Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma
Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGyl...
Saved in:
Published in | Advanced healthcare materials Vol. 8; no. 8; pp. e1801318 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC.
PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) can effectively encapsulate miRNAs to form the capsule‐like structure nanocomplexes by self‐assembly. In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. |
---|---|
AbstractList | Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC. Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG‐BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG‐BCPV‐based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG‐BCPVs as the carrier should be a promising modality for combating HCC. PEGylated biodegradable charged polyester‐based vectors (PEG‐BCPVs) can effectively encapsulate miRNAs to form the capsule‐like structure nanocomplexes by self‐assembly. In vitro study results show that PEG‐BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC.Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery efficiency of miRNA remains a huge hurdle due to the lack of safe and efficient nonviral carriers. In this work, with the use of newly developed PEGylated biodegradable charged polyester-based vectors (PEG-BCPVs) as the carrier, the miR26a and miR122 codelivering therapeutic strategy (PEG-BCPVs/miR26a/miR122 as the delivery formulation) is successfully developed for efficient treatment of human hepatocellular carcinoma (HCC). In vitro study results show that PEG-BCPVs are capable of effectively facilitating miRNA cellular uptake via a cell endocytosis pathway. Consequently, the restoration of miR26a and miR122 remarkably inhibit the cell growth, migration, invasion, colony formation, and induced apoptosis of HepG2 cells. More importantly, the chemosensitivity of HepG2 to anticancer drug is also considerably enhanced. After treatment with the PEG-BCPV-based miRNA delivery system, the expression of the multiple targeted genes corresponding to miR26a and miR122 in HepG2 cells is greatly downregulated. Accordingly, the newly developed miRNA restoration therapeutic strategy via biodegradable PEG-BCPVs as the carrier should be a promising modality for combating HCC. |
Author | Zhang, Yinling Xu, Gaixia Yang, Chengbin Chen, Chih‐Kuang Chen, Jiajie Lin, Wei‐Jen Yong, Ken‐Tye Yin, Mingjie Huang, Peng Feng, Tao |
Author_xml | – sequence: 1 givenname: Chengbin orcidid: 0000-0001-9672-7412 surname: Yang fullname: Yang, Chengbin organization: Shenzhen University – sequence: 2 givenname: Mingjie surname: Yin fullname: Yin, Mingjie organization: Nanyang Technological University – sequence: 3 givenname: Gaixia surname: Xu fullname: Xu, Gaixia organization: Shenzhen University – sequence: 4 givenname: Wei‐Jen surname: Lin fullname: Lin, Wei‐Jen organization: Feng Chia University – sequence: 5 givenname: Jiajie surname: Chen fullname: Chen, Jiajie organization: Shenzhen University – sequence: 6 givenname: Yinling surname: Zhang fullname: Zhang, Yinling organization: Shenzhen University – sequence: 7 givenname: Tao surname: Feng fullname: Feng, Tao organization: Shenzhen University – sequence: 8 givenname: Peng surname: Huang fullname: Huang, Peng email: peng.huang@szu.edu.cn organization: Shenzhen University – sequence: 9 givenname: Chih‐Kuang surname: Chen fullname: Chen, Chih‐Kuang email: chihkuan@yuntech.edu.tw organization: National Yunlin University of Science and Technology – sequence: 10 givenname: Ken‐Tye surname: Yong fullname: Yong, Ken‐Tye email: ktyong@ntu.edu.sg organization: Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30829008$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9r2zAUx8VoWX-s1x2HYJddkkmyZUvHLGuXQZuNkZ3Fs_WcqsiSJ9ts-e_rkC6DQpl48HT4fKTH-16QkxADEvKWszlnTHwEe9_OBeOK8YyrV-RccC1mopD65HjP2Rm56vsHNp1C8kLx1-QsY0poxtQ5-fPJRYvbBBYqj_R79LsWU09hKrqOoY7WhS1t3Y_1gq4hxBpScphoExO9G_3guknbQNrisAc395ig29HY0NXYQqAr7GCINXo_ekh0Cal2Ibbwhpw24Hu8euqX5OfN9Wa5mt1--_J1ubid1TlnaibAZjVAUTGZS40KRWbLusxLKbnKZcGVaBiwSmZWNhlKVakC8nxqVmssILskHw7vdin-GrEfTOv6_TgQMI69EVyVWmrN5YS-f4Y-xDGFaTojBM9KybguJurdEzVWLVrTJddC2pm_O52A-QGoU-z7hM0R4czsczP73Mwxt0nInwm1G2BwMQwJnH9Z0wftt_O4-88nZvF5dffPfQTqeKvO |
CitedBy_id | crossref_primary_10_1002_mabi_202300362 crossref_primary_10_1021_acs_biomac_1c01498 crossref_primary_10_1186_s12951_022_01615_2 crossref_primary_10_3389_fcvm_2022_980718 crossref_primary_10_1016_j_envres_2023_116490 crossref_primary_10_1039_D2BM01001A crossref_primary_10_1002_jbm_a_36739 crossref_primary_10_1007_s12010_023_04597_5 crossref_primary_10_1002_adhm_202201306 crossref_primary_10_1016_j_actbio_2024_04_013 crossref_primary_10_1002_adhm_202002143 crossref_primary_10_3390_ijms21093253 crossref_primary_10_1016_j_nanoen_2019_103901 crossref_primary_10_3390_nano11092312 crossref_primary_10_1002_adhm_202302409 crossref_primary_10_1016_j_eurpolymj_2024_113624 crossref_primary_10_1021_acs_analchem_9b04752 crossref_primary_10_3389_fonc_2020_01509 crossref_primary_10_1016_j_snb_2024_135372 crossref_primary_10_1002_nano_202000130 crossref_primary_10_1016_j_cej_2024_155189 crossref_primary_10_3390_cancers15235557 crossref_primary_10_1039_D0PY01755H crossref_primary_10_1002_mabi_202100349 crossref_primary_10_1016_j_bioorg_2021_105299 crossref_primary_10_1186_s12951_022_01472_z crossref_primary_10_1155_2020_9593254 crossref_primary_10_1007_s12672_024_01341_1 crossref_primary_10_1016_j_jcis_2024_11_146 |
Cites_doi | 10.1113/expphysiol.2012.065854 10.1016/j.drudis.2012.10.002 10.1002/hep.26305 10.1038/mt.2011.64 10.1016/j.canlet.2017.03.004 10.1039/C7AN01026E 10.1007/s12274-017-1521-7 10.1039/C6NR00996D 10.1021/acssensors.7b00045 10.1016/j.biomaterials.2012.12.016 10.1016/j.drudis.2016.10.014 10.1039/C4BM00306C 10.1039/C4TB01623H 10.1007/s12274-014-0642-5 10.1016/j.addr.2014.10.031 10.1158/0008-5472.CAN-06-4607 10.1038/s41928-017-0004-x 10.1016/j.cell.2009.04.021 10.1016/j.biomaterials.2011.03.035 10.1016/j.ijpharm.2006.06.029 10.1038/nrd.2016.246 10.1038/nature13905 10.1186/s12951-015-0070-z 10.1021/mp900107v 10.1002/adhm.201700695 10.1371/journal.pone.0065138 10.1371/journal.pone.0077957 10.1002/smll.201503352 10.1016/j.addr.2014.05.009 10.1016/j.biomaterials.2014.10.036 10.1158/0008-5472.CAN-10-4645 10.1053/j.gastro.2007.04.061 10.1016/j.addr.2009.04.018 10.1016/j.addr.2015.09.012 10.1002/jcp.26514 10.1016/j.biomaterials.2013.08.063 10.1038/ncomms11012 10.1088/0957-4484/26/36/365101 10.1038/nrc3932 10.1111/j.2042-7158.2012.01567.x 10.3322/caac.21442 10.1002/hep.22160 10.1016/S0142-9612(03)00420-4 10.1016/j.jconrel.2006.11.028 10.1080/10611860701849058 10.1038/nature03702 10.1016/j.addr.2016.06.011 10.1039/C3BM60325C 10.1039/C6TB03116A 10.1038/onc.2009.211 10.1158/0008-5472.CAN-10-1850 10.1021/acsami.8b16168 10.2147/IJN.S148142 10.1136/gutjnl-2013-306627 10.1002/hep.22806 10.1074/jbc.M109.016774 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
DOI | 10.1002/adhm.201801318 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Immunology Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Oncogenes and Growth Factors Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Computer and Information Systems Abstracts Professional Immunology Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2192-2659 |
EndPage | n/a |
ExternalDocumentID | 30829008 10_1002_adhm_201801318 ADHM201801318 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NEWRI seed funding funderid: NEWRI SF20140901 – fundername: Ministry of Science and Technology of Taiwan funderid: MOST 106‐2221‐E‐224‐058; MOST 107‐2632‐E‐035‐001; MOST 106‐2113‐M‐039‐002‐MY2; MOST 107‐2221‐E‐224‐059‐MY2 – fundername: NTU–A*STAR Silicon Technologies – fundername: Centre of Excellence funderid: 11235100003 – fundername: School of Electrical and Electronic Engineering at NTU – fundername: National Natural Science Foundation of China funderid: 81400591 – fundername: NEWRI seed funding grantid: NEWRI SF20140901 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 107-2632-E-035-001 – fundername: Centre of Excellence grantid: 11235100003 – fundername: NTU-A*STAR Silicon Technologies – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 106-2113-M-039-002-MY2 – fundername: National Natural Science Foundation of China grantid: 81400591 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 106-2221-E-224-058 – fundername: Ministry of Science and Technology of Taiwan grantid: MOST 107-2221-E-224-059-MY2 |
GroupedDBID | 05W 0R~ 1OC 33P 53G 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABLJU ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI C45 D-A D-B DCZOG DRFUL DRMAN DRSTM EBD EBS EJD EMOBN G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXMAN MXSTM MY. MY~ O9- OVD P2W PQQKQ ROL SUPJJ SV3 TEORI WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION GODZA NPM 7QF 7QP 7QQ 7SC 7SE 7SP 7SR 7T5 7TA 7TB 7TM 7TO 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c4108-2ad3caa6b05459e8e23d7c7475518456182f0a0b53d5f3e58b86a448b8d99e6a3 |
ISSN | 2192-2640 2192-2659 |
IngestDate | Fri Jul 11 06:18:34 EDT 2025 Fri Jul 25 11:57:58 EDT 2025 Thu Apr 03 06:59:37 EDT 2025 Tue Jul 01 03:06:33 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Wed Jan 22 16:35:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | miRNA delivery biodegradable PEGylation multiple targeting hepatocellular carcinoma |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4108-2ad3caa6b05459e8e23d7c7475518456182f0a0b53d5f3e58b86a448b8d99e6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9672-7412 |
PMID | 30829008 |
PQID | 2213750196 |
PQPubID | 2032434 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2187959915 proquest_journals_2213750196 pubmed_primary_30829008 crossref_primary_10_1002_adhm_201801318 crossref_citationtrail_10_1002_adhm_201801318 wiley_primary_10_1002_adhm_201801318_ADHM201801318 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced healthcare materials |
PublicationTitleAlternate | Adv Healthc Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 13 2017; 5 2015; 15 2015; 38 2015; 3 2013; 65 2019; 11 2009; 61 2017; 22 2005; 435 2011; 32 2015 2017; 26 142 2016; 104 2018 2017; 1 2 2014; 63 2013; 8 2011; 19 2009; 49 2011; 310 2009; 137 2016; 12 2018; 68 2009; 28 2016; 99 2018; 7 2013; 18 2009 2008; 6 16 2016; 7 2007; 118 2013; 58 2014; 2 2015; 81 2017; 16 2013; 34 2007; 132 2011; 71 2018; 233 2017; 10 2003; 24 2015; 518 2017 2008; 397 47 2009; 284 2012 2015; 97 8 2006; 324 2012; 7 2007; 67 2016; 8 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Zheng S. Y. (e_1_2_7_46_1) 2012; 7 e_1_2_7_50_1 e_1_2_7_52_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Xu Y. (e_1_2_7_43_1) 2011; 310 |
References_xml | – volume: 118 start-page: 7 year: 2007 publication-title: J. Controlled Release – volume: 11 start-page: 2768 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 518 start-page: 107 year: 2015 publication-title: Nature – volume: 435 start-page: 834 year: 2005 publication-title: Nature – volume: 8 start-page: 9405 year: 2016 publication-title: Nanoscale – volume: 397 47 start-page: 33 897 year: 2017 2008 publication-title: Cancer Lett. Hepatology – volume: 7 start-page: 11012 year: 2016 publication-title: Nat. Commun. – volume: 5 start-page: 3327 year: 2017 publication-title: J. Mater. Chem. B – volume: 310 start-page: 160 year: 2011 publication-title: Cancer Lett. – volume: 99 start-page: 28 year: 2016 publication-title: Adv. Drug Delivery Rev. – volume: 68 start-page: 7 year: 2018 publication-title: Ca‐Cancer J. Clin. – volume: 137 start-page: 1005 year: 2009 publication-title: Cell – volume: 10 start-page: 3049 year: 2017 publication-title: Nano Res. – volume: 12 start-page: 534 year: 2016 publication-title: Small – volume: 1 2 start-page: 79 468 year: 2018 2017 publication-title: Nat. Electron. ACS Sens. – volume: 13 start-page: 12 year: 2015 publication-title: J. Nanobiotechnol. – volume: 7 start-page: 1700695 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 16 start-page: 203 year: 2017 publication-title: Nat. Rev. Drug Discovery – volume: 49 start-page: 1571 year: 2009 publication-title: Hepatology – volume: 6 16 start-page: 1246 124 year: 2009 2008 publication-title: Mol. Pharmaceutics J. Drug Targeting – volume: 7 start-page: 3939 year: 2012 publication-title: Int. J. Nanomed. – volume: 2 start-page: 1007 year: 2014 publication-title: Biomater. Sci. – volume: 3 start-page: 2163 year: 2015 publication-title: J. Mater. Chem. B – volume: 38 start-page: 97 year: 2015 publication-title: Biomaterials – volume: 81 start-page: 142 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 15 start-page: 321 year: 2015 publication-title: Nat. Rev. Cancer – volume: 71 start-page: 225 year: 2011 publication-title: Cancer Res. – volume: 58 start-page: 158 year: 2013 publication-title: Hepatology – volume: 34 start-page: 9688 year: 2013 publication-title: Biomaterials – volume: 132 start-page: 2557 year: 2007 publication-title: Gastroenterology – volume: 284 start-page: 32015 year: 2009 publication-title: J. Biol. Chem. – volume: 32 start-page: 4936 year: 2011 publication-title: Biomaterials – volume: 67 start-page: 6092 year: 2007 publication-title: Cancer Res. – volume: 13 start-page: 209 year: 2018 publication-title: Int. J. Nanomed. – volume: 3 start-page: 192 year: 2015 publication-title: Biomater. Sci. – volume: 61 start-page: 850 year: 2009 publication-title: Adv. Drug Delivery Rev. – volume: 26 142 start-page: 365101 3579 year: 2015 2017 publication-title: Nanotechnology Analyst – volume: 81 start-page: 128 year: 2015 publication-title: Adv. Drug Delivery Rev. – volume: 233 start-page: 5574 year: 2018 publication-title: J. Cell. Physiol. – volume: 65 start-page: 157 year: 2013 publication-title: J. Pharm. Pharmacol. – volume: 19 start-page: 1521 year: 2011 publication-title: Mol. Ther. – volume: 63 start-page: 844 year: 2014 publication-title: Gut – volume: 24 start-page: 4949 year: 2003 publication-title: Biomaterials – volume: 8 start-page: e77957 year: 2013 publication-title: PLoS One – volume: 22 start-page: 424 year: 2017 publication-title: Drug Discovery Today – volume: 104 start-page: 61 year: 2016 publication-title: Adv. Drug Delivery Rev. – volume: 324 start-page: 185 year: 2006 publication-title: Int. J. Pharm. – volume: 18 start-page: 282 year: 2013 publication-title: Drug Discovery Today – volume: 71 start-page: 5214 year: 2011 publication-title: Cancer Res. – volume: 97 8 start-page: 1315 1563 year: 2012 2015 publication-title: Exp. Physiol. Nano Res. – volume: 28 start-page: 3526 year: 2009 publication-title: Oncogene – volume: 8 start-page: e65138 year: 2013 publication-title: PLoS One – volume: 34 start-page: 2265 year: 2013 publication-title: Biomaterials – ident: e_1_2_7_53_1 doi: 10.1113/expphysiol.2012.065854 – ident: e_1_2_7_7_1 doi: 10.1016/j.drudis.2012.10.002 – ident: e_1_2_7_16_1 doi: 10.1002/hep.26305 – ident: e_1_2_7_18_1 doi: 10.1038/mt.2011.64 – ident: e_1_2_7_42_1 doi: 10.1016/j.canlet.2017.03.004 – ident: e_1_2_7_52_2 doi: 10.1039/C7AN01026E – ident: e_1_2_7_9_1 doi: 10.1007/s12274-017-1521-7 – ident: e_1_2_7_28_1 doi: 10.1039/C6NR00996D – ident: e_1_2_7_29_2 doi: 10.1021/acssensors.7b00045 – ident: e_1_2_7_4_1 doi: 10.1016/j.biomaterials.2012.12.016 – ident: e_1_2_7_15_1 doi: 10.1016/j.drudis.2016.10.014 – ident: e_1_2_7_47_1 doi: 10.1039/C4BM00306C – ident: e_1_2_7_25_1 doi: 10.1039/C4TB01623H – ident: e_1_2_7_53_2 doi: 10.1007/s12274-014-0642-5 – ident: e_1_2_7_24_1 doi: 10.1016/j.addr.2014.10.031 – ident: e_1_2_7_48_1 doi: 10.1158/0008-5472.CAN-06-4607 – volume: 310 start-page: 160 year: 2011 ident: e_1_2_7_43_1 publication-title: Cancer Lett. – ident: e_1_2_7_29_1 doi: 10.1038/s41928-017-0004-x – ident: e_1_2_7_20_1 doi: 10.1016/j.cell.2009.04.021 – ident: e_1_2_7_36_1 doi: 10.1016/j.biomaterials.2011.03.035 – ident: e_1_2_7_31_1 doi: 10.1016/j.ijpharm.2006.06.029 – ident: e_1_2_7_1_1 doi: 10.1038/nrd.2016.246 – ident: e_1_2_7_5_1 doi: 10.1038/nature13905 – ident: e_1_2_7_22_1 doi: 10.1186/s12951-015-0070-z – ident: e_1_2_7_34_1 doi: 10.1021/mp900107v – ident: e_1_2_7_3_1 doi: 10.1002/adhm.201700695 – ident: e_1_2_7_44_1 doi: 10.1371/journal.pone.0065138 – ident: e_1_2_7_17_1 doi: 10.1371/journal.pone.0077957 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201503352 – ident: e_1_2_7_6_1 doi: 10.1016/j.addr.2014.05.009 – ident: e_1_2_7_33_1 doi: 10.1016/j.biomaterials.2014.10.036 – ident: e_1_2_7_39_1 doi: 10.1158/0008-5472.CAN-10-4645 – ident: e_1_2_7_13_1 doi: 10.1053/j.gastro.2007.04.061 – volume: 7 start-page: 3939 year: 2012 ident: e_1_2_7_46_1 publication-title: Int. J. Nanomed. – ident: e_1_2_7_35_1 doi: 10.1016/j.addr.2009.04.018 – ident: e_1_2_7_51_1 doi: 10.1016/j.addr.2015.09.012 – ident: e_1_2_7_8_1 doi: 10.1002/jcp.26514 – ident: e_1_2_7_50_1 doi: 10.1016/j.biomaterials.2013.08.063 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms11012 – ident: e_1_2_7_52_1 doi: 10.1088/0957-4484/26/36/365101 – ident: e_1_2_7_2_1 doi: 10.1038/nrc3932 – ident: e_1_2_7_45_1 doi: 10.1111/j.2042-7158.2012.01567.x – ident: e_1_2_7_11_1 doi: 10.3322/caac.21442 – ident: e_1_2_7_42_2 doi: 10.1002/hep.22160 – ident: e_1_2_7_38_1 doi: 10.1016/S0142-9612(03)00420-4 – ident: e_1_2_7_37_1 doi: 10.1016/j.jconrel.2006.11.028 – ident: e_1_2_7_34_2 doi: 10.1080/10611860701849058 – ident: e_1_2_7_14_1 doi: 10.1038/nature03702 – ident: e_1_2_7_27_1 doi: 10.1016/j.addr.2016.06.011 – ident: e_1_2_7_30_1 doi: 10.1039/C3BM60325C – ident: e_1_2_7_32_1 doi: 10.1039/C6TB03116A – ident: e_1_2_7_41_1 doi: 10.1038/onc.2009.211 – ident: e_1_2_7_19_1 doi: 10.1158/0008-5472.CAN-10-1850 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.8b16168 – ident: e_1_2_7_40_1 doi: 10.2147/IJN.S148142 – ident: e_1_2_7_12_1 doi: 10.1136/gutjnl-2013-306627 – ident: e_1_2_7_23_1 doi: 10.1002/hep.22806 – ident: e_1_2_7_49_1 doi: 10.1074/jbc.M109.016774 |
SSID | ssj0000651681 |
Score | 2.342495 |
Snippet | Therapeutic strategy based on the restoration of tumor suppressor‐microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery... Therapeutic strategy based on the restoration of tumor suppressor-microRNAs (miRNAs) is a promising approach for cancer therapy, but the low delivery... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1801318 |
SubjectTerms | Apoptosis Biodegradability biodegradable Cell migration Endocytosis Gene expression Hepatocellular carcinoma Liver cancer miRNA miRNA delivery multiple targeting PEGylation Restoration Strategy Therapy Tumor suppressor genes |
Title | Biodegradable Polymers as a Noncoding miRNA Nanocarrier for Multiple Targeting Therapy of Human Hepatocellular Carcinoma |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadhm.201801318 https://www.ncbi.nlm.nih.gov/pubmed/30829008 https://www.proquest.com/docview/2213750196 https://www.proquest.com/docview/2187959915 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJqHxgLiOwkBGQuIBBRLn5jyWDlRNa4WgE-UpcmJnDdriabTS4IHfzrFju4noxEWq0jSxnNTf5-Pjo-PPCL2oSJmSMgq8OBO-FzEeeCwWkUdSmDMXYRpmepeI6SyZnERHi3gxGPzsri5ZFa_LH1vXlfwPqnANcFWrZP8BWVcpXIBzwBeOgDAc_wrjt7XkSuyB6_VPH-TZdxWFVlvHsFcz2ZRSr1g5rz_ORsqMwrB1qTeoU6mFU5tJONe54KrgvFUY2MT2JzBWraSK7etk1bHad6iRxpJb6VqbRLDcZJKBF9z-fWdTTFR6vBTNaVE7Qn6pTe5-c_q1dhRbrHW0ntVXtRs0jtuSn0XtHZnVayZWEWSdFBehbRrYR-KRxIiAGwNMOzyjHWMqAqrUgOhWS98qxzK-VHICWwoCUhfnGnclyJP5Pt2MeC4P0d66gXaBnMrB3h0dTo8_uSgdOGhBQgOr9umTN_0n7qGbto6-Y_PbbKU_-dHey_wOum2mHXjUcuguGojmHrrVEaO8j656bMKWTZjBBzs2Yc0m3GETBjZhyybs2IQNm7CssGYT7rMJOzY9QCfv383HE8_sy-FBp_ahCzIelowlBbj70MWpICFPS5iXKnU_5ZBTUvnML-KQx1UoYlrQhEURfPEsEwkLH6KdRjbiEcKsqhImghSa0o-ilLNQkCgrkyxlJBZlPESebdS8NKL1au-Us7yV2ya5wiN3eAzRS1f-opVrubbkgcUoN136W05IEIILDaPSED13t8HgqrZhjZBrKBPQNIthWgUvt99i6x5luTBERIP9h3fIR4eTqfv1-NrqnqC9TW86QDury7V4Cr7wqnhmCPsL9a-xyw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Polymers+as+a+Noncoding+miRNA+Nanocarrier+for+Multiple+Targeting+Therapy+of+Human+Hepatocellular+Carcinoma&rft.jtitle=Advanced+healthcare+materials&rft.au=Yang%2C+Chengbin&rft.au=Yin%2C+Mingjie&rft.au=Xu%2C+Gaixia&rft.au=Lin%2C+Wei-Jen&rft.date=2019-04-01&rft.eissn=2192-2659&rft.volume=8&rft.issue=8&rft.spage=e1801318&rft_id=info:doi/10.1002%2Fadhm.201801318&rft_id=info%3Apmid%2F30829008&rft.externalDocID=30829008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-2640&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-2640&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-2640&client=summon |