Quantitative Systems Pharmacology Approaches for Immuno‐Oncology: Adding Virtual Patients to the Development Paradigm
Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/P...
Saved in:
Published in | Clinical pharmacology and therapeutics Vol. 109; no. 3; pp. 605 - 618 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.03.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD‐L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug‐development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies. |
---|---|
AbstractList | Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno-oncology (IO) the aim is to direct the patient's own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD-L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug-development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds' pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies. |
Author | Burghaus, Rolf Soukharev, Serguei Patel, Chirag Lelievre, Helene Venezia, Filippo Bottino, Dean Nguyen, Hoa Q. Chenel, Marylore Bhatnagar, Sumit Stoll, Brian Yamada, Akihiro Oberwittler, Heike Collins, Sabrina C. Yoneyama, Tomoki Sayama, Hiroyuki Gulati, Abhishek Thompson, R. Adam Oishi, Masayo Belousova, Natalya Ray, Avijit Rolfe, Alex Niederalt, Christoph Wang, Haiqing Weddell, Jared Lazarou, Georgia Kareva, Irina Kierzek, Andrzej M. Fouliard, Sylvain Zutshi, Anup Wittemer‐Rump, Sabine Scholer‐Dahirel, Alix Graaf, Piet H. Scheerans, Christian Kabilan, Senthil Zhu, Andy Z.X. Nijsen, Marjoleen Chelliah, Vijayalakshmi Lippert, Jörg Gibbs, John P. |
Author_xml | – sequence: 1 givenname: Vijayalakshmi surname: Chelliah fullname: Chelliah, Vijayalakshmi organization: Certara UK Ltd – sequence: 2 givenname: Georgia surname: Lazarou fullname: Lazarou, Georgia organization: Certara UK Ltd – sequence: 3 givenname: Sumit surname: Bhatnagar fullname: Bhatnagar, Sumit organization: Abbvie Inc – sequence: 4 givenname: John P. surname: Gibbs fullname: Gibbs, John P. organization: Abbvie Inc – sequence: 5 givenname: Marjoleen surname: Nijsen fullname: Nijsen, Marjoleen organization: Abbvie Inc – sequence: 6 givenname: Avijit surname: Ray fullname: Ray, Avijit organization: Abbvie Inc – sequence: 7 givenname: Brian surname: Stoll fullname: Stoll, Brian organization: Abbvie Inc – sequence: 8 givenname: R. Adam surname: Thompson fullname: Thompson, R. Adam organization: Abbvie Inc – sequence: 9 givenname: Abhishek surname: Gulati fullname: Gulati, Abhishek organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 10 givenname: Serguei surname: Soukharev fullname: Soukharev, Serguei organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 11 givenname: Akihiro surname: Yamada fullname: Yamada, Akihiro organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 12 givenname: Jared surname: Weddell fullname: Weddell, Jared organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 13 givenname: Hiroyuki surname: Sayama fullname: Sayama, Hiroyuki organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 14 givenname: Masayo surname: Oishi fullname: Oishi, Masayo organization: Astellas Pharma Global Development Inc./Astellas Pharma Inc – sequence: 15 givenname: Sabine surname: Wittemer‐Rump fullname: Wittemer‐Rump, Sabine organization: Bayer AG – sequence: 16 givenname: Chirag surname: Patel fullname: Patel, Chirag organization: Bayer AG – sequence: 17 givenname: Christoph surname: Niederalt fullname: Niederalt, Christoph organization: Bayer AG – sequence: 18 givenname: Rolf surname: Burghaus fullname: Burghaus, Rolf organization: Bayer AG – sequence: 19 givenname: Christian surname: Scheerans fullname: Scheerans, Christian organization: Bayer AG – sequence: 20 givenname: Jörg surname: Lippert fullname: Lippert, Jörg organization: Bayer AG – sequence: 21 givenname: Senthil surname: Kabilan fullname: Kabilan, Senthil organization: EMD Serono, Merck KGaA – sequence: 22 givenname: Irina surname: Kareva fullname: Kareva, Irina organization: EMD Serono, Merck KGaA – sequence: 23 givenname: Natalya surname: Belousova fullname: Belousova, Natalya organization: EMD Serono, Merck KGaA – sequence: 24 givenname: Alex surname: Rolfe fullname: Rolfe, Alex organization: EMD Serono, Merck KGaA – sequence: 25 givenname: Anup surname: Zutshi fullname: Zutshi, Anup organization: EMD Serono, Merck KGaA – sequence: 26 givenname: Marylore surname: Chenel fullname: Chenel, Marylore – sequence: 27 givenname: Filippo surname: Venezia fullname: Venezia, Filippo – sequence: 28 givenname: Sylvain surname: Fouliard fullname: Fouliard, Sylvain – sequence: 29 givenname: Heike surname: Oberwittler fullname: Oberwittler, Heike – sequence: 30 givenname: Alix surname: Scholer‐Dahirel fullname: Scholer‐Dahirel, Alix – sequence: 31 givenname: Helene surname: Lelievre fullname: Lelievre, Helene – sequence: 32 givenname: Dean surname: Bottino fullname: Bottino, Dean organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 33 givenname: Sabrina C. surname: Collins fullname: Collins, Sabrina C. organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 34 givenname: Hoa Q. surname: Nguyen fullname: Nguyen, Hoa Q. organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 35 givenname: Haiqing surname: Wang fullname: Wang, Haiqing organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 36 givenname: Tomoki surname: Yoneyama fullname: Yoneyama, Tomoki organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 37 givenname: Andy Z.X. surname: Zhu fullname: Zhu, Andy Z.X. organization: Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd – sequence: 38 givenname: Piet H. surname: Graaf fullname: Graaf, Piet H. organization: Certara UK Ltd – sequence: 39 givenname: Andrzej M. surname: Kierzek fullname: Kierzek, Andrzej M. email: Andrzej.kierzek@certara.com organization: Certara UK Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32686076$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kFlOwzAYhC1URBeQOAHyBVK8ZDNvVdkqVWoQhdfIsZ02KI4jx2mVN47AGTkJiQo8jeaf0Uj_NwWjylQKgGuM5hghcitqN8csjs7ABAeUeGFAgxGYIISYxwgNx2DaNB-99VkcX4AxJWEcoiicgONLyytXOO6Kg4KvXeOUbmCy51ZzYUqz6-Cirq3hYq8amBsLV1q3lfn-_NpUp8IdXEhZVDv4XljX8hIm_ZiqXAOdgW6v4L06qNLUur_1meWy2OlLcJ7zslFXvzoDb48P2-Wzt948rZaLtSd8jCKPKUaJIj7yaY4EZwRnQsUYZczvf5AkJ5HMcC4lQSyMhyBgoZBZEOQii4WkM3Bz2q3bTCuZ1rbQ3HbpH4G-4J0Kx6JU3X-OUTqQTXuy6UA2XSbbQekPRzlwAw |
CitedBy_id | crossref_primary_10_1007_s00498_023_00362_5 crossref_primary_10_1016_j_ymeth_2023_12_006 crossref_primary_10_1136_jitc_2022_005414 crossref_primary_10_1002_psp4_12867 crossref_primary_10_1002_psp4_12700 crossref_primary_10_1038_s41401_024_01232_9 crossref_primary_10_1002_psp4_13157 crossref_primary_10_1016_j_isci_2022_104702 crossref_primary_10_3390_electronics13244994 crossref_primary_10_1158_0008_5472_CAN_24_0943 crossref_primary_10_3233_ADR_210039 crossref_primary_10_1007_s10928_022_09814_y crossref_primary_10_1038_s41540_024_00397_7 crossref_primary_10_1371_journal_pcbi_1010254 crossref_primary_10_1002_cso2_1035 crossref_primary_10_1007_s10928_024_09903_0 crossref_primary_10_3389_fonc_2023_1235947 crossref_primary_10_1002_cpt_3373 crossref_primary_10_1208_s12248_021_00579_9 crossref_primary_10_3389_fbioe_2021_709727 crossref_primary_10_1002_cpt_3099 crossref_primary_10_3390_pharmaceutics13071016 crossref_primary_10_1002_cpt_2742 crossref_primary_10_1093_bib_bbae131 crossref_primary_10_1007_s10928_023_09871_x crossref_primary_10_3389_fimmu_2023_1173546 crossref_primary_10_1208_s12248_021_00593_x crossref_primary_10_1002_psp4_12637 crossref_primary_10_1016_j_it_2023_03_004 crossref_primary_10_1136_jitc_2024_009721 crossref_primary_10_1038_s41698_023_00405_9 crossref_primary_10_1021_acsptsci_0c00178 crossref_primary_10_1126_sciadv_adg0289 crossref_primary_10_1002_psp4_13079 crossref_primary_10_1038_s41746_024_01188_4 crossref_primary_10_3390_pharmaceutics13050704 crossref_primary_10_1016_j_dmpk_2024_101020 crossref_primary_10_3389_fsysb_2023_1229532 crossref_primary_10_1177_1073274820962008 crossref_primary_10_1007_s10928_021_09798_1 crossref_primary_10_1016_j_addr_2022_114237 crossref_primary_10_1111_cts_13859 crossref_primary_10_1002_psp4_13270 crossref_primary_10_1002_cpt_2591 crossref_primary_10_1007_s10928_024_09930_x crossref_primary_10_1002_cpt_3263 crossref_primary_10_1002_cpt_2770 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. |
DBID | 24P NPM |
DOI | 10.1002/cpt.1987 |
DatabaseName | Wiley-Blackwell Open Access Titles PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1532-6535 |
EndPage | 618 |
ExternalDocumentID | 32686076 CPT1987 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- --K -Q- .55 .GJ 0R~ 1B1 1CY 1OB 1OC 24P 29B 33P 354 36B 39C 3O- 4.4 52O 53G 5GY 5RE 6J9 70F 8F7 AAESR AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AAQOH AAQQT AAWTL AAYCA AAYOK AAZKR ABCUV ABJNI ABLJU ABQWH ACBNA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACRPL ACXQS ACYXJ ADBBV ADBTR ADKYN ADNMO ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI C45 CAG COF CS3 DCZOG DPXWK DU5 EBS EE. EJD EMOBN F5P GODZA GWYGA HGLYW IH2 IHE J5H L7B LATKE LEEKS LITHE LOXES LSO LUTES LYRES M41 MEWTI N4W N9A NQ- O9- OPC OVD P2P P2W PALCI RIG RIWAO RJQFR RNTTT ROL RPZ SAMSI SEW SJN SUPJJ TEORI TWZ UHS VH1 WBKPD WH7 WOHZO WXSBR WYJ X7M Y6R YCJ YFH YOC YXB ZGI ZXP ZZTAW AGHNM NPM |
ID | FETCH-LOGICAL-c4107-9e932e24043f0ca921bce810b94326d2f27db1fdd20968810b596cdb55fcb8cd3 |
IEDL.DBID | 24P |
ISSN | 0009-9236 |
IngestDate | Thu Apr 03 07:13:28 EDT 2025 Wed Jan 22 16:29:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-9e932e24043f0ca921bce810b94326d2f27db1fdd20968810b596cdb55fcb8cd3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1987 |
PMID | 32686076 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_32686076 wiley_primary_10_1002_cpt_1987_CPT1987 |
PublicationCentury | 2000 |
PublicationDate | March 2021 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: March 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Clinical pharmacology and therapeutics |
PublicationTitleAlternate | Clin Pharmacol Ther |
PublicationYear | 2021 |
References | 2013; 2 2018; 442 2019; 14 2004; 4 1992; 248 2018; 80 2019; 18 2005; 65 2013; 7 2008; 70 2018; 48 2016; 33 2018; 7 2020; 8 2013; 18 2018; 6 2018; 8 2014; 5 2009; 10 2018; 5 2013; 2013 1909; 5 2019; 21 2019; 65 2017; 77 1891; 14 2007; 3 2014; 9 2007; 69 2013; 190 2019; 8 1991; 2 2019; 9 2019; 6 2017; 2017 2013; 45 2018; 104 2013; 93 2003; 37 2020; 107 2003 1957; 1 1959 2006; 238 2014; 351 2011; 8 2009; 258 2012; 74 1998; 37 2016; 5 2018; 17 2013; 39 2018; 436 2017; 14 2015; 112 2018; 554 1994; 56 2016; 21 2009; 8 2001; 3 2001; 33 2018; 12 2017; 420 2001; 357 2016; 9 2014; 76 |
References_xml | – start-page: 1661 year: 2003 end-page: 1668 – volume: 112 start-page: 3320 year: 2015 end-page: 3325 article-title: Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution publication-title: Proc. Natl. Acad. Sci. USA – volume: 420 start-page: 82 year: 2017 end-page: 104 article-title: Modelling and investigation of the CD4(+) T cells ‐ macrophages paradox in melanoma immunotherapies publication-title: J. Theor. Biol. – volume: 80 start-page: 1539 year: 2018 end-page: 1562 article-title: Modelling the immune response to cancer: an individual‐based approach accounting for the difference in movement between inactive and activated T cells publication-title: Bull. Math. Biol. – volume: 9 start-page: 11286 year: 2019 article-title: A QSP model for predicting clinical responses to monotherapy, combination and sequential therapy following CTLA‐4, PD‐1, and PD‐L1 checkpoint blockade publication-title: Sci. Rep. – volume: 104 start-page: 88 year: 2018 end-page: 110 article-title: Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective publication-title: Clin. Pharmacol. Ther. – volume: 4 start-page: 39 year: 2004 end-page: 58 article-title: A Mathematical model of tumor‐immune evasion and siRNA treatment publication-title: Discrete Contin. Dyn. Syst. B – volume: 65 start-page: 7950 year: 2005 end-page: 7958 article-title: A validated mathematical model of cell‐mediated immune response to tumor growth publication-title: Cancer Res. – volume: 107 start-page: 742 year: 2020 end-page: 745 article-title: Virtual twins: understanding the data required for model‐informed precision dosing publication-title: Clin. Pharmacol. Ther – volume: 5 start-page: 232 year: 2014 article-title: Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems‐level models publication-title: Front. Pharmacol. – volume: 9 start-page: 190 year: 2014 end-page: 196 article-title: Mathematical modeling of cancer treatment cultured with chemo‐immunotherapy by cytokine interleukin IL‐12 publication-title: World J. Zool. – volume: 3 start-page: 1871 year: 2007 end-page: 1878 article-title: Universally sloppy parameter sensitivities in systems biology models publication-title: PLoS Comput. Biol. – volume: 351 start-page: 74 year: 2014 end-page: 82 article-title: A mathematical model for pancreatic cancer growth and treatments publication-title: J. Theor. Biol. – volume: 2 year: 2013 article-title: Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 9 year: 2014 article-title: Mathematical modeling of Interleukin‐35 promoting tumor growth and angiogenesis publication-title: PLoS One – volume: 18 start-page: 915 year: 2013 end-page: 943 article-title: Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment publication-title: Discrete Contin. Dyn. Sys. B – volume: 37 start-page: 235 year: 1998 end-page: 252 article-title: Modeling immunotherapy of the tumor‐immune interaction publication-title: J. Math. Biol. – volume: 442 start-page: 1 year: 2018 end-page: 10 article-title: Mathematical modeling of tumor‐induced immunosuppression by myeloid‐derived suppressor cells: Implications for therapeutic targeting strategies publication-title: J. Theor. Biol. – volume: 6 year: 2018 article-title: Mathematical modeling of tumor‐associated macrophage interactions with the cancer microenvironment publication-title: J. ImmunoTher. Cancer – volume: 5 start-page: 43 year: 2016 end-page: 53 article-title: A model qualification method for mechanistic physiological QSP models to support model‐informed drug development publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 357 start-page: 539 year: 2001 end-page: 545 article-title: Inflammation and cancer: back to Virchow? publication-title: Lancet – volume: 8 start-page: 841 year: 2011 end-page: 860 article-title: The replicability of oncolytic virus: defining conditions in tumor virotherapy publication-title: Math. Biosci. Eng. – volume: 33 start-page: 159 year: 2016 end-page: 188 article-title: Improving bacillus Calmette‐Guerin (BCG) immunotherapy for bladder cancer by adding interleukin 2 (IL‐2): a mathematical model publication-title: Math. Med. Biol. – volume: 8 start-page: 2926 year: 2009 end-page: 2936 article-title: Quantification of endothelial cell‐targeted anti‐Bcl‐2 therapy and its suppression of tumor growth and vascularization publication-title: Mol. Cancer Ther. – volume: 248 start-page: 261 year: 1992 end-page: 271 article-title: Oncogenes, anti‐oncogenes and the immune response to cancer: a mathematical model publication-title: Proc. Biol. Soc. – volume: 107 start-page: 858 year: 2020 end-page: 870 article-title: Integration of omics data sources to inform mechanistic modeling of immune‐oncology therapies: a tutorial for clinical pharmacologists publication-title: Clin. Pharmacol. Ther. – volume: 21 start-page: 72 year: 2019 article-title: Translational quantitative systems pharmacology in drug development: from current landscape to good practices publication-title: AAPS J. – volume: 14 start-page: 20170320 year: 2017 article-title: A computational multiscale agent‐based model for simulating spatio‐temporal tumour immune response to PD1 and PDL1 inhibition publication-title: J. R. Soc. Interface – volume: 17 start-page: 814 year: 2018 end-page: 824 article-title: A spatio‐temporal model of macrophage‐mediated drug resistance in glioma immunotherapy publication-title: Mol. Cancer Ther. – volume: 107 start-page: 700 year: 2020 end-page: 702 article-title: Open models for clinical pharmacology publication-title: Clin. Pharmacol. Ther – volume: 14 year: 2019 article-title: Personal response to immune checkpoint inhibitors of patients with advanced melanoma explained by a computational model of cellular immunity, tumor growth, and drug publication-title: PLoS One – volume: 5 start-page: 70 year: 2018 end-page: 99 article-title: Tumour‐associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics publication-title: Lett. Biomath. – volume: 190 start-page: 2415 year: 2013 end-page: 2423 article-title: Tumor‐derived IL‐35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis publication-title: J. Immunol. – volume: 21 start-page: 1279 year: 2016 end-page: 1295 article-title: Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer publication-title: Discrete Cont. Dyn. Sys. B – volume: 6 start-page: 190366 year: 2019 article-title: In silico simulation of a clinical trial with anti‐CTLA‐4 and anti‐PD‐L1 immunotherapies in metastatic breast cancer using a systems pharmacology model publication-title: R. Soc. Open Sci. – volume: 39 start-page: 1 year: 2013 end-page: 10 article-title: Oncology meets immunology: the cancer‐immunity cycle publication-title: Immunity – volume: 2013 start-page: 4529 year: 2013 end-page: 4532 article-title: A tumor‐immune mathematical model of CD4+ T helper cell dependent tumor regression by oncogene inactivation publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 45 start-page: 1113 year: 2013 end-page: 1120 article-title: The Cancer Genome Atlas Pan – Cancer analysis project publication-title: Nat. Genet. – volume: 21 start-page: 79 year: 2019 article-title: A computational model of neoadjuvant PD‐1 inhibition in non‐small cell lung cancer publication-title: AAPS J. – volume: 56 start-page: 295 year: 1994 end-page: 321 article-title: Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis publication-title: Bull. Math. Biol. – volume: 8 start-page: 1069 year: 2018 end-page: 1086 article-title: Fundamental mechanisms of immune checkpoint blockade therapy publication-title: Cancer Discov. – volume: 76 start-page: 2884 year: 2014 end-page: 2906 article-title: A validated mathematical model of tumor growth including tumor‐host interaction, cell‐mediated immune response and chemotherapy publication-title: Bull. Math. Biol – volume: 6 start-page: 17 year: 2018 article-title: Radiation and PD‐(L)1 treatment combinations: immune response and dose optimization via a predictive systems model publication-title: J. Immunother. Cancer – volume: 93 start-page: 379 year: 2013 end-page: 381 article-title: Systems pharmacology for drug discovery and development: paradigm shift or flash in the pan? publication-title: Clin. Pharmacol. Ther. – volume: 37 start-page: 1221 year: 2003 end-page: 1244 article-title: The dynamics of an optimally controlled tumor model: a case study publication-title: Math. Comput. Model. – volume: 7 year: 2018 article-title: M7824, a novel bifunctional anti‐PD‐L1/TGFbeta Trap fusion protein, promotes anti‐tumor efficacy as monotherapy and in combination with vaccine publication-title: Oncoimmunology – volume: 80 start-page: 971 year: 2018 end-page: 1016 article-title: Mathematical modeling of cellular cross‐talk between endothelial and tumor cells highlights counterintuitive effects of VEGF‐targeted therapies publication-title: Bull. Math. Biol. – volume: 5 start-page: 235 year: 2016 end-page: 249 article-title: A six‐stage workflow for robust application of systems pharmacology publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 69 start-page: 1847 year: 2007 end-page: 1870 article-title: Mathematical model of BCG immunotherapy in superficial bladder cancer publication-title: Bull. Math. Biol – volume: 12 start-page: 194 year: 2018 end-page: 210 article-title: A mathematical model of tumour growth with Beddington‐DeAngelis functional response: a case of cancer without disease publication-title: J. Biol. Dyn. – volume: 1 start-page: 841 year: 1957 end-page: 847 article-title: Cancer: a biological approach publication-title: Br. Med. J. – volume: 7 start-page: 490 year: 2018 article-title: QSP versus the rest: let the competition commence! publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 5 start-page: 273 year: 1909 end-page: 290 article-title: Über den jetzigen stand der karzinomforschung publication-title: Ned Tijdschr Geneeskd – volume: 8 start-page: 141 year: 2020 article-title: Conducting a virtual clinical trial in HER2‐negative breast cancer using a quantitative systems pharmacology model with an epigenetic modulator and immune checkpoint inhibitors publication-title: Front. Bioeng. Biotechnol – volume: 14 start-page: 199 year: 1891 end-page: 220 article-title: Contribution to the knowledge of sarcoma publication-title: Ann. Surg. – start-page: 529 year: 1959 end-page: 532 – volume: 77 start-page: 5183 year: 2017 end-page: 5193 article-title: Mathematical modeling of tumor‐tumor distant interactions supports a systemic control of tumor growth publication-title: Cancer Res. – volume: 70 start-page: 89 year: 2008 end-page: 117 article-title: Modeling the VEGF–Bcl‐2–CXCL8 Pathway in intratumoral agiogenesis publication-title: Bull. Math. Biol. – volume: 238 start-page: 841 year: 2006 end-page: 862 article-title: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations publication-title: J. Theor. Biol. – volume: 18 start-page: 899 year: 2019 end-page: 900 article-title: Immuno‐oncology drug development goes global publication-title: Nat. Rev. Drug Discov. – volume: 8 start-page: 336 year: 2019 end-page: 339 article-title: Quantitative systems pharmacology: a regulatory perspective on translation publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 74 start-page: 1485 year: 2012 end-page: 1500 article-title: A mathematical model of the enhancement of tumor vaccine efficacy by immunotherapy publication-title: Bull. Math. Biol. – volume: 33 start-page: 1275 year: 2001 end-page: 1287 article-title: Modeling tumor regrowth and immunotherapy publication-title: Math. Comput. Model – volume: 9 start-page: 89 year: 2016 end-page: 104 article-title: Immunotherapy and novel combinations in oncology: current landscape, challenges, and opportunities publication-title: Clin. Transl. Sci. – volume: 554 start-page: 544 year: 2018 end-page: 548 article-title: TGFbeta attenuates tumour response to PD‐L1 blockade by contributing to exclusion of T cells publication-title: Nature – volume: 8 start-page: 331 year: 2019 end-page: 332 article-title: Pharmacometrics and/or systems pharmacology publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 2 start-page: 465 year: 1991 end-page: 476 article-title: A mathematical model for the interaction between cytotoxic T lymphocytes and tumour cells. Analysis of the growth, stabilization, and regression of a B‐cell lymphoma in mice chimeric with respect to the major histocompatibility complex publication-title: Biomed. Sci. – volume: 3 start-page: 79 year: 2001 end-page: 100 article-title: A mathematical tumour model with immune resistence and drug therapy: an optimal control approach publication-title: J. Theor. Med. – volume: 48 start-page: 812 year: 2018 end-page: 830 article-title: The immune landscape of cancer publication-title: Immunity – volume: 7 start-page: 247 year: 2013 end-page: 261 article-title: Mathematical model of cancer treatments using immunotherapy, chemotherapy and biochemotherapy publication-title: Appl. Math. Sci. – volume: 65 start-page: 349 year: 2019 end-page: 360 article-title: Assessing computational model credibility using a risk‐based framework: application to hemolysis in centrifugal blood pumps publication-title: ASAIO J – volume: 10 start-page: 165 year: 2009 end-page: 184 article-title: Mathematical model creation for cancer chemo‐immunotherapy publication-title: Comput. Math. Method Med. – volume: 258 start-page: 444 year: 2009 end-page: 454 article-title: Mixed immunotherapy and chemotherapy of tumors: feedback design and model updating schemes publication-title: J. Theor. Biol. – volume: 436 start-page: 39 year: 2018 end-page: 50 article-title: A mathematical model of antibody‐dependent cellular cytotoxicity (ADCC) publication-title: J. Theor. Biol. – volume: 8 start-page: 340 year: 2019 end-page: 343 article-title: A Flexible approach for context‐dependent assessment of quantitative systems pharmacology models publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 2017 start-page: 6587258 year: 2017 article-title: The role of the innate immune system in oncolytic virotherapy publication-title: Comput. Math Methods Med. |
SSID | ssj0004988 |
Score | 2.546797 |
SecondaryResourceType | review_article |
Snippet | Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In... |
SourceID | pubmed wiley |
SourceType | Index Database Publisher |
StartPage | 605 |
Title | Quantitative Systems Pharmacology Approaches for Immuno‐Oncology: Adding Virtual Patients to the Development Paradigm |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpt.1987 https://www.ncbi.nlm.nih.gov/pubmed/32686076 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgLCyIb8qXPKBODXVd23XYqoqqILUEqUXdothOUAfSqkmFuvET-I38Es5J2pSNJRnuoki-nO9ddO8ZoTseQBWjTFlyjOswaCqcABLD4QHTvAU13RDLRh4MRX_Mnid8UkxVWi5Mrg-x-eFmMyPbr22CBypplKKhep7e2455F-1ZZq3VzafMKzmRrpTrU9QAxIi18CyhjfWTW0VnG5hmlaV3iA4KSIg7eQyP0E4YH6Oal2tKr-p4VFKkkjquYa9Um16doM_XZRBnTDHYt3AhQP7HB3cK3fAwwQBR8ZOlhMx-vr5f4tzhAXeMLWH4bbqwdBLs5WKrCU5nGAAi3posAtsiMNP3j1M07j2Oun2nOE3B0Qx6PMcNAaqF1KrpREQHLm0qHcomUS4DCGdoRNtGNSNjKHQ10hq4K7RRnEdaSW1aZ6gSz-LwAmFJeCQ0p1xKwbQgMpJEAXYBMESIFryKzvOF9ee5ZIYPb5CCtEUV1bKV3hhy1WTqQ0x8GxO_643s_fK_jldon9oxk2ws7BpV0sUyvAGckKrb7IOA69Ab_AJFBbvb |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gHvRi_BY_92A4UVmW3WWrJ0IkoIA1AcOtaXdbw8FCoMRw8yf4G_0lzrYU8Oaph5mmyU5n581m3luEbrkHVYwy35BjbItBU2F5kBgW95jiVajpmhg2crcnWgP2NOTDHHrIuDCpPsTqwM1kRrJfmwQ3B9LltWqomsR3pmXeQttM0JrJSsqcNSnSljK7Rg1QjMiUZwktZ29uVJ1NZJqUluY-2ltiQlxPg3iAckF0iIpOKiq9KOH-miM1K-EidtZy04sj9Pk696KEKgYbF14qkP_xwfWlcHgww4BRcdtwQsY_X98vUepwj-va1DD8NpoaPgl2UrXVGY7HGBAi3hgtAtvU06P3j2M0aD72Gy1reZ2CpRg0eZYdAFYLqJHTCYnybFrxVSArxLcZYDhNQ1rTfiXUmkJbI42B20Jpn_NQ-VLp6gnKR-MoOENYEh4KxSmXUjAliAwl8QG8ABoiRAleQKfpwrqTVDPDhS9IQWqigIrJSq8MqWwydSEmromJ23D65nn-X8cbtNPqdztup917vkC71MycJDNilygfT-fBFYCG2L9Ofo5fBRW-Ow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgSIgLYqesPqCeGnBd23W4VYWqZSlBalFvUWwnqAfSqk2FeuMT-Ea-hHGSLtw45TATRfJkPG-Sec8IXfEAqhhlypJjXIdBU-EEkBgOD5jmVajphlg28nNHtHrsoc_7-VSl5cJk-hCLD242M9L92ib4yEQ3S9FQPUqubce8jjbSf31W1Zl5S06kK-X8FDUAMWIuPEvozfzOlaKzCkzTytLcQds5JMT1LIa7aC2M91DJyzSlZ2XcXVKkJmVcwt5SbXq2jz5fp0GcMsVg38K5APkfH1zPdcPDCQaIituWEjL8-fp-iTOHW1w3toTht8HY0kmwl4mtTnAyxAAQ8cpkEdjGgRm8fxygXvO-22g5-WkKjmbQ4zluCFAtpFZNJyI6cGlF6VBWiHIZQDhDI1ozqhIZQ6GrkdbAXaGN4jzSSmpTPUSFeBiHxwhLwiOhOeVSCqYFkZEkCrALgCFCtOBFdJQtrD_KJDN8eIIUpCaKqJSu9MKQqSZTH2Li25j4Da9rryf_dbxEm95d039qdx5P0Ra1EyfphNgZKiTjaXgOkCFRF-m78Qsl671t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Systems+Pharmacology+Approaches+for+Immuno%E2%80%90Oncology%3A+Adding+Virtual+Patients+to+the+Development+Paradigm&rft.jtitle=Clinical+pharmacology+and+therapeutics&rft.au=Chelliah%2C+Vijayalakshmi&rft.au=Lazarou%2C+Georgia&rft.au=Bhatnagar%2C+Sumit&rft.au=Gibbs%2C+John+P.&rft.date=2021-03-01&rft.issn=0009-9236&rft.eissn=1532-6535&rft.volume=109&rft.issue=3&rft.spage=605&rft.epage=618&rft_id=info:doi/10.1002%2Fcpt.1987&rft.externalDBID=10.1002%252Fcpt.1987&rft.externalDocID=CPT1987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9236&client=summon |