Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of High‐Efficiency Solar Cells
Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineerin...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 32; pp. e1808357 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility.
The role of cation and halide mixing is revealed using in situ X‐ray scattering measurements during spin‐coating. Modulating the cation/halide composition directly impacts the lifetime of the sol–gel precursor film and its easy and reproducible conversion to the perovskite phase to yield solar cells with 20% power conversion efficiency. |
---|---|
AbstractList | Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3 , FAPbI3 , and FAPbBr3 ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility.Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3 , FAPbI3 , and FAPbBr3 ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility. Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility. The role of cation and halide mixing is revealed using in situ X‐ray scattering measurements during spin‐coating. Modulating the cation/halide composition directly impacts the lifetime of the sol–gel precursor film and its easy and reproducible conversion to the perovskite phase to yield solar cells with 20% power conversion efficiency. Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA 1− x − y MA x Cs y PbI 3− z Br z ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI 3 , FAPbI 3 , and FAPbBr 3 ), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility. Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti‐solvent processing window for the fabrication of high‐quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI3, FAPbI3, and FAPbBr3), to several minutes for mixed systems. In situ X‐ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol–gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti‐solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti‐solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol–gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high‐efficiency perovskite solar cells produced with ease and with high reproducibility. Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing and improved stability. Here, the underlying reasons for ease of processing are revealed. It is found that halide and cation engineering leads to a systematic widening of the anti-solvent processing window for the fabrication of high-quality films and efficient solar cells. This window widens from seconds, in the case of single cation/halide systems (e.g., MAPbI , FAPbI , and FAPbBr ), to several minutes for mixed systems. In situ X-ray diffraction studies reveal that the processing window is closely related to the crystallization of the disordered sol-gel and to the number of crystalline byproducts; the processing window therefore depends directly on the precise cation/halide composition. Moreover, anti-solvent dripping is shown to promote the desired perovskite phase with careful formulation. The processing window of perovskite solar cells, as defined by the latest time the anti-solvent drip yields efficient solar cells, broadened with the increasing complexity of cation/halide content. This behavior is ascribed to kinetic stabilization of sol-gel state through cation/halide engineering. This provides guidelines for designing new formulations, aimed at formation of the perovskite phase, ultimately resulting in high-efficiency perovskite solar cells produced with ease and with high reproducibility. |
Author | Tang, Ming‐Chun Smilgies, Detlef‐M. Munir, Rahim Aydin, Erkan Barrit, Dounya De Bastiani, Michele Wang, Kai Dang, Hoang X. Wolf, Stefaan Amassian, Aram |
Author_xml | – sequence: 1 givenname: Kai surname: Wang fullname: Wang, Kai organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 2 givenname: Ming‐Chun surname: Tang fullname: Tang, Ming‐Chun organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 3 givenname: Hoang X. surname: Dang fullname: Dang, Hoang X. organization: North Carolina State University – sequence: 4 givenname: Rahim orcidid: 0000-0002-6029-3760 surname: Munir fullname: Munir, Rahim organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 5 givenname: Dounya surname: Barrit fullname: Barrit, Dounya organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 6 givenname: Michele surname: De Bastiani fullname: De Bastiani, Michele organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 7 givenname: Erkan surname: Aydin fullname: Aydin, Erkan organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 8 givenname: Detlef‐M. surname: Smilgies fullname: Smilgies, Detlef‐M. organization: Cornell University – sequence: 9 givenname: Stefaan surname: Wolf fullname: Wolf, Stefaan email: stefaan.dewolf@kaust.edu.sa organization: Division of Physical Science and Engineering, and KAUST Solar Center – sequence: 10 givenname: Aram orcidid: 0000-0002-5734-1194 surname: Amassian fullname: Amassian, Aram email: aamassi@ncsu.edu organization: North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31206857$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPClSNaiQuXDWN7P-xjlKYfoohKhbPldWZbF8cu9qYonPoTkPoP-0vwkhakSojTHOZ5Xo3e2SM7Pngk5DWFKQVg7_VypacMqADB6_YZmdCa0bICWe-QCUhel7KpxC7ZS-kKAGQDzQuyyymDRtTthNx8sB4Ha4rzQXfW2R96sMEXoS-GSyzOg7u_vTtCN64HLKwvzjCGm_TVDpiKhdedy_NQG-uwOIvBYErWX4z-sb24vL_9ueh7ayx6sxnTdCzm6Fx6SZ732iV89TD3yZfDxef5cXn66ehkPjstTUWhLaVoWyGNpC2vOtMwamoNoqvrXgACMzUi7_quFbpruawaDhKrirMeOoOiWfJ98m6bex3DtzWmQa1sMvkC7TGsk2KsYoI1jMmMvn2CXoV19Pm6TOWyeM4dqTcP1Lpb4VJdR7vScaMeG81AtQVMDClF7JWxw-9Sh6itUxTU-Dg1Pk79eVzWpk-0x-R_CnIrfM_Vb_5Dq9nBx9lf9xeTnqvt |
CitedBy_id | crossref_primary_10_1002_aenm_202300760 crossref_primary_10_1039_D1EE01206A crossref_primary_10_1021_acs_cgd_9b01461 crossref_primary_10_1002_aenm_202101085 crossref_primary_10_1002_solr_202000668 crossref_primary_10_1039_D1TA05248A crossref_primary_10_1002_solr_202000272 crossref_primary_10_1002_solr_202000072 crossref_primary_10_1002_adfm_202009103 crossref_primary_10_1021_acsaem_2c00846 crossref_primary_10_1002_ange_201914183 crossref_primary_10_1021_acs_jpcc_0c08193 crossref_primary_10_1002_adfm_202408973 crossref_primary_10_1002_aenm_202300957 crossref_primary_10_1021_acsenergylett_3c02079 crossref_primary_10_1002_aesr_202100061 crossref_primary_10_1021_acsami_1c08583 crossref_primary_10_1002_solr_202100640 crossref_primary_10_1039_D1TA06524F crossref_primary_10_1002_adma_202005504 crossref_primary_10_1002_solr_202100029 crossref_primary_10_1021_acs_chemrev_2c00382 crossref_primary_10_1039_D4DD00075G crossref_primary_10_1126_sciadv_abo3733 crossref_primary_10_1016_j_cej_2024_151876 crossref_primary_10_1002_advs_202206325 crossref_primary_10_1007_s42247_022_00364_0 crossref_primary_10_1002_adma_202301548 crossref_primary_10_1021_acs_jpcc_3c05787 crossref_primary_10_1109_LED_2023_3307413 crossref_primary_10_1088_1674_4926_42_6_060201 crossref_primary_10_1038_s41467_022_28532_0 crossref_primary_10_1002_adfm_201910710 crossref_primary_10_1002_anie_201914183 crossref_primary_10_1016_j_jechem_2021_01_001 crossref_primary_10_1039_D0MA00967A crossref_primary_10_1002_adfm_202001995 crossref_primary_10_1063_5_0076665 crossref_primary_10_1016_j_matre_2021_100064 crossref_primary_10_1002_advs_202403778 crossref_primary_10_1002_adfm_202400467 crossref_primary_10_1002_aenm_201903365 crossref_primary_10_1021_acsenergylett_2c00463 crossref_primary_10_1126_science_adp1621 crossref_primary_10_1021_acsami_0c08396 crossref_primary_10_1021_acsenergylett_0c01453 crossref_primary_10_1021_acsaelm_1c00191 crossref_primary_10_1021_acsenergylett_4c01817 crossref_primary_10_1038_s41467_021_27740_4 crossref_primary_10_1039_D3TC04361D crossref_primary_10_1002_smtd_202100829 crossref_primary_10_1021_acsphotonics_4c01330 crossref_primary_10_1149_2162_8777_ab7c41 crossref_primary_10_1002_adfm_201910004 crossref_primary_10_1002_inf2_12396 crossref_primary_10_1021_acsami_1c09093 crossref_primary_10_1039_D4MA00747F crossref_primary_10_1063_5_0204673 crossref_primary_10_1021_acsami_0c03660 crossref_primary_10_1021_acs_jpca_0c10765 crossref_primary_10_1021_acsami_0c14191 crossref_primary_10_1002_adfm_201907442 crossref_primary_10_1038_s41467_020_15077_3 crossref_primary_10_1021_acsami_2c03153 crossref_primary_10_1002_solr_202000718 crossref_primary_10_1021_acs_chemrev_3c00532 crossref_primary_10_1021_acs_chemmater_2c03505 crossref_primary_10_1002_adma_202105290 crossref_primary_10_1002_smll_202207817 crossref_primary_10_1021_acs_jpclett_4c02603 crossref_primary_10_1038_s41467_021_22049_8 crossref_primary_10_1002_admi_202100355 crossref_primary_10_1039_D2TA07971B crossref_primary_10_1021_acsaem_9b02052 crossref_primary_10_1021_acsami_0c22630 crossref_primary_10_1002_adfm_202002861 crossref_primary_10_1039_D2MH00980C crossref_primary_10_1039_C9TA12890E crossref_primary_10_1002_adma_202303384 crossref_primary_10_1002_adfm_202403690 crossref_primary_10_1021_acs_jpclett_2c01344 crossref_primary_10_1038_s41467_021_25898_5 crossref_primary_10_1002_adma_202307024 crossref_primary_10_1039_D0TA08656H |
Cites_doi | 10.1002/smll.201402767 10.1039/C7EE03013D 10.1002/adfm.201605988 10.1021/acs.chemmater.6b04917 10.1126/science.aah5557 10.1016/j.joule.2018.04.011 10.1039/C6EE03014A 10.1021/ja809598r 10.1039/c3ee43822h 10.1021/ic401215x 10.1002/adma.201706401 10.1021/jacs.8b01037 10.1039/C7RA12304C 10.1021/acsenergylett.7b00981 10.1002/aenm.201602600 10.1002/anie.201309361 10.1038/nature25989 10.1038/ncomms15688 10.1038/s41563-018-0115-4 10.1039/C5EE03255E 10.1021/acsenergylett.8b01504 10.1002/aenm.201700131 10.1126/science.aan2301 10.1126/science.aai9081 10.1038/s41560-018-0200-6 10.1021/acs.accounts.5b00404 10.1038/nature14133 10.1002/adma.201604113 10.1021/acsenergylett.7b01057 10.1039/C4SC03141E 10.1126/science.aad1015 10.1021/acs.chemrev.6b00618 10.1021/acs.jpclett.5b00380 10.1038/nenergy.2016.177 10.1126/science.aap9282 10.1021/acs.chemmater.5b04107 10.1039/C6EE03182J 10.1038/nenergy.2017.102 10.1039/C7EE01145H 10.1039/C5EE03874J 10.1002/admi.201900434 10.1126/science.aad5845 10.1002/adma.201706576 10.1021/jacs.8b13104 10.1021/jz500279b 10.1002/adma.201707166 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201808357 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31206857 10_1002_adma_201808357 ADMA201808357 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: OSR‐CARF URF/1/3079‐33‐01 – fundername: NSF funderid: ECCS‐1542015 – fundername: King Abdullah University of Science and Technology grantid: OSR-CARF URF/1/3079-33-01 – fundername: NSF grantid: ECCS-1542015 – fundername: King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research grantid: OSR-CARF URF/1/3079-33-01 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4107-987789c91734bc621c5a08b55f80e02c5ee3bfb78ab73946309e4432f0bce86d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:55:38 EDT 2025 Fri Jul 25 02:22:10 EDT 2025 Wed Feb 19 02:34:05 EST 2025 Tue Jul 01 00:44:53 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Wed Jan 22 16:39:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | in situ GIWAXS hybrid perovskite solar cells mixed-cation mixed-halide perovskites kinetic stabilization anti-solvent drip |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-987789c91734bc621c5a08b55f80e02c5ee3bfb78ab73946309e4432f0bce86d3 |
Notes | Present address: Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH, Berlin 12489, Germany ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5734-1194 0000-0002-6029-3760 |
PMID | 31206857 |
PQID | 2268534329 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2242826229 proquest_journals_2268534329 pubmed_primary_31206857 crossref_citationtrail_10_1002_adma_201808357 crossref_primary_10_1002_adma_201808357 wiley_primary_10_1002_adma_201808357_ADMA201808357 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2017; 8 2015; 6 2017; 2 2018; 360 2018; 140 2017; 27 2019; 10 2015; 11 2017; 29 2009; 131 2019; 141 2017; 355 2017; 356 2017; 117 2017; 139 2015; 350 2018; 17 2018; 8 2018; 3 2014; 5 2018; 2 2017; 10 2018; 555 2013; 52 2016; 354 2019 2015; 517 2018; 30 2018; 11 2016; 28 2014; 7 2016; 49 2016; 351 2016; 9 2014; 53 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 Tang M. (e_1_2_5_47_1) 2019 e_1_2_5_40_1 Kubick D. (e_1_2_5_49_1) 2017; 139 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Barrit D. (e_1_2_5_46_1) 2019 Dang H. X. (e_1_2_5_48_1) 2019 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 9 start-page: 656 year: 2016 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1707166 year: 2018 publication-title: Adv. Mater. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 2 start-page: 16177 year: 2017 publication-title: Nat. Energy – volume: 27 start-page: 1605988 year: 2017 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 92 year: 2018 publication-title: ACS Energy Lett. – volume: 117 start-page: 6332 year: 2017 publication-title: Chem. Rev. – volume: 3 start-page: 682 year: 2018 publication-title: Nat. Energy – volume: 49 start-page: 155 year: 2016 publication-title: Acc. Chem. Res. – year: 2019 publication-title: A. Amassian. Joule – volume: 8 start-page: 15688 year: 2017 publication-title: Nat. Commun. – volume: 7 start-page: 1602600 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2095 year: 2017 publication-title: Energy Environ. Sci. – volume: 139 start-page: 14713 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17102 year: 2017 publication-title: Nat. Energy – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 2 start-page: 2686 year: 2017 publication-title: ACS Energy Lett. – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 10 year: 2015 publication-title: Small – volume: 10 start-page: 621 year: 2017 publication-title: Energy Environ. Sci. – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 11 start-page: 383 year: 2018 publication-title: Energy Environ. Sci. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2671 year: 2018 publication-title: ACS Energy Lett. – volume: 7 start-page: 1700131 year: 2017 publication-title: Adv. Energy Mater. – volume: 141 start-page: 2684 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1706576 year: 2018 publication-title: Adv. Mater. – volume: 29 start-page: 1604113 year: 2017 publication-title: Adv. Mater. – volume: 555 start-page: 497 year: 2018 publication-title: Nature – volume: 29 start-page: 1315 year: 2017 publication-title: Chem. Mater. – volume: 351 start-page: 151 year: 2016 publication-title: Science – year: 2019 publication-title: Adv. Funct. Mater. – volume: 360 start-page: 1442 year: 2018 publication-title: Science – year: 2019 publication-title: Sol. RRL – volume: 2 start-page: 1313 year: 2018 publication-title: Joule – volume: 30 start-page: 1706401 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 6317 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1989 year: 2016 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1900434 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 53 start-page: 3151 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 820 year: 2018 publication-title: Nat. Mater. – volume: 5 start-page: 1035 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 6 start-page: 1249 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 8 start-page: 1005 year: 2018 publication-title: RSC Adv. – volume: 10 start-page: 361 year: 2017 publication-title: Energy Environ. Sci. – ident: e_1_2_5_33_1 doi: 10.1002/smll.201402767 – ident: e_1_2_5_29_1 doi: 10.1039/C7EE03013D – ident: e_1_2_5_41_1 doi: 10.1002/adfm.201605988 – ident: e_1_2_5_44_1 doi: 10.1021/acs.chemmater.6b04917 – ident: e_1_2_5_8_1 doi: 10.1126/science.aah5557 – ident: e_1_2_5_11_1 doi: 10.1016/j.joule.2018.04.011 – ident: e_1_2_5_16_1 doi: 10.1039/C6EE03014A – ident: e_1_2_5_3_1 doi: 10.1021/ja809598r – ident: e_1_2_5_28_1 doi: 10.1039/c3ee43822h – ident: e_1_2_5_38_1 doi: 10.1021/ic401215x – ident: e_1_2_5_20_1 doi: 10.1002/adma.201706401 – ident: e_1_2_5_36_1 doi: 10.1021/jacs.8b01037 – ident: e_1_2_5_43_1 doi: 10.1039/C7RA12304C – ident: e_1_2_5_34_1 doi: 10.1021/acsenergylett.7b00981 – ident: e_1_2_5_23_1 doi: 10.1002/aenm.201602600 – volume: 139 start-page: 14713 year: 2017 ident: e_1_2_5_49_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_5_27_1 doi: 10.1002/anie.201309361 – ident: e_1_2_5_31_1 doi: 10.1038/nature25989 – ident: e_1_2_5_19_1 doi: 10.1038/ncomms15688 – ident: e_1_2_5_12_1 doi: 10.1038/s41563-018-0115-4 – ident: e_1_2_5_51_1 doi: 10.1126/science.aah5557 – ident: e_1_2_5_42_1 doi: 10.1039/C5EE03255E – ident: e_1_2_5_10_1 doi: 10.1021/acsenergylett.8b01504 – ident: e_1_2_5_18_1 doi: 10.1002/aenm.201700131 – year: 2019 ident: e_1_2_5_48_1 publication-title: A. Amassian. Joule – ident: e_1_2_5_1_1 doi: 10.1126/science.aan2301 – ident: e_1_2_5_53_1 doi: 10.1126/science.aai9081 – ident: e_1_2_5_4_1 doi: 10.1038/s41560-018-0200-6 – ident: e_1_2_5_32_1 doi: 10.1021/acs.accounts.5b00404 – ident: e_1_2_5_39_1 doi: 10.1021/acsenergylett.7b00981 – ident: e_1_2_5_2_1 doi: 10.1038/nature14133 – ident: e_1_2_5_21_1 doi: 10.1002/adma.201604113 – ident: e_1_2_5_50_1 doi: 10.1021/acsenergylett.8b01504 – ident: e_1_2_5_45_1 doi: 10.1021/acsenergylett.7b01057 – ident: e_1_2_5_40_1 doi: 10.1039/C4SC03141E – ident: e_1_2_5_6_1 doi: 10.1126/science.aad1015 – ident: e_1_2_5_17_1 doi: 10.1021/acs.chemrev.6b00618 – ident: e_1_2_5_37_1 doi: 10.1021/acs.jpclett.5b00380 – ident: e_1_2_5_14_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_5_5_1 doi: 10.1126/science.aap9282 – ident: e_1_2_5_35_1 doi: 10.1021/acs.chemmater.5b04107 – ident: e_1_2_5_15_1 doi: 10.1039/C6EE03182J – ident: e_1_2_5_13_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_5_25_1 doi: 10.1039/C7EE01145H – ident: e_1_2_5_9_1 doi: 10.1039/C5EE03874J – year: 2019 ident: e_1_2_5_47_1 publication-title: Sol. RRL – ident: e_1_2_5_52_1 doi: 10.1002/admi.201900434 – year: 2019 ident: e_1_2_5_46_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_5_30_1 doi: 10.1126/science.aad5845 – ident: e_1_2_5_22_1 doi: 10.1002/adma.201706576 – ident: e_1_2_5_26_1 doi: 10.1021/jacs.8b13104 – ident: e_1_2_5_7_1 doi: 10.1021/jz500279b – ident: e_1_2_5_24_1 doi: 10.1002/adma.201707166 |
SSID | ssj0009606 |
Score | 2.5753033 |
Snippet | Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA1−x−yMAxCsyPbI3−zBrz) as photovoltaic absorbers, as they enable easier... Perovskite solar cells increasingly feature mixed‐halide mixed‐cation compounds (FA 1− x − y MA x Cs y PbI 3− z Br z ) as photovoltaic absorbers, as they... Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA MA Cs PbI Br ) as photovoltaic absorbers, as they enable easier processing... Perovskite solar cells increasingly feature mixed-halide mixed-cation compounds (FA1- x - y MAx Csy PbI3- z Brz ) as photovoltaic absorbers, as they enable... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1808357 |
SubjectTerms | anti‐solvent drip Cations Crystallization Formulations hybrid perovskite solar cells in situ GIWAXS kinetic stabilization Materials science mixed‐cation mixed‐halide perovskites Perovskites Photovoltaic cells Sol-gel processes Solar cells Solvents Stabilization Windows (intervals) |
Title | Kinetic Stabilization of the Sol–Gel State in Perovskites Enables Facile Processing of High‐Efficiency Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808357 https://www.ncbi.nlm.nih.gov/pubmed/31206857 https://www.proquest.com/docview/2268534329 https://www.proquest.com/docview/2242826229 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_VhakJGQOKX1-pHYx1XZpQIVIaBSb5Ht2BIiStBmt4ee-hOQ-If9Jcw42bQLQkhwS-SxM3Fm4s_2zGdCXrJKexGmMovcY0qOVZkOUmUqL5D-u6pESgo7fp8fnci3p-r0WhZ_zw8xLrihZ6T_NTq4dd3BFWmorRJv0FQjiMB0cgzYQlT08Yo_CuF5ItsTKjO51BvWRsYPtqtvj0q_Qc1t5JqGnsUdYjdK9xEnX_fXK7fvz3_hc_yft7pLbg-4lM56Q7pHboTmPrl1ja3wATl7B9dQTAGgYkhtn8BJ20gBRNJPbX158eNNqGnCr_RLQz-EZXvW4fJwR-cpR6ujC-tBLzrkJ0C7WB-DTS4vvs8TnQXmgmJrdkkPQ113D8nJYv758Cgbjm3IvITJZGZ0UWjjYR4opPM5n3plmXZKRc0C416FIFx0hbauEEbmgpkgpeCROR90XolHZKdpm_CEUBOjRf55VkQmo8ct4mBcqBzzyvvKTUi2-WylHzjN8WiNuuzZmHmJ_VmO_Tkhr0b5bz2bxx8l9zZWUA5e3ZUAVQHdgKpmQl6MxeCPuMlim9CuUQYmdDznKPO4t57xUWLKGbQAjfNkA3_RoZy9Pp6Nd0__pdIuuQnXpo9Y3CM7q-U6PAMUtXLPk6f8BNHvFIs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKORQOQIHCQqFGQuKU1uufxD6u2t0utFtV0ErcotixpapRgja7PXDqIyDxhn0SPM5PWRBCglsSjydOMhN_tmc-I_SW5NIwO-SRowZScjIRSctFJOIE6L_znIWksNlJPD3nHz6LLpoQcmEafoh-wg08I_yvwcFhQnrvljU0ywNx0FACikjuoLuwrTfQ5x98vGWQAoAe6PaYiFTMZcfbSOjeav3Vfuk3sLmKXUPnM3mIdNfsJubkcne50Lvm6y-Mjv_1XI_Qgxaa4lFjS5tozZaP0f2fCAufoKsjf-yLsceoEFXb5HDiymGPI_Gnqri5_n5oCxwgLL4o8amdV1c1zBDXeBzStGo8yYxvGG5TFLxeqA_xJjfX38aB0QLSQUFbNsf7tijqp-h8Mj7bn0btzg2R4X48GSmZJFIZPxRkXJuYDo3IiNRCOEksoUZYy7TTicx0whSPGVGWc0Yd0cbKOGdbaL2sSvscYeVcBhT0JHGEOwOrxFZpm2tihDG5HqCo-26paWnNYXeNIm0ImWkK7zPt3-cAvevlvzSEHn-U3O7MIG0du049WvUAxzdVDdCbvti7JKyzZKWtliDjx3Q0piDzrDGf_lZsSInX4JXTYAR_aUM6OpiN-rMX_1JpB21Mz2bH6fH7k6OX6J6_rpoAxm20vpgv7SsPqhb6dXCbHxJ0GKc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaglRAcaPkpLLRgJCROab3-SezjqrtLobSqgEq9RbZjS4goqTa7PXDqIyDxhn0SPE427YIQEtySeOxMkpn4sz3zGaHXpJCWuSFPPLWQkqNFIh0XiUgzoP8uChaTwo6O04NT_v5MnN3I4m_5IfoJN_CM-L8GBz8v_N41aaguIm_QUAKIyG6jdZ4SBZs3jD9eE0gBPo9se0wkKuVySdtI6N5q_dVu6TesuQpdY98z3UB6qXUbcvJ1dzE3u_bbL4SO__NYm-h-B0zxqLWkB-iWqx6iezfoCh-hi8NwHIpxQKgQU9tmcOLa44Ai8ae6vLr88daVOAJY_KXCJ25WXzQwP9zgSUzSavBU26AX7hIUQrtQH6JNri6_TyKfBSSDQmt6hvddWTaP0el08nn_IOn2bUgsD6PJRMksk8qGgSDjxqZ0aIUm0gjhJXGEWuEcM95kUpuMKZ4yohznjHpirJNpwbbQWlVX7inCynsNBPQk84R7C2vEThlXGGKFtYUZoGT52XLbkZrD3hpl3tIx0xzeZ96_zwF608uft3Qef5TcXlpB3rl1kwesGuBNUFUN0Ku-ODgkrLLoytULkAkjOppSkHnSWk9_KzakJLQQGqfRBv6iQz4aH436s2f_UuklunMynuYf3h0fPkd3w2XVRi9uo7X5bOF2AqKamxfRaX4CsesXVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetic+Stabilization+of+the+Sol%E2%80%93Gel+State+in+Perovskites+Enables+Facile+Processing+of+High%E2%80%90Efficiency+Solar+Cells&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Kai&rft.au=Tang%2C+Ming%E2%80%90Chun&rft.au=Dang%2C+Hoang+X.&rft.au=Munir%2C+Rahim&rft.date=2019-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=32&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201808357&rft.externalDBID=10.1002%252Fadma.201808357&rft.externalDocID=ADMA201808357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |