Non‐Solvating and Low‐Dielectricity Cosolvent for Anion‐Derived Solid Electrolyte Interphases in Lithium Metal Batteries
Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteris...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 20; pp. 11442 - 11447 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.05.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.
The introduction of cosolvents with non‐solvating and low‐dielectricity (NL) properties can intrinsically enhance the interaction between anion and Li+ and regulate the solvation structures in electrolytes, which favors an upgraded anion‐derived solid electrolyte interphase (SEI) on lithium metal anodes. |
---|---|
AbstractList | Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent. Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li + ). Herein, we clarify the critical significance of cosolvent properties on both Li + solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li + by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li + and dielectric constant is suitable as NL cosolvent. Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent. The introduction of cosolvents with non‐solvating and low‐dielectricity (NL) properties can intrinsically enhance the interaction between anion and Li+ and regulate the solvation structures in electrolytes, which favors an upgraded anion‐derived solid electrolyte interphase (SEI) on lithium metal anodes. Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li ). Herein, we clarify the critical significance of cosolvent properties on both Li solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li and dielectric constant is suitable as NL cosolvent. Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+ ). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+ ). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent. |
Author | Huang, Jia‐Qi Xu, Rui Xiao, Ye Yao, Yu‐Xing Yao, Nan Xie, Jin Ding, Jun‐Fan Chen, Xiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Jun‐Fan orcidid: 0000-0002-9042-0193 surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 2 givenname: Rui orcidid: 0000-0001-6439-8706 surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 3 givenname: Nan orcidid: 0000-0003-1965-2917 surname: Yao fullname: Yao, Nan organization: Tsinghua University – sequence: 4 givenname: Xiang orcidid: 0000-0002-7686-6308 surname: Chen fullname: Chen, Xiang organization: Tsinghua University – sequence: 5 givenname: Ye orcidid: 0000-0001-9118-8931 surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 6 givenname: Yu‐Xing orcidid: 0000-0001-6350-1206 surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 7 givenname: Chong orcidid: 0000-0001-9521-4981 surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 8 givenname: Jin orcidid: 0000-0002-4235-7441 surname: Xie fullname: Xie, Jin organization: Tsinghua University – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33655631$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEYRS3Uiv7AliWyxIbNBP_NeGYZ0gCR0rIA1pZn5jN15djB9rTKBvEIPCNPgtu0IFVCrGzZ53yy7z1BBz54QOgFJTNKCHujvYUZI4wS2jD5BB3TmtGKS8kPyl5wXsm2pkfoJKWrwrctaZ6iI86bum44PUbfL4L_9ePnp-Cudbb-K9Z-xOtwU87OLDgYcrSDzTu8CKkw4DM2IeK5t3feGUR7DSMuvh3x8o4PbpcBr3yGuL3UCRK2Hq9tvrTTBp9D1g6_1bncWkjP0KHRLsHz-_UUfXm3_Lz4UK0_vl8t5utqEJTISsqONrTuelp-YEYDXT2MgghZ9wZM3w6sJdJ0HalbLmEca2I0FWbsqRQ9kcBP0ev93G0M3yZIWW1sGsA57SFMSTHRNUxwSpuCvnqEXoUp-vI6xUq2JTrekEK9vKemfgOj2ka70XGnHpItgNgDQwwpRTCqxFgiDj5HbZ2iRN0WqG4LVH8KLNrskfYw-Z9CtxdurIPdf2g1v1gt_7q_AVMnsUI |
CitedBy_id | crossref_primary_10_1021_acsenergylett_1c02495 crossref_primary_10_1002_ange_202207927 crossref_primary_10_1021_acsnano_2c06924 crossref_primary_10_1038_s41467_023_41808_3 crossref_primary_10_1002_advs_202404248 crossref_primary_10_1149_1945_7111_ac9a07 crossref_primary_10_1016_j_jallcom_2022_164163 crossref_primary_10_1186_s40580_024_00417_6 crossref_primary_10_1002_smtd_202401998 crossref_primary_10_1016_j_cej_2024_151540 crossref_primary_10_1039_D4EE04847D crossref_primary_10_1016_j_est_2024_112558 crossref_primary_10_1002_ange_202407024 crossref_primary_10_1002_idm2_12131 crossref_primary_10_1002_aenm_202203870 crossref_primary_10_1016_j_ensm_2024_103603 crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_2139_ssrn_4186452 crossref_primary_10_1021_acsami_4c02848 crossref_primary_10_1007_s40820_024_01632_w crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1002_aenm_202101173 crossref_primary_10_1002_adfm_202305284 crossref_primary_10_1002_celc_202400054 crossref_primary_10_1002_cey2_480 crossref_primary_10_1007_s40820_022_00932_3 crossref_primary_10_1021_acs_jpcc_2c06052 crossref_primary_10_1002_sstr_202200400 crossref_primary_10_1016_j_ensm_2023_102923 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1002_aenm_202102259 crossref_primary_10_1021_acsenergylett_4c02535 crossref_primary_10_1002_advs_202413875 crossref_primary_10_1016_j_mattod_2023_09_004 crossref_primary_10_1002_aenm_202405803 crossref_primary_10_1002_adfm_202403154 crossref_primary_10_1016_j_jpowsour_2022_232106 crossref_primary_10_1002_eem2_12602 crossref_primary_10_1002_smll_202412681 crossref_primary_10_1021_acsenergylett_3c00004 crossref_primary_10_1002_anie_202417778 crossref_primary_10_1002_ange_202205045 crossref_primary_10_1002_advs_202413419 crossref_primary_10_1002_smll_202401215 crossref_primary_10_1016_j_jcis_2024_12_217 crossref_primary_10_1038_s41570_023_00506_w crossref_primary_10_1002_adfm_202421802 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_aenm_202200337 crossref_primary_10_1021_acsenergylett_1c02036 crossref_primary_10_1002_anie_202317177 crossref_primary_10_1016_j_cej_2021_133189 crossref_primary_10_1002_ange_202107657 crossref_primary_10_1039_D1SE01152A crossref_primary_10_1002_eem2_12635 crossref_primary_10_1002_anie_202212744 crossref_primary_10_1021_acsenergylett_4c03030 crossref_primary_10_1016_j_isci_2021_103490 crossref_primary_10_1039_D3TA07655E crossref_primary_10_1016_j_ensm_2021_07_043 crossref_primary_10_1002_adma_202209140 crossref_primary_10_1002_aenm_202300053 crossref_primary_10_1021_acsenergylett_2c01840 crossref_primary_10_1021_acsenergylett_2c02379 crossref_primary_10_1002_smll_202302690 crossref_primary_10_1038_s41565_022_01148_7 crossref_primary_10_1002_ange_202316499 crossref_primary_10_1016_j_jechem_2024_11_050 crossref_primary_10_1016_j_jechem_2022_12_058 crossref_primary_10_1021_acs_nanolett_2c04876 crossref_primary_10_1002_cey2_383 crossref_primary_10_1021_acsenergylett_4c02751 crossref_primary_10_1016_j_jallcom_2023_170200 crossref_primary_10_1016_j_cej_2022_138369 crossref_primary_10_1016_j_cej_2022_135534 crossref_primary_10_1016_j_ensm_2022_08_018 crossref_primary_10_1016_j_cclet_2024_110385 crossref_primary_10_1039_D3EE00161J crossref_primary_10_1039_D4EE03134B crossref_primary_10_1038_s41467_022_32192_5 crossref_primary_10_1002_ange_202210859 crossref_primary_10_1039_D4TA07449A crossref_primary_10_1007_s43979_024_00096_6 crossref_primary_10_1021_acsenergylett_4c00548 crossref_primary_10_1021_acsami_2c06934 crossref_primary_10_1016_j_jechem_2024_04_041 crossref_primary_10_1038_s41467_022_33151_w crossref_primary_10_1039_D4EE03280B crossref_primary_10_1002_adma_202105962 crossref_primary_10_1016_j_jechem_2022_09_030 crossref_primary_10_1039_D3CC02166A crossref_primary_10_1039_D3MA00274H crossref_primary_10_1002_smtd_202300228 crossref_primary_10_1002_ange_202417778 crossref_primary_10_1016_j_cej_2022_138265 crossref_primary_10_1002_anie_202407024 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1002_advs_202203216 crossref_primary_10_1007_s12274_022_4839_8 crossref_primary_10_1038_s41467_024_53807_z crossref_primary_10_1002_anie_202107657 crossref_primary_10_1002_aenm_202404913 crossref_primary_10_1016_j_mtener_2022_101199 crossref_primary_10_1002_adma_202306553 crossref_primary_10_1039_D4EE01298D crossref_primary_10_1002_eem2_12368 crossref_primary_10_1016_j_mtener_2024_101759 crossref_primary_10_1002_adfm_202316561 crossref_primary_10_1007_s41918_022_00147_5 crossref_primary_10_1016_j_jtice_2024_105513 crossref_primary_10_1021_acsami_1c16827 crossref_primary_10_1002_ange_202402946 crossref_primary_10_1021_acssuschemeng_1c08707 crossref_primary_10_1016_j_ensm_2022_11_012 crossref_primary_10_1021_acsami_3c02084 crossref_primary_10_1021_acs_jpcb_4c02538 crossref_primary_10_1002_aenm_202200139 crossref_primary_10_1007_s00723_024_01643_1 crossref_primary_10_1016_j_electacta_2023_141845 crossref_primary_10_1002_aenm_202300936 crossref_primary_10_2139_ssrn_4117015 crossref_primary_10_1002_aenm_202300259 crossref_primary_10_1016_j_nanoen_2024_109545 crossref_primary_10_1016_j_esci_2022_06_005 crossref_primary_10_1016_j_cclet_2024_110591 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1016_j_mattod_2025_02_021 crossref_primary_10_1002_ange_202317302 crossref_primary_10_1002_anie_202207645 crossref_primary_10_1021_acsami_1c15742 crossref_primary_10_1002_eom2_12200 crossref_primary_10_1021_acs_accounts_4c00022 crossref_primary_10_1002_sstr_202400254 crossref_primary_10_1016_j_jpowsour_2022_232045 crossref_primary_10_1002_aenm_202402638 crossref_primary_10_1002_smll_202405187 crossref_primary_10_1016_j_cej_2022_139932 crossref_primary_10_1016_j_jallcom_2023_172669 crossref_primary_10_1002_anie_202402946 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1039_D3TA07347E crossref_primary_10_1039_D3SC06650A crossref_primary_10_1016_j_nanoen_2023_109088 crossref_primary_10_1016_j_ensm_2022_12_043 crossref_primary_10_1002_ange_202207645 crossref_primary_10_1002_adfm_202212499 crossref_primary_10_1016_j_ensm_2022_07_014 crossref_primary_10_1021_acsenergylett_5c00710 crossref_primary_10_1002_anie_202317302 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1002_aenm_202300918 crossref_primary_10_1016_j_coelec_2023_101241 crossref_primary_10_1002_anie_202205045 crossref_primary_10_1002_batt_202200256 crossref_primary_10_1016_j_nanoen_2024_109920 crossref_primary_10_1021_acs_nanolett_3c03340 crossref_primary_10_1021_jacs_4c09062 crossref_primary_10_1002_adma_202306462 crossref_primary_10_1002_advs_202104699 crossref_primary_10_1002_eem2_12450 crossref_primary_10_1021_acsnano_1c07414 crossref_primary_10_1016_j_xcrp_2022_101197 crossref_primary_10_1021_acscentsci_2c00791 crossref_primary_10_1002_ange_202317177 crossref_primary_10_1002_anie_202107732 crossref_primary_10_1021_jacs_4c12353 crossref_primary_10_1002_smll_202411632 crossref_primary_10_3390_polym16182661 crossref_primary_10_1002_eem2_12243 crossref_primary_10_1002_cphc_202300642 crossref_primary_10_1016_j_mtsust_2022_100187 crossref_primary_10_1002_smll_202406506 crossref_primary_10_1002_advs_202202474 crossref_primary_10_1002_aenm_202200730 crossref_primary_10_1002_aenm_202400548 crossref_primary_10_1002_batt_202200394 crossref_primary_10_1007_s12274_023_5937_y crossref_primary_10_1016_j_nanoen_2025_110849 crossref_primary_10_1016_j_mtnano_2023_100368 crossref_primary_10_1002_anie_202210859 crossref_primary_10_1002_bkcs_12884 crossref_primary_10_1002_adfm_202420327 crossref_primary_10_1002_aenm_202204305 crossref_primary_10_1016_j_cclet_2022_107852 crossref_primary_10_1021_acsenergylett_4c00859 crossref_primary_10_1021_acsenergylett_3c00181 crossref_primary_10_1038_s41565_023_01341_2 crossref_primary_10_1002_adma_202402702 crossref_primary_10_1016_j_ensm_2021_10_007 crossref_primary_10_1088_2752_5724_acac68 crossref_primary_10_1021_acs_energyfuels_2c02920 crossref_primary_10_1002_anie_202218151 crossref_primary_10_1002_smll_202311157 crossref_primary_10_1039_D1TA06987J crossref_primary_10_1021_acsmaterialslett_5c00130 crossref_primary_10_1002_anie_202203693 crossref_primary_10_1021_acsnano_3c08716 crossref_primary_10_1002_anie_202316499 crossref_primary_10_1039_D2TA06084A crossref_primary_10_1007_s11426_023_1730_x crossref_primary_10_1021_jacs_4c00976 crossref_primary_10_1002_ange_202110441 crossref_primary_10_1039_D4CS00826J crossref_primary_10_1002_asia_202101108 crossref_primary_10_1002_aenm_202304414 crossref_primary_10_1039_D2TA01672A crossref_primary_10_1002_ange_202317923 crossref_primary_10_1021_acs_jpcc_1c06277 crossref_primary_10_1021_acs_jpcc_2c04503 crossref_primary_10_1039_D4CP01967A crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_1039_D1SE01919H crossref_primary_10_1002_smll_202405442 crossref_primary_10_1002_adsu_202400680 crossref_primary_10_1002_sus2_37 crossref_primary_10_1002_adfm_202205622 crossref_primary_10_1002_aenm_202301396 crossref_primary_10_1002_ange_202212744 crossref_primary_10_1016_j_nanoen_2022_107014 crossref_primary_10_1016_j_chempr_2024_09_005 crossref_primary_10_1016_j_ensm_2022_10_055 crossref_primary_10_1016_j_ensm_2024_103598 crossref_primary_10_1002_anie_202110441 crossref_primary_10_1007_s11581_024_06004_3 crossref_primary_10_1002_anie_202317923 crossref_primary_10_1016_j_ensm_2022_07_038 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1002_idm2_12077 crossref_primary_10_1039_D5EE00203F crossref_primary_10_1002_ange_202107732 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1039_D4EE05966B crossref_primary_10_1002_adfm_202213811 crossref_primary_10_1002_anie_202207927 crossref_primary_10_1002_ange_202203693 crossref_primary_10_1002_eem2_12792 crossref_primary_10_1021_acsenergylett_3c00706 crossref_primary_10_1016_j_cej_2023_141478 crossref_primary_10_1016_j_cclet_2022_05_077 crossref_primary_10_1002_adma_202311195 crossref_primary_10_1021_jacs_4c01735 crossref_primary_10_1002_ange_202218151 crossref_primary_10_2139_ssrn_4162771 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1021_acsaem_2c01504 crossref_primary_10_1002_aenm_202500279 crossref_primary_10_1016_j_cej_2021_134468 crossref_primary_10_1039_D2CC05847B crossref_primary_10_1039_D4SC08045A |
Cites_doi | 10.1038/s41560-020-0601-1 10.1002/aenm.201903568 10.1002/anie.202003663 10.1016/S0013-4686(02)00099-3 10.1002/aenm.201902116 10.1021/acs.nanolett.9b04111 10.1039/C3EE40795K 10.1021/jacs.0c10258 10.1038/s41586-019-1481-z 10.1002/ange.201905251 10.1002/aenm.201903843 10.1038/s41560-019-0474-3 10.1016/j.jechem.2020.11.016 10.1016/j.chempr.2018.05.002 10.1002/ange.202013271 10.1016/j.joule.2018.05.002 10.1149/2.111308jes 10.1021/acsenergylett.8b02527 10.1002/anie.201809203 10.1002/ange.201801737 10.1002/adfm.201909887 10.1002/adfm.202003800 10.1002/aenm.201702097 10.1002/anie.202013271 10.1021/am501665s 10.1016/j.jechem.2020.02.052 10.1016/j.mattod.2020.06.007 10.1016/j.trechm.2019.02.015 10.1002/aenm.202002297 10.1002/ange.201809203 10.1016/j.joule.2019.05.006 10.1016/j.jechem.2019.09.034 10.1016/j.trechm.2020.10.008 10.1002/anie.201801737 10.1073/pnas.2001923117 10.1039/C9CS00883G 10.1016/j.nanoen.2016.12.001 10.1021/jacs.7b05251 10.1021/acs.accounts.0c00412 10.1002/adma.201706102 10.1021/cm901452z 10.1002/ange.202003663 10.1002/nano.202000003 10.1016/j.jechem.2020.01.027 10.1016/j.ensm.2019.12.020 10.1016/j.nanoen.2019.103910 10.1002/batt.201800118 10.1002/anie.201905251 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202101627 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 11447 |
ExternalDocumentID | 33655631 10_1002_anie_202101627 ANIE202101627 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2016YFA0202500 – fundername: National Natural Science Foundation of China funderid: 21776019 – fundername: ShanXi Science and Technology Department funderid: 20191102003 – fundername: Natural Science Foundation of Beijing Municipality funderid: JQ20004; L182021 – fundername: National Natural Science Foundation of China grantid: 21776019 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2016YFA0202500 – fundername: ShanXi Science and Technology Department grantid: 20191102003 – fundername: Natural Science Foundation of Beijing Municipality grantid: JQ20004 – fundername: Natural Science Foundation of Beijing Municipality grantid: L182021 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4107-77916159b1288fdfe95cd40475bfefb8c2807f9905837edd50fa14fdb174b07e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 07:49:24 EDT 2025 Fri Jul 25 10:34:06 EDT 2025 Wed Feb 19 02:28:44 EST 2025 Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 01:17:57 EDT 2025 Wed Jan 22 16:29:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | anion-cation interaction solid electrolyte interphase cation solvation low-dielectricity cosolvent lithium metal batteries |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-77916159b1288fdfe95cd40475bfefb8c2807f9905837edd50fa14fdb174b07e3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6350-1206 0000-0002-4235-7441 0000-0001-9521-4981 0000-0002-7686-6308 0000-0002-9042-0193 0000-0001-7394-9186 0000-0001-6439-8706 0000-0001-9118-8931 0000-0003-1965-2917 |
PMID | 33655631 |
PQID | 2521336360 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2496243116 proquest_journals_2521336360 pubmed_primary_33655631 crossref_citationtrail_10_1002_anie_202101627 crossref_primary_10_1002_anie_202101627 wiley_primary_10_1002_anie_202101627_ANIE202101627 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 10, 2021 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: May 10, 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019 2020 2020; 4 59 132 2016; 7 2017; 8 2019; 9 2002 2019; 47 572 2018; 4 2021 2017 2020; 59 32 10 2020; 30 2019; 2 2014 2020 2020 2010; 7 48 22 2018 2014; 2 6 2020; 47 2019 2020 2020; 3 5 49 2020; 10 2019 2020 2018 2018 2020; 1 117 57 130 28 2020 2019 2019 2020 2020; 49 58 131 142 10 2017 2020 2020 2019; 139 1 3 64 2021 2021 2013; 60 133 12 2013; 160 2018 2019 2020 2020; 30 4 53 20 2020 2018 2018; 40 57 130 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_11_3 e_1_2_6_13_1 e_1_2_6_11_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_20_1 e_1_2_6_7_3 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_7_4 e_1_2_6_3_3 e_1_2_6_5_1 e_1_2_6_1_4 e_1_2_6_3_2 e_1_2_6_3_5 e_1_2_6_5_3 e_1_2_6_7_1 e_1_2_6_3_4 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_22_3 e_1_2_6_1_3 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_22_1 Wang J. (e_1_2_6_10_1) 2016; 7 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_16_3 e_1_2_6_18_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_6_4 e_1_2_6_4_5 e_1_2_6_6_3 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_4_1 e_1_2_6_4_4 e_1_2_6_6_2 e_1_2_6_4_3 e_1_2_6_6_1 e_1_2_6_2_1 e_1_2_6_21_2 Honary S. (e_1_2_6_17_3) 2013; 12 |
References_xml | – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 3 5 49 start-page: 1662 386 335 year: 2019 2020 2020 end-page: 1676 397 338 publication-title: Joule Nat. Energy J. Energy Chem. – volume: 40 57 130 start-page: 63 16643 16885 year: 2020 2018 2018 end-page: 71 16647 16889 publication-title: Mater. Today Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 58 131 142 10 start-page: 2701 11364 11486 20814 year: 2020 2019 2019 2020 2020 end-page: 2750 11368 11490 20827 publication-title: Chem. Soc. Rev. Angew. Chem. Int. Ed. Angew. Chem. J. Am. Chem. Soc. Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2017 publication-title: Adv. Energy Mater. – volume: 59 32 10 start-page: 306 271 year: 2021 2017 2020 end-page: 319 279 publication-title: J. Energy Chem. Nano Energy Adv. Energy Mater. – volume: 47 start-page: 217 year: 2020 end-page: 220 publication-title: J. Energy Chem. – volume: 1 117 57 130 28 start-page: 152 27195 5072 5166 401 year: 2019 2020 2018 2018 2020 end-page: 158 27203 5075 5169 406 publication-title: Trends Chem. Proc. Natl. Acad. Sci. USA Angew. Chem. Int. Ed. Angew. Chem. Energy Storage Mater. – volume: 160 start-page: A1304 year: 2013 end-page: A1310 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 1877 year: 2018 end-page: 1892 publication-title: Chem – volume: 60 133 12 start-page: 4215 4261 255 year: 2021 2021 2013 end-page: 4220 4266 publication-title: Angew. Chem. Int. Ed. Angew. Chem. J. Pharm. Res. – volume: 7 48 22 start-page: 513 203 587 year: 2014 2020 2020 2010 end-page: 537 207 603 publication-title: Energy Environ. Sci. Adv. Funct. Mater. J. Energy Chem. Chem. Mater. – volume: 2 start-page: 128 year: 2019 end-page: 131 publication-title: Batteries Supercaps – volume: 2 6 start-page: 1548 8006 year: 2018 2014 end-page: 1558 8010 publication-title: Joule ACS Appl. Mater. Interfaces – volume: 139 1 3 64 start-page: 11550 94 5 year: 2017 2020 2020 2019 end-page: 11558 110 14 publication-title: J. Am. Chem. Soc. Nano Select Trends Chem. Nano Energy – volume: 7 start-page: 12032 year: 2016 publication-title: Nat. Chem. – volume: 47 572 start-page: 1975 511 year: 2002 2019 end-page: 1982 515 publication-title: Electrochim. Acta Nature – volume: 30 4 53 20 start-page: 882 1992 418 year: 2018 2019 2020 2020 end-page: 890 2002 425 publication-title: Adv. Mater. Nat. Energy Acc. Chem. Res. Nano Lett. – volume: 4 59 132 start-page: 483 14869 14979 year: 2019 2020 2020 end-page: 488 14876 14986 publication-title: ACS Energy Lett. Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_11_2 doi: 10.1038/s41560-020-0601-1 – volume: 7 start-page: 12032 year: 2016 ident: e_1_2_6_10_1 publication-title: Nat. Chem. – ident: e_1_2_6_8_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_6_22_2 doi: 10.1002/anie.202003663 – ident: e_1_2_6_19_1 doi: 10.1016/S0013-4686(02)00099-3 – ident: e_1_2_6_20_1 doi: 10.1002/aenm.201902116 – ident: e_1_2_6_7_4 doi: 10.1021/acs.nanolett.9b04111 – ident: e_1_2_6_1_1 doi: 10.1039/C3EE40795K – ident: e_1_2_6_4_4 doi: 10.1021/jacs.0c10258 – ident: e_1_2_6_19_2 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_6_4_3 doi: 10.1002/ange.201905251 – ident: e_1_2_6_4_5 doi: 10.1002/aenm.201903843 – ident: e_1_2_6_7_2 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_6_5_1 doi: 10.1016/j.jechem.2020.11.016 – ident: e_1_2_6_14_1 doi: 10.1016/j.chempr.2018.05.002 – ident: e_1_2_6_17_2 doi: 10.1002/ange.202013271 – ident: e_1_2_6_21_1 doi: 10.1016/j.joule.2018.05.002 – ident: e_1_2_6_18_1 doi: 10.1149/2.111308jes – ident: e_1_2_6_22_1 doi: 10.1021/acsenergylett.8b02527 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201809203 – ident: e_1_2_6_3_4 doi: 10.1002/ange.201801737 – ident: e_1_2_6_12_1 – ident: e_1_2_6_1_2 doi: 10.1002/adfm.201909887 – ident: e_1_2_6_9_1 doi: 10.1002/adfm.202003800 – ident: e_1_2_6_13_1 doi: 10.1002/aenm.201702097 – ident: e_1_2_6_17_1 doi: 10.1002/anie.202013271 – ident: e_1_2_6_21_2 doi: 10.1021/am501665s – ident: e_1_2_6_11_3 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_6_16_1 doi: 10.1016/j.mattod.2020.06.007 – ident: e_1_2_6_3_1 doi: 10.1016/j.trechm.2019.02.015 – ident: e_1_2_6_5_3 doi: 10.1002/aenm.202002297 – ident: e_1_2_6_16_3 doi: 10.1002/ange.201809203 – ident: e_1_2_6_11_1 doi: 10.1016/j.joule.2019.05.006 – ident: e_1_2_6_2_1 doi: 10.1016/j.jechem.2019.09.034 – ident: e_1_2_6_6_3 doi: 10.1016/j.trechm.2020.10.008 – volume: 12 start-page: 255 year: 2013 ident: e_1_2_6_17_3 publication-title: J. Pharm. Res. – ident: e_1_2_6_3_3 doi: 10.1002/anie.201801737 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.2001923117 – ident: e_1_2_6_4_1 doi: 10.1039/C9CS00883G – ident: e_1_2_6_5_2 doi: 10.1016/j.nanoen.2016.12.001 – ident: e_1_2_6_6_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_6_7_3 doi: 10.1021/acs.accounts.0c00412 – ident: e_1_2_6_7_1 doi: 10.1002/adma.201706102 – ident: e_1_2_6_1_4 doi: 10.1021/cm901452z – ident: e_1_2_6_22_3 doi: 10.1002/ange.202003663 – ident: e_1_2_6_6_2 doi: 10.1002/nano.202000003 – ident: e_1_2_6_1_3 doi: 10.1016/j.jechem.2020.01.027 – ident: e_1_2_6_3_5 doi: 10.1016/j.ensm.2019.12.020 – ident: e_1_2_6_6_4 doi: 10.1016/j.nanoen.2019.103910 – ident: e_1_2_6_15_1 doi: 10.1002/batt.201800118 – ident: e_1_2_6_4_2 doi: 10.1002/anie.201905251 |
SSID | ssj0028806 |
Score | 2.6924927 |
Snippet | Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex... Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11442 |
SubjectTerms | Anions anion–cation interaction Anodes cation solvation Dielectric constant Electrolytes Lithium Lithium ions lithium metal batteries low-dielectricity cosolvent solid electrolyte interphase Solid electrolytes Solvation Solvents |
Title | Non‐Solvating and Low‐Dielectricity Cosolvent for Anion‐Derived Solid Electrolyte Interphases in Lithium Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101627 https://www.ncbi.nlm.nih.gov/pubmed/33655631 https://www.proquest.com/docview/2521336360 https://www.proquest.com/docview/2496243116 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VXNpLW_o0hWorIfVkcNbrOD5GIQgQ5NAWiZvlfYFFWCPitGoPqD-hv7G_hBlvbEhRVYne_NiR7d0Zzzf2zDcAmxFXySA1NswotVGIBG2uiMiuFJepSmLddJ47mvT3jsXBSXJyp4rf80N0H9zIMpr3NRl4IWfbt6ShVIGN8R2n8JNTOTklbBEq-tTxR3FUTl9eFMchdaFvWRsjvr0svuyV7kHNZeTauJ7dZ1C0N-0zTs635rXcUj_-4HP8n6d6Dk8XuJQNvSKtwiPjXsDjUdsO7iVcTyr3--evz9WUPuK6U1Y4zQ6rb3hsp_TNdEqFkJ6NKlRnyqJkiIfZ0JWN3A5q-lejGcqXmo19853p99own_Z4ht50xkrHDsv6rJxfsCODYQHz9J8Yzb-C493xl9FeuGjeECqBISWi9ozAZCbRAQ6stiZLlBaRSBNpjZUDRTQ8Fn1hgiGy0TqJbNETVksMkWSUmvg1rLjKmbfA7EBnVELcx1BU2DgrRFr0ImMRakZSchNA2C5erhbM5tRgY5p7Tmae06zm3awG8LEbf-k5Pf46cr3VhXxh27OcI-KJY-JZC-BDdxpXg361FM5Ucxwjsj5HbNbrB_DG61B3KZQlVrZeALzRhH_cQz6c7I-7vbWHCL2DJ7QdNqSz67BSX83NBmKpWr5v7OUGQgUX0Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4pQ26zibzYHDanerXbq7B2il3kIc2zTqNkFslqocEI_Aq_AqPAJPwkycBC0IISH1wDGOx3HsGecbZ_wNwFOPp0Ev1MaNKLRRiABtLvHIrlIuwzTwVZV5bjbvjg_Fy6PgaAO-NmdhLD9Eu-FGllGt12TgtCG9-5M1lI5go4PHyf_kYR1Xua_Pz9BrW76YDHGKn3G-NzoYjN06sYCbCnR3EFFGBHQiiYtzzyijoyBVwhNhII02spcSRYzBdTpA900rFXgm6QijJMJ36YXax3YvwWVKI050_cNXLWMVtufZA02-71Le-4Yn0uO76_1d_w7-Bm7XsXL1sdu7Bt-aYbIxLic7q1LupB9_YZD8r8bxOlytoTfrW1u5ARs6vwlbgybj3S34NC_y75-_vC4WtE-dv2VJrti0OMOyYWbzBWUpei1sUKDFUqAoQ8jP-nlWyQ3RmD9oxVA-U2xk8wstzkvNbGTnMQKGJctyNs3K42x1ymYaPR9mGU4zvbwNhxfy-ndgMy9yfQ-Y6amITkl30dsWxo8SESYdTxtE056UXDvgNtoSpzV5O-UQWcSWdprHNItxO4sOPG_rv7O0JX-sud0oX1wvX8uYI6jzfaKSc-BJextng_4mJbkuVlhHRF2O8LPTdeCuVdr2UShLxHMdB3ilen_pQ9yfT0bt1f1_EXoMW-OD2TSeTub7D-AKlbsVx-42bJbvV_ohQsdSPqqMlcGbi9bqH5MudV8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyn9DCxgJxCmt13E2m0MPq82uunS7QkCl3tI4tmnUJanYLFU5IB6hj8Kr8Ao8CeM4CVoQQkLqgWMcj-PYM843zvgbgGeUpX4vUNoNTWgj5z7aXEKNXaVMBKnvySrz3P60u3vAXx76hyvwtTkLY_kh2g03YxnVem0M_FTq7Z-koeYENvp3zLifLKjDKvfU-Rk6bfOdcYQz_Jyx0fDtYNet8wq4KUdvBwFlaHBOKHBt7mmpVeinklMe-EIrLXqpYYjRuEz76L0pKX2qkw7XUiB6FzRQHrZ7Ba7yLg1NsojodUtYhe1Re57J81yT9r6hiaRse7m_y5_B37DtMlSuvnWjNfjWjJINcTnZWpRiK_30C4Hk_zSMt-BmDbxJ31rKbVhR-R24Pmjy3d2Fz9Mi__7l4k0xM7vU-TuS5JJMijMsizKbLShL0WchgwLt1YSJEgT8pJ9nlVyEpvxRSYLymSRDm11odl4qYuM6jxEuzEmWk0lWHmeL92Rfod9DLL9ppub34OBSXv8-rOZFrtaB6J4MzRlpVCjOtRcmPEg6VGnE0lQIphxwG2WJ05q63WQQmcWWdJrFZhbjdhYdeNHWP7WkJX-sudnoXlwvXvOYIaTzPEMk58DT9jbOhvmXlOSqWGAdHnYZgs9O14EHVmfbR6GsoZ3rOMAqzftLH-L-dDxsrx7-i9ATuPYqGsWT8XRvA26YYrci2N2E1fLDQj1C3FiKx5WpEji6bKX-AaZqdA4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Solvating+and+Low%E2%80%90Dielectricity+Cosolvent+for+Anion%E2%80%90Derived+Solid+Electrolyte+Interphases+in+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Yao%2C+Nan&rft.au=Chen%2C+Xiang&rft.date=2021-05-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=20&rft.spage=11442&rft.epage=11447&rft_id=info:doi/10.1002%2Fanie.202101627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202101627 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |