Low‐Cost Counter‐Electrode Materials for Dye‐Sensitized and Perovskite Solar Cells

It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 3; pp. e1806478 - n/a
Main Authors Li, Guo‐Ran, Gao, Xue‐Ping
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized, developing low‐cost and highly efficient solar cells to meet future needs is still a long‐term challenge. Some emerging solar‐cell types, such as dye‐sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low‐cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter‐electrode materials available, and their scope for further improvement, has expanded for dye‐sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost‐effective counter‐electrode materials in emerging solar cells. Low‐cost counter materials for dye‐sensitized and perovskite solar cells are summarized, with a focus on the regular patterns that appear in their intrinsic features and structural design.
AbstractList It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized, developing low‐cost and highly efficient solar cells to meet future needs is still a long‐term challenge. Some emerging solar‐cell types, such as dye‐sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low‐cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter‐electrode materials available, and their scope for further improvement, has expanded for dye‐sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost‐effective counter‐electrode materials in emerging solar cells. Low‐cost counter materials for dye‐sensitized and perovskite solar cells are summarized, with a focus on the regular patterns that appear in their intrinsic features and structural design.
It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.
It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.
Author Li, Guo‐Ran
Gao, Xue‐Ping
Author_xml – sequence: 1
  givenname: Guo‐Ran
  surname: Li
  fullname: Li, Guo‐Ran
  email: guoranli@nankai.edu.cn
  organization: Nankai University
– sequence: 2
  givenname: Xue‐Ping
  orcidid: 0000-0001-7305-7567
  surname: Gao
  fullname: Gao, Xue‐Ping
  email: xpgao@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31116898$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaDZprz0WQy-9eDP6sC0dFyf9gA0ppIXehCyPQanXSiU5YXvqT-hvzC-JwiYpBEpPQprn0QzzHpK9yU9IyBsKSwrAjk2_MUsGVEItGvmCLGjFaClAVXtkAYpXpaqFPCCHMV4CgKqhfkkOOKW0lkouyPe1v7n9_af1MRWtn6eEIV9PR7Qp-B6LM5NfnBljMfhQnGwxVy9wii65X9gXZuqLLxj8dfzhEhYXfjShaHEc4yuyP2QNXz-cR-Tbh9Ov7adyff7xc7tal1ZQkCVrKoHUGoGqa3rRMN4ZLrm1DHpQOABIJjtamUZaVFbUQgjbyUrZoeYWO35E3u_-vQr-54wx6Y2LNk9gJvRz1IxxBk2VvYy-e4Ze-jlMeTrNuMggr3mTqbcP1NxtsNdXwW1M2OrHnWVguQNs8DEGHJ4QCvo-FH0fin4KJQvimWBdMsn5KQXjxn9raqfduBG3_2miVydnq7_uHQgCovY
CitedBy_id crossref_primary_10_1021_acsami_9b20315
crossref_primary_10_3390_molecules26175186
crossref_primary_10_1002_ente_202100859
crossref_primary_10_1016_j_jcis_2024_02_193
crossref_primary_10_1016_j_solener_2022_02_011
crossref_primary_10_1002_er_5174
crossref_primary_10_1002_cssc_202001898
crossref_primary_10_1021_acs_energyfuels_4c00050
crossref_primary_10_1088_1402_4896_acb6c2
crossref_primary_10_1016_j_carbon_2020_12_057
crossref_primary_10_1016_j_solener_2021_01_062
crossref_primary_10_1021_acssuschemeng_1c03565
crossref_primary_10_1039_D3RA01639K
crossref_primary_10_1002_celc_202100811
crossref_primary_10_1080_1536383X_2023_2168265
crossref_primary_10_1002_adfm_202100151
crossref_primary_10_1002_slct_202004644
crossref_primary_10_1039_D4EE05462H
crossref_primary_10_1007_s10895_023_03144_z
crossref_primary_10_1016_j_vacuum_2024_112982
crossref_primary_10_1016_j_surfin_2023_102945
crossref_primary_10_1002_adma_202207785
crossref_primary_10_1016_j_nxmate_2025_100518
crossref_primary_10_1021_acsaelm_4c00786
crossref_primary_10_2174_1872210518666230915142211
crossref_primary_10_1021_acs_energyfuels_1c02358
crossref_primary_10_1002_ente_202400254
crossref_primary_10_1002_adfm_202404361
crossref_primary_10_1002_adfm_202200651
crossref_primary_10_1021_jacs_3c07222
crossref_primary_10_3390_coatings13030644
crossref_primary_10_1002_smll_202202133
crossref_primary_10_1002_solr_202300701
crossref_primary_10_1007_s10853_024_09450_6
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1016_j_matlet_2021_131309
crossref_primary_10_1039_D2CP02308C
crossref_primary_10_1039_D2TC05480A
crossref_primary_10_1021_acsomega_1c03798
crossref_primary_10_1088_1361_6463_ac252c
crossref_primary_10_1016_j_jmat_2020_12_018
crossref_primary_10_1002_cssc_202100083
crossref_primary_10_1016_j_mseb_2024_117778
crossref_primary_10_1021_acssuschemeng_0c06106
crossref_primary_10_1016_j_rser_2022_112196
crossref_primary_10_1039_D0SE00596G
crossref_primary_10_3390_inorganics11040159
crossref_primary_10_1021_acssuschemeng_9b03596
crossref_primary_10_1021_acssuschemeng_1c06699
crossref_primary_10_1021_acsaem_1c02765
crossref_primary_10_1039_D2QI02029G
crossref_primary_10_1002_admi_202201494
crossref_primary_10_1002_aenm_202002067
crossref_primary_10_1002_aesr_202100050
crossref_primary_10_1016_j_orgel_2022_106533
crossref_primary_10_1039_D3YA00476G
crossref_primary_10_1002_aenm_202002326
crossref_primary_10_1039_D2MH00671E
crossref_primary_10_1002_ente_202300837
crossref_primary_10_1039_D1TC02734D
crossref_primary_10_1002_solr_202400091
crossref_primary_10_1016_j_jpowsour_2021_230496
crossref_primary_10_1002_smtd_202201659
crossref_primary_10_1021_acsanm_3c03889
crossref_primary_10_1007_s11664_020_08403_4
crossref_primary_10_1016_j_carbon_2023_01_046
crossref_primary_10_1016_j_jallcom_2020_155531
crossref_primary_10_1016_j_mattod_2021_05_016
crossref_primary_10_1021_acssuschemeng_3c00424
crossref_primary_10_3390_catal10080897
crossref_primary_10_25046_aj0506113
crossref_primary_10_1021_acsmaterialsau_1c00038
crossref_primary_10_1002_adfm_202106854
crossref_primary_10_1016_j_cej_2022_137854
crossref_primary_10_1021_acsami_4c07144
crossref_primary_10_1016_j_solmat_2021_111064
crossref_primary_10_1039_D3DT04347A
crossref_primary_10_1016_j_solener_2021_09_052
crossref_primary_10_1016_j_ceramint_2024_07_153
crossref_primary_10_1016_j_apenergy_2021_117251
crossref_primary_10_1088_2515_7639_acc893
crossref_primary_10_1016_j_jcis_2020_10_003
crossref_primary_10_1016_j_jelechem_2021_115384
crossref_primary_10_1016_j_solener_2021_04_001
crossref_primary_10_1002_admi_202101229
crossref_primary_10_1016_j_jallcom_2022_165395
crossref_primary_10_1016_j_jmat_2021_01_004
crossref_primary_10_1016_j_jcis_2022_05_147
crossref_primary_10_1126_sciadv_adi3839
crossref_primary_10_1109_JPHOTOV_2021_3071999
crossref_primary_10_1080_00958972_2024_2404070
crossref_primary_10_1016_j_solener_2021_07_058
crossref_primary_10_1021_acsaem_1c01628
crossref_primary_10_1021_acssuschemeng_1c07626
crossref_primary_10_1016_j_cej_2020_125463
crossref_primary_10_1021_acs_chemrev_3c00931
crossref_primary_10_1021_acsaelm_2c01445
crossref_primary_10_1016_j_nanoen_2024_110523
crossref_primary_10_1002_adfm_202006270
crossref_primary_10_1002_solr_202300479
crossref_primary_10_1016_j_jallcom_2023_169820
crossref_primary_10_1007_s11664_021_09193_z
crossref_primary_10_1016_j_ceramint_2023_04_002
crossref_primary_10_1016_j_apsusc_2022_153566
crossref_primary_10_1039_D0TA04626D
crossref_primary_10_1002_cey2_105
crossref_primary_10_1016_j_nanoen_2024_109933
crossref_primary_10_1039_D3TC04665F
Cites_doi 10.1126/science.aad4424
10.1016/j.electacta.2015.11.071
10.1021/am201720p
10.1016/j.jpowsour.2014.03.035
10.1002/smll.201470020
10.1016/S0926-860X(02)00428-3
10.1039/c1cc10638d
10.1039/C7EE01889D
10.1039/C7TA10871K
10.1021/am400031w
10.1039/c3cc00188a
10.1021/nn404323g
10.1016/j.solener.2017.12.028
10.1038/nenergy.2017.9
10.1016/j.mattod.2013.12.002
10.1021/ja303034w
10.1016/j.solmat.2005.04.040
10.1038/353737a0
10.1039/b912776c
10.1016/j.pmatsci.2016.02.001
10.1016/j.solener.2017.01.019
10.1021/acsami.6b09925
10.1039/C5EE03394B
10.1039/c3ta12349a
10.1002/adma.201304986
10.1021/am401392k
10.1039/c1ee01105g
10.1039/C2TA01003H
10.1039/c1ee01059j
10.1038/nenergy.2016.190
10.1002/anie.201310509
10.1039/C5NR03610K
10.1039/c2ta00608a
10.1016/j.jpowsour.2016.04.002
10.1021/nn302063s
10.1002/aenm.201601116
10.1002/celc.201402406
10.1002/adma.201700607
10.1016/j.rser.2016.09.097
10.1021/cm203672g
10.1039/c3cc44518f
10.1016/j.matchemphys.2013.08.010
10.1039/c3ra42360c
10.1038/nenergy.2017.102
10.1039/c2jm33521b
10.1021/nn1016428
10.1039/c4ta01342e
10.1016/j.nanoen.2017.11.003
10.1038/nature11475
10.1039/C2CP23775J
10.1039/C2CP42790G
10.1039/c3cc45698f
10.1016/j.nanoen.2018.07.049
10.1039/c2cc38621f
10.1038/nmat1840
10.1021/am508678p
10.1016/j.eurpolymj.2015.01.049
10.1002/anie.201409422
10.1039/C4TA04953E
10.1038/srep03132
10.1016/j.ccr.2004.03.028
10.1016/j.nanoen.2018.09.049
10.1039/C4TA04994B
10.1021/acsami.5b08501
10.1021/acssuschemeng.7b01556
10.1002/adma.201606398
10.1038/ncomms9932
10.1038/s41563-018-0115-4
10.1038/376498a0
10.1039/C6EE02980A
10.1016/j.electacta.2015.08.072
10.3390/cryst7090271
10.1021/cr900356p
10.1007/s00604-011-0597-0
10.1016/j.electacta.2017.11.183
10.1016/j.solmat.2015.11.026
10.1038/454816a
10.1016/j.energy.2013.01.037
10.1002/cssc.201500004
10.1039/C6CS00752J
10.1002/adma.201702140
10.1039/C5NR07347B
10.1016/j.solener.2012.11.013
10.1002/aenm.201501873
10.1016/j.electacta.2013.02.059
10.1039/C7TA09174E
10.1039/C4RA09519G
10.1016/j.electacta.2012.01.041
10.1016/j.jphotochem.2016.07.029
10.1016/j.carbon.2015.05.042
10.1021/nn901660v
10.1016/j.jpowsour.2016.05.023
10.1021/acsami.5b09012
10.1021/acs.nanolett.6b04019
10.1039/C5MH00160A
10.1016/j.ensm.2016.11.007
10.1002/aenm.201600372
10.1021/ja905970y
10.1039/C5TA07507F
10.1021/nn102353h
10.1002/cphc.201402570
10.1002/anie.201104786
10.1016/j.jpowsour.2014.05.062
10.1016/j.jpowsour.2008.11.075
10.1039/C4RA13130D
10.1039/c3ta14313a
10.1039/C3TA13374E
10.1039/c2nr31379k
10.1016/j.elecom.2008.05.013
10.1039/C4TA03727H
10.1016/j.jpowsour.2015.11.062
10.1063/1.3699618
10.1002/anie.201400388
10.1021/ja209657v
10.1002/aenm.201502087
10.1063/1.4880899
10.1002/smll.201701225
10.1039/c2jm30420a
10.1039/C7TA02440A
10.1039/C5TA06525A
10.1021/jp412542d
10.1002/adma.201402056
10.1021/jp1035184
10.1002/aenm.201700302
10.1002/anie.201000659
10.1021/cr00033a003
10.1021/nl2015729
10.1002/anie.201406982
10.1002/aenm.201100324
10.1016/j.nanoen.2017.12.043
10.1002/adma.201501145
10.1016/S0378-7753(01)00613-9
10.1002/anie.201006635
10.1002/adma.201403951
10.1021/am200659y
10.1002/anie.201705399
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201806478
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31116898
10_1002_adma_201806478
ADMA201806478
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: NSFC
  funderid: 21875123
– fundername: Natural Science Foundation of Tianjin
  funderid: 18JCZDJC31000
– fundername: NSFC
  grantid: 21875123
– fundername: Natural Science Foundation of Tianjin
  grantid: 18JCZDJC31000
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4108-2754e1ca4e9b7d4723ba383cc20d09ef00828b15a78ce9c46444cb859cf63ceb3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 05:09:41 EDT 2025
Fri Jul 25 08:02:23 EDT 2025
Thu Apr 03 07:08:47 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Wed Jan 22 16:37:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electrochemistry
dye-sensitized solar cells
counter-electrode materials
perovskite solar cells
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4108-2754e1ca4e9b7d4723ba383cc20d09ef00828b15a78ce9c46444cb859cf63ceb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7305-7567
PMID 31116898
PQID 2342233637
PQPubID 2045203
PageCount 20
ParticipantIDs proquest_miscellaneous_2232075644
proquest_journals_2342233637
pubmed_primary_31116898
crossref_primary_10_1002_adma_201806478
crossref_citationtrail_10_1002_adma_201806478
wiley_primary_10_1002_adma_201806478_ADMA201806478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 3
2018; 160
2013; 1
1991; 353
2016; 146
2014; 26
2016; 304
1995; 376
2012; 15
2012; 488
2012; 14
2018; 45
2013; 5
2018; 6
2012; 134
2016; 319
2013; 54
2010; 114
2013; 117
2010; 110
2007; 6
2014; 17
2012; 24
2010; 4
2012; 22
2014; 10
2011; 1
2013; 88
2017; 68
2016; 322
2011; 4
2011; 3
2016; 16
2011; 5
2017; 258
2016; 4
2016; 6
2018; 17
2010; 49
2016; 3
2001; 97–98
2015; 66
2017; 56
2009; 188
2014; 260
2017; 144
2016; 8
2016; 9
2014; 266
2017; 5
2017; 7
2017; 42
2004; 248
2017; 2
2017; 46
2011; 11
2016; 187
2014; 4
2014; 2
2015; 178
2013; 96
2016; 352
2016; 80
2014; 8
2012; 65
2014; 53
2003; 240
2015; 2
2014; 118
1995; 95
2006; 90
2015; 6
2015; 5
2015; 16
2015; 3
2013; 49
2015; 93
2009
2008; 10
2017; 29
2013; 143
2009; 131
2011; 174
2017; 332
2015; 8
2015; 7
2015; 23
2015; 27
2017; 10
2017; 13
2011; 50
2018; 52
2008; 454
2011; 47
2012; 6
2012; 4
2018; 53
2014; 104
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
Li Z. (e_1_2_8_88_1) 2013; 117
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
Jiang F. (e_1_2_8_144_1) 2015; 23
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 4
  start-page: 887
  year: 2010
  publication-title: ACS Nano
– volume: 23
  start-page: 3748
  year: 2015
  publication-title: Opt. Express
– volume: 49
  start-page: 3653
  year: 2010
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 258
  start-page: 1262
  year: 2017
  publication-title: Electrochim. Acta
– volume: 95
  start-page: 49
  year: 1995
  publication-title: Chem. Rev.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 134
  start-page: 3419
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3632
  year: 2015
  publication-title: Adv. Mater.
– volume: 240
  start-page: 1
  year: 2003
  publication-title: Applied Catalysis A: General.
– volume: 26
  start-page: 8101
  year: 2014
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3650
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 178
  start-page: 886
  year: 2015
  publication-title: Electrochim. Acta
– volume: 66
  start-page: 207
  year: 2015
  publication-title: Eur. Polym. J.
– volume: 26
  start-page: 3055
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 67
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 483
  year: 2014
  publication-title: Small
– volume: 3
  start-page: 3132
  year: 2013
  publication-title: Sci. Rep.
– volume: 5
  start-page: 9758
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 160
  start-page: 396
  year: 2018
  publication-title: Sol. Energy
– volume: 17
  start-page: 16
  year: 2014
  publication-title: Mater. Today
– volume: 144
  start-page: 158
  year: 2017
  publication-title: Sol. Energy
– volume: 49
  start-page: 2028
  year: 2013
  publication-title: Chem. Commun.
– volume: 6
  start-page: 241
  year: 2007
  publication-title: Nat. Mater.
– volume: 53
  start-page: 7023
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 24
  start-page: 1575
  year: 2012
  publication-title: Chem. Mater.
– volume: 4
  start-page: 5659
  year: 2012
  publication-title: Nanoscale
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 266
  start-page: 464
  year: 2014
  publication-title: J. Power Sources
– volume: 4
  start-page: 6203
  year: 2010
  publication-title: ACS Nano
– volume: 1
  start-page: 1982
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 26
  start-page: 6210
  year: 2014
  publication-title: Adv. Mater.
– volume: 90
  start-page: 341
  year: 2006
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 454
  start-page: 816
  year: 2008
  publication-title: Nature
– volume: 14
  start-page: 1339
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 546
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 7
  year: 2016
  publication-title: Mater. Horiz.
– volume: 4
  year: 2012
  publication-title: J. Renewable Sustainable Energy
– volume: 17
  start-page: 820
  year: 2018
  publication-title: Nat. Mater.
– volume: 16
  start-page: 7829
  year: 2016
  publication-title: Nano Lett.
– volume: 97–98
  start-page: 812
  year: 2001
  publication-title: J. Power Sources
– volume: 11
  start-page: 3263
  year: 2011
  publication-title: Nano Lett.
– volume: 248
  start-page: 1421
  year: 2004
  publication-title: Coord. Chem. Rev.
– volume: 114
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 8271
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 352
  start-page: add4424
  year: 2016
  publication-title: Science
– volume: 188
  start-page: 313
  year: 2009
  publication-title: J. Power Sources
– volume: 65
  start-page: 216
  year: 2012
  publication-title: Electrochim. Acta
– volume: 88
  start-page: 129
  year: 2013
  publication-title: Sol. Energy
– volume: 5
  start-page: 4561
  year: 2015
  publication-title: RSC Adv.
– volume: 16
  start-page: 53
  year: 2015
  publication-title: ChemPhysChem
– volume: 7
  start-page: 4283
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 3520
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 165
  year: 2011
  publication-title: ACS Nano
– volume: 117
  start-page: 6561
  year: 2013
  publication-title: Chem. C
– volume: 13
  year: 2017
  publication-title: Small
– volume: 322
  start-page: 155
  year: 2016
  publication-title: J. Power Sources
– volume: 2
  start-page: 4474
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 187
  start-page: 210
  year: 2016
  publication-title: Electrochim. Acta.
– volume: 2
  start-page: 3919
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 146
  start-page: 35
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 47
  start-page: 4535
  year: 2011
  publication-title: Chem. Commun.
– volume: 52
  start-page: 211
  year: 2018
  publication-title: Nano Energy
– volume: 2
  start-page: 928
  year: 2015
  publication-title: ChemElectroChem
– volume: 93
  start-page: 861
  year: 2015
  publication-title: Carbon
– volume: 7
  start-page: 271
  year: 2017
  publication-title: Crystals
– volume: 6
  start-page: 7016
  year: 2012
  publication-title: ACS Nano
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 46
  start-page: 5975
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 42
  start-page: 322
  year: 2017
  publication-title: Nano Energy
– volume: 3
  start-page: 8992
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 1
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 49
  start-page: 1437
  year: 2013
  publication-title: Chem. Commun.
– volume: 10
  start-page: 1087
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 110
  start-page: 6595
  year: 2010
  publication-title: Chem. Rev.
– volume: 80
  start-page: 1
  year: 2016
  publication-title: Prog. Mater. Sci.
– volume: 68
  start-page: 234
  year: 2017
  publication-title: Renewable Sustainable Energy Rev.
– volume: 22
  start-page: 6067
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 143
  start-page: 53
  year: 2013
  publication-title: Mater. Chem. Phys.
– volume: 49
  start-page: 7626
  year: 2013
  publication-title: Chem. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 45
  start-page: 280
  year: 2018
  publication-title: Nano Energy
– volume: 54
  start-page: 315
  year: 2013
  publication-title: Energy
– volume: 8
  start-page: 362
  year: 2014
  publication-title: ACS Nano
– volume: 353
  start-page: 737
  year: 1991
  publication-title: Nature
– volume: 6
  start-page: 8932
  year: 2015
  publication-title: Nat. Commun.
– volume: 53
  start-page: 817
  year: 2018
  publication-title: Nano Energy
– volume: 6
  start-page: 1382
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 260
  start-page: 180
  year: 2014
  publication-title: J. Power Sources
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 9146
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3143
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 2308
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 461
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 6657
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 781
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2117
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 49
  year: 2013
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1680
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 96
  start-page: 61
  year: 2013
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 8970
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 3340
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 6379
  year: 2016
  publication-title: Nanoscale
– volume: 8
  start-page: 1510
  year: 2015
  publication-title: ChemSusChem
– volume: 376
  start-page: 498
  year: 1995
  publication-title: Nature
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 3
  start-page: 3157
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 304
  start-page: 266
  year: 2016
  publication-title: J. Power Sources.
– volume: 4
  start-page: 1087
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 6720
  year: 2009
  publication-title: Chem. Commun.
– volume: 319
  start-page: 219
  year: 2016
  publication-title: J. Power Sources
– volume: 332
  start-page: 87
  year: 2017
  publication-title: J. Photo. & Photobio. A Chem.
– volume: 7
  start-page: 40
  year: 2017
  publication-title: Energy Storage Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 174
  start-page: 73
  year: 2011
  publication-title: Microchim. Acta
– ident: e_1_2_8_2_1
  doi: 10.1126/science.aad4424
– ident: e_1_2_8_66_1
  doi: 10.1016/j.electacta.2015.11.071
– ident: e_1_2_8_102_1
  doi: 10.1021/am201720p
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jpowsour.2014.03.035
– ident: e_1_2_8_71_1
  doi: 10.1002/smll.201470020
– ident: e_1_2_8_56_1
  doi: 10.1016/S0926-860X(02)00428-3
– ident: e_1_2_8_69_1
  doi: 10.1039/c1cc10638d
– ident: e_1_2_8_146_1
  doi: 10.1039/C7EE01889D
– ident: e_1_2_8_120_1
  doi: 10.1039/C7TA10871K
– ident: e_1_2_8_39_1
  doi: 10.1021/am400031w
– ident: e_1_2_8_38_1
  doi: 10.1039/c3cc00188a
– ident: e_1_2_8_19_1
  doi: 10.1021/nn404323g
– ident: e_1_2_8_135_1
  doi: 10.1016/j.solener.2017.12.028
– ident: e_1_2_8_114_1
  doi: 10.1038/nenergy.2017.9
– ident: e_1_2_8_5_1
  doi: 10.1016/j.mattod.2013.12.002
– ident: e_1_2_8_73_1
  doi: 10.1021/ja303034w
– ident: e_1_2_8_55_1
  doi: 10.1016/j.solmat.2005.04.040
– ident: e_1_2_8_6_1
  doi: 10.1038/353737a0
– ident: e_1_2_8_57_1
  doi: 10.1039/b912776c
– ident: e_1_2_8_85_1
  doi: 10.1021/am400031w
– ident: e_1_2_8_33_1
  doi: 10.1016/j.pmatsci.2016.02.001
– ident: e_1_2_8_127_1
  doi: 10.1016/j.solener.2017.01.019
– ident: e_1_2_8_118_1
  doi: 10.1021/acsami.6b09925
– ident: e_1_2_8_124_1
  doi: 10.1039/C5EE03394B
– ident: e_1_2_8_37_1
  doi: 10.1039/c3ta12349a
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201304986
– ident: e_1_2_8_95_1
  doi: 10.1021/am401392k
– ident: e_1_2_8_30_1
  doi: 10.1039/c1ee01105g
– ident: e_1_2_8_91_1
  doi: 10.1039/C2TA01003H
– ident: e_1_2_8_44_1
  doi: 10.1039/c1ee01059j
– ident: e_1_2_8_142_1
  doi: 10.1038/nenergy.2016.190
– ident: e_1_2_8_36_1
  doi: 10.1002/anie.201310509
– ident: e_1_2_8_139_1
  doi: 10.1039/C5NR03610K
– ident: e_1_2_8_87_1
  doi: 10.1039/c2ta00608a
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jpowsour.2016.04.002
– ident: e_1_2_8_67_1
  doi: 10.1021/nn302063s
– ident: e_1_2_8_104_1
  doi: 10.1002/aenm.201601116
– ident: e_1_2_8_12_1
  doi: 10.1002/celc.201402406
– ident: e_1_2_8_111_1
  doi: 10.1002/adma.201700607
– ident: e_1_2_8_4_1
  doi: 10.1016/j.rser.2016.09.097
– ident: e_1_2_8_100_1
  doi: 10.1021/cm203672g
– ident: e_1_2_8_70_1
  doi: 10.1039/c3cc44518f
– ident: e_1_2_8_63_1
  doi: 10.1016/j.matchemphys.2013.08.010
– ident: e_1_2_8_76_1
  doi: 10.1039/c3ra42360c
– volume: 117
  start-page: 6561
  year: 2013
  ident: e_1_2_8_88_1
  publication-title: Chem. C
– ident: e_1_2_8_110_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_64_1
  doi: 10.1039/c2jm33521b
– ident: e_1_2_8_49_1
  doi: 10.1021/nn1016428
– ident: e_1_2_8_60_1
  doi: 10.1039/c4ta01342e
– ident: e_1_2_8_129_1
  doi: 10.1016/j.nanoen.2017.11.003
– ident: e_1_2_8_3_1
  doi: 10.1038/nature11475
– volume: 23
  start-page: 3748
  year: 2015
  ident: e_1_2_8_144_1
  publication-title: Opt. Express
– ident: e_1_2_8_80_1
  doi: 10.1039/C2CP23775J
– ident: e_1_2_8_99_1
  doi: 10.1039/C2CP42790G
– ident: e_1_2_8_78_1
  doi: 10.1039/c3cc45698f
– ident: e_1_2_8_16_1
  doi: 10.1016/j.nanoen.2018.07.049
– ident: e_1_2_8_75_1
  doi: 10.1039/c2cc38621f
– ident: e_1_2_8_40_1
  doi: 10.1038/nmat1840
– ident: e_1_2_8_130_1
  doi: 10.1021/am508678p
– ident: e_1_2_8_51_1
  doi: 10.1016/j.eurpolymj.2015.01.049
– ident: e_1_2_8_74_1
  doi: 10.1002/anie.201409422
– ident: e_1_2_8_14_1
  doi: 10.1039/C4TA04953E
– ident: e_1_2_8_116_1
  doi: 10.1038/srep03132
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ccr.2004.03.028
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2018.09.049
– ident: e_1_2_8_15_1
  doi: 10.1039/C4TA04994B
– ident: e_1_2_8_79_1
  doi: 10.1021/acsami.5b08501
– ident: e_1_2_8_119_1
  doi: 10.1021/acssuschemeng.7b01556
– ident: e_1_2_8_128_1
  doi: 10.1002/adma.201606398
– ident: e_1_2_8_141_1
  doi: 10.1038/ncomms9932
– ident: e_1_2_8_143_1
  doi: 10.1038/s41563-018-0115-4
– ident: e_1_2_8_54_1
  doi: 10.1038/376498a0
– ident: e_1_2_8_136_1
  doi: 10.1039/C6EE02980A
– ident: e_1_2_8_22_1
  doi: 10.1016/j.electacta.2015.08.072
– ident: e_1_2_8_32_1
  doi: 10.3390/cryst7090271
– ident: e_1_2_8_9_1
  doi: 10.1021/cr900356p
– ident: e_1_2_8_45_1
  doi: 10.1007/s00604-011-0597-0
– ident: e_1_2_8_103_1
  doi: 10.1016/j.electacta.2017.11.183
– ident: e_1_2_8_134_1
  doi: 10.1016/j.solmat.2015.11.026
– ident: e_1_2_8_77_1
  doi: 10.1039/c3ta12349a
– ident: e_1_2_8_1_1
  doi: 10.1038/454816a
– ident: e_1_2_8_98_1
  doi: 10.1016/j.energy.2013.01.037
– ident: e_1_2_8_17_1
  doi: 10.1002/cssc.201500004
– ident: e_1_2_8_10_1
  doi: 10.1039/C6CS00752J
– ident: e_1_2_8_113_1
  doi: 10.1002/adma.201702140
– ident: e_1_2_8_122_1
  doi: 10.1039/C5NR07347B
– ident: e_1_2_8_47_1
  doi: 10.1016/j.solener.2012.11.013
– ident: e_1_2_8_109_1
  doi: 10.1002/aenm.201501873
– ident: e_1_2_8_105_1
  doi: 10.1039/C7TA10871K
– ident: e_1_2_8_92_1
  doi: 10.1016/j.electacta.2013.02.059
– ident: e_1_2_8_106_1
  doi: 10.1039/C7TA09174E
– ident: e_1_2_8_121_1
  doi: 10.1039/C4RA09519G
– ident: e_1_2_8_25_1
  doi: 10.1016/j.electacta.2012.01.041
– ident: e_1_2_8_101_1
  doi: 10.1016/j.jphotochem.2016.07.029
– ident: e_1_2_8_125_1
  doi: 10.1016/j.carbon.2015.05.042
– ident: e_1_2_8_90_1
  doi: 10.1021/nn901660v
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jpowsour.2016.05.023
– ident: e_1_2_8_131_1
  doi: 10.1021/acsami.5b09012
– ident: e_1_2_8_145_1
  doi: 10.1021/acs.nanolett.6b04019
– ident: e_1_2_8_20_1
  doi: 10.1039/C5MH00160A
– ident: e_1_2_8_112_1
  doi: 10.1016/j.ensm.2016.11.007
– ident: e_1_2_8_138_1
  doi: 10.1002/aenm.201600372
– ident: e_1_2_8_61_1
  doi: 10.1021/ja905970y
– ident: e_1_2_8_126_1
  doi: 10.1039/C5TA07507F
– ident: e_1_2_8_50_1
  doi: 10.1021/nn102353h
– ident: e_1_2_8_94_1
  doi: 10.1002/cphc.201402570
– ident: e_1_2_8_82_1
  doi: 10.1002/anie.201104786
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jpowsour.2014.05.062
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jpowsour.2008.11.075
– ident: e_1_2_8_81_1
  doi: 10.1039/C4RA13130D
– ident: e_1_2_8_68_1
  doi: 10.1039/c3ta14313a
– ident: e_1_2_8_13_1
  doi: 10.1039/C3TA13374E
– ident: e_1_2_8_93_1
  doi: 10.1039/c2nr31379k
– ident: e_1_2_8_46_1
  doi: 10.1016/j.elecom.2008.05.013
– ident: e_1_2_8_18_1
  doi: 10.1021/nn102353h
– ident: e_1_2_8_72_1
  doi: 10.1039/C4TA03727H
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jpowsour.2015.11.062
– ident: e_1_2_8_28_1
  doi: 10.1063/1.3699618
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201400388
– ident: e_1_2_8_31_1
  doi: 10.1021/ja209657v
– ident: e_1_2_8_115_1
  doi: 10.1016/j.nanoen.2018.07.049
– ident: e_1_2_8_117_1
  doi: 10.1002/aenm.201502087
– ident: e_1_2_8_108_1
  doi: 10.1063/1.4880899
– ident: e_1_2_8_123_1
  doi: 10.1002/smll.201701225
– ident: e_1_2_8_58_1
  doi: 10.1039/c2jm30420a
– ident: e_1_2_8_132_1
  doi: 10.1039/C7TA02440A
– ident: e_1_2_8_97_1
  doi: 10.1039/C5TA06525A
– ident: e_1_2_8_96_1
  doi: 10.1021/jp412542d
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.201402056
– ident: e_1_2_8_59_1
  doi: 10.1021/jp1035184
– ident: e_1_2_8_137_1
  doi: 10.1002/aenm.201700302
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.201000659
– ident: e_1_2_8_7_1
  doi: 10.1021/cr00033a003
– ident: e_1_2_8_133_1
  doi: 10.1021/nl2015729
– ident: e_1_2_8_42_1
  doi: 10.1002/anie.201406982
– ident: e_1_2_8_27_1
  doi: 10.1002/aenm.201100324
– ident: e_1_2_8_140_1
  doi: 10.1016/j.nanoen.2017.12.043
– ident: e_1_2_8_86_1
  doi: 10.1039/C2TA01003H
– ident: e_1_2_8_107_1
  doi: 10.1002/adma.201501145
– ident: e_1_2_8_53_1
  doi: 10.1016/S0378-7753(01)00613-9
– ident: e_1_2_8_34_1
  doi: 10.1039/C4TA03727H
– ident: e_1_2_8_89_1
  doi: 10.1002/anie.201006635
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201403951
– ident: e_1_2_8_48_1
  doi: 10.1021/am200659y
– ident: e_1_2_8_83_1
  doi: 10.1002/anie.201705399
– ident: e_1_2_8_84_1
  doi: 10.1039/c3cc00188a
SSID ssj0009606
Score 2.61849
SecondaryResourceType review_article
Snippet It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1806478
SubjectTerms Commercialization
Cost analysis
counter‐electrode materials
Dyes
dye‐sensitized solar cells
electrochemistry
Electrode materials
Electrodes
Gold
Materials science
perovskite solar cells
Perovskites
Photoelectricity
Photovoltaic cells
Platinum
Silver
Solar cells
Solar energy
Solar energy conversion
Structural design
Title Low‐Cost Counter‐Electrode Materials for Dye‐Sensitized and Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806478
https://www.ncbi.nlm.nih.gov/pubmed/31116898
https://www.proquest.com/docview/2342233637
https://www.proquest.com/docview/2232075644
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQJzjwfnQpyEgrcQqksfPwsWpBCFGEFpB6ixw_pNVWyYqkIDjxE_iN_BJmnDZQEFppOVq2E9vjsb8Zez4T8jPCc0PQBM-GCgwUnjEvEdZ4XEut0ASJEwwUHlxEpzf8bBgO30Xx1_wQjcMNNcOt16jgMiuP3khDpXa8QZ3EhUvCIowXthAV_Xrjj0J47sj2WOiJiCdT1kY_OJqtPrsrfYKas8jVbT0ny0ROG13fOPlzOK6yQ_X4gc_xO71aIUsTXEq79URaJXMmXyOL79gK18nwvLh_eXruFWVFMZQdJALJ4_odHW3oQFb1dKYAhGn_wUDuFd6Pr34_Gk1lrumluS3uSnQY0yu0qWnPjEblBrk5Ob7unXqThxk8xTs-aFYcctNRkhuRxZrHAcskWLpKBb72hbGOFy_rhDJOlBGKA-biKktCoWzEFJjvm2Q-L3KzTagvY4BsWlnLIi6FFoG0CjnprB_aSPMW8aaCSdWEtRwfzxilNd9ykOKIpc2ItchBU_5vzdfxZcn2VM7pRG_LNGAc8BKLWNwi-002aBweo8jcFGMoAyAUgBZ0qkW26vnR_IrB1hElAj4eOCn_ow1ptz_oNqkf_1NphywE6AJwXqE2ma9ux2YXcFKV7TldeAW_sAse
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcoAegPLcUqgrIXFKm42dh4-r3VYL7FYVbaXeIscPCbFKqm4WRE_8hP5GfgkzziZlqRASHC3bSezxxN-MPd8AvEno3BA1IXCxRgNFFDzIpLOBMMpoMkHSjAKFp0fJ-Ey8P4_b24QUC9PwQ3QON9IM_78mBSeH9P4Na6gynjion_l4yTtwl9J6E33-6OMNgxQBdE-3x-NAJiJreRvDaH-1_-q-dAtsrmJXv_kcPoSi_ezmzsnnvUVd7Omr3xgd_2tcj-DBEpqyQbOWNmHNlo9h4xfCwidwPqm-_vh-PazmNaNodhQKFg-aVDrGsqmqmxXNEAuz0TeLtSd0Rb7-dGUNU6Vhx_ay-jInnzE7IbOaDe1sNn8KZ4cHp8NxsMzNEGjRD1G50ljYvlbCyiI1Io14odDY1ToKTSit89R4RT9Waaat1AJhl9BFFkvtEq7Rgn8G62VV2hfAQpWi3Ix2jidCSSMj5TTR0rkwdokRPQhayeR6SVxO-TNmeUO5HOU0Y3k3Yz1427W_aCg7_thyuxV0vlTdeR5xgZCJJzztwW5XjUpHJymqtNUC2yAORayFg-rB82aBdK_iuHskmcSHR17Mf_mGfDCaDrrS1r902oF749PpJJ-8O_rwEu5H5BHwTqJtWK8vF_YVwqa6eO0V4ydseA86
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJk3sgf0Btg7GPAmJp0AaO078WLVUsFGEBkh9ixz_kdCqBNF0EzztI-wz7pNwdtpAmRASPFq2k9jni3939v0OYIu7c0PUhMDGCg0UltMgFdYETEutnAmSpC5QeHDE98_Yt2E8vBPFX_NDNA43pxn-f-0U_ELb3VvSUKk9b1A79eGSC_CS8VC45A29H7cEUg6fe7Y9GgeCs3RG2xhGu_P957el_7DmPHT1e0__DcjZV9dXTn7uTKp8R13fI3R8zrDewvIUmJJOvZLewQtTvIfXd-gKV2B4WP7-9-dvtxxXxMWyo0iwuFcn0tGGDGRVr2eCSJj0rgzWnrgL8tX5tdFEFpocm8vy19h5jMmJM6pJ14xG41U46--ddveDaWaGQLF2iKqVxMy0lWRG5IlmSURziaauUlGoQ2GsJ8bL27FMUmWEYgi6mMrTWCjLqUL7fQ0Wi7IwH4GEMkHMppW1lDMptIikVY6Uzoax5Zq1IJgJJlNT2nKXPWOU1YTLUeZmLGtmrAXbTfuLmrDjwZYbMzlnU8UdZxFlCJgop0kLvjbVqHLuHEUWppxgG0ShiLRwUC34UK-P5lUU9w6eCnx45KX8yDdknd6g05Q-PaXTF3h13OtnhwdH39dhKXLuAO8h2oDF6nJiPiNmqvJNrxY3Ma4N6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Cost+Counter%E2%80%90Electrode+Materials+for+Dye%E2%80%90Sensitized+and+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Guo%E2%80%90Ran&rft.au=Gao%2C+Xue%E2%80%90Ping&rft.date=2020-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=3&rft_id=info:doi/10.1002%2Fadma.201806478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201806478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon