Quantitative Systems Pharmacology Approaches for Immuno‐Oncology: Adding Virtual Patients to the Development Paradigm

Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/P...

Full description

Saved in:
Bibliographic Details
Published inClinical pharmacology and therapeutics Vol. 109; no. 3; pp. 605 - 618
Main Authors Chelliah, Vijayalakshmi, Lazarou, Georgia, Bhatnagar, Sumit, Gibbs, John P., Nijsen, Marjoleen, Ray, Avijit, Stoll, Brian, Thompson, R. Adam, Gulati, Abhishek, Soukharev, Serguei, Yamada, Akihiro, Weddell, Jared, Sayama, Hiroyuki, Oishi, Masayo, Wittemer‐Rump, Sabine, Patel, Chirag, Niederalt, Christoph, Burghaus, Rolf, Scheerans, Christian, Lippert, Jörg, Kabilan, Senthil, Kareva, Irina, Belousova, Natalya, Rolfe, Alex, Zutshi, Anup, Chenel, Marylore, Venezia, Filippo, Fouliard, Sylvain, Oberwittler, Heike, Scholer‐Dahirel, Alix, Lelievre, Helene, Bottino, Dean, Collins, Sabrina C., Nguyen, Hoa Q., Wang, Haiqing, Yoneyama, Tomoki, Zhu, Andy Z.X., Graaf, Piet H., Kierzek, Andrzej M.
Format Journal Article
LanguageEnglish
Published United States 01.03.2021
Online AccessGet full text

Cover

Loading…
Abstract Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD‐L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug‐development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
AbstractList Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
Author Burghaus, Rolf
Soukharev, Serguei
Patel, Chirag
Lelievre, Helene
Venezia, Filippo
Bottino, Dean
Nguyen, Hoa Q.
Chenel, Marylore
Bhatnagar, Sumit
Stoll, Brian
Yamada, Akihiro
Oberwittler, Heike
Collins, Sabrina C.
Yoneyama, Tomoki
Sayama, Hiroyuki
Gulati, Abhishek
Thompson, R. Adam
Oishi, Masayo
Belousova, Natalya
Ray, Avijit
Rolfe, Alex
Niederalt, Christoph
Wang, Haiqing
Weddell, Jared
Lazarou, Georgia
Kareva, Irina
Kierzek, Andrzej M.
Fouliard, Sylvain
Zutshi, Anup
Wittemer‐Rump, Sabine
Scholer‐Dahirel, Alix
Graaf, Piet H.
Scheerans, Christian
Kabilan, Senthil
Zhu, Andy Z.X.
Nijsen, Marjoleen
Chelliah, Vijayalakshmi
Lippert, Jörg
Gibbs, John P.
Author_xml – sequence: 1
  givenname: Vijayalakshmi
  surname: Chelliah
  fullname: Chelliah, Vijayalakshmi
  organization: Certara UK Ltd
– sequence: 2
  givenname: Georgia
  surname: Lazarou
  fullname: Lazarou, Georgia
  organization: Certara UK Ltd
– sequence: 3
  givenname: Sumit
  surname: Bhatnagar
  fullname: Bhatnagar, Sumit
  organization: Abbvie Inc
– sequence: 4
  givenname: John P.
  surname: Gibbs
  fullname: Gibbs, John P.
  organization: Abbvie Inc
– sequence: 5
  givenname: Marjoleen
  surname: Nijsen
  fullname: Nijsen, Marjoleen
  organization: Abbvie Inc
– sequence: 6
  givenname: Avijit
  surname: Ray
  fullname: Ray, Avijit
  organization: Abbvie Inc
– sequence: 7
  givenname: Brian
  surname: Stoll
  fullname: Stoll, Brian
  organization: Abbvie Inc
– sequence: 8
  givenname: R. Adam
  surname: Thompson
  fullname: Thompson, R. Adam
  organization: Abbvie Inc
– sequence: 9
  givenname: Abhishek
  surname: Gulati
  fullname: Gulati, Abhishek
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 10
  givenname: Serguei
  surname: Soukharev
  fullname: Soukharev, Serguei
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 11
  givenname: Akihiro
  surname: Yamada
  fullname: Yamada, Akihiro
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 12
  givenname: Jared
  surname: Weddell
  fullname: Weddell, Jared
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 13
  givenname: Hiroyuki
  surname: Sayama
  fullname: Sayama, Hiroyuki
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 14
  givenname: Masayo
  surname: Oishi
  fullname: Oishi, Masayo
  organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc
– sequence: 15
  givenname: Sabine
  surname: Wittemer‐Rump
  fullname: Wittemer‐Rump, Sabine
  organization: Bayer AG
– sequence: 16
  givenname: Chirag
  surname: Patel
  fullname: Patel, Chirag
  organization: Bayer AG
– sequence: 17
  givenname: Christoph
  surname: Niederalt
  fullname: Niederalt, Christoph
  organization: Bayer AG
– sequence: 18
  givenname: Rolf
  surname: Burghaus
  fullname: Burghaus, Rolf
  organization: Bayer AG
– sequence: 19
  givenname: Christian
  surname: Scheerans
  fullname: Scheerans, Christian
  organization: Bayer AG
– sequence: 20
  givenname: Jörg
  surname: Lippert
  fullname: Lippert, Jörg
  organization: Bayer AG
– sequence: 21
  givenname: Senthil
  surname: Kabilan
  fullname: Kabilan, Senthil
  organization: EMD Serono, Merck KGaA
– sequence: 22
  givenname: Irina
  surname: Kareva
  fullname: Kareva, Irina
  organization: EMD Serono, Merck KGaA
– sequence: 23
  givenname: Natalya
  surname: Belousova
  fullname: Belousova, Natalya
  organization: EMD Serono, Merck KGaA
– sequence: 24
  givenname: Alex
  surname: Rolfe
  fullname: Rolfe, Alex
  organization: EMD Serono, Merck KGaA
– sequence: 25
  givenname: Anup
  surname: Zutshi
  fullname: Zutshi, Anup
  organization: EMD Serono, Merck KGaA
– sequence: 26
  givenname: Marylore
  surname: Chenel
  fullname: Chenel, Marylore
– sequence: 27
  givenname: Filippo
  surname: Venezia
  fullname: Venezia, Filippo
– sequence: 28
  givenname: Sylvain
  surname: Fouliard
  fullname: Fouliard, Sylvain
– sequence: 29
  givenname: Heike
  surname: Oberwittler
  fullname: Oberwittler, Heike
– sequence: 30
  givenname: Alix
  surname: Scholer‐Dahirel
  fullname: Scholer‐Dahirel, Alix
– sequence: 31
  givenname: Helene
  surname: Lelievre
  fullname: Lelievre, Helene
– sequence: 32
  givenname: Dean
  surname: Bottino
  fullname: Bottino, Dean
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 33
  givenname: Sabrina C.
  surname: Collins
  fullname: Collins, Sabrina C.
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 34
  givenname: Hoa Q.
  surname: Nguyen
  fullname: Nguyen, Hoa Q.
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 35
  givenname: Haiqing
  surname: Wang
  fullname: Wang, Haiqing
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 36
  givenname: Tomoki
  surname: Yoneyama
  fullname: Yoneyama, Tomoki
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 37
  givenname: Andy Z.X.
  surname: Zhu
  fullname: Zhu, Andy Z.X.
  organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd
– sequence: 38
  givenname: Piet H.
  surname: Graaf
  fullname: Graaf, Piet H.
  organization: Certara UK Ltd
– sequence: 39
  givenname: Andrzej M.
  surname: Kierzek
  fullname: Kierzek, Andrzej M.
  email: Andrzej.kierzek@certara.com
  organization: Certara UK Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32686076$$D View this record in MEDLINE/PubMed
BookMark eNo9kFlOwzAYhC1URBeQOAHyBVK8ZDNvVdkqVWoQhdfIsZ02KI4jx2mVN47AGTkJiQo8jeaf0Uj_NwWjylQKgGuM5hghcitqN8csjs7ABAeUeGFAgxGYIISYxwgNx2DaNB-99VkcX4AxJWEcoiicgONLyytXOO6Kg4KvXeOUbmCy51ZzYUqz6-Cirq3hYq8amBsLV1q3lfn-_NpUp8IdXEhZVDv4XljX8hIm_ZiqXAOdgW6v4L06qNLUur_1meWy2OlLcJ7zslFXvzoDb48P2-Wzt948rZaLtSd8jCKPKUaJIj7yaY4EZwRnQsUYZczvf5AkJ5HMcC4lQSyMhyBgoZBZEOQii4WkM3Bz2q3bTCuZ1rbQ3HbpH4G-4J0Kx6JU3X-OUTqQTXuy6UA2XSbbQekPRzlwAw
CitedBy_id crossref_primary_10_1007_s00498_023_00362_5
crossref_primary_10_1016_j_ymeth_2023_12_006
crossref_primary_10_1136_jitc_2022_005414
crossref_primary_10_1002_psp4_12867
crossref_primary_10_1002_psp4_12700
crossref_primary_10_1038_s41401_024_01232_9
crossref_primary_10_1002_psp4_13157
crossref_primary_10_1016_j_isci_2022_104702
crossref_primary_10_3390_electronics13244994
crossref_primary_10_1158_0008_5472_CAN_24_0943
crossref_primary_10_3233_ADR_210039
crossref_primary_10_1007_s10928_022_09814_y
crossref_primary_10_1038_s41540_024_00397_7
crossref_primary_10_1371_journal_pcbi_1010254
crossref_primary_10_1002_cso2_1035
crossref_primary_10_1007_s10928_024_09903_0
crossref_primary_10_3389_fonc_2023_1235947
crossref_primary_10_1002_cpt_3373
crossref_primary_10_1208_s12248_021_00579_9
crossref_primary_10_3389_fbioe_2021_709727
crossref_primary_10_1002_cpt_3099
crossref_primary_10_3390_pharmaceutics13071016
crossref_primary_10_1002_cpt_2742
crossref_primary_10_1093_bib_bbae131
crossref_primary_10_1007_s10928_023_09871_x
crossref_primary_10_3389_fimmu_2023_1173546
crossref_primary_10_1208_s12248_021_00593_x
crossref_primary_10_1002_psp4_12637
crossref_primary_10_1016_j_it_2023_03_004
crossref_primary_10_1136_jitc_2024_009721
crossref_primary_10_1038_s41698_023_00405_9
crossref_primary_10_1021_acsptsci_0c00178
crossref_primary_10_1126_sciadv_adg0289
crossref_primary_10_1002_psp4_13079
crossref_primary_10_1038_s41746_024_01188_4
crossref_primary_10_3390_pharmaceutics13050704
crossref_primary_10_1016_j_dmpk_2024_101020
crossref_primary_10_3389_fsysb_2023_1229532
crossref_primary_10_1177_1073274820962008
crossref_primary_10_1007_s10928_021_09798_1
crossref_primary_10_1016_j_addr_2022_114237
crossref_primary_10_1111_cts_13859
crossref_primary_10_1002_psp4_13270
crossref_primary_10_1002_cpt_2591
crossref_primary_10_1007_s10928_024_09930_x
crossref_primary_10_1002_cpt_3263
crossref_primary_10_1002_cpt_2770
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
DBID 24P
NPM
DOI 10.1002/cpt.1987
DatabaseName Wiley-Blackwell Open Access Titles
PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1532-6535
EndPage 618
ExternalDocumentID 32686076
CPT1987
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
--K
-Q-
.55
.GJ
0R~
1B1
1CY
1OB
1OC
24P
29B
33P
354
36B
39C
3O-
4.4
52O
53G
5GY
5RE
6J9
70F
8F7
AAESR
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AAQOH
AAQQT
AAWTL
AAYCA
AAYOK
AAZKR
ABCUV
ABJNI
ABLJU
ABQWH
ACBNA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADBTR
ADKYN
ADNMO
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
C45
CAG
COF
CS3
DCZOG
DPXWK
DU5
EBS
EE.
EJD
EMOBN
F5P
GODZA
GWYGA
HGLYW
IH2
IHE
J5H
L7B
LATKE
LEEKS
LITHE
LOXES
LSO
LUTES
LYRES
M41
MEWTI
N4W
N9A
NQ-
O9-
OPC
OVD
P2P
P2W
PALCI
RIG
RIWAO
RJQFR
RNTTT
ROL
RPZ
SAMSI
SEW
SJN
SUPJJ
TEORI
TWZ
UHS
VH1
WBKPD
WH7
WOHZO
WXSBR
WYJ
X7M
Y6R
YCJ
YFH
YOC
YXB
ZGI
ZXP
ZZTAW
AGHNM
NPM
ID FETCH-LOGICAL-c4107-9e932e24043f0ca921bce810b94326d2f27db1fdd20968810b596cdb55fcb8cd3
IEDL.DBID 24P
ISSN 0009-9236
IngestDate Thu Apr 03 07:13:28 EDT 2025
Wed Jan 22 16:29:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-9e932e24043f0ca921bce810b94326d2f27db1fdd20968810b596cdb55fcb8cd3
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1987
PMID 32686076
PageCount 14
ParticipantIDs pubmed_primary_32686076
wiley_primary_10_1002_cpt_1987_CPT1987
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Clinical pharmacology and therapeutics
PublicationTitleAlternate Clin Pharmacol Ther
PublicationYear 2021
References 2013; 2
2018; 442
2019; 14
2004; 4
1992; 248
2018; 80
2019; 18
2005; 65
2013; 7
2008; 70
2018; 48
2016; 33
2018; 7
2020; 8
2013; 18
2018; 6
2018; 8
2014; 5
2009; 10
2018; 5
2013; 2013
1909; 5
2019; 21
2019; 65
2017; 77
1891; 14
2007; 3
2014; 9
2007; 69
2013; 190
2019; 8
1991; 2
2019; 9
2019; 6
2017; 2017
2013; 45
2018; 104
2013; 93
2003; 37
2020; 107
2003
1957; 1
1959
2006; 238
2014; 351
2011; 8
2009; 258
2012; 74
1998; 37
2016; 5
2018; 17
2013; 39
2018; 436
2017; 14
2015; 112
2018; 554
1994; 56
2016; 21
2009; 8
2001; 3
2001; 33
2018; 12
2017; 420
2001; 357
2016; 9
2014; 76
References_xml – start-page: 1661
  year: 2003
  end-page: 1668
– volume: 112
  start-page: 3320
  year: 2015
  end-page: 3325
  article-title: Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 420
  start-page: 82
  year: 2017
  end-page: 104
  article-title: Modelling and investigation of the CD4(+) T cells ‐ macrophages paradox in melanoma immunotherapies
  publication-title: J. Theor. Biol.
– volume: 80
  start-page: 1539
  year: 2018
  end-page: 1562
  article-title: Modelling the immune response to cancer: an individual‐based approach accounting for the difference in movement between inactive and activated T cells
  publication-title: Bull. Math. Biol.
– volume: 9
  start-page: 11286
  year: 2019
  article-title: A QSP model for predicting clinical responses to monotherapy, combination and sequential therapy following CTLA‐4, PD‐1, and PD‐L1 checkpoint blockade
  publication-title: Sci. Rep.
– volume: 104
  start-page: 88
  year: 2018
  end-page: 110
  article-title: Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective
  publication-title: Clin. Pharmacol. Ther.
– volume: 4
  start-page: 39
  year: 2004
  end-page: 58
  article-title: A Mathematical model of tumor‐immune evasion and siRNA treatment
  publication-title: Discrete Contin. Dyn. Syst. B
– volume: 65
  start-page: 7950
  year: 2005
  end-page: 7958
  article-title: A validated mathematical model of cell‐mediated immune response to tumor growth
  publication-title: Cancer Res.
– volume: 107
  start-page: 742
  year: 2020
  end-page: 745
  article-title: Virtual twins: understanding the data required for model‐informed precision dosing
  publication-title: Clin. Pharmacol. Ther
– volume: 5
  start-page: 232
  year: 2014
  article-title: Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems‐level models
  publication-title: Front. Pharmacol.
– volume: 9
  start-page: 190
  year: 2014
  end-page: 196
  article-title: Mathematical modeling of cancer treatment cultured with chemo‐immunotherapy by cytokine interleukin IL‐12
  publication-title: World J. Zool.
– volume: 3
  start-page: 1871
  year: 2007
  end-page: 1878
  article-title: Universally sloppy parameter sensitivities in systems biology models
  publication-title: PLoS Comput. Biol.
– volume: 351
  start-page: 74
  year: 2014
  end-page: 82
  article-title: A mathematical model for pancreatic cancer growth and treatments
  publication-title: J. Theor. Biol.
– volume: 2
  year: 2013
  article-title: Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 9
  year: 2014
  article-title: Mathematical modeling of Interleukin‐35 promoting tumor growth and angiogenesis
  publication-title: PLoS One
– volume: 18
  start-page: 915
  year: 2013
  end-page: 943
  article-title: Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment
  publication-title: Discrete Contin. Dyn. Sys. B
– volume: 37
  start-page: 235
  year: 1998
  end-page: 252
  article-title: Modeling immunotherapy of the tumor‐immune interaction
  publication-title: J. Math. Biol.
– volume: 442
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Mathematical modeling of tumor‐induced immunosuppression by myeloid‐derived suppressor cells: Implications for therapeutic targeting strategies
  publication-title: J. Theor. Biol.
– volume: 6
  year: 2018
  article-title: Mathematical modeling of tumor‐associated macrophage interactions with the cancer microenvironment
  publication-title: J. ImmunoTher. Cancer
– volume: 5
  start-page: 43
  year: 2016
  end-page: 53
  article-title: A model qualification method for mechanistic physiological QSP models to support model‐informed drug development
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 357
  start-page: 539
  year: 2001
  end-page: 545
  article-title: Inflammation and cancer: back to Virchow?
  publication-title: Lancet
– volume: 8
  start-page: 841
  year: 2011
  end-page: 860
  article-title: The replicability of oncolytic virus: defining conditions in tumor virotherapy
  publication-title: Math. Biosci. Eng.
– volume: 33
  start-page: 159
  year: 2016
  end-page: 188
  article-title: Improving bacillus Calmette‐Guerin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL‐2): a mathematical model
  publication-title: Math. Med. Biol.
– volume: 8
  start-page: 2926
  year: 2009
  end-page: 2936
  article-title: Quantification of endothelial cell‐targeted anti‐Bcl‐2 therapy and its suppression of tumor growth and vascularization
  publication-title: Mol. Cancer Ther.
– volume: 248
  start-page: 261
  year: 1992
  end-page: 271
  article-title: Oncogenes, anti‐oncogenes and the immune response to cancer: a mathematical model
  publication-title: Proc. Biol. Soc.
– volume: 107
  start-page: 858
  year: 2020
  end-page: 870
  article-title: Integration of omics data sources to inform mechanistic modeling of immune‐oncology therapies: a tutorial for clinical pharmacologists
  publication-title: Clin. Pharmacol. Ther.
– volume: 21
  start-page: 72
  year: 2019
  article-title: Translational quantitative systems pharmacology in drug development: from current landscape to good practices
  publication-title: AAPS J.
– volume: 14
  start-page: 20170320
  year: 2017
  article-title: A computational multiscale agent‐based model for simulating spatio‐temporal tumour immune response to PD1 and PDL1 inhibition
  publication-title: J. R. Soc. Interface
– volume: 17
  start-page: 814
  year: 2018
  end-page: 824
  article-title: A spatio‐temporal model of macrophage‐mediated drug resistance in glioma immunotherapy
  publication-title: Mol. Cancer Ther.
– volume: 107
  start-page: 700
  year: 2020
  end-page: 702
  article-title: Open models for clinical pharmacology
  publication-title: Clin. Pharmacol. Ther
– volume: 14
  year: 2019
  article-title: Personal response to immune checkpoint inhibitors of patients with advanced melanoma explained by a computational model of cellular immunity, tumor growth, and drug
  publication-title: PLoS One
– volume: 5
  start-page: 70
  year: 2018
  end-page: 99
  article-title: Tumour‐associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics
  publication-title: Lett. Biomath.
– volume: 190
  start-page: 2415
  year: 2013
  end-page: 2423
  article-title: Tumor‐derived IL‐35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis
  publication-title: J. Immunol.
– volume: 21
  start-page: 1279
  year: 2016
  end-page: 1295
  article-title: Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer
  publication-title: Discrete Cont. Dyn. Sys. B
– volume: 6
  start-page: 190366
  year: 2019
  article-title: In silico simulation of a clinical trial with anti‐CTLA‐4 and anti‐PD‐L1 immunotherapies in metastatic breast cancer using a systems pharmacology model
  publication-title: R. Soc. Open Sci.
– volume: 39
  start-page: 1
  year: 2013
  end-page: 10
  article-title: Oncology meets immunology: the cancer‐immunity cycle
  publication-title: Immunity
– volume: 2013
  start-page: 4529
  year: 2013
  end-page: 4532
  article-title: A tumor‐immune mathematical model of CD4+ T helper cell dependent tumor regression by oncogene inactivation
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 45
  start-page: 1113
  year: 2013
  end-page: 1120
  article-title: The Cancer Genome Atlas Pan – Cancer analysis project
  publication-title: Nat. Genet.
– volume: 21
  start-page: 79
  year: 2019
  article-title: A computational model of neoadjuvant PD‐1 inhibition in non‐small cell lung cancer
  publication-title: AAPS J.
– volume: 56
  start-page: 295
  year: 1994
  end-page: 321
  article-title: Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis
  publication-title: Bull. Math. Biol.
– volume: 8
  start-page: 1069
  year: 2018
  end-page: 1086
  article-title: Fundamental mechanisms of immune checkpoint blockade therapy
  publication-title: Cancer Discov.
– volume: 76
  start-page: 2884
  year: 2014
  end-page: 2906
  article-title: A validated mathematical model of tumor growth including tumor‐host interaction, cell‐mediated immune response and chemotherapy
  publication-title: Bull. Math. Biol
– volume: 6
  start-page: 17
  year: 2018
  article-title: Radiation and PD‐(L)1 treatment combinations: immune response and dose optimization via a predictive systems model
  publication-title: J. Immunother. Cancer
– volume: 93
  start-page: 379
  year: 2013
  end-page: 381
  article-title: Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan?
  publication-title: Clin. Pharmacol. Ther.
– volume: 37
  start-page: 1221
  year: 2003
  end-page: 1244
  article-title: The dynamics of an optimally controlled tumor model: a case study
  publication-title: Math. Comput. Model.
– volume: 7
  year: 2018
  article-title: M7824, a novel bifunctional anti‐PD‐L1/TGFbeta Trap fusion protein, promotes anti‐tumor efficacy as monotherapy and in combination with vaccine
  publication-title: Oncoimmunology
– volume: 80
  start-page: 971
  year: 2018
  end-page: 1016
  article-title: Mathematical modeling of cellular cross‐talk between endothelial and tumor cells highlights counterintuitive effects of VEGF‐targeted therapies
  publication-title: Bull. Math. Biol.
– volume: 5
  start-page: 235
  year: 2016
  end-page: 249
  article-title: A six‐stage workflow for robust application of systems pharmacology
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 69
  start-page: 1847
  year: 2007
  end-page: 1870
  article-title: Mathematical model of BCG immunotherapy in superficial bladder cancer
  publication-title: Bull. Math. Biol
– volume: 12
  start-page: 194
  year: 2018
  end-page: 210
  article-title: A mathematical model of tumour growth with Beddington‐DeAngelis functional response: a case of cancer without disease
  publication-title: J. Biol. Dyn.
– volume: 1
  start-page: 841
  year: 1957
  end-page: 847
  article-title: Cancer: a biological approach
  publication-title: Br. Med. J.
– volume: 7
  start-page: 490
  year: 2018
  article-title: QSP versus the rest: let the competition commence!
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 5
  start-page: 273
  year: 1909
  end-page: 290
  article-title: Über den jetzigen stand der karzinomforschung
  publication-title: Ned Tijdschr Geneeskd
– volume: 8
  start-page: 141
  year: 2020
  article-title: Conducting a virtual clinical trial in HER2‐negative breast cancer using a quantitative systems pharmacology model with an epigenetic modulator and immune checkpoint inhibitors
  publication-title: Front. Bioeng. Biotechnol
– volume: 14
  start-page: 199
  year: 1891
  end-page: 220
  article-title: Contribution to the knowledge of sarcoma
  publication-title: Ann. Surg.
– start-page: 529
  year: 1959
  end-page: 532
– volume: 77
  start-page: 5183
  year: 2017
  end-page: 5193
  article-title: Mathematical modeling of tumor‐tumor distant interactions supports a systemic control of tumor growth
  publication-title: Cancer Res.
– volume: 70
  start-page: 89
  year: 2008
  end-page: 117
  article-title: Modeling the VEGF–Bcl‐2–CXCL8 Pathway in intratumoral agiogenesis
  publication-title: Bull. Math. Biol.
– volume: 238
  start-page: 841
  year: 2006
  end-page: 862
  article-title: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations
  publication-title: J. Theor. Biol.
– volume: 18
  start-page: 899
  year: 2019
  end-page: 900
  article-title: Immuno‐oncology drug development goes global
  publication-title: Nat. Rev. Drug Discov.
– volume: 8
  start-page: 336
  year: 2019
  end-page: 339
  article-title: Quantitative systems pharmacology: a regulatory perspective on translation
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 74
  start-page: 1485
  year: 2012
  end-page: 1500
  article-title: A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy
  publication-title: Bull. Math. Biol.
– volume: 33
  start-page: 1275
  year: 2001
  end-page: 1287
  article-title: Modeling tumor regrowth and immunotherapy
  publication-title: Math. Comput. Model
– volume: 9
  start-page: 89
  year: 2016
  end-page: 104
  article-title: Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities
  publication-title: Clin. Transl. Sci.
– volume: 554
  start-page: 544
  year: 2018
  end-page: 548
  article-title: TGFbeta attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
– volume: 8
  start-page: 331
  year: 2019
  end-page: 332
  article-title: Pharmacometrics and/or systems pharmacology
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 2
  start-page: 465
  year: 1991
  end-page: 476
  article-title: A mathematical model for the interaction between cytotoxic T lymphocytes and tumour cells. Analysis of the growth, stabilization, and regression of a B‐cell lymphoma in mice chimeric with respect to the major histocompatibility complex
  publication-title: Biomed. Sci.
– volume: 3
  start-page: 79
  year: 2001
  end-page: 100
  article-title: A mathematical tumour model with immune resistence and drug therapy: an optimal control approach
  publication-title: J. Theor. Med.
– volume: 48
  start-page: 812
  year: 2018
  end-page: 830
  article-title: The immune landscape of cancer
  publication-title: Immunity
– volume: 7
  start-page: 247
  year: 2013
  end-page: 261
  article-title: Mathematical model of cancer treatments using immunotherapy, chemotherapy and biochemotherapy
  publication-title: Appl. Math. Sci.
– volume: 65
  start-page: 349
  year: 2019
  end-page: 360
  article-title: Assessing computational model credibility using a risk‐based framework: application to hemolysis in centrifugal blood pumps
  publication-title: ASAIO J
– volume: 10
  start-page: 165
  year: 2009
  end-page: 184
  article-title: Mathematical model creation for cancer chemo‐immunotherapy
  publication-title: Comput. Math. Method Med.
– volume: 258
  start-page: 444
  year: 2009
  end-page: 454
  article-title: Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes
  publication-title: J. Theor. Biol.
– volume: 436
  start-page: 39
  year: 2018
  end-page: 50
  article-title: A mathematical model of antibody‐dependent cellular cytotoxicity (ADCC)
  publication-title: J. Theor. Biol.
– volume: 8
  start-page: 340
  year: 2019
  end-page: 343
  article-title: A Flexible approach for context‐dependent assessment of quantitative systems pharmacology models
  publication-title: CPT Pharmacometrics Syst. Pharmacol.
– volume: 2017
  start-page: 6587258
  year: 2017
  article-title: The role of the innate immune system in oncolytic virotherapy
  publication-title: Comput. Math Methods Med.
SSID ssj0004988
Score 2.546797
SecondaryResourceType review_article
Snippet Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In...
SourceID pubmed
wiley
SourceType Index Database
Publisher
StartPage 605
Title Quantitative Systems Pharmacology Approaches for Immuno‐Oncology: Adding Virtual Patients to the Development Paradigm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1987
https://www.ncbi.nlm.nih.gov/pubmed/32686076
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgLCyIb8qXPKBODXVd23XYqoqqILUEqUXdothOUAfSqkmFuvET-I38Es5J2pSNJRnuoki-nO9ddO8ZoTseQBWjTFlyjOswaCqcABLD4QHTvAU13RDLRh4MRX_Mnid8UkxVWi5Mrg-x-eFmMyPbr22CBypplKKhep7e2455F-1ZZq3VzafMKzmRrpTrU9QAxIi18CyhjfWTW0VnG5hmlaV3iA4KSIg7eQyP0E4YH6Oal2tKr-p4VFKkkjquYa9Um16doM_XZRBnTDHYt3AhQP7HB3cK3fAwwQBR8ZOlhMx-vr5f4tzhAXeMLWH4bbqwdBLs5WKrCU5nGAAi3posAtsiMNP3j1M07j2Oun2nOE3B0Qx6PMcNAaqF1KrpREQHLm0qHcomUS4DCGdoRNtGNSNjKHQ10hq4K7RRnEdaSW1aZ6gSz-LwAmFJeCQ0p1xKwbQgMpJEAXYBMESIFryKzvOF9ee5ZIYPb5CCtEUV1bKV3hhy1WTqQ0x8GxO_643s_fK_jldon9oxk2ws7BpV0sUyvAGckKrb7IOA69Ab_AJFBbvb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvRi_BY_92A4UVmW3WWrJ0IkoIA1AcOtaXdbw8FCoMRw8yf4G_0lzrYU8Oaph5mmyU5n581m3luEbrkHVYwy35BjbItBU2F5kBgW95jiVajpmhg2crcnWgP2NOTDHHrIuDCpPsTqwM1kRrJfmwQ3B9LltWqomsR3pmXeQttM0JrJSsqcNSnSljK7Rg1QjMiUZwktZ29uVJ1NZJqUluY-2ltiQlxPg3iAckF0iIpOKiq9KOH-miM1K-EidtZy04sj9Pk696KEKgYbF14qkP_xwfWlcHgww4BRcdtwQsY_X98vUepwj-va1DD8NpoaPgl2UrXVGY7HGBAi3hgtAtvU06P3j2M0aD72Gy1reZ2CpRg0eZYdAFYLqJHTCYnybFrxVSArxLcZYDhNQ1rTfiXUmkJbI42B20Jpn_NQ-VLp6gnKR-MoOENYEh4KxSmXUjAliAwl8QG8ABoiRAleQKfpwrqTVDPDhS9IQWqigIrJSq8MqWwydSEmromJ23D65nn-X8cbtNPqdztup917vkC71MycJDNilygfT-fBFYCG2L9Ofo5fBRW-Ow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgSIgLYqesPqCeGnBd23W4VYWqZSlBalFvUWwnqAfSqk2FeuMT-Ea-hHGSLtw45TATRfJkPG-Sec8IXfEAqhhlypJjXIdBU-EEkBgOD5jmVajphlg28nNHtHrsoc_7-VSl5cJk-hCLD242M9L92ib4yEQ3S9FQPUqubce8jjbSf31W1Zl5S06kK-X8FDUAMWIuPEvozfzOlaKzCkzTytLcQds5JMT1LIa7aC2M91DJyzSlZ2XcXVKkJmVcwt5SbXq2jz5fp0GcMsVg38K5APkfH1zPdcPDCQaIituWEjL8-fp-iTOHW1w3toTht8HY0kmwl4mtTnAyxAAQ8cpkEdjGgRm8fxygXvO-22g5-WkKjmbQ4zluCFAtpFZNJyI6cGlF6VBWiHIZQDhDI1ozqhIZQ6GrkdbAXaGN4jzSSmpTPUSFeBiHxwhLwiOhOeVSCqYFkZEkCrALgCFCtOBFdJQtrD_KJDN8eIIUpCaKqJSu9MKQqSZTH2Li25j4Da9rryf_dbxEm95d039qdx5P0Ra1EyfphNgZKiTjaXgOkCFRF-m78Qsl671t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Systems+Pharmacology+Approaches+for+Immuno%E2%80%90Oncology%3A+Adding+Virtual+Patients+to+the+Development+Paradigm&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Chelliah%2C+Vijayalakshmi&rft.au=Lazarou%2C+Georgia&rft.au=Bhatnagar%2C+Sumit&rft.au=Gibbs%2C+John+P.&rft.date=2021-03-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=109&rft.issue=3&rft.spage=605&rft.epage=618&rft_id=info:doi/10.1002%2Fcpt.1987&rft.externalDBID=10.1002%252Fcpt.1987&rft.externalDocID=CPT1987
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon