Low‐Cost Counter‐Electrode Materials for Dye‐Sensitized and Perovskite Solar Cells
It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized,...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 3; pp. e1806478 - n/a |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized, developing low‐cost and highly efficient solar cells to meet future needs is still a long‐term challenge. Some emerging solar‐cell types, such as dye‐sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low‐cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter‐electrode materials available, and their scope for further improvement, has expanded for dye‐sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost‐effective counter‐electrode materials in emerging solar cells.
Low‐cost counter materials for dye‐sensitized and perovskite solar cells are summarized, with a focus on the regular patterns that appear in their intrinsic features and structural design. |
---|---|
AbstractList | It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon‐based solar cells and thin‐film solar cells have been commercialized, developing low‐cost and highly efficient solar cells to meet future needs is still a long‐term challenge. Some emerging solar‐cell types, such as dye‐sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance–price ratio, it is necessary to find new low‐cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter‐electrode materials available, and their scope for further improvement, has expanded for dye‐sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost‐effective counter‐electrode materials in emerging solar cells.
Low‐cost counter materials for dye‐sensitized and perovskite solar cells are summarized, with a focus on the regular patterns that appear in their intrinsic features and structural design. It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells. It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells.It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most convenient and important photoelectric conversion devices. Though silicon-based solar cells and thin-film solar cells have been commercialized, developing low-cost and highly efficient solar cells to meet future needs is still a long-term challenge. Some emerging solar-cell types, such as dye-sensitized and perovskite, are approaching acceptable performance levels, but their costs remain too high. To obtain a higher performance-price ratio, it is necessary to find new low-cost counter materials to replace conventional precious metal electrodes (Pt, Au, and Ag) in these emerging solar cells. In recent years, the number of counter-electrode materials available, and their scope for further improvement, has expanded for dye-sensitized and perovskite solar cells. Generally regular patterns in the intrinsic features and structural design of counter materials for emerging solar cells, in particular from an electrochemical perspective and their effects on cost and efficiency, are explored. It is hoped that this recapitulative analysis will help to make clear what has been achieved and what still remains for the development of cost-effective counter-electrode materials in emerging solar cells. |
Author | Li, Guo‐Ran Gao, Xue‐Ping |
Author_xml | – sequence: 1 givenname: Guo‐Ran surname: Li fullname: Li, Guo‐Ran email: guoranli@nankai.edu.cn organization: Nankai University – sequence: 2 givenname: Xue‐Ping orcidid: 0000-0001-7305-7567 surname: Gao fullname: Gao, Xue‐Ping email: xpgao@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31116898$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaDZprz0WQy-9eDP6sC0dFyf9gA0ppIXehCyPQanXSiU5YXvqT-hvzC-JwiYpBEpPQprn0QzzHpK9yU9IyBsKSwrAjk2_MUsGVEItGvmCLGjFaClAVXtkAYpXpaqFPCCHMV4CgKqhfkkOOKW0lkouyPe1v7n9_af1MRWtn6eEIV9PR7Qp-B6LM5NfnBljMfhQnGwxVy9wii65X9gXZuqLLxj8dfzhEhYXfjShaHEc4yuyP2QNXz-cR-Tbh9Ov7adyff7xc7tal1ZQkCVrKoHUGoGqa3rRMN4ZLrm1DHpQOABIJjtamUZaVFbUQgjbyUrZoeYWO35E3u_-vQr-54wx6Y2LNk9gJvRz1IxxBk2VvYy-e4Ze-jlMeTrNuMggr3mTqbcP1NxtsNdXwW1M2OrHnWVguQNs8DEGHJ4QCvo-FH0fin4KJQvimWBdMsn5KQXjxn9raqfduBG3_2miVydnq7_uHQgCovY |
CitedBy_id | crossref_primary_10_1021_acsami_9b20315 crossref_primary_10_3390_molecules26175186 crossref_primary_10_1002_ente_202100859 crossref_primary_10_1016_j_jcis_2024_02_193 crossref_primary_10_1016_j_solener_2022_02_011 crossref_primary_10_1002_er_5174 crossref_primary_10_1002_cssc_202001898 crossref_primary_10_1021_acs_energyfuels_4c00050 crossref_primary_10_1088_1402_4896_acb6c2 crossref_primary_10_1016_j_carbon_2020_12_057 crossref_primary_10_1016_j_solener_2021_01_062 crossref_primary_10_1021_acssuschemeng_1c03565 crossref_primary_10_1039_D3RA01639K crossref_primary_10_1002_celc_202100811 crossref_primary_10_1080_1536383X_2023_2168265 crossref_primary_10_1002_adfm_202100151 crossref_primary_10_1002_slct_202004644 crossref_primary_10_1039_D4EE05462H crossref_primary_10_1007_s10895_023_03144_z crossref_primary_10_1016_j_vacuum_2024_112982 crossref_primary_10_1016_j_surfin_2023_102945 crossref_primary_10_1002_adma_202207785 crossref_primary_10_1016_j_nxmate_2025_100518 crossref_primary_10_1021_acsaelm_4c00786 crossref_primary_10_2174_1872210518666230915142211 crossref_primary_10_1021_acs_energyfuels_1c02358 crossref_primary_10_1002_ente_202400254 crossref_primary_10_1002_adfm_202404361 crossref_primary_10_1002_adfm_202200651 crossref_primary_10_1021_jacs_3c07222 crossref_primary_10_3390_coatings13030644 crossref_primary_10_1002_smll_202202133 crossref_primary_10_1002_solr_202300701 crossref_primary_10_1007_s10853_024_09450_6 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1016_j_matlet_2021_131309 crossref_primary_10_1039_D2CP02308C crossref_primary_10_1039_D2TC05480A crossref_primary_10_1021_acsomega_1c03798 crossref_primary_10_1088_1361_6463_ac252c crossref_primary_10_1016_j_jmat_2020_12_018 crossref_primary_10_1002_cssc_202100083 crossref_primary_10_1016_j_mseb_2024_117778 crossref_primary_10_1021_acssuschemeng_0c06106 crossref_primary_10_1016_j_rser_2022_112196 crossref_primary_10_1039_D0SE00596G crossref_primary_10_3390_inorganics11040159 crossref_primary_10_1021_acssuschemeng_9b03596 crossref_primary_10_1021_acssuschemeng_1c06699 crossref_primary_10_1021_acsaem_1c02765 crossref_primary_10_1039_D2QI02029G crossref_primary_10_1002_admi_202201494 crossref_primary_10_1002_aenm_202002067 crossref_primary_10_1002_aesr_202100050 crossref_primary_10_1016_j_orgel_2022_106533 crossref_primary_10_1039_D3YA00476G crossref_primary_10_1002_aenm_202002326 crossref_primary_10_1039_D2MH00671E crossref_primary_10_1002_ente_202300837 crossref_primary_10_1039_D1TC02734D crossref_primary_10_1002_solr_202400091 crossref_primary_10_1016_j_jpowsour_2021_230496 crossref_primary_10_1002_smtd_202201659 crossref_primary_10_1021_acsanm_3c03889 crossref_primary_10_1007_s11664_020_08403_4 crossref_primary_10_1016_j_carbon_2023_01_046 crossref_primary_10_1016_j_jallcom_2020_155531 crossref_primary_10_1016_j_mattod_2021_05_016 crossref_primary_10_1021_acssuschemeng_3c00424 crossref_primary_10_3390_catal10080897 crossref_primary_10_25046_aj0506113 crossref_primary_10_1021_acsmaterialsau_1c00038 crossref_primary_10_1002_adfm_202106854 crossref_primary_10_1016_j_cej_2022_137854 crossref_primary_10_1021_acsami_4c07144 crossref_primary_10_1016_j_solmat_2021_111064 crossref_primary_10_1039_D3DT04347A crossref_primary_10_1016_j_solener_2021_09_052 crossref_primary_10_1016_j_ceramint_2024_07_153 crossref_primary_10_1016_j_apenergy_2021_117251 crossref_primary_10_1088_2515_7639_acc893 crossref_primary_10_1016_j_jcis_2020_10_003 crossref_primary_10_1016_j_jelechem_2021_115384 crossref_primary_10_1016_j_solener_2021_04_001 crossref_primary_10_1002_admi_202101229 crossref_primary_10_1016_j_jallcom_2022_165395 crossref_primary_10_1016_j_jmat_2021_01_004 crossref_primary_10_1016_j_jcis_2022_05_147 crossref_primary_10_1126_sciadv_adi3839 crossref_primary_10_1109_JPHOTOV_2021_3071999 crossref_primary_10_1080_00958972_2024_2404070 crossref_primary_10_1016_j_solener_2021_07_058 crossref_primary_10_1021_acsaem_1c01628 crossref_primary_10_1021_acssuschemeng_1c07626 crossref_primary_10_1016_j_cej_2020_125463 crossref_primary_10_1021_acs_chemrev_3c00931 crossref_primary_10_1021_acsaelm_2c01445 crossref_primary_10_1016_j_nanoen_2024_110523 crossref_primary_10_1002_adfm_202006270 crossref_primary_10_1002_solr_202300479 crossref_primary_10_1016_j_jallcom_2023_169820 crossref_primary_10_1007_s11664_021_09193_z crossref_primary_10_1016_j_ceramint_2023_04_002 crossref_primary_10_1016_j_apsusc_2022_153566 crossref_primary_10_1039_D0TA04626D crossref_primary_10_1002_cey2_105 crossref_primary_10_1016_j_nanoen_2024_109933 crossref_primary_10_1039_D3TC04665F |
Cites_doi | 10.1126/science.aad4424 10.1016/j.electacta.2015.11.071 10.1021/am201720p 10.1016/j.jpowsour.2014.03.035 10.1002/smll.201470020 10.1016/S0926-860X(02)00428-3 10.1039/c1cc10638d 10.1039/C7EE01889D 10.1039/C7TA10871K 10.1021/am400031w 10.1039/c3cc00188a 10.1021/nn404323g 10.1016/j.solener.2017.12.028 10.1038/nenergy.2017.9 10.1016/j.mattod.2013.12.002 10.1021/ja303034w 10.1016/j.solmat.2005.04.040 10.1038/353737a0 10.1039/b912776c 10.1016/j.pmatsci.2016.02.001 10.1016/j.solener.2017.01.019 10.1021/acsami.6b09925 10.1039/C5EE03394B 10.1039/c3ta12349a 10.1002/adma.201304986 10.1021/am401392k 10.1039/c1ee01105g 10.1039/C2TA01003H 10.1039/c1ee01059j 10.1038/nenergy.2016.190 10.1002/anie.201310509 10.1039/C5NR03610K 10.1039/c2ta00608a 10.1016/j.jpowsour.2016.04.002 10.1021/nn302063s 10.1002/aenm.201601116 10.1002/celc.201402406 10.1002/adma.201700607 10.1016/j.rser.2016.09.097 10.1021/cm203672g 10.1039/c3cc44518f 10.1016/j.matchemphys.2013.08.010 10.1039/c3ra42360c 10.1038/nenergy.2017.102 10.1039/c2jm33521b 10.1021/nn1016428 10.1039/c4ta01342e 10.1016/j.nanoen.2017.11.003 10.1038/nature11475 10.1039/C2CP23775J 10.1039/C2CP42790G 10.1039/c3cc45698f 10.1016/j.nanoen.2018.07.049 10.1039/c2cc38621f 10.1038/nmat1840 10.1021/am508678p 10.1016/j.eurpolymj.2015.01.049 10.1002/anie.201409422 10.1039/C4TA04953E 10.1038/srep03132 10.1016/j.ccr.2004.03.028 10.1016/j.nanoen.2018.09.049 10.1039/C4TA04994B 10.1021/acsami.5b08501 10.1021/acssuschemeng.7b01556 10.1002/adma.201606398 10.1038/ncomms9932 10.1038/s41563-018-0115-4 10.1038/376498a0 10.1039/C6EE02980A 10.1016/j.electacta.2015.08.072 10.3390/cryst7090271 10.1021/cr900356p 10.1007/s00604-011-0597-0 10.1016/j.electacta.2017.11.183 10.1016/j.solmat.2015.11.026 10.1038/454816a 10.1016/j.energy.2013.01.037 10.1002/cssc.201500004 10.1039/C6CS00752J 10.1002/adma.201702140 10.1039/C5NR07347B 10.1016/j.solener.2012.11.013 10.1002/aenm.201501873 10.1016/j.electacta.2013.02.059 10.1039/C7TA09174E 10.1039/C4RA09519G 10.1016/j.electacta.2012.01.041 10.1016/j.jphotochem.2016.07.029 10.1016/j.carbon.2015.05.042 10.1021/nn901660v 10.1016/j.jpowsour.2016.05.023 10.1021/acsami.5b09012 10.1021/acs.nanolett.6b04019 10.1039/C5MH00160A 10.1016/j.ensm.2016.11.007 10.1002/aenm.201600372 10.1021/ja905970y 10.1039/C5TA07507F 10.1021/nn102353h 10.1002/cphc.201402570 10.1002/anie.201104786 10.1016/j.jpowsour.2014.05.062 10.1016/j.jpowsour.2008.11.075 10.1039/C4RA13130D 10.1039/c3ta14313a 10.1039/C3TA13374E 10.1039/c2nr31379k 10.1016/j.elecom.2008.05.013 10.1039/C4TA03727H 10.1016/j.jpowsour.2015.11.062 10.1063/1.3699618 10.1002/anie.201400388 10.1021/ja209657v 10.1002/aenm.201502087 10.1063/1.4880899 10.1002/smll.201701225 10.1039/c2jm30420a 10.1039/C7TA02440A 10.1039/C5TA06525A 10.1021/jp412542d 10.1002/adma.201402056 10.1021/jp1035184 10.1002/aenm.201700302 10.1002/anie.201000659 10.1021/cr00033a003 10.1021/nl2015729 10.1002/anie.201406982 10.1002/aenm.201100324 10.1016/j.nanoen.2017.12.043 10.1002/adma.201501145 10.1016/S0378-7753(01)00613-9 10.1002/anie.201006635 10.1002/adma.201403951 10.1021/am200659y 10.1002/anie.201705399 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201806478 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31116898 10_1002_adma_201806478 ADMA201806478 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: NSFC funderid: 21875123 – fundername: Natural Science Foundation of Tianjin funderid: 18JCZDJC31000 – fundername: NSFC grantid: 21875123 – fundername: Natural Science Foundation of Tianjin grantid: 18JCZDJC31000 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4108-2754e1ca4e9b7d4723ba383cc20d09ef00828b15a78ce9c46444cb859cf63ceb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 05:09:41 EDT 2025 Fri Jul 25 08:02:23 EDT 2025 Thu Apr 03 07:08:47 EDT 2025 Thu Apr 24 22:59:15 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Wed Jan 22 16:37:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | electrochemistry dye-sensitized solar cells counter-electrode materials perovskite solar cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4108-2754e1ca4e9b7d4723ba383cc20d09ef00828b15a78ce9c46444cb859cf63ceb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7305-7567 |
PMID | 31116898 |
PQID | 2342233637 |
PQPubID | 2045203 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2232075644 proquest_journals_2342233637 pubmed_primary_31116898 crossref_primary_10_1002_adma_201806478 crossref_citationtrail_10_1002_adma_201806478 wiley_primary_10_1002_adma_201806478_ADMA201806478 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 3 2018; 160 2013; 1 1991; 353 2016; 146 2014; 26 2016; 304 1995; 376 2012; 15 2012; 488 2012; 14 2018; 45 2013; 5 2018; 6 2012; 134 2016; 319 2013; 54 2010; 114 2013; 117 2010; 110 2007; 6 2014; 17 2012; 24 2010; 4 2012; 22 2014; 10 2011; 1 2013; 88 2017; 68 2016; 322 2011; 4 2011; 3 2016; 16 2011; 5 2017; 258 2016; 4 2016; 6 2018; 17 2010; 49 2016; 3 2001; 97–98 2015; 66 2017; 56 2009; 188 2014; 260 2017; 144 2016; 8 2016; 9 2014; 266 2017; 5 2017; 7 2017; 42 2004; 248 2017; 2 2017; 46 2011; 11 2016; 187 2014; 4 2014; 2 2015; 178 2013; 96 2016; 352 2016; 80 2014; 8 2012; 65 2014; 53 2003; 240 2015; 2 2014; 118 1995; 95 2006; 90 2015; 6 2015; 5 2015; 16 2015; 3 2013; 49 2015; 93 2009 2008; 10 2017; 29 2013; 143 2009; 131 2011; 174 2017; 332 2015; 8 2015; 7 2015; 23 2015; 27 2017; 10 2017; 13 2011; 50 2018; 52 2008; 454 2011; 47 2012; 6 2012; 4 2018; 53 2014; 104 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 Li Z. (e_1_2_8_88_1) 2013; 117 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 Jiang F. (e_1_2_8_144_1) 2015; 23 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 4 start-page: 887 year: 2010 publication-title: ACS Nano – volume: 23 start-page: 3748 year: 2015 publication-title: Opt. Express – volume: 49 start-page: 3653 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 258 start-page: 1262 year: 2017 publication-title: Electrochim. Acta – volume: 95 start-page: 49 year: 1995 publication-title: Chem. Rev. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 134 start-page: 3419 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3632 year: 2015 publication-title: Adv. Mater. – volume: 240 start-page: 1 year: 2003 publication-title: Applied Catalysis A: General. – volume: 26 start-page: 8101 year: 2014 publication-title: Adv. Mater. – volume: 9 start-page: 3650 year: 2016 publication-title: Energy Environ. Sci. – volume: 178 start-page: 886 year: 2015 publication-title: Electrochim. Acta – volume: 66 start-page: 207 year: 2015 publication-title: Eur. Polym. J. – volume: 26 start-page: 3055 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 67 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 483 year: 2014 publication-title: Small – volume: 3 start-page: 3132 year: 2013 publication-title: Sci. Rep. – volume: 5 start-page: 9758 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 160 start-page: 396 year: 2018 publication-title: Sol. Energy – volume: 17 start-page: 16 year: 2014 publication-title: Mater. Today – volume: 144 start-page: 158 year: 2017 publication-title: Sol. Energy – volume: 49 start-page: 2028 year: 2013 publication-title: Chem. Commun. – volume: 6 start-page: 241 year: 2007 publication-title: Nat. Mater. – volume: 53 start-page: 7023 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 1575 year: 2012 publication-title: Chem. Mater. – volume: 4 start-page: 5659 year: 2012 publication-title: Nanoscale – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 266 start-page: 464 year: 2014 publication-title: J. Power Sources – volume: 4 start-page: 6203 year: 2010 publication-title: ACS Nano – volume: 1 start-page: 1982 year: 2013 publication-title: J. Mater. Chem. A – volume: 26 start-page: 6210 year: 2014 publication-title: Adv. Mater. – volume: 90 start-page: 341 year: 2006 publication-title: Sol. Energy Mater. Sol. Cells – volume: 454 start-page: 816 year: 2008 publication-title: Nature – volume: 14 start-page: 1339 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 15 start-page: 546 year: 2012 publication-title: Phys. Chem. Chem. Phys. – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 7 year: 2016 publication-title: Mater. Horiz. – volume: 4 year: 2012 publication-title: J. Renewable Sustainable Energy – volume: 17 start-page: 820 year: 2018 publication-title: Nat. Mater. – volume: 16 start-page: 7829 year: 2016 publication-title: Nano Lett. – volume: 97–98 start-page: 812 year: 2001 publication-title: J. Power Sources – volume: 11 start-page: 3263 year: 2011 publication-title: Nano Lett. – volume: 248 start-page: 1421 year: 2004 publication-title: Coord. Chem. Rev. – volume: 114 year: 2010 publication-title: J. Phys. Chem. C – volume: 6 start-page: 8271 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 352 start-page: add4424 year: 2016 publication-title: Science – volume: 188 start-page: 313 year: 2009 publication-title: J. Power Sources – volume: 65 start-page: 216 year: 2012 publication-title: Electrochim. Acta – volume: 88 start-page: 129 year: 2013 publication-title: Sol. Energy – volume: 5 start-page: 4561 year: 2015 publication-title: RSC Adv. – volume: 16 start-page: 53 year: 2015 publication-title: ChemPhysChem – volume: 7 start-page: 4283 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 3520 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 165 year: 2011 publication-title: ACS Nano – volume: 117 start-page: 6561 year: 2013 publication-title: Chem. C – volume: 13 year: 2017 publication-title: Small – volume: 322 start-page: 155 year: 2016 publication-title: J. Power Sources – volume: 2 start-page: 4474 year: 2014 publication-title: J. Mater. Chem. A – volume: 187 start-page: 210 year: 2016 publication-title: Electrochim. Acta. – volume: 2 start-page: 3919 year: 2014 publication-title: J. Mater. Chem. A – volume: 146 start-page: 35 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 47 start-page: 4535 year: 2011 publication-title: Chem. Commun. – volume: 52 start-page: 211 year: 2018 publication-title: Nano Energy – volume: 2 start-page: 928 year: 2015 publication-title: ChemElectroChem – volume: 93 start-page: 861 year: 2015 publication-title: Carbon – volume: 7 start-page: 271 year: 2017 publication-title: Crystals – volume: 6 start-page: 7016 year: 2012 publication-title: ACS Nano – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 46 start-page: 5975 year: 2017 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 322 year: 2017 publication-title: Nano Energy – volume: 3 start-page: 8992 year: 2015 publication-title: J. Mater. Chem. A – volume: 53 start-page: 1 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 50 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 49 start-page: 1437 year: 2013 publication-title: Chem. Commun. – volume: 10 start-page: 1087 year: 2008 publication-title: Electrochem. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 110 start-page: 6595 year: 2010 publication-title: Chem. Rev. – volume: 80 start-page: 1 year: 2016 publication-title: Prog. Mater. Sci. – volume: 68 start-page: 234 year: 2017 publication-title: Renewable Sustainable Energy Rev. – volume: 22 start-page: 6067 year: 2012 publication-title: J. Mater. Chem. – volume: 143 start-page: 53 year: 2013 publication-title: Mater. Chem. Phys. – volume: 49 start-page: 7626 year: 2013 publication-title: Chem. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 45 start-page: 280 year: 2018 publication-title: Nano Energy – volume: 54 start-page: 315 year: 2013 publication-title: Energy – volume: 8 start-page: 362 year: 2014 publication-title: ACS Nano – volume: 353 start-page: 737 year: 1991 publication-title: Nature – volume: 6 start-page: 8932 year: 2015 publication-title: Nat. Commun. – volume: 53 start-page: 817 year: 2018 publication-title: Nano Energy – volume: 6 start-page: 1382 year: 2018 publication-title: J. Mater. Chem. A – volume: 260 start-page: 180 year: 2014 publication-title: J. Power Sources – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 1 year: 2013 publication-title: J. Mater. Chem. A – volume: 56 start-page: 9146 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3143 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 2308 year: 2011 publication-title: Energy Environ. Sci. – volume: 9 start-page: 461 year: 2016 publication-title: Energy Environ. Sci. – volume: 5 start-page: 6657 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 781 year: 2011 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2117 year: 2017 publication-title: Energy Environ. Sci. – volume: 49 year: 2013 publication-title: Chem. Commun. – volume: 4 start-page: 1680 year: 2011 publication-title: Energy Environ. Sci. – volume: 96 start-page: 61 year: 2013 publication-title: Electrochim. Acta – volume: 3 start-page: 8970 year: 2015 publication-title: J. Mater. Chem. A – volume: 1 start-page: 3340 year: 2013 publication-title: J. Mater. Chem. A – volume: 8 start-page: 6379 year: 2016 publication-title: Nanoscale – volume: 8 start-page: 1510 year: 2015 publication-title: ChemSusChem – volume: 376 start-page: 498 year: 1995 publication-title: Nature – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 3 start-page: 3157 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 304 start-page: 266 year: 2016 publication-title: J. Power Sources. – volume: 4 start-page: 1087 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 131 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – start-page: 6720 year: 2009 publication-title: Chem. Commun. – volume: 319 start-page: 219 year: 2016 publication-title: J. Power Sources – volume: 332 start-page: 87 year: 2017 publication-title: J. Photo. & Photobio. A Chem. – volume: 7 start-page: 40 year: 2017 publication-title: Energy Storage Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 7 year: 2015 publication-title: Nanoscale – volume: 174 start-page: 73 year: 2011 publication-title: Microchim. Acta – ident: e_1_2_8_2_1 doi: 10.1126/science.aad4424 – ident: e_1_2_8_66_1 doi: 10.1016/j.electacta.2015.11.071 – ident: e_1_2_8_102_1 doi: 10.1021/am201720p – ident: e_1_2_8_43_1 doi: 10.1016/j.jpowsour.2014.03.035 – ident: e_1_2_8_71_1 doi: 10.1002/smll.201470020 – ident: e_1_2_8_56_1 doi: 10.1016/S0926-860X(02)00428-3 – ident: e_1_2_8_69_1 doi: 10.1039/c1cc10638d – ident: e_1_2_8_146_1 doi: 10.1039/C7EE01889D – ident: e_1_2_8_120_1 doi: 10.1039/C7TA10871K – ident: e_1_2_8_39_1 doi: 10.1021/am400031w – ident: e_1_2_8_38_1 doi: 10.1039/c3cc00188a – ident: e_1_2_8_19_1 doi: 10.1021/nn404323g – ident: e_1_2_8_135_1 doi: 10.1016/j.solener.2017.12.028 – ident: e_1_2_8_114_1 doi: 10.1038/nenergy.2017.9 – ident: e_1_2_8_5_1 doi: 10.1016/j.mattod.2013.12.002 – ident: e_1_2_8_73_1 doi: 10.1021/ja303034w – ident: e_1_2_8_55_1 doi: 10.1016/j.solmat.2005.04.040 – ident: e_1_2_8_6_1 doi: 10.1038/353737a0 – ident: e_1_2_8_57_1 doi: 10.1039/b912776c – ident: e_1_2_8_85_1 doi: 10.1021/am400031w – ident: e_1_2_8_33_1 doi: 10.1016/j.pmatsci.2016.02.001 – ident: e_1_2_8_127_1 doi: 10.1016/j.solener.2017.01.019 – ident: e_1_2_8_118_1 doi: 10.1021/acsami.6b09925 – ident: e_1_2_8_124_1 doi: 10.1039/C5EE03394B – ident: e_1_2_8_37_1 doi: 10.1039/c3ta12349a – ident: e_1_2_8_26_1 doi: 10.1002/adma.201304986 – ident: e_1_2_8_95_1 doi: 10.1021/am401392k – ident: e_1_2_8_30_1 doi: 10.1039/c1ee01105g – ident: e_1_2_8_91_1 doi: 10.1039/C2TA01003H – ident: e_1_2_8_44_1 doi: 10.1039/c1ee01059j – ident: e_1_2_8_142_1 doi: 10.1038/nenergy.2016.190 – ident: e_1_2_8_36_1 doi: 10.1002/anie.201310509 – ident: e_1_2_8_139_1 doi: 10.1039/C5NR03610K – ident: e_1_2_8_87_1 doi: 10.1039/c2ta00608a – ident: e_1_2_8_65_1 doi: 10.1016/j.jpowsour.2016.04.002 – ident: e_1_2_8_67_1 doi: 10.1021/nn302063s – ident: e_1_2_8_104_1 doi: 10.1002/aenm.201601116 – ident: e_1_2_8_12_1 doi: 10.1002/celc.201402406 – ident: e_1_2_8_111_1 doi: 10.1002/adma.201700607 – ident: e_1_2_8_4_1 doi: 10.1016/j.rser.2016.09.097 – ident: e_1_2_8_100_1 doi: 10.1021/cm203672g – ident: e_1_2_8_70_1 doi: 10.1039/c3cc44518f – ident: e_1_2_8_63_1 doi: 10.1016/j.matchemphys.2013.08.010 – ident: e_1_2_8_76_1 doi: 10.1039/c3ra42360c – volume: 117 start-page: 6561 year: 2013 ident: e_1_2_8_88_1 publication-title: Chem. C – ident: e_1_2_8_110_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_64_1 doi: 10.1039/c2jm33521b – ident: e_1_2_8_49_1 doi: 10.1021/nn1016428 – ident: e_1_2_8_60_1 doi: 10.1039/c4ta01342e – ident: e_1_2_8_129_1 doi: 10.1016/j.nanoen.2017.11.003 – ident: e_1_2_8_3_1 doi: 10.1038/nature11475 – volume: 23 start-page: 3748 year: 2015 ident: e_1_2_8_144_1 publication-title: Opt. Express – ident: e_1_2_8_80_1 doi: 10.1039/C2CP23775J – ident: e_1_2_8_99_1 doi: 10.1039/C2CP42790G – ident: e_1_2_8_78_1 doi: 10.1039/c3cc45698f – ident: e_1_2_8_16_1 doi: 10.1016/j.nanoen.2018.07.049 – ident: e_1_2_8_75_1 doi: 10.1039/c2cc38621f – ident: e_1_2_8_40_1 doi: 10.1038/nmat1840 – ident: e_1_2_8_130_1 doi: 10.1021/am508678p – ident: e_1_2_8_51_1 doi: 10.1016/j.eurpolymj.2015.01.049 – ident: e_1_2_8_74_1 doi: 10.1002/anie.201409422 – ident: e_1_2_8_14_1 doi: 10.1039/C4TA04953E – ident: e_1_2_8_116_1 doi: 10.1038/srep03132 – ident: e_1_2_8_8_1 doi: 10.1016/j.ccr.2004.03.028 – ident: e_1_2_8_21_1 doi: 10.1016/j.nanoen.2018.09.049 – ident: e_1_2_8_15_1 doi: 10.1039/C4TA04994B – ident: e_1_2_8_79_1 doi: 10.1021/acsami.5b08501 – ident: e_1_2_8_119_1 doi: 10.1021/acssuschemeng.7b01556 – ident: e_1_2_8_128_1 doi: 10.1002/adma.201606398 – ident: e_1_2_8_141_1 doi: 10.1038/ncomms9932 – ident: e_1_2_8_143_1 doi: 10.1038/s41563-018-0115-4 – ident: e_1_2_8_54_1 doi: 10.1038/376498a0 – ident: e_1_2_8_136_1 doi: 10.1039/C6EE02980A – ident: e_1_2_8_22_1 doi: 10.1016/j.electacta.2015.08.072 – ident: e_1_2_8_32_1 doi: 10.3390/cryst7090271 – ident: e_1_2_8_9_1 doi: 10.1021/cr900356p – ident: e_1_2_8_45_1 doi: 10.1007/s00604-011-0597-0 – ident: e_1_2_8_103_1 doi: 10.1016/j.electacta.2017.11.183 – ident: e_1_2_8_134_1 doi: 10.1016/j.solmat.2015.11.026 – ident: e_1_2_8_77_1 doi: 10.1039/c3ta12349a – ident: e_1_2_8_1_1 doi: 10.1038/454816a – ident: e_1_2_8_98_1 doi: 10.1016/j.energy.2013.01.037 – ident: e_1_2_8_17_1 doi: 10.1002/cssc.201500004 – ident: e_1_2_8_10_1 doi: 10.1039/C6CS00752J – ident: e_1_2_8_113_1 doi: 10.1002/adma.201702140 – ident: e_1_2_8_122_1 doi: 10.1039/C5NR07347B – ident: e_1_2_8_47_1 doi: 10.1016/j.solener.2012.11.013 – ident: e_1_2_8_109_1 doi: 10.1002/aenm.201501873 – ident: e_1_2_8_105_1 doi: 10.1039/C7TA10871K – ident: e_1_2_8_92_1 doi: 10.1016/j.electacta.2013.02.059 – ident: e_1_2_8_106_1 doi: 10.1039/C7TA09174E – ident: e_1_2_8_121_1 doi: 10.1039/C4RA09519G – ident: e_1_2_8_25_1 doi: 10.1016/j.electacta.2012.01.041 – ident: e_1_2_8_101_1 doi: 10.1016/j.jphotochem.2016.07.029 – ident: e_1_2_8_125_1 doi: 10.1016/j.carbon.2015.05.042 – ident: e_1_2_8_90_1 doi: 10.1021/nn901660v – ident: e_1_2_8_29_1 doi: 10.1016/j.jpowsour.2016.05.023 – ident: e_1_2_8_131_1 doi: 10.1021/acsami.5b09012 – ident: e_1_2_8_145_1 doi: 10.1021/acs.nanolett.6b04019 – ident: e_1_2_8_20_1 doi: 10.1039/C5MH00160A – ident: e_1_2_8_112_1 doi: 10.1016/j.ensm.2016.11.007 – ident: e_1_2_8_138_1 doi: 10.1002/aenm.201600372 – ident: e_1_2_8_61_1 doi: 10.1021/ja905970y – ident: e_1_2_8_126_1 doi: 10.1039/C5TA07507F – ident: e_1_2_8_50_1 doi: 10.1021/nn102353h – ident: e_1_2_8_94_1 doi: 10.1002/cphc.201402570 – ident: e_1_2_8_82_1 doi: 10.1002/anie.201104786 – ident: e_1_2_8_35_1 doi: 10.1016/j.jpowsour.2014.05.062 – ident: e_1_2_8_52_1 doi: 10.1016/j.jpowsour.2008.11.075 – ident: e_1_2_8_81_1 doi: 10.1039/C4RA13130D – ident: e_1_2_8_68_1 doi: 10.1039/c3ta14313a – ident: e_1_2_8_13_1 doi: 10.1039/C3TA13374E – ident: e_1_2_8_93_1 doi: 10.1039/c2nr31379k – ident: e_1_2_8_46_1 doi: 10.1016/j.elecom.2008.05.013 – ident: e_1_2_8_18_1 doi: 10.1021/nn102353h – ident: e_1_2_8_72_1 doi: 10.1039/C4TA03727H – ident: e_1_2_8_62_1 doi: 10.1016/j.jpowsour.2015.11.062 – ident: e_1_2_8_28_1 doi: 10.1063/1.3699618 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201400388 – ident: e_1_2_8_31_1 doi: 10.1021/ja209657v – ident: e_1_2_8_115_1 doi: 10.1016/j.nanoen.2018.07.049 – ident: e_1_2_8_117_1 doi: 10.1002/aenm.201502087 – ident: e_1_2_8_108_1 doi: 10.1063/1.4880899 – ident: e_1_2_8_123_1 doi: 10.1002/smll.201701225 – ident: e_1_2_8_58_1 doi: 10.1039/c2jm30420a – ident: e_1_2_8_132_1 doi: 10.1039/C7TA02440A – ident: e_1_2_8_97_1 doi: 10.1039/C5TA06525A – ident: e_1_2_8_96_1 doi: 10.1021/jp412542d – ident: e_1_2_8_11_1 doi: 10.1002/adma.201402056 – ident: e_1_2_8_59_1 doi: 10.1021/jp1035184 – ident: e_1_2_8_137_1 doi: 10.1002/aenm.201700302 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201000659 – ident: e_1_2_8_7_1 doi: 10.1021/cr00033a003 – ident: e_1_2_8_133_1 doi: 10.1021/nl2015729 – ident: e_1_2_8_42_1 doi: 10.1002/anie.201406982 – ident: e_1_2_8_27_1 doi: 10.1002/aenm.201100324 – ident: e_1_2_8_140_1 doi: 10.1016/j.nanoen.2017.12.043 – ident: e_1_2_8_86_1 doi: 10.1039/C2TA01003H – ident: e_1_2_8_107_1 doi: 10.1002/adma.201501145 – ident: e_1_2_8_53_1 doi: 10.1016/S0378-7753(01)00613-9 – ident: e_1_2_8_34_1 doi: 10.1039/C4TA03727H – ident: e_1_2_8_89_1 doi: 10.1002/anie.201006635 – ident: e_1_2_8_23_1 doi: 10.1002/adma.201403951 – ident: e_1_2_8_48_1 doi: 10.1021/am200659y – ident: e_1_2_8_83_1 doi: 10.1002/anie.201705399 – ident: e_1_2_8_84_1 doi: 10.1039/c3cc00188a |
SSID | ssj0009606 |
Score | 2.61849 |
SecondaryResourceType | review_article |
Snippet | It is undoubtable that the use of solar energy will continue to increase. Solar cells that convert solar energy directly to electricity are one of the most... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1806478 |
SubjectTerms | Commercialization Cost analysis counter‐electrode materials Dyes dye‐sensitized solar cells electrochemistry Electrode materials Electrodes Gold Materials science perovskite solar cells Perovskites Photoelectricity Photovoltaic cells Platinum Silver Solar cells Solar energy Solar energy conversion Structural design |
Title | Low‐Cost Counter‐Electrode Materials for Dye‐Sensitized and Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201806478 https://www.ncbi.nlm.nih.gov/pubmed/31116898 https://www.proquest.com/docview/2342233637 https://www.proquest.com/docview/2232075644 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQJzjwfnQpyEgrcQqksfPwsWpBCFGEFpB6ixw_pNVWyYqkIDjxE_iN_BJmnDZQEFppOVq2E9vjsb8Zez4T8jPCc0PQBM-GCgwUnjEvEdZ4XEut0ASJEwwUHlxEpzf8bBgO30Xx1_wQjcMNNcOt16jgMiuP3khDpXa8QZ3EhUvCIowXthAV_Xrjj0J47sj2WOiJiCdT1kY_OJqtPrsrfYKas8jVbT0ny0ROG13fOPlzOK6yQ_X4gc_xO71aIUsTXEq79URaJXMmXyOL79gK18nwvLh_eXruFWVFMZQdJALJ4_odHW3oQFb1dKYAhGn_wUDuFd6Pr34_Gk1lrumluS3uSnQY0yu0qWnPjEblBrk5Ob7unXqThxk8xTs-aFYcctNRkhuRxZrHAcskWLpKBb72hbGOFy_rhDJOlBGKA-biKktCoWzEFJjvm2Q-L3KzTagvY4BsWlnLIi6FFoG0CjnprB_aSPMW8aaCSdWEtRwfzxilNd9ykOKIpc2ItchBU_5vzdfxZcn2VM7pRG_LNGAc8BKLWNwi-002aBweo8jcFGMoAyAUgBZ0qkW26vnR_IrB1hElAj4eOCn_ow1ptz_oNqkf_1NphywE6AJwXqE2ma9ux2YXcFKV7TldeAW_sAse |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcoAegPLcUqgrIXFKm42dh4-r3VYL7FYVbaXeIscPCbFKqm4WRE_8hP5GfgkzziZlqRASHC3bSezxxN-MPd8AvEno3BA1IXCxRgNFFDzIpLOBMMpoMkHSjAKFp0fJ-Ey8P4_b24QUC9PwQ3QON9IM_78mBSeH9P4Na6gynjion_l4yTtwl9J6E33-6OMNgxQBdE-3x-NAJiJreRvDaH-1_-q-dAtsrmJXv_kcPoSi_ezmzsnnvUVd7Omr3xgd_2tcj-DBEpqyQbOWNmHNlo9h4xfCwidwPqm-_vh-PazmNaNodhQKFg-aVDrGsqmqmxXNEAuz0TeLtSd0Rb7-dGUNU6Vhx_ay-jInnzE7IbOaDe1sNn8KZ4cHp8NxsMzNEGjRD1G50ljYvlbCyiI1Io14odDY1ToKTSit89R4RT9Waaat1AJhl9BFFkvtEq7Rgn8G62VV2hfAQpWi3Ix2jidCSSMj5TTR0rkwdokRPQhayeR6SVxO-TNmeUO5HOU0Y3k3Yz1427W_aCg7_thyuxV0vlTdeR5xgZCJJzztwW5XjUpHJymqtNUC2yAORayFg-rB82aBdK_iuHskmcSHR17Mf_mGfDCaDrrS1r902oF749PpJJ-8O_rwEu5H5BHwTqJtWK8vF_YVwqa6eO0V4ydseA86 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NJk3sgf0Btg7GPAmJp0AaO078WLVUsFGEBkh9ixz_kdCqBNF0EzztI-wz7pNwdtpAmRASPFq2k9jni3939v0OYIu7c0PUhMDGCg0UltMgFdYETEutnAmSpC5QeHDE98_Yt2E8vBPFX_NDNA43pxn-f-0U_ELb3VvSUKk9b1A79eGSC_CS8VC45A29H7cEUg6fe7Y9GgeCs3RG2xhGu_P957el_7DmPHT1e0__DcjZV9dXTn7uTKp8R13fI3R8zrDewvIUmJJOvZLewQtTvIfXd-gKV2B4WP7-9-dvtxxXxMWyo0iwuFcn0tGGDGRVr2eCSJj0rgzWnrgL8tX5tdFEFpocm8vy19h5jMmJM6pJ14xG41U46--ddveDaWaGQLF2iKqVxMy0lWRG5IlmSURziaauUlGoQ2GsJ8bL27FMUmWEYgi6mMrTWCjLqUL7fQ0Wi7IwH4GEMkHMppW1lDMptIikVY6Uzoax5Zq1IJgJJlNT2nKXPWOU1YTLUeZmLGtmrAXbTfuLmrDjwZYbMzlnU8UdZxFlCJgop0kLvjbVqHLuHEUWppxgG0ShiLRwUC34UK-P5lUU9w6eCnx45KX8yDdknd6g05Q-PaXTF3h13OtnhwdH39dhKXLuAO8h2oDF6nJiPiNmqvJNrxY3Ma4N6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low%E2%80%90Cost+Counter%E2%80%90Electrode+Materials+for+Dye%E2%80%90Sensitized+and+Perovskite+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Guo%E2%80%90Ran&rft.au=Gao%2C+Xue%E2%80%90Ping&rft.date=2020-01-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=3&rft_id=info:doi/10.1002%2Fadma.201806478&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201806478 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |