gastro.2007.04.061
– volume: 7
  start-page: 3939
  year: 2012
  ident: e_1_2_7_46_1
  publication-title: Int. J. Nanomed.
– ident: e_1_2_7_35_1
  doi: 10.1016/j.addr.2009.04.018
– ident: e_1_2_7_51_1
  doi: 10.1016/j.addr.2015.09.012
– ident: e_1_2_7_8_1
  doi: 10.1002/jcp.26514
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biomaterials.2013.08.063
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms11012
– ident: e_1_2_7_52_1
  doi: 10.1088/0957-4484/26/36/365101
– ident: e_1_2_7_2_1
  doi: 10.1038/nrc3932
– ident: e_1_2_7_45_1
  doi: 10.1111/j.2042-7158.2012.01567.x
– ident: e_1_2_7_11_1
  doi: 10.3322/caac.21442
– ident: e_1_2_7_42_2
  doi: 10.1002/hep.22160
– ident: e_1_2_7_38_1
  doi: 10.1016/S0142-9612(03)00420-4
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jconrel.2006.11.028
– ident: e_1_2_7_34_2
  doi: 10.1080/10611860701849058
– ident: e_1_2_7_14_1
  doi: 10.1038/nature03702
– ident: e_1_2_7_27_1
  doi: 10.1016/j.addr.2016.06.011
– ident: e_1_2_7_30_1
  doi: 10.1039/C3BM60325C
– ident: e_1_2_7_32_1
  doi: 10.1039/C6TB03116A
– ident: e_1_2_7_41_1
  doi: 10.1038/onc.2009.211
– ident: e_1_2_7_19_1
  doi: 10.1158/0008-5472.CAN-10-1850
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.8b16168
– ident: e_1_2_7_40_1
  doi: 10.2147/IJN.S148142
– ident: e_1_2_7_12_1
  doi: 10.1136/gutjnl-2013-306627
– ident: e_1_2_7_23_1
  doi: 10.1002/hep.22806
– ident: e_1_2_7_49_1
  doi: 10.1074/jbc.M109.016774
SSID ssj0000651681
Score 2.342495
Snippet Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery...
Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1801318
SubjectTerms Apoptosis
Biodegradability
biodegradable
Cell migration
Endocytosis
Gene expression
Hepatocellular carcinoma
Liver cancer
miRNA
miRNA delivery
multiple targeting
PEGylation
Restoration
Strategy
Therapy
Tumor suppressor genes
Title Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201801318
https://www.ncbi.nlm.nih.gov/pubmed/30829008
https://www.proquest.com/docview/2213750196
https://www.proquest.com/docview/2187959915
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJqHxgLiOwkBGQuIBBRLn5jyWDlRNa4WgE-UpcmJnDdriabTS4IHfzrFju4noxEWq0jSxnNTf5-Pjo-PPCL2oSJmSMgq8OBO-FzEeeCwWkUdSmDMXYRpmepeI6SyZnERHi3gxGPzsri5ZFa_LH1vXlfwPqnANcFWrZP8BWVcpXIBzwBeOgDAc_wrjt7XkSuyB6_VPH-TZdxWFVlvHsFcz2ZRSr1g5rz_ORsqMwrB1qTeoU6mFU5tJONe54KrgvFUY2MT2JzBWraSK7etk1bHad6iRxpJb6VqbRLDcZJKBF9z-fWdTTFR6vBTNaVE7Qn6pTe5-c_q1dhRbrHW0ntVXtRs0jtuSn0XtHZnVayZWEWSdFBehbRrYR-KRxIiAGwNMOzyjHWMqAqrUgOhWS98qxzK-VHICWwoCUhfnGnclyJP5Pt2MeC4P0d66gXaBnMrB3h0dTo8_uSgdOGhBQgOr9umTN_0n7qGbto6-Y_PbbKU_-dHey_wOum2mHXjUcuguGojmHrrVEaO8j656bMKWTZjBBzs2Yc0m3GETBjZhyybs2IQNm7CssGYT7rMJOzY9QCfv383HE8_sy-FBp_ahCzIelowlBbj70MWpICFPS5iXKnU_5ZBTUvnML-KQx1UoYlrQhEURfPEsEwkLH6KdRjbiEcKsqhImghSa0o-ilLNQkCgrkyxlJBZlPESebdS8NKL1au-Us7yV2ya5wiN3eAzRS1f-opVrubbkgcUoN136W05IEIILDaPSED13t8HgqrZhjZBrKBPQNIthWgUvt99i6x5luTBERIP9h3fIR4eTqfv1-NrqnqC9TW86QDury7V4Cr7wqnhmCPsL9a-xyw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Polymers+as+a+Noncoding+miRNA+Nanocarrier+for+Multiple+Targeting+Therapy+of+Human+Hepatocellular+Carcinoma&rft.jtitle=Advanced+healthcare+materials&rft.au=Yang%2C+Chengbin&rft.au=Yin%2C+Mingjie&rft.au=Xu%2C+Gaixia&rft.au=Lin%2C+Wei-Jen&rft.date=2019-04-01&rft.eissn=2192-2659&rft.volume=8&rft.issue=8&rft.spage=e1801318&rft_id=info:doi/10.1002%2Fadhm.201801318&rft_id=info%3Apmid%2F30829008&rft.externalDocID=30829008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon