Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of High‐Efficiency Solar Cells

Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineerin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 32; pp. e1808357 - n/a
Main Authors Wang, Kai, Tang, Ming‐Chun, Dang, Hoang X., Munir, Rahim, Barrit, Dounya, De Bastiani, Michele, Aydin, Erkan, Smilgies, Detlef‐M., Wolf, Stefaan, Amassian, Aram
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility. The role of cation and halide mixing is revealed using in situ X‐ray scattering measurements during spin‐coating. Modulating the cation/halide composition directly impacts the lifetime of the sol–gel precursor film and its easy and reproducible conversion to the perovskite phase to yield solar cells with 20% power conversion efficiency.
AbstractList Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3 , FAPbI3 , and FAPbBr3 ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3 , FAPbI3 , and FAPbBr3 ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility. The role of cation and halide mixing is revealed using in situ X‐ray scattering measurements during spin‐coating. Modulating the cation/halide composition directly impacts the lifetime of the sol–gel precursor film and its easy and reproducible conversion to the perovskite phase to yield solar cells with 20% power conversion efficiency.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA 1− x − y MA x Cs y PbI 3− z Br z ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI 3 , FAPbI 3 , and FAPbBr 3 ), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.
Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI , FAPbI , and FAPbBr ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.
Author Tang, Ming‐Chun
Smilgies, Detlef‐M.
Munir, Rahim
Aydin, Erkan
Barrit, Dounya
De Bastiani, Michele
Wang, Kai
Dang, Hoang X.
Wolf, Stefaan
Amassian, Aram
Author_xml – sequence: 1
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 2
  givenname: Ming‐Chun
  surname: Tang
  fullname: Tang, Ming‐Chun
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 3
  givenname: Hoang X.
  surname: Dang
  fullname: Dang, Hoang X.
  organization: North Carolina State University
– sequence: 4
  givenname: Rahim
  orcidid: 0000-0002-6029-3760
  surname: Munir
  fullname: Munir, Rahim
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 5
  givenname: Dounya
  surname: Barrit
  fullname: Barrit, Dounya
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 6
  givenname: Michele
  surname: De Bastiani
  fullname: De Bastiani, Michele
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 7
  givenname: Erkan
  surname: Aydin
  fullname: Aydin, Erkan
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 8
  givenname: Detlef‐M.
  surname: Smilgies
  fullname: Smilgies, Detlef‐M.
  organization: Cornell University
– sequence: 9
  givenname: Stefaan
  surname: Wolf
  fullname: Wolf, Stefaan
  email: stefaan.dewolf@kaust.edu.sa
  organization: Division of Physical Science and Engineering, and KAUST Solar Center
– sequence: 10
  givenname: Aram
  orcidid: 0000-0002-5734-1194
  surname: Amassian
  fullname: Amassian, Aram
  email: aamassi@ncsu.edu
  organization: North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31206857$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPClSNaiQuXDWN7P-xjlKYfoohKhbPldWZbF8cu9qYonPoTkPoP-0vwkhakSojTHOZ5Xo3e2SM7Pngk5DWFKQVg7_VypacMqADB6_YZmdCa0bICWe-QCUhel7KpxC7ZS-kKAGQDzQuyyymDRtTthNx8sB4Ha4rzQXfW2R96sMEXoS-GSyzOg7u_vTtCN64HLKwvzjCGm_TVDpiKhdedy_NQG-uwOIvBYErWX4z-sb24vL_9ueh7ayx6sxnTdCzm6Fx6SZ732iV89TD3yZfDxef5cXn66ehkPjstTUWhLaVoWyGNpC2vOtMwamoNoqvrXgACMzUi7_quFbpruawaDhKrirMeOoOiWfJ98m6bex3DtzWmQa1sMvkC7TGsk2KsYoI1jMmMvn2CXoV19Pm6TOWyeM4dqTcP1Lpb4VJdR7vScaMeG81AtQVMDClF7JWxw-9Sh6itUxTU-Dg1Pk79eVzWpk-0x-R_CnIrfM_Vb_5Dq9nBx9lf9xeTnqvt
CitedBy_id crossref_primary_10_1002_aenm_202300760
crossref_primary_10_1039_D1EE01206A
crossref_primary_10_1021_acs_cgd_9b01461
crossref_primary_10_1002_aenm_202101085
crossref_primary_10_1002_solr_202000668
crossref_primary_10_1039_D1TA05248A
crossref_primary_10_1002_solr_202000272
crossref_primary_10_1002_solr_202000072
crossref_primary_10_1002_adfm_202009103
crossref_primary_10_1021_acsaem_2c00846
crossref_primary_10_1002_ange_201914183
crossref_primary_10_1021_acs_jpcc_0c08193
crossref_primary_10_1002_adfm_202408973
crossref_primary_10_1002_aenm_202300957
crossref_primary_10_1021_acsenergylett_3c02079
crossref_primary_10_1002_aesr_202100061
crossref_primary_10_1021_acsami_1c08583
crossref_primary_10_1002_solr_202100640
crossref_primary_10_1039_D1TA06524F
crossref_primary_10_1002_adma_202005504
crossref_primary_10_1002_solr_202100029
crossref_primary_10_1021_acs_chemrev_2c00382
crossref_primary_10_1039_D4DD00075G
crossref_primary_10_1126_sciadv_abo3733
crossref_primary_10_1016_j_cej_2024_151876
crossref_primary_10_1002_advs_202206325
crossref_primary_10_1007_s42247_022_00364_0
crossref_primary_10_1002_adma_202301548
crossref_primary_10_1021_acs_jpcc_3c05787
crossref_primary_10_1109_LED_2023_3307413
crossref_primary_10_1088_1674_4926_42_6_060201
crossref_primary_10_1038_s41467_022_28532_0
crossref_primary_10_1002_adfm_201910710
crossref_primary_10_1002_anie_201914183
crossref_primary_10_1016_j_jechem_2021_01_001
crossref_primary_10_1039_D0MA00967A
crossref_primary_10_1002_adfm_202001995
crossref_primary_10_1063_5_0076665
crossref_primary_10_1016_j_matre_2021_100064
crossref_primary_10_1002_advs_202403778
crossref_primary_10_1002_adfm_202400467
crossref_primary_10_1002_aenm_201903365
crossref_primary_10_1021_acsenergylett_2c00463
crossref_primary_10_1126_science_adp1621
crossref_primary_10_1021_acsami_0c08396
crossref_primary_10_1021_acsenergylett_0c01453
crossref_primary_10_1021_acsaelm_1c00191
crossref_primary_10_1021_acsenergylett_4c01817
crossref_primary_10_1038_s41467_021_27740_4
crossref_primary_10_1039_D3TC04361D
crossref_primary_10_1002_smtd_202100829
crossref_primary_10_1021_acsphotonics_4c01330
crossref_primary_10_1149_2162_8777_ab7c41
crossref_primary_10_1002_adfm_201910004
crossref_primary_10_1002_inf2_12396
crossref_primary_10_1021_acsami_1c09093
crossref_primary_10_1039_D4MA00747F
crossref_primary_10_1063_5_0204673
crossref_primary_10_1021_acsami_0c03660
crossref_primary_10_1021_acs_jpca_0c10765
crossref_primary_10_1021_acsami_0c14191
crossref_primary_10_1002_adfm_201907442
crossref_primary_10_1038_s41467_020_15077_3
crossref_primary_10_1021_acsami_2c03153
crossref_primary_10_1002_solr_202000718
crossref_primary_10_1021_acs_chemrev_3c00532
crossref_primary_10_1021_acs_chemmater_2c03505
crossref_primary_10_1002_adma_202105290
crossref_primary_10_1002_smll_202207817
crossref_primary_10_1021_acs_jpclett_4c02603
crossref_primary_10_1038_s41467_021_22049_8
crossref_primary_10_1002_admi_202100355
crossref_primary_10_1039_D2TA07971B
crossref_primary_10_1021_acsaem_9b02052
crossref_primary_10_1021_acsami_0c22630
crossref_primary_10_1002_adfm_202002861
crossref_primary_10_1039_D2MH00980C
crossref_primary_10_1039_C9TA12890E
crossref_primary_10_1002_adma_202303384
crossref_primary_10_1002_adfm_202403690
crossref_primary_10_1021_acs_jpclett_2c01344
crossref_primary_10_1038_s41467_021_25898_5
crossref_primary_10_1002_adma_202307024
crossref_primary_10_1039_D0TA08656H
Cites_doi 10.1002/smll.201402767
10.1039/C7EE03013D
10.1002/adfm.201605988
10.1021/acs.chemmater.6b04917
10.1126/science.aah5557
10.1016/j.joule.2018.04.011
10.1039/C6EE03014A
10.1021/ja809598r
10.1039/c3ee43822h
10.1021/ic401215x
10.1002/adma.201706401
10.1021/jacs.8b01037
10.1039/C7RA12304C
10.1021/acsenergylett.7b00981
10.1002/aenm.201602600
10.1002/anie.201309361
10.1038/nature25989
10.1038/ncomms15688
10.1038/s41563-018-0115-4
10.1039/C5EE03255E
10.1021/acsenergylett.8b01504
10.1002/aenm.201700131
10.1126/science.aan2301
10.1126/science.aai9081
10.1038/s41560-018-0200-6
10.1021/acs.accounts.5b00404
10.1038/nature14133
10.1002/adma.201604113
10.1021/acsenergylett.7b01057
10.1039/C4SC03141E
10.1126/science.aad1015
10.1021/acs.chemrev.6b00618
10.1021/acs.jpclett.5b00380
10.1038/nenergy.2016.177
10.1126/science.aap9282
10.1021/acs.chemmater.5b04107
10.1039/C6EE03182J
10.1038/nenergy.2017.102
10.1039/C7EE01145H
10.1039/C5EE03874J
10.1002/admi.201900434
10.1126/science.aad5845
10.1002/adma.201706576
10.1021/jacs.8b13104
10.1021/jz500279b
10.1002/adma.201707166
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201808357
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31206857
10_1002_adma_201808357
ADMA201808357
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: OSR‐CARF URF/1/3079‐33‐01
– fundername: NSF
  funderid: ECCS‐1542015
– fundername: King Abdullah University of Science and Technology
  grantid: OSR-CARF URF/1/3079-33-01
– fundername: NSF
  grantid: ECCS-1542015
– fundername: King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research
  grantid: OSR-CARF URF/1/3079-33-01
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4107-987789c91734bc621c5a08b55f80e02c5ee3bfb78ab73946309e4432f0bce86d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:55:38 EDT 2025
Fri Jul 25 02:22:10 EDT 2025
Wed Feb 19 02:34:05 EST 2025
Tue Jul 01 00:44:53 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Wed Jan 22 16:39:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords in situ GIWAXS
hybrid perovskite solar cells
mixed-cation mixed-halide perovskites
kinetic stabilization
anti-solvent drip
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-987789c91734bc621c5a08b55f80e02c5ee3bfb78ab73946309e4432f0bce86d3
Notes Present address: Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH, Berlin 12489, Germany
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5734-1194
0000-0002-6029-3760
PMID 31206857
PQID 2268534329
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2242826229
proquest_journals_2268534329
pubmed_primary_31206857
crossref_citationtrail_10_1002_adma_201808357
crossref_primary_10_1002_adma_201808357
wiley_primary_10_1002_adma_201808357_ADMA201808357
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 8
2015; 6
2017; 2
2018; 360
2018; 140
2017; 27
2019; 10
2015; 11
2017; 29
2009; 131
2019; 141
2017; 355
2017; 356
2017; 117
2017; 139
2015; 350
2018; 17
2018; 8
2018; 3
2014; 5
2018; 2
2017; 10
2018; 555
2013; 52
2016; 354
2019
2015; 517
2018; 30
2018; 11
2016; 28
2014; 7
2016; 49
2016; 351
2016; 9
2014; 53
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
Tang M. (e_1_2_5_47_1) 2019
e_1_2_5_40_1
Kubick D. (e_1_2_5_49_1) 2017; 139
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Barrit D. (e_1_2_5_46_1) 2019
Dang H. X. (e_1_2_5_48_1) 2019
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – volume: 9
  start-page: 656
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1707166
  year: 2018
  publication-title: Adv. Mater.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 2
  start-page: 16177
  year: 2017
  publication-title: Nat. Energy
– volume: 27
  start-page: 1605988
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 92
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 117
  start-page: 6332
  year: 2017
  publication-title: Chem. Rev.
– volume: 3
  start-page: 682
  year: 2018
  publication-title: Nat. Energy
– volume: 49
  start-page: 155
  year: 2016
  publication-title: Acc. Chem. Res.
– year: 2019
  publication-title: A. Amassian. Joule
– volume: 8
  start-page: 15688
  year: 2017
  publication-title: Nat. Commun.
– volume: 7
  start-page: 1602600
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2095
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 14713
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17102
  year: 2017
  publication-title: Nat. Energy
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 2
  start-page: 2686
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 10
  year: 2015
  publication-title: Small
– volume: 10
  start-page: 621
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 11
  start-page: 383
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2671
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 1700131
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 141
  start-page: 2684
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1706576
  year: 2018
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1604113
  year: 2017
  publication-title: Adv. Mater.
– volume: 555
  start-page: 497
  year: 2018
  publication-title: Nature
– volume: 29
  start-page: 1315
  year: 2017
  publication-title: Chem. Mater.
– volume: 351
  start-page: 151
  year: 2016
  publication-title: Science
– year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 360
  start-page: 1442
  year: 2018
  publication-title: Science
– year: 2019
  publication-title: Sol. RRL
– volume: 2
  start-page: 1313
  year: 2018
  publication-title: Joule
– volume: 30
  start-page: 1706401
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 6317
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1989
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1900434
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 53
  start-page: 3151
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 820
  year: 2018
  publication-title: Nat. Mater.
– volume: 5
  start-page: 1035
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 6
  start-page: 1249
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 8
  start-page: 1005
  year: 2018
  publication-title: RSC Adv.
– volume: 10
  start-page: 361
  year: 2017
  publication-title: Energy Environ. Sci.
– ident: e_1_2_5_33_1
  doi: 10.1002/smll.201402767
– ident: e_1_2_5_29_1
  doi: 10.1039/C7EE03013D
– ident: e_1_2_5_41_1
  doi: 10.1002/adfm.201605988
– ident: e_1_2_5_44_1
  doi: 10.1021/acs.chemmater.6b04917
– ident: e_1_2_5_8_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_5_11_1
  doi: 10.1016/j.joule.2018.04.011
– ident: e_1_2_5_16_1
  doi: 10.1039/C6EE03014A
– ident: e_1_2_5_3_1
  doi: 10.1021/ja809598r
– ident: e_1_2_5_28_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_5_38_1
  doi: 10.1021/ic401215x
– ident: e_1_2_5_20_1
  doi: 10.1002/adma.201706401
– ident: e_1_2_5_36_1
  doi: 10.1021/jacs.8b01037
– ident: e_1_2_5_43_1
  doi: 10.1039/C7RA12304C
– ident: e_1_2_5_34_1
  doi: 10.1021/acsenergylett.7b00981
– ident: e_1_2_5_23_1
  doi: 10.1002/aenm.201602600
– volume: 139
  start-page: 14713
  year: 2017
  ident: e_1_2_5_49_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_5_27_1
  doi: 10.1002/anie.201309361
– ident: e_1_2_5_31_1
  doi: 10.1038/nature25989
– ident: e_1_2_5_19_1
  doi: 10.1038/ncomms15688
– ident: e_1_2_5_12_1
  doi: 10.1038/s41563-018-0115-4
– ident: e_1_2_5_51_1
  doi: 10.1126/science.aah5557
– ident: e_1_2_5_42_1
  doi: 10.1039/C5EE03255E
– ident: e_1_2_5_10_1
  doi: 10.1021/acsenergylett.8b01504
– ident: e_1_2_5_18_1
  doi: 10.1002/aenm.201700131
– year: 2019
  ident: e_1_2_5_48_1
  publication-title: A. Amassian. Joule
– ident: e_1_2_5_1_1
  doi: 10.1126/science.aan2301
– ident: e_1_2_5_53_1
  doi: 10.1126/science.aai9081
– ident: e_1_2_5_4_1
  doi: 10.1038/s41560-018-0200-6
– ident: e_1_2_5_32_1
  doi: 10.1021/acs.accounts.5b00404
– ident: e_1_2_5_39_1
  doi: 10.1021/acsenergylett.7b00981
– ident: e_1_2_5_2_1
  doi: 10.1038/nature14133
– ident: e_1_2_5_21_1
  doi: 10.1002/adma.201604113
– ident: e_1_2_5_50_1
  doi: 10.1021/acsenergylett.8b01504
– ident: e_1_2_5_45_1
  doi: 10.1021/acsenergylett.7b01057
– ident: e_1_2_5_40_1
  doi: 10.1039/C4SC03141E
– ident: e_1_2_5_6_1
  doi: 10.1126/science.aad1015
– ident: e_1_2_5_17_1
  doi: 10.1021/acs.chemrev.6b00618
– ident: e_1_2_5_37_1
  doi: 10.1021/acs.jpclett.5b00380
– ident: e_1_2_5_14_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_5_5_1
  doi: 10.1126/science.aap9282
– ident: e_1_2_5_35_1
  doi: 10.1021/acs.chemmater.5b04107
– ident: e_1_2_5_15_1
  doi: 10.1039/C6EE03182J
– ident: e_1_2_5_13_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_5_25_1
  doi: 10.1039/C7EE01145H
– ident: e_1_2_5_9_1
  doi: 10.1039/C5EE03874J
– year: 2019
  ident: e_1_2_5_47_1
  publication-title: Sol. RRL
– ident: e_1_2_5_52_1
  doi: 10.1002/admi.201900434
– year: 2019
  ident: e_1_2_5_46_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_5_30_1
  doi: 10.1126/science.aad5845
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201706576
– ident: e_1_2_5_26_1
  doi: 10.1021/jacs.8b13104
– ident: e_1_2_5_7_1
  doi: 10.1021/jz500279b
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201707166
SSID ssj0009606
Score 2.5753033
Snippet Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier...
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA 1− x − y MA x Cs y PbI 3− z Br z ) as photovoltaic absorbers, as they...
Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing...
Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1808357
SubjectTerms anti‐solvent drip
Cations
Crystallization
Formulations
hybrid perovskite solar cells
in situ GIWAXS
kinetic stabilization
Materials science
mixed‐cation mixed‐halide perovskites
Perovskites
Photovoltaic cells
Sol-gel processes
Solar cells
Solvents
Stabilization
Windows (intervals)
Title Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of High‐Efficiency Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808357
https://www.ncbi.nlm.nih.gov/pubmed/31206857
https://www.proquest.com/docview/2268534329
https://www.proquest.com/docview/2242826229
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VhakJGQOKX1-pHYx1XZpQIVIaBSb5Ht2BIiStBmt4ee-hOQ-If9Jcw42bQLQkhwS-SxM3Fm4s_2zGdCXrJKexGmMovcY0qOVZkOUmUqL5D-u6pESgo7fp8fnci3p-r0WhZ_zw8xLrihZ6T_NTq4dd3BFWmorRJv0FQjiMB0cgzYQlT08Yo_CuF5ItsTKjO51BvWRsYPtqtvj0q_Qc1t5JqGnsUdYjdK9xEnX_fXK7fvz3_hc_yft7pLbg-4lM56Q7pHboTmPrl1ja3wATl7B9dQTAGgYkhtn8BJ20gBRNJPbX158eNNqGnCr_RLQz-EZXvW4fJwR-cpR6ujC-tBLzrkJ0C7WB-DTS4vvs8TnQXmgmJrdkkPQ113D8nJYv758Cgbjm3IvITJZGZ0UWjjYR4opPM5n3plmXZKRc0C416FIFx0hbauEEbmgpkgpeCROR90XolHZKdpm_CEUBOjRf55VkQmo8ct4mBcqBzzyvvKTUi2-WylHzjN8WiNuuzZmHmJ_VmO_Tkhr0b5bz2bxx8l9zZWUA5e3ZUAVQHdgKpmQl6MxeCPuMlim9CuUQYmdDznKPO4t57xUWLKGbQAjfNkA3_RoZy9Pp6Nd0__pdIuuQnXpo9Y3CM7q-U6PAMUtXLPk6f8BNHvFIs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKORQOQIHCQqFGQuKU1uufxD6u2t0utFtV0ErcotixpapRgja7PXDqIyDxhn0SPM5PWRBCglsSjydOMhN_tmc-I_SW5NIwO-SRowZScjIRSctFJOIE6L_znIWksNlJPD3nHz6LLpoQcmEafoh-wg08I_yvwcFhQnrvljU0ywNx0FACikjuoLuwrTfQ5x98vGWQAoAe6PaYiFTMZcfbSOjeav3Vfuk3sLmKXUPnM3mIdNfsJubkcne50Lvm6y-Mjv_1XI_Qgxaa4lFjS5tozZaP0f2fCAufoKsjf-yLsceoEFXb5HDiymGPI_Gnqri5_n5oCxwgLL4o8amdV1c1zBDXeBzStGo8yYxvGG5TFLxeqA_xJjfX38aB0QLSQUFbNsf7tijqp-h8Mj7bn0btzg2R4X48GSmZJFIZPxRkXJuYDo3IiNRCOEksoUZYy7TTicx0whSPGVGWc0Yd0cbKOGdbaL2sSvscYeVcBhT0JHGEOwOrxFZpm2tihDG5HqCo-26paWnNYXeNIm0ImWkK7zPt3-cAvevlvzSEHn-U3O7MIG0du049WvUAxzdVDdCbvti7JKyzZKWtliDjx3Q0piDzrDGf_lZsSInX4JXTYAR_aUM6OpiN-rMX_1JpB21Mz2bH6fH7k6OX6J6_rpoAxm20vpgv7SsPqhb6dXCbHxJ0GKc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglRAcaPkpLLRgJCROab3-SezjqrtLobSqgEq9RbZjS4goqTa7PXDqIyDxhn0SPE427YIQEtySeOxMkpn4sz3zGaHXpJCWuSFPPLWQkqNFIh0XiUgzoP8uChaTwo6O04NT_v5MnN3I4m_5IfoJN_CM-L8GBz8v_N41aaguIm_QUAKIyG6jdZ4SBZs3jD9eE0gBPo9se0wkKuVySdtI6N5q_dVu6TesuQpdY98z3UB6qXUbcvJ1dzE3u_bbL4SO__NYm-h-B0zxqLWkB-iWqx6iezfoCh-hi8NwHIpxQKgQU9tmcOLa44Ai8ae6vLr88daVOAJY_KXCJ25WXzQwP9zgSUzSavBU26AX7hIUQrtQH6JNri6_TyKfBSSDQmt6hvddWTaP0el08nn_IOn2bUgsD6PJRMksk8qGgSDjxqZ0aIUm0gjhJXGEWuEcM95kUpuMKZ4yohznjHpirJNpwbbQWlVX7inCynsNBPQk84R7C2vEThlXGGKFtYUZoGT52XLbkZrD3hpl3tIx0xzeZ96_zwF608uft3Qef5TcXlpB3rl1kwesGuBNUFUN0Ku-ODgkrLLoytULkAkjOppSkHnSWk9_KzakJLQQGqfRBv6iQz4aH436s2f_UuklunMynuYf3h0fPkd3w2XVRi9uo7X5bOF2AqKamxfRaX4CsesXVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Stabilization+of+the+Sol%E2%80%93Gel+State+in+Perovskites+Enables+Facile+Processing+of+High%E2%80%90Efficiency+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Kai&rft.au=Tang%2C+Ming%E2%80%90Chun&rft.au=Dang%2C+Hoang+X.&rft.au=Munir%2C+Rahim&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201808357&rft.externalDBID=10.1002%252Fadma.201808357&rft.externalDocID=ADMA201808357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon