Non‐Solvating and Low‐Dielectricity Cosolvent for Anion‐Derived Solid Electrolyte Interphases in Lithium Metal Batteries

Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteris...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 20; pp. 11442 - 11447
Main Authors Ding, Jun‐Fan, Xu, Rui, Yao, Nan, Chen, Xiang, Xiao, Ye, Yao, Yu‐Xing, Yan, Chong, Xie, Jin, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.05.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent. The introduction of cosolvents with non‐solvating and low‐dielectricity (NL) properties can intrinsically enhance the interaction between anion and Li+ and regulate the solvation structures in electrolytes, which favors an upgraded anion‐derived solid electrolyte interphase (SEI) on lithium metal anodes.
AbstractList Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.
Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li + ). Herein, we clarify the critical significance of cosolvent properties on both Li + solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li + by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li + and dielectric constant is suitable as NL cosolvent.
Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non‐solvating and low‐dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion–cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion‐derived inorganic‐rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent. The introduction of cosolvents with non‐solvating and low‐dielectricity (NL) properties can intrinsically enhance the interaction between anion and Li+ and regulate the solvation structures in electrolytes, which favors an upgraded anion‐derived solid electrolyte interphase (SEI) on lithium metal anodes.
Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li ). Herein, we clarify the critical significance of cosolvent properties on both Li solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li and dielectric constant is suitable as NL cosolvent.
Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+ ). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of SEI highly depend on the inner solvation structure of lithium ions (Li+ ). Herein, we clarify the critical significance of cosolvent properties on both Li+ solvation structure and the SEI formation on working Li metal anodes. Non-solvating and low-dielectricity (NL) cosolvents intrinsically enhance the interaction between anion and Li+ by affording a low dielectric environment. The abundant positively charged anion-cation aggregates generated as the introduction of NL cosolvents are preferentially brought to the negatively charged Li anode surface, inducing an anion-derived inorganic-rich SEI. A solvent diagram is further built to illustrate that a solvent with both proper relative binding energy toward Li+ and dielectric constant is suitable as NL cosolvent.
Author Huang, Jia‐Qi
Xu, Rui
Xiao, Ye
Yao, Yu‐Xing
Yao, Nan
Xie, Jin
Ding, Jun‐Fan
Chen, Xiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Jun‐Fan
  orcidid: 0000-0002-9042-0193
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rui
  orcidid: 0000-0001-6439-8706
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Nan
  orcidid: 0000-0003-1965-2917
  surname: Yao
  fullname: Yao, Nan
  organization: Tsinghua University
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0002-7686-6308
  surname: Chen
  fullname: Chen, Xiang
  organization: Tsinghua University
– sequence: 5
  givenname: Ye
  orcidid: 0000-0001-9118-8931
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Yu‐Xing
  orcidid: 0000-0001-6350-1206
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 7
  givenname: Chong
  orcidid: 0000-0001-9521-4981
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 8
  givenname: Jin
  orcidid: 0000-0002-4235-7441
  surname: Xie
  fullname: Xie, Jin
  organization: Tsinghua University
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33655631$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEYRS3Uiv7AliWyxIbNBP_NeGYZ0gCR0rIA1pZn5jN15djB9rTKBvEIPCNPgtu0IFVCrGzZ53yy7z1BBz54QOgFJTNKCHujvYUZI4wS2jD5BB3TmtGKS8kPyl5wXsm2pkfoJKWrwrctaZ6iI86bum44PUbfL4L_9ePnp-Cudbb-K9Z-xOtwU87OLDgYcrSDzTu8CKkw4DM2IeK5t3feGUR7DSMuvh3x8o4PbpcBr3yGuL3UCRK2Hq9tvrTTBp9D1g6_1bncWkjP0KHRLsHz-_UUfXm3_Lz4UK0_vl8t5utqEJTISsqONrTuelp-YEYDXT2MgghZ9wZM3w6sJdJ0HalbLmEca2I0FWbsqRQ9kcBP0ev93G0M3yZIWW1sGsA57SFMSTHRNUxwSpuCvnqEXoUp-vI6xUq2JTrekEK9vKemfgOj2ka70XGnHpItgNgDQwwpRTCqxFgiDj5HbZ2iRN0WqG4LVH8KLNrskfYw-Z9CtxdurIPdf2g1v1gt_7q_AVMnsUI
CitedBy_id crossref_primary_10_1021_acsenergylett_1c02495
crossref_primary_10_1002_ange_202207927
crossref_primary_10_1021_acsnano_2c06924
crossref_primary_10_1038_s41467_023_41808_3
crossref_primary_10_1002_advs_202404248
crossref_primary_10_1149_1945_7111_ac9a07
crossref_primary_10_1016_j_jallcom_2022_164163
crossref_primary_10_1186_s40580_024_00417_6
crossref_primary_10_1002_smtd_202401998
crossref_primary_10_1016_j_cej_2024_151540
crossref_primary_10_1039_D4EE04847D
crossref_primary_10_1016_j_est_2024_112558
crossref_primary_10_1002_ange_202407024
crossref_primary_10_1002_idm2_12131
crossref_primary_10_1002_aenm_202203870
crossref_primary_10_1016_j_ensm_2024_103603
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_2139_ssrn_4186452
crossref_primary_10_1021_acsami_4c02848
crossref_primary_10_1007_s40820_024_01632_w
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1002_aenm_202101173
crossref_primary_10_1002_adfm_202305284
crossref_primary_10_1002_celc_202400054
crossref_primary_10_1002_cey2_480
crossref_primary_10_1007_s40820_022_00932_3
crossref_primary_10_1021_acs_jpcc_2c06052
crossref_primary_10_1002_sstr_202200400
crossref_primary_10_1016_j_ensm_2023_102923
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1002_aenm_202102259
crossref_primary_10_1021_acsenergylett_4c02535
crossref_primary_10_1002_advs_202413875
crossref_primary_10_1016_j_mattod_2023_09_004
crossref_primary_10_1002_aenm_202405803
crossref_primary_10_1002_adfm_202403154
crossref_primary_10_1016_j_jpowsour_2022_232106
crossref_primary_10_1002_eem2_12602
crossref_primary_10_1002_smll_202412681
crossref_primary_10_1021_acsenergylett_3c00004
crossref_primary_10_1002_anie_202417778
crossref_primary_10_1002_ange_202205045
crossref_primary_10_1002_advs_202413419
crossref_primary_10_1002_smll_202401215
crossref_primary_10_1016_j_jcis_2024_12_217
crossref_primary_10_1038_s41570_023_00506_w
crossref_primary_10_1002_adfm_202421802
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1002_aenm_202200337
crossref_primary_10_1021_acsenergylett_1c02036
crossref_primary_10_1002_anie_202317177
crossref_primary_10_1016_j_cej_2021_133189
crossref_primary_10_1002_ange_202107657
crossref_primary_10_1039_D1SE01152A
crossref_primary_10_1002_eem2_12635
crossref_primary_10_1002_anie_202212744
crossref_primary_10_1021_acsenergylett_4c03030
crossref_primary_10_1016_j_isci_2021_103490
crossref_primary_10_1039_D3TA07655E
crossref_primary_10_1016_j_ensm_2021_07_043
crossref_primary_10_1002_adma_202209140
crossref_primary_10_1002_aenm_202300053
crossref_primary_10_1021_acsenergylett_2c01840
crossref_primary_10_1021_acsenergylett_2c02379
crossref_primary_10_1002_smll_202302690
crossref_primary_10_1038_s41565_022_01148_7
crossref_primary_10_1002_ange_202316499
crossref_primary_10_1016_j_jechem_2024_11_050
crossref_primary_10_1016_j_jechem_2022_12_058
crossref_primary_10_1021_acs_nanolett_2c04876
crossref_primary_10_1002_cey2_383
crossref_primary_10_1021_acsenergylett_4c02751
crossref_primary_10_1016_j_jallcom_2023_170200
crossref_primary_10_1016_j_cej_2022_138369
crossref_primary_10_1016_j_cej_2022_135534
crossref_primary_10_1016_j_ensm_2022_08_018
crossref_primary_10_1016_j_cclet_2024_110385
crossref_primary_10_1039_D3EE00161J
crossref_primary_10_1039_D4EE03134B
crossref_primary_10_1038_s41467_022_32192_5
crossref_primary_10_1002_ange_202210859
crossref_primary_10_1039_D4TA07449A
crossref_primary_10_1007_s43979_024_00096_6
crossref_primary_10_1021_acsenergylett_4c00548
crossref_primary_10_1021_acsami_2c06934
crossref_primary_10_1016_j_jechem_2024_04_041
crossref_primary_10_1038_s41467_022_33151_w
crossref_primary_10_1039_D4EE03280B
crossref_primary_10_1002_adma_202105962
crossref_primary_10_1016_j_jechem_2022_09_030
crossref_primary_10_1039_D3CC02166A
crossref_primary_10_1039_D3MA00274H
crossref_primary_10_1002_smtd_202300228
crossref_primary_10_1002_ange_202417778
crossref_primary_10_1016_j_cej_2022_138265
crossref_primary_10_1002_anie_202407024
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1002_advs_202203216
crossref_primary_10_1007_s12274_022_4839_8
crossref_primary_10_1038_s41467_024_53807_z
crossref_primary_10_1002_anie_202107657
crossref_primary_10_1002_aenm_202404913
crossref_primary_10_1016_j_mtener_2022_101199
crossref_primary_10_1002_adma_202306553
crossref_primary_10_1039_D4EE01298D
crossref_primary_10_1002_eem2_12368
crossref_primary_10_1016_j_mtener_2024_101759
crossref_primary_10_1002_adfm_202316561
crossref_primary_10_1007_s41918_022_00147_5
crossref_primary_10_1016_j_jtice_2024_105513
crossref_primary_10_1021_acsami_1c16827
crossref_primary_10_1002_ange_202402946
crossref_primary_10_1021_acssuschemeng_1c08707
crossref_primary_10_1016_j_ensm_2022_11_012
crossref_primary_10_1021_acsami_3c02084
crossref_primary_10_1021_acs_jpcb_4c02538
crossref_primary_10_1002_aenm_202200139
crossref_primary_10_1007_s00723_024_01643_1
crossref_primary_10_1016_j_electacta_2023_141845
crossref_primary_10_1002_aenm_202300936
crossref_primary_10_2139_ssrn_4117015
crossref_primary_10_1002_aenm_202300259
crossref_primary_10_1016_j_nanoen_2024_109545
crossref_primary_10_1016_j_esci_2022_06_005
crossref_primary_10_1016_j_cclet_2024_110591
crossref_primary_10_1016_j_ensm_2024_103741
crossref_primary_10_1016_j_mattod_2025_02_021
crossref_primary_10_1002_ange_202317302
crossref_primary_10_1002_anie_202207645
crossref_primary_10_1021_acsami_1c15742
crossref_primary_10_1002_eom2_12200
crossref_primary_10_1021_acs_accounts_4c00022
crossref_primary_10_1002_sstr_202400254
crossref_primary_10_1016_j_jpowsour_2022_232045
crossref_primary_10_1002_aenm_202402638
crossref_primary_10_1002_smll_202405187
crossref_primary_10_1016_j_cej_2022_139932
crossref_primary_10_1016_j_jallcom_2023_172669
crossref_primary_10_1002_anie_202402946
crossref_primary_10_1002_adma_202311912
crossref_primary_10_1039_D3TA07347E
crossref_primary_10_1039_D3SC06650A
crossref_primary_10_1016_j_nanoen_2023_109088
crossref_primary_10_1016_j_ensm_2022_12_043
crossref_primary_10_1002_ange_202207645
crossref_primary_10_1002_adfm_202212499
crossref_primary_10_1016_j_ensm_2022_07_014
crossref_primary_10_1021_acsenergylett_5c00710
crossref_primary_10_1002_anie_202317302
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1002_aenm_202300918
crossref_primary_10_1016_j_coelec_2023_101241
crossref_primary_10_1002_anie_202205045
crossref_primary_10_1002_batt_202200256
crossref_primary_10_1016_j_nanoen_2024_109920
crossref_primary_10_1021_acs_nanolett_3c03340
crossref_primary_10_1021_jacs_4c09062
crossref_primary_10_1002_adma_202306462
crossref_primary_10_1002_advs_202104699
crossref_primary_10_1002_eem2_12450
crossref_primary_10_1021_acsnano_1c07414
crossref_primary_10_1016_j_xcrp_2022_101197
crossref_primary_10_1021_acscentsci_2c00791
crossref_primary_10_1002_ange_202317177
crossref_primary_10_1002_anie_202107732
crossref_primary_10_1021_jacs_4c12353
crossref_primary_10_1002_smll_202411632
crossref_primary_10_3390_polym16182661
crossref_primary_10_1002_eem2_12243
crossref_primary_10_1002_cphc_202300642
crossref_primary_10_1016_j_mtsust_2022_100187
crossref_primary_10_1002_smll_202406506
crossref_primary_10_1002_advs_202202474
crossref_primary_10_1002_aenm_202200730
crossref_primary_10_1002_aenm_202400548
crossref_primary_10_1002_batt_202200394
crossref_primary_10_1007_s12274_023_5937_y
crossref_primary_10_1016_j_nanoen_2025_110849
crossref_primary_10_1016_j_mtnano_2023_100368
crossref_primary_10_1002_anie_202210859
crossref_primary_10_1002_bkcs_12884
crossref_primary_10_1002_adfm_202420327
crossref_primary_10_1002_aenm_202204305
crossref_primary_10_1016_j_cclet_2022_107852
crossref_primary_10_1021_acsenergylett_4c00859
crossref_primary_10_1021_acsenergylett_3c00181
crossref_primary_10_1038_s41565_023_01341_2
crossref_primary_10_1002_adma_202402702
crossref_primary_10_1016_j_ensm_2021_10_007
crossref_primary_10_1088_2752_5724_acac68
crossref_primary_10_1021_acs_energyfuels_2c02920
crossref_primary_10_1002_anie_202218151
crossref_primary_10_1002_smll_202311157
crossref_primary_10_1039_D1TA06987J
crossref_primary_10_1021_acsmaterialslett_5c00130
crossref_primary_10_1002_anie_202203693
crossref_primary_10_1021_acsnano_3c08716
crossref_primary_10_1002_anie_202316499
crossref_primary_10_1039_D2TA06084A
crossref_primary_10_1007_s11426_023_1730_x
crossref_primary_10_1021_jacs_4c00976
crossref_primary_10_1002_ange_202110441
crossref_primary_10_1039_D4CS00826J
crossref_primary_10_1002_asia_202101108
crossref_primary_10_1002_aenm_202304414
crossref_primary_10_1039_D2TA01672A
crossref_primary_10_1002_ange_202317923
crossref_primary_10_1021_acs_jpcc_1c06277
crossref_primary_10_1021_acs_jpcc_2c04503
crossref_primary_10_1039_D4CP01967A
crossref_primary_10_1021_acs_iecr_2c00958
crossref_primary_10_1039_D1SE01919H
crossref_primary_10_1002_smll_202405442
crossref_primary_10_1002_adsu_202400680
crossref_primary_10_1002_sus2_37
crossref_primary_10_1002_adfm_202205622
crossref_primary_10_1002_aenm_202301396
crossref_primary_10_1002_ange_202212744
crossref_primary_10_1016_j_nanoen_2022_107014
crossref_primary_10_1016_j_chempr_2024_09_005
crossref_primary_10_1016_j_ensm_2022_10_055
crossref_primary_10_1016_j_ensm_2024_103598
crossref_primary_10_1002_anie_202110441
crossref_primary_10_1007_s11581_024_06004_3
crossref_primary_10_1002_anie_202317923
crossref_primary_10_1016_j_ensm_2022_07_038
crossref_primary_10_1016_j_gee_2022_08_002
crossref_primary_10_1002_idm2_12077
crossref_primary_10_1039_D5EE00203F
crossref_primary_10_1002_ange_202107732
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1039_D4EE05966B
crossref_primary_10_1002_adfm_202213811
crossref_primary_10_1002_anie_202207927
crossref_primary_10_1002_ange_202203693
crossref_primary_10_1002_eem2_12792
crossref_primary_10_1021_acsenergylett_3c00706
crossref_primary_10_1016_j_cej_2023_141478
crossref_primary_10_1016_j_cclet_2022_05_077
crossref_primary_10_1002_adma_202311195
crossref_primary_10_1021_jacs_4c01735
crossref_primary_10_1002_ange_202218151
crossref_primary_10_2139_ssrn_4162771
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1021_acsaem_2c01504
crossref_primary_10_1002_aenm_202500279
crossref_primary_10_1016_j_cej_2021_134468
crossref_primary_10_1039_D2CC05847B
crossref_primary_10_1039_D4SC08045A
Cites_doi 10.1038/s41560-020-0601-1
10.1002/aenm.201903568
10.1002/anie.202003663
10.1016/S0013-4686(02)00099-3
10.1002/aenm.201902116
10.1021/acs.nanolett.9b04111
10.1039/C3EE40795K
10.1021/jacs.0c10258
10.1038/s41586-019-1481-z
10.1002/ange.201905251
10.1002/aenm.201903843
10.1038/s41560-019-0474-3
10.1016/j.jechem.2020.11.016
10.1016/j.chempr.2018.05.002
10.1002/ange.202013271
10.1016/j.joule.2018.05.002
10.1149/2.111308jes
10.1021/acsenergylett.8b02527
10.1002/anie.201809203
10.1002/ange.201801737
10.1002/adfm.201909887
10.1002/adfm.202003800
10.1002/aenm.201702097
10.1002/anie.202013271
10.1021/am501665s
10.1016/j.jechem.2020.02.052
10.1016/j.mattod.2020.06.007
10.1016/j.trechm.2019.02.015
10.1002/aenm.202002297
10.1002/ange.201809203
10.1016/j.joule.2019.05.006
10.1016/j.jechem.2019.09.034
10.1016/j.trechm.2020.10.008
10.1002/anie.201801737
10.1073/pnas.2001923117
10.1039/C9CS00883G
10.1016/j.nanoen.2016.12.001
10.1021/jacs.7b05251
10.1021/acs.accounts.0c00412
10.1002/adma.201706102
10.1021/cm901452z
10.1002/ange.202003663
10.1002/nano.202000003
10.1016/j.jechem.2020.01.027
10.1016/j.ensm.2019.12.020
10.1016/j.nanoen.2019.103910
10.1002/batt.201800118
10.1002/anie.201905251
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202101627
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11447
ExternalDocumentID 33655631
10_1002_anie_202101627
ANIE202101627
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  funderid: 21776019
– fundername: ShanXi Science and Technology Department
  funderid: 20191102003
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: JQ20004; L182021
– fundername: National Natural Science Foundation of China
  grantid: 21776019
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2016YFA0202500
– fundername: ShanXi Science and Technology Department
  grantid: 20191102003
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: JQ20004
– fundername: Natural Science Foundation of Beijing Municipality
  grantid: L182021
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4107-77916159b1288fdfe95cd40475bfefb8c2807f9905837edd50fa14fdb174b07e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 07:49:24 EDT 2025
Fri Jul 25 10:34:06 EDT 2025
Wed Feb 19 02:28:44 EST 2025
Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 01:17:57 EDT 2025
Wed Jan 22 16:29:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords anion-cation interaction
solid electrolyte interphase
cation solvation
low-dielectricity cosolvent
lithium metal batteries
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-77916159b1288fdfe95cd40475bfefb8c2807f9905837edd50fa14fdb174b07e3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6350-1206
0000-0002-4235-7441
0000-0001-9521-4981
0000-0002-7686-6308
0000-0002-9042-0193
0000-0001-7394-9186
0000-0001-6439-8706
0000-0001-9118-8931
0000-0003-1965-2917
PMID 33655631
PQID 2521336360
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2496243116
proquest_journals_2521336360
pubmed_primary_33655631
crossref_citationtrail_10_1002_anie_202101627
crossref_primary_10_1002_anie_202101627
wiley_primary_10_1002_anie_202101627_ANIE202101627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 10, 2021
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: May 10, 2021
  day: 10
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2020 2020; 4 59 132
2016; 7
2017; 8
2019; 9
2002 2019; 47 572
2018; 4
2021 2017 2020; 59 32 10
2020; 30
2019; 2
2014 2020 2020 2010; 7 48 22
2018 2014; 2 6
2020; 47
2019 2020 2020; 3 5 49
2020; 10
2019 2020 2018 2018 2020; 1 117 57 130 28
2020 2019 2019 2020 2020; 49 58 131 142 10
2017 2020 2020 2019; 139 1 3 64
2021 2021 2013; 60 133 12
2013; 160
2018 2019 2020 2020; 30 4 53 20
2020 2018 2018; 40 57 130
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_11_3
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_20_1
e_1_2_6_7_3
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_7_4
e_1_2_6_3_3
e_1_2_6_5_1
e_1_2_6_1_4
e_1_2_6_3_2
e_1_2_6_3_5
e_1_2_6_5_3
e_1_2_6_7_1
e_1_2_6_3_4
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_22_3
e_1_2_6_1_3
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_22_1
Wang J. (e_1_2_6_10_1) 2016; 7
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_16_3
e_1_2_6_18_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_6_4
e_1_2_6_4_5
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_4_1
e_1_2_6_4_4
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_2_1
e_1_2_6_21_2
Honary S. (e_1_2_6_17_3) 2013; 12
References_xml – volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 3 5 49
  start-page: 1662 386 335
  year: 2019 2020 2020
  end-page: 1676 397 338
  publication-title: Joule Nat. Energy J. Energy Chem.
– volume: 40 57 130
  start-page: 63 16643 16885
  year: 2020 2018 2018
  end-page: 71 16647 16889
  publication-title: Mater. Today Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49 58 131 142 10
  start-page: 2701 11364 11486 20814
  year: 2020 2019 2019 2020 2020
  end-page: 2750 11368 11490 20827
  publication-title: Chem. Soc. Rev. Angew. Chem. Int. Ed. Angew. Chem. J. Am. Chem. Soc. Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 59 32 10
  start-page: 306 271
  year: 2021 2017 2020
  end-page: 319 279
  publication-title: J. Energy Chem. Nano Energy Adv. Energy Mater.
– volume: 47
  start-page: 217
  year: 2020
  end-page: 220
  publication-title: J. Energy Chem.
– volume: 1 117 57 130 28
  start-page: 152 27195 5072 5166 401
  year: 2019 2020 2018 2018 2020
  end-page: 158 27203 5075 5169 406
  publication-title: Trends Chem. Proc. Natl. Acad. Sci. USA Angew. Chem. Int. Ed. Angew. Chem. Energy Storage Mater.
– volume: 160
  start-page: A1304
  year: 2013
  end-page: A1310
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1877
  year: 2018
  end-page: 1892
  publication-title: Chem
– volume: 60 133 12
  start-page: 4215 4261 255
  year: 2021 2021 2013
  end-page: 4220 4266
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. J. Pharm. Res.
– volume: 7 48 22
  start-page: 513 203 587
  year: 2014 2020 2020 2010
  end-page: 537 207 603
  publication-title: Energy Environ. Sci. Adv. Funct. Mater. J. Energy Chem. Chem. Mater.
– volume: 2
  start-page: 128
  year: 2019
  end-page: 131
  publication-title: Batteries Supercaps
– volume: 2 6
  start-page: 1548 8006
  year: 2018 2014
  end-page: 1558 8010
  publication-title: Joule ACS Appl. Mater. Interfaces
– volume: 139 1 3 64
  start-page: 11550 94 5
  year: 2017 2020 2020 2019
  end-page: 11558 110 14
  publication-title: J. Am. Chem. Soc. Nano Select Trends Chem. Nano Energy
– volume: 7
  start-page: 12032
  year: 2016
  publication-title: Nat. Chem.
– volume: 47 572
  start-page: 1975 511
  year: 2002 2019
  end-page: 1982 515
  publication-title: Electrochim. Acta Nature
– volume: 30 4 53 20
  start-page: 882 1992 418
  year: 2018 2019 2020 2020
  end-page: 890 2002 425
  publication-title: Adv. Mater. Nat. Energy Acc. Chem. Res. Nano Lett.
– volume: 4 59 132
  start-page: 483 14869 14979
  year: 2019 2020 2020
  end-page: 488 14876 14986
  publication-title: ACS Energy Lett. Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_11_2
  doi: 10.1038/s41560-020-0601-1
– volume: 7
  start-page: 12032
  year: 2016
  ident: e_1_2_6_10_1
  publication-title: Nat. Chem.
– ident: e_1_2_6_8_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.202003663
– ident: e_1_2_6_19_1
  doi: 10.1016/S0013-4686(02)00099-3
– ident: e_1_2_6_20_1
  doi: 10.1002/aenm.201902116
– ident: e_1_2_6_7_4
  doi: 10.1021/acs.nanolett.9b04111
– ident: e_1_2_6_1_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_6_4_4
  doi: 10.1021/jacs.0c10258
– ident: e_1_2_6_19_2
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_6_4_3
  doi: 10.1002/ange.201905251
– ident: e_1_2_6_4_5
  doi: 10.1002/aenm.201903843
– ident: e_1_2_6_7_2
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jechem.2020.11.016
– ident: e_1_2_6_14_1
  doi: 10.1016/j.chempr.2018.05.002
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.202013271
– ident: e_1_2_6_21_1
  doi: 10.1016/j.joule.2018.05.002
– ident: e_1_2_6_18_1
  doi: 10.1149/2.111308jes
– ident: e_1_2_6_22_1
  doi: 10.1021/acsenergylett.8b02527
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201809203
– ident: e_1_2_6_3_4
  doi: 10.1002/ange.201801737
– ident: e_1_2_6_12_1
– ident: e_1_2_6_1_2
  doi: 10.1002/adfm.201909887
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.202003800
– ident: e_1_2_6_13_1
  doi: 10.1002/aenm.201702097
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.202013271
– ident: e_1_2_6_21_2
  doi: 10.1021/am501665s
– ident: e_1_2_6_11_3
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_6_16_1
  doi: 10.1016/j.mattod.2020.06.007
– ident: e_1_2_6_3_1
  doi: 10.1016/j.trechm.2019.02.015
– ident: e_1_2_6_5_3
  doi: 10.1002/aenm.202002297
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201809203
– ident: e_1_2_6_11_1
  doi: 10.1016/j.joule.2019.05.006
– ident: e_1_2_6_2_1
  doi: 10.1016/j.jechem.2019.09.034
– ident: e_1_2_6_6_3
  doi: 10.1016/j.trechm.2020.10.008
– volume: 12
  start-page: 255
  year: 2013
  ident: e_1_2_6_17_3
  publication-title: J. Pharm. Res.
– ident: e_1_2_6_3_3
  doi: 10.1002/anie.201801737
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.2001923117
– ident: e_1_2_6_4_1
  doi: 10.1039/C9CS00883G
– ident: e_1_2_6_5_2
  doi: 10.1016/j.nanoen.2016.12.001
– ident: e_1_2_6_6_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_6_7_3
  doi: 10.1021/acs.accounts.0c00412
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_6_1_4
  doi: 10.1021/cm901452z
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.202003663
– ident: e_1_2_6_6_2
  doi: 10.1002/nano.202000003
– ident: e_1_2_6_1_3
  doi: 10.1016/j.jechem.2020.01.027
– ident: e_1_2_6_3_5
  doi: 10.1016/j.ensm.2019.12.020
– ident: e_1_2_6_6_4
  doi: 10.1016/j.nanoen.2019.103910
– ident: e_1_2_6_15_1
  doi: 10.1002/batt.201800118
– ident: e_1_2_6_4_2
  doi: 10.1002/anie.201905251
SSID ssj0028806
Score 2.6924927
Snippet Lithium (Li) metal anodes hold great promise for next‐generation high‐energy‐density batteries, while the insufficient fundamental understanding of the complex...
Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11442
SubjectTerms Anions
anion–cation interaction
Anodes
cation solvation
Dielectric constant
Electrolytes
Lithium
Lithium ions
lithium metal batteries
low-dielectricity cosolvent
solid electrolyte interphase
Solid electrolytes
Solvation
Solvents
Title Non‐Solvating and Low‐Dielectricity Cosolvent for Anion‐Derived Solid Electrolyte Interphases in Lithium Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202101627
https://www.ncbi.nlm.nih.gov/pubmed/33655631
https://www.proquest.com/docview/2521336360
https://www.proquest.com/docview/2496243116
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VXNpLW_o0hWorIfVkcNbrOD5GIQgQ5NAWiZvlfYFFWCPitGoPqD-hv7G_hBlvbEhRVYne_NiR7d0Zzzf2zDcAmxFXySA1NswotVGIBG2uiMiuFJepSmLddJ47mvT3jsXBSXJyp4rf80N0H9zIMpr3NRl4IWfbt6ShVIGN8R2n8JNTOTklbBEq-tTxR3FUTl9eFMchdaFvWRsjvr0svuyV7kHNZeTauJ7dZ1C0N-0zTs635rXcUj_-4HP8n6d6Dk8XuJQNvSKtwiPjXsDjUdsO7iVcTyr3--evz9WUPuK6U1Y4zQ6rb3hsp_TNdEqFkJ6NKlRnyqJkiIfZ0JWN3A5q-lejGcqXmo19853p99own_Z4ht50xkrHDsv6rJxfsCODYQHz9J8Yzb-C493xl9FeuGjeECqBISWi9ozAZCbRAQ6stiZLlBaRSBNpjZUDRTQ8Fn1hgiGy0TqJbNETVksMkWSUmvg1rLjKmbfA7EBnVELcx1BU2DgrRFr0ImMRakZSchNA2C5erhbM5tRgY5p7Tmae06zm3awG8LEbf-k5Pf46cr3VhXxh27OcI-KJY-JZC-BDdxpXg361FM5Ucxwjsj5HbNbrB_DG61B3KZQlVrZeALzRhH_cQz6c7I-7vbWHCL2DJ7QdNqSz67BSX83NBmKpWr5v7OUGQgUX0Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4pQ26zibzYHDanerXbq7B2il3kIc2zTqNkFslqocEI_Aq_AqPAJPwkycBC0IISH1wDGOx3HsGecbZ_wNwFOPp0Ev1MaNKLRRiABtLvHIrlIuwzTwVZV5bjbvjg_Fy6PgaAO-NmdhLD9Eu-FGllGt12TgtCG9-5M1lI5go4PHyf_kYR1Xua_Pz9BrW76YDHGKn3G-NzoYjN06sYCbCnR3EFFGBHQiiYtzzyijoyBVwhNhII02spcSRYzBdTpA900rFXgm6QijJMJ36YXax3YvwWVKI050_cNXLWMVtufZA02-71Le-4Yn0uO76_1d_w7-Bm7XsXL1sdu7Bt-aYbIxLic7q1LupB9_YZD8r8bxOlytoTfrW1u5ARs6vwlbgybj3S34NC_y75-_vC4WtE-dv2VJrti0OMOyYWbzBWUpei1sUKDFUqAoQ8jP-nlWyQ3RmD9oxVA-U2xk8wstzkvNbGTnMQKGJctyNs3K42x1ymYaPR9mGU4zvbwNhxfy-ndgMy9yfQ-Y6amITkl30dsWxo8SESYdTxtE056UXDvgNtoSpzV5O-UQWcSWdprHNItxO4sOPG_rv7O0JX-sud0oX1wvX8uYI6jzfaKSc-BJextng_4mJbkuVlhHRF2O8LPTdeCuVdr2UShLxHMdB3ilen_pQ9yfT0bt1f1_EXoMW-OD2TSeTub7D-AKlbsVx-42bJbvV_ohQsdSPqqMlcGbi9bqH5MudV8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEXyn9DCxgJxCmt13E2m0MPq82uunS7QkCl3tI4tmnUJanYLFU5IB6hj8Kr8Ao8CeM4CVoQQkLqgWMcj-PYM843zvgbgGeUpX4vUNoNTWgj5z7aXEKNXaVMBKnvySrz3P60u3vAXx76hyvwtTkLY_kh2g03YxnVem0M_FTq7Z-koeYENvp3zLifLKjDKvfU-Rk6bfOdcYQz_Jyx0fDtYNet8wq4KUdvBwFlaHBOKHBt7mmpVeinklMe-EIrLXqpYYjRuEz76L0pKX2qkw7XUiB6FzRQHrZ7Ba7yLg1NsojodUtYhe1Re57J81yT9r6hiaRse7m_y5_B37DtMlSuvnWjNfjWjJINcTnZWpRiK_30C4Hk_zSMt-BmDbxJ31rKbVhR-R24Pmjy3d2Fz9Mi__7l4k0xM7vU-TuS5JJMijMsizKbLShL0WchgwLt1YSJEgT8pJ9nlVyEpvxRSYLymSRDm11odl4qYuM6jxEuzEmWk0lWHmeL92Rfod9DLL9ppub34OBSXv8-rOZFrtaB6J4MzRlpVCjOtRcmPEg6VGnE0lQIphxwG2WJ05q63WQQmcWWdJrFZhbjdhYdeNHWP7WkJX-sudnoXlwvXvOYIaTzPEMk58DT9jbOhvmXlOSqWGAdHnYZgs9O14EHVmfbR6GsoZ3rOMAqzftLH-L-dDxsrx7-i9ATuPYqGsWT8XRvA26YYrci2N2E1fLDQj1C3FiKx5WpEji6bKX-AaZqdA4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Solvating+and+Low%E2%80%90Dielectricity+Cosolvent+for+Anion%E2%80%90Derived+Solid+Electrolyte+Interphases+in+Lithium+Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Yao%2C+Nan&rft.au=Chen%2C+Xiang&rft.date=2021-05-10&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=20&rft.spage=11442&rft.epage=11447&rft_id=info:doi/10.1002%2Fanie.202101627&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202101627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon