Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification

Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 50; pp. e1803387 - n/a
Main Authors Xiong, Zhi‐Chao, Zhu, Ying‐Jie, Qin, Dong‐Dong, Chen, Fei‐Fei, Yang, Ri‐Long
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification. Highly flexible fire‐resistant photothermal paper is fabricated using ultralong hydroxyapatite nanowires and carbon nanotubes for highly efficient solar energy‐driven seawater desalination and wastewater purification, it has a high performance in recycling and long‐time usage, and it has promising application in the production of clean drinkable water from seawater and wastewater to mitigate the water scarcity crisis.
AbstractList Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m −2 and 92.8% at 10 kW m −2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification.
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m and 92.8% at 10 kW m are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification. Highly flexible fire‐resistant photothermal paper is fabricated using ultralong hydroxyapatite nanowires and carbon nanotubes for highly efficient solar energy‐driven seawater desalination and wastewater purification, it has a high performance in recycling and long‐time usage, and it has promising application in the production of clean drinkable water from seawater and wastewater to mitigate the water scarcity crisis.
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification.
Author Zhu, Ying‐Jie
Yang, Ri‐Long
Xiong, Zhi‐Chao
Qin, Dong‐Dong
Chen, Fei‐Fei
Author_xml – sequence: 1
  givenname: Zhi‐Chao
  surname: Xiong
  fullname: Xiong, Zhi‐Chao
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Ying‐Jie
  orcidid: 0000-0002-5044-5046
  surname: Zhu
  fullname: Zhu, Ying‐Jie
  email: y.j.zhu@mail.sic.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Dong‐Dong
  surname: Qin
  fullname: Qin, Dong‐Dong
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Fei‐Fei
  surname: Chen
  fullname: Chen, Fei‐Fei
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ri‐Long
  surname: Yang
  fullname: Yang, Ri‐Long
  organization: Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30370652$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URB6wZYkssWEzg1_9WqIhQ5AGGBEilpbbXZ04ctuD7SbpHZ_AB_B1fAmeTBKkSIiVr0rn3ipXHaI95x0g9JySOSWEvY6DtXNGaE04r6tH6ICWlM_KmjV795qSfXQY4yUhnDJRPUH7nPCKlAU7QL-WFq5NawEvTYDfP35-hmhiUi7h9YVPPl1AGJTFa7WBgBd-2AQTjTvHZzYFZX1WJ1MX_PWkNiqZBPijcv4qZ0WsXIcXKrTe3RTT2OZi7wM-9VYFfOwgnE-55dtgvoPDX1XKLdZjML3ROcu7p-hxr2yEZ7fvETpbHn9ZnMxWn969X7xZzbSgpJqJlpWged8UdUc49G0PWjcFBWCk17RhRdcRWlSF6AralR2pVZZsq-tWQc-P0Ktd7ib4byPEJAcTNVirHPgxSkZZ2RBRM5HRlw_QSz8Gl6fLVCGauqwEzdSLW2psB-hkXtqgwiTv9p4BsQN08DEG6KU26ebPeavGSkrk9rxye155f95smz-w3SX_09DsDFfGwvQfWp5-WK3-ev8Aty69iA
CitedBy_id crossref_primary_10_1002_smll_202200175
crossref_primary_10_1021_acsami_9b22338
crossref_primary_10_1039_C9NJ03563J
crossref_primary_10_1016_j_energy_2024_132354
crossref_primary_10_1039_D3MA00075C
crossref_primary_10_1021_acsnano_1c06277
crossref_primary_10_1021_acsapm_0c01107
crossref_primary_10_3390_nano9101435
crossref_primary_10_1002_solr_202201014
crossref_primary_10_1016_j_applthermaleng_2019_114379
crossref_primary_10_1002_adfm_202106247
crossref_primary_10_1016_j_matchemphys_2020_123998
crossref_primary_10_1039_C8CS00489G
crossref_primary_10_1016_j_advmem_2024_100108
crossref_primary_10_1039_C9TA05935K
crossref_primary_10_1016_j_desal_2023_116833
crossref_primary_10_1016_j_desal_2023_116954
crossref_primary_10_1016_j_cej_2020_127672
crossref_primary_10_1021_acsami_0c05986
crossref_primary_10_1039_D0TA04326E
crossref_primary_10_1021_acs_chemrev_3c00159
crossref_primary_10_1007_s00339_019_2839_7
crossref_primary_10_1021_acsami_0c11332
crossref_primary_10_1021_acsenergylett_0c00394
crossref_primary_10_1039_C9SM01167F
crossref_primary_10_26599_NRE_2024_9120114
crossref_primary_10_1039_D1TA01538A
crossref_primary_10_1016_j_cej_2021_132060
crossref_primary_10_1016_j_talanta_2023_124979
crossref_primary_10_3390_molecules27155020
crossref_primary_10_1016_j_solmat_2020_110910
crossref_primary_10_1002_smll_202105198
crossref_primary_10_1016_j_nanoen_2020_104465
crossref_primary_10_1016_j_nanoen_2021_106789
crossref_primary_10_1021_acssuschemeng_9b02488
crossref_primary_10_1016_j_cej_2024_153168
crossref_primary_10_1021_acsabm_0c00232
crossref_primary_10_1039_D2CS00513A
crossref_primary_10_1016_j_desal_2020_114382
crossref_primary_10_1039_D1TA03610F
crossref_primary_10_1039_D2NR04857D
crossref_primary_10_1016_j_desal_2023_117114
crossref_primary_10_1016_j_desal_2024_118502
crossref_primary_10_1039_D2CE00225F
crossref_primary_10_1007_s12274_019_2608_0
crossref_primary_10_1039_D3CC00984J
crossref_primary_10_1016_j_cej_2021_130344
crossref_primary_10_1002_eom2_12018
crossref_primary_10_1016_j_carbon_2019_05_010
crossref_primary_10_1016_j_apsusc_2020_148667
crossref_primary_10_1016_j_apmt_2019_07_011
crossref_primary_10_1016_j_cej_2024_153394
crossref_primary_10_1016_j_nantod_2022_101526
crossref_primary_10_1021_acssuschemeng_0c07608
crossref_primary_10_1016_j_jcis_2022_12_016
crossref_primary_10_1021_acsami_1c10482
crossref_primary_10_1039_D0TA01004A
crossref_primary_10_1002_gch2_201900040
crossref_primary_10_1002_adhm_202001851
crossref_primary_10_1002_cjoc_202100170
crossref_primary_10_1039_D2TA02557D
crossref_primary_10_3390_nano12111800
crossref_primary_10_1021_acsapm_4c01693
crossref_primary_10_1021_acsami_2c15997
crossref_primary_10_1016_j_carbon_2020_03_059
crossref_primary_10_1016_j_jece_2021_106915
crossref_primary_10_1002_ente_201900721
crossref_primary_10_1016_j_seppur_2022_122852
crossref_primary_10_1016_j_cej_2021_130118
crossref_primary_10_1016_j_desal_2022_115581
crossref_primary_10_1016_j_colsurfa_2021_127786
crossref_primary_10_1016_j_seppur_2024_130958
crossref_primary_10_1016_j_enconman_2021_114938
crossref_primary_10_1016_j_jcis_2024_01_035
crossref_primary_10_1002_smll_201900338
crossref_primary_10_4028_www_scientific_net_MSF_1002_468
crossref_primary_10_1021_acsmaterialslett_3c00452
crossref_primary_10_1039_C9TA06034K
crossref_primary_10_1002_smll_202100490
crossref_primary_10_1007_s40843_021_1721_6
crossref_primary_10_1039_D0RA05513A
crossref_primary_10_1016_j_scitotenv_2020_143546
crossref_primary_10_1021_acsami_1c04419
crossref_primary_10_1002_smll_202104048
crossref_primary_10_1002_smll_201902070
crossref_primary_10_1039_C9NR10357K
crossref_primary_10_1002_ejic_202000940
crossref_primary_10_1039_C9MH01443H
crossref_primary_10_1016_j_cej_2023_143689
crossref_primary_10_1021_acsaem_4c03384
crossref_primary_10_1016_j_cej_2022_136470
crossref_primary_10_1002_smll_202206917
crossref_primary_10_1016_j_jece_2022_109085
crossref_primary_10_1021_acsbiomaterials_9b01183
crossref_primary_10_1039_D1TA05058C
crossref_primary_10_1002_adsu_202100122
crossref_primary_10_1016_j_solmat_2021_111350
crossref_primary_10_1016_j_ijthermalsci_2022_107712
crossref_primary_10_1002_pol_20210942
crossref_primary_10_1016_j_jcis_2023_07_135
crossref_primary_10_1039_D1TA02202D
crossref_primary_10_1016_j_nanoen_2022_108115
crossref_primary_10_1002_smsc_202300096
crossref_primary_10_1007_s40843_022_2407_2
crossref_primary_10_1021_acsami_0c06233
crossref_primary_10_1007_s10853_023_08269_x
crossref_primary_10_1016_j_cis_2024_103154
crossref_primary_10_29026_oea_2023_220061
crossref_primary_10_1016_j_colsurfa_2022_128272
crossref_primary_10_1021_acsami_1c09398
crossref_primary_10_1021_acsami_9b18948
crossref_primary_10_1002_adfm_202106978
crossref_primary_10_1007_s12274_023_6034_y
crossref_primary_10_1007_s40042_021_00220_0
crossref_primary_10_1016_j_seppur_2020_116595
crossref_primary_10_1021_acsnano_1c01590
crossref_primary_10_1002_adma_201908269
crossref_primary_10_1016_j_jece_2024_112004
crossref_primary_10_1016_j_cej_2024_158254
crossref_primary_10_1021_acsenergylett_9b02611
crossref_primary_10_1002_admi_202100332
crossref_primary_10_1016_j_nanoen_2021_106468
crossref_primary_10_1039_D1TA08410K
crossref_primary_10_1021_acs_chemmater_0c04166
crossref_primary_10_1016_j_applthermaleng_2025_125656
crossref_primary_10_1039_D0TA07518C
crossref_primary_10_1021_acsami_0c04682
crossref_primary_10_1021_acsami_0c15692
crossref_primary_10_1039_C9TA12703H
crossref_primary_10_1016_j_trechm_2022_06_005
crossref_primary_10_1039_D4CC00635F
crossref_primary_10_1016_j_cej_2024_158085
crossref_primary_10_1016_j_jcis_2023_06_063
crossref_primary_10_1002_cey2_331
crossref_primary_10_1007_s11356_021_17326_4
crossref_primary_10_1002_eem2_12158
crossref_primary_10_1002_ente_202201502
crossref_primary_10_1021_acsami_1c06226
crossref_primary_10_1016_j_jece_2024_113480
crossref_primary_10_1021_acsabm_0c00618
crossref_primary_10_1021_acsami_0c10461
crossref_primary_10_5004_dwt_2023_30056
crossref_primary_10_1039_D4MH00591K
crossref_primary_10_1039_D1TA06732J
crossref_primary_10_1021_acssuschemeng_0c06665
crossref_primary_10_1039_D3SC05344J
crossref_primary_10_1016_j_compositesa_2022_107061
crossref_primary_10_1002_pat_5353
crossref_primary_10_1039_D2NR05159A
crossref_primary_10_2174_1872210516666220325153220
crossref_primary_10_1038_s44221_023_00059_8
crossref_primary_10_1002_advs_202205809
crossref_primary_10_1016_j_desal_2024_117998
crossref_primary_10_1142_S1793292024500528
Cites_doi 10.1002/aenm.201702884
10.1021/ja1058923
10.1002/adma.201603730
10.1039/C7TA03262E
10.1016/j.desal.2012.10.015
10.1038/nnano.2016.240
10.1021/acsami.7b19281
10.1016/j.rser.2016.08.058
10.1021/acsenergylett.8b00433
10.1038/ncomms5449
10.1039/C7TA03870D
10.1021/acsami.7b07759
10.1038/nphoton.2016.75
10.1038/ncomms10103
10.1039/C8TA00187A
10.1039/C7TA06384A
10.1021/acsnano.6b08415
10.1002/gch2.201600003
10.1002/anie.201601823
10.1002/adma.201603504
10.1016/j.desal.2014.11.011
10.1002/adma.201701756
10.1039/C7MH01064H
10.1126/sciadv.1501227
10.1002/smll.201401071
10.1002/adfm.201707134
10.1039/C8EE00220G
10.1002/adma.201500135
10.1016/j.powtec.2014.08.041
10.1021/acsnano.8b00047
10.1002/adma.201501832
10.1016/j.nanoen.2018.02.018
10.1038/nenergy.2016.126
10.1021/acsnano.7b01965
10.1021/acsnano.7b08196
10.1126/science.334.6058.922
10.1016/j.cej.2015.12.045
10.1021/acsami.7b08619
10.1016/j.desal.2014.12.046
10.1016/j.memsci.2014.09.016
10.1021/acsnano.6b08193
10.1126/science.1200488
10.1002/adfm.201704505
10.1016/j.nanoen.2017.09.005
10.1038/s41565-018-0097-z
10.1073/pnas.1613031113
10.1039/C7TA01361B
10.1002/chem.201304439
10.1002/adma.201703548
10.1002/chem.201604552
10.1038/nature06599
10.1002/adma.201606762
10.1002/adma.201601819
10.1039/C8EE00567B
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201803387
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30370652
10_1002_smll_201803387
SMLL201803387
Genre article
Journal Article
GrantInformation_xml – fundername: Shanghai Sailing Program
  funderid: 16YF1413000
– fundername: National Natural Science Foundation of China
  funderid: 21601199
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 18ZR1445200
– fundername: Shanghai Sailing Program
  grantid: 16YF1413000
– fundername: National Natural Science Foundation of China
  grantid: 21601199
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 18ZR1445200
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4107-4b26ec3f958d03efbfecc951ee20fc1925dd015754d51d6d08a54d251d68baef3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 03:13:23 EDT 2025
Fri Jul 25 12:14:27 EDT 2025
Mon Jul 21 06:18:12 EDT 2025
Thu Apr 24 22:51:15 EDT 2025
Tue Jul 01 02:10:38 EDT 2025
Wed Jan 22 16:32:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords water purification
hydroxyapatite
carbon nanotubes
photothermal paper
nanowires
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4107-4b26ec3f958d03efbfecc951ee20fc1925dd015754d51d6d08a54d251d68baef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5044-5046
PMID 30370652
PQID 2154986741
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2126904824
proquest_journals_2154986741
pubmed_primary_30370652
crossref_citationtrail_10_1002_smll_201803387
crossref_primary_10_1002_smll_201803387
wiley_primary_10_1002_smll_201803387_SMLL201803387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Dec
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2010 2016; 132 55
2011 2017; 334 5
2015; 366
2015 2017 2017 2017 2017 2017; 27 29 1 5 9 5
2017; 23
2016; 10
2016 2014; 288 268
2011 2017; 333 67
2017; 29
2017 2018; 11 10
2018; 46
2014; 20
2016; 11
2008 2013 2016; 452 309 1
2018; 6
2015 2016; 6 2
2015; 357
2014 2014; 5 10
2015; 474
2017 2017 2015 2018 2017; 41 11 27 28 9
2018 2018 2018 2016; 11 13 12 113
2018 2018; 8 6
2018; 12
2016; 28
2018 2018; 28 3
2018 2017 2018; 5 11 11
e_1_2_7_5_2
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_17_6
e_1_2_7_17_5
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_19_2
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_2
Xiong Z. C. (e_1_2_7_25_1) 2018; 6
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_9_5
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 5 11 11
  start-page: 323 3752 1985
  year: 2018 2017 2018
  publication-title: Mater. Horiz. ACS Nano Energy Environ. Sci.
– volume: 12
  start-page: 3159
  year: 2018
  publication-title: ACS Nano
– volume: 11 10
  start-page: 3690 7832
  year: 2017 2018
  publication-title: ACS Nano ACS Appl. Mater. Interfaces
– volume: 333 67
  start-page: 712 1308
  year: 2011 2017
  publication-title: Science Renewable Sustainable Energy Rev.
– volume: 29
  start-page: 1603730
  year: 2017
  publication-title: Adv. Mater.
– volume: 132 55
  start-page: 13172 10606
  year: 2010 2016
  publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 41 11 27 28 9
  start-page: 269 5087 4302 1707134 28596
  year: 2017 2017 2015 2018 2017
  publication-title: Nano Energy ACS Nano Adv. Mater. Adv. Funct. Mater. ACS Appl. Mater. Interfaces
– volume: 357
  start-page: 77
  year: 2015
  publication-title: Desalination
– volume: 29
  start-page: 1606762
  year: 2017
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1701756
  year: 2017
  publication-title: Adv. Mater.
– volume: 474
  start-page: 39
  year: 2015
  publication-title: J. Membr. Sci.
– volume: 46
  start-page: 415
  year: 2018
  publication-title: Nano Energy
– volume: 10
  start-page: 393
  year: 2016
  publication-title: Nat. Photonics
– volume: 6 2
  start-page: 10103 e1501227
  year: 2015 2016
  publication-title: Nat. Commun. Sci. Adv.
– volume: 28 3
  start-page: 1704505 1165
  year: 2018 2018
  publication-title: Adv. Funct. Mater. ACS Energy Lett.
– volume: 28
  start-page: 9400
  year: 2016
  publication-title: Adv. Mater.
– volume: 11
  start-page: 995
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 11 13 12 113
  start-page: 1510 489 829 13953
  year: 2018 2018 2018 2016
  publication-title: Energy Environ. Sci. Nat. Nanotechnol. ACS Nano Proc. Natl. Acad. Sci. USA
– volume: 288 268
  start-page: 505 306
  year: 2016 2014
  publication-title: Chem. Eng. J. Powder Technol.
– volume: 8 6
  start-page: 1702884 7942
  year: 2018 2018
  publication-title: Adv. Energy Mater. J. Mater. Chem. A
– volume: 23
  start-page: 4597
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 452 309 1
  start-page: 301 197 16126
  year: 2008 2013 2016
  publication-title: Nature Desalination Nat. Energy
– volume: 29
  start-page: 1703548
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 17482
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27 29 1 5 9 5
  start-page: 2768 1603504 1600003 16359 29958 20044
  year: 2015 2017 2017 2017 2017 2017
  publication-title: Adv. Mater. Adv. Mater. Global Challenges J. Mater. Chem. A ACS Appl. Mater. Interfaces J. Mater. Chem. A
– volume: 6
  start-page: 576
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5 10
  start-page: 4449 3234
  year: 2014 2014
  publication-title: Nat. Commun. Small
– volume: 334 5
  start-page: 922 7691
  year: 2011 2017
  publication-title: Science J. Mater. Chem. A
– volume: 20
  start-page: 1242
  year: 2014
  publication-title: Chem. ‐ Eur. J.
– volume: 366
  start-page: 59
  year: 2015
  publication-title: Desalination
– ident: e_1_2_7_16_1
  doi: 10.1002/aenm.201702884
– ident: e_1_2_7_19_1
  doi: 10.1021/ja1058923
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201603730
– ident: e_1_2_7_17_4
  doi: 10.1039/C7TA03262E
– ident: e_1_2_7_2_2
  doi: 10.1016/j.desal.2012.10.015
– ident: e_1_2_7_26_1
  doi: 10.1038/nnano.2016.240
– ident: e_1_2_7_20_2
  doi: 10.1021/acsami.7b19281
– ident: e_1_2_7_1_2
  doi: 10.1016/j.rser.2016.08.058
– ident: e_1_2_7_15_2
  doi: 10.1021/acsenergylett.8b00433
– ident: e_1_2_7_10_1
  doi: 10.1038/ncomms5449
– ident: e_1_2_7_30_1
  doi: 10.1039/C7TA03870D
– ident: e_1_2_7_17_5
  doi: 10.1021/acsami.7b07759
– ident: e_1_2_7_8_1
  doi: 10.1038/nphoton.2016.75
– ident: e_1_2_7_6_1
  doi: 10.1038/ncomms10103
– ident: e_1_2_7_16_2
  doi: 10.1039/C8TA00187A
– ident: e_1_2_7_17_6
  doi: 10.1039/C7TA06384A
– ident: e_1_2_7_5_2
  doi: 10.1021/acsnano.6b08415
– ident: e_1_2_7_17_3
  doi: 10.1002/gch2.201600003
– ident: e_1_2_7_19_2
  doi: 10.1002/anie.201601823
– ident: e_1_2_7_17_2
  doi: 10.1002/adma.201603504
– ident: e_1_2_7_28_1
  doi: 10.1016/j.desal.2014.11.011
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.201701756
– ident: e_1_2_7_5_1
  doi: 10.1039/C7MH01064H
– ident: e_1_2_7_6_2
  doi: 10.1126/sciadv.1501227
– ident: e_1_2_7_10_2
  doi: 10.1002/smll.201401071
– ident: e_1_2_7_9_4
  doi: 10.1002/adfm.201707134
– volume: 6
  start-page: 576
  year: 2018
  ident: e_1_2_7_25_1
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_4_1
  doi: 10.1039/C8EE00220G
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.201500135
– ident: e_1_2_7_18_2
  doi: 10.1016/j.powtec.2014.08.041
– ident: e_1_2_7_23_1
  doi: 10.1021/acsnano.8b00047
– ident: e_1_2_7_9_3
  doi: 10.1002/adma.201501832
– ident: e_1_2_7_13_1
  doi: 10.1016/j.nanoen.2018.02.018
– ident: e_1_2_7_2_3
  doi: 10.1038/nenergy.2016.126
– ident: e_1_2_7_9_2
  doi: 10.1021/acsnano.7b01965
– ident: e_1_2_7_4_3
  doi: 10.1021/acsnano.7b08196
– ident: e_1_2_7_3_1
  doi: 10.1126/science.334.6058.922
– ident: e_1_2_7_18_1
  doi: 10.1016/j.cej.2015.12.045
– ident: e_1_2_7_9_5
  doi: 10.1021/acsami.7b08619
– ident: e_1_2_7_27_1
  doi: 10.1016/j.desal.2014.12.046
– ident: e_1_2_7_29_1
  doi: 10.1016/j.memsci.2014.09.016
– ident: e_1_2_7_20_1
  doi: 10.1021/acsnano.6b08193
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1200488
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201704505
– ident: e_1_2_7_9_1
  doi: 10.1016/j.nanoen.2017.09.005
– ident: e_1_2_7_4_2
  doi: 10.1038/s41565-018-0097-z
– ident: e_1_2_7_4_4
  doi: 10.1073/pnas.1613031113
– ident: e_1_2_7_3_2
  doi: 10.1039/C7TA01361B
– ident: e_1_2_7_21_1
  doi: 10.1002/chem.201304439
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201703548
– ident: e_1_2_7_24_1
  doi: 10.1002/chem.201604552
– ident: e_1_2_7_2_1
  doi: 10.1038/nature06599
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201606762
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201601819
– ident: e_1_2_7_5_3
  doi: 10.1039/C8EE00567B
SSID ssj0031247
Score 2.608286
Snippet Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1803387
SubjectTerms Carbon nanotubes
Clean energy
Desalination
Drinking water
Evaporation
Fire resistance
Heavy metals
High temperature
Hydroxyapatite
Nanotechnology
Nanowires
Photothermal conversion
photothermal paper
Seawater
Solar energy
Steam generation
Surface layers
Thermal conductivity
Wastewater
Water purification
Title Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201803387
https://www.ncbi.nlm.nih.gov/pubmed/30370652
https://www.proquest.com/docview/2154986741
https://www.proquest.com/docview/2126904824
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLamXrGL8bMNyjbkSUhcpU0dJ40v0daqQu1UtavWu8iOHSHRJVV-LtgVj8AD8HQ8Cec4bWiZENK4cxw7dpzz8zk-_kzIe-5xHieh78Rc9WGCIoQjjRZOT3rg3gTztT21ZHITjBb809Jf7uzir_khmh9uqBnWXqOCS1V0f5OGFvcrXDrohS7MsnA7OQZsISqaNfxRHjgve7oK-CwHibe2rI0u6-5X3_dKj6DmPnK1rmf4nMhtp-uIky-dqlSd-OEPPsf_easX5GiDS-nHWpBekgOTviKHO2yFx-THEMkz1crQIdjJn9--z0yB6DMt6fRzVtqtXPfwjKlcm5yioQEDAjXpYoW_UzJIjb5qfAmJYdyloWDaM-RKLqhMNb2SucpSm1lWCjIBT9M5Tr3pwO5QhCavc7TO9A4Qck6nVY6BTla2TshiOLi9Gjmbwx1AKmDK6XDFAhN7ifBD7XomUQkIE8A9Y5ibxD2UEg1Qpe9z7fd0oN1QQpJhOlTSJN4paaVZat4QqvxYBAywikkArLhCskBLxaUA9BmomLeJs_24UbxhPscDOFZRzdnMIhz1qBn1NvnQlF_XnB9_LXm-lZVoo_tFxJD1LgwAqrXJZXMbtBaXYmRqsgrLsECA8WTQude1jDVNAajAtWfWJsxKyj_6EM0n43Fz9fYplc7IM0zXUTrnpFXmlbkArFWqd1affgF8SiW9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH8a2wF2YAzY6BhgJCRO2VLHSeMj2lYVaKdqWwW3yI4dIdElU5oc4MRH4APs0_FJeM9pshWEkODmunbiJO_Pz_bz7wG8EoEQaRaHXir0ACcoUnrKGun1VYDuTfLQuKwlk9NoNBPvPoZtNCGdhWn4IboFN9IMZ69JwWlB-vCGNXRxOae9g37s4zRrcAc2KK030ecfn3UMUgG6L5dfBb2WR9RbLW-jzw9X-6_6pd_A5ip2dc5nuAW6HXYTc_L5oK70Qfr1F0bH_3quB3B_CU3Zm0aWtmHN5g9h8xZh4SO4HhJ_pp5bNkRT-ePb9zO7IACaV2z6qajcaa5LvMZUXdmSka1BG4I92WxOKyoFlkZfDD2FokjuyjK07gXRJS-Yyg07UqUucldZ1RorEVKzc5p9sxN3SBFveVySgWYfECSXbFqXFOvkxOsxzIYnF0cjb5nfAQUDZ52e0DyyaZDJMDZ-YDOdoTwh4rOW-1naJ0ExiFYGoTBh30TGjxUWOZVjrWwW7MB6XuT2CTAdpjLiCFdshnjFl4pHRmmhJALQSKeiB177dZN0SX5OOTjmSUPbzBN660n31nvwumt_1dB-_LHlfissyVL9Fwkn4rs4QrTWg5fd36i4tBujclvU1IZHEu0nx8HtNkLW3QpxBW0_8x5wJyp_GUNyPhmPu197_9LpBdwdXUzGyfjt6funcI_qm6CdfVivyto-Q-hV6edOuX4CuVIp2Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CQUKw4P0oDGAkJFaZSR3HjZdoOlGBzqiaoWJ2kR07QqKTVGmygBWfwAfwdXwJ9zptmIIQEuwcx46d5D6OX-cCvBCREHmRxEEuzAgHKEoF2lkVDHWE7k3x2PqoJUfHcjIXb87iswun-Dt-iH7CjTTD22tS8KUt9n-Shq7OF7R0MExCHGWNLsMVIUNFwRvGJz2BVITey4dXQacVEPPWhrYx5Pvb9bfd0m9Ycxu6et-T3gS96XW35eTjXtuYvfzzL4SO__Nat-DGGpiyV50k3YZLrrwD1y_QFd6FbymxZ5qFYykayu9fvp64FcHPsmGzD1Xjz3Kd4zNmeulqRpYGLQjWZPMFzadUmJp8svQSmvZxN46hba-ILHnFdGnZga5NVfrMpjWYiYCandLYmx36I4rY5Lgm88zeI0Su2aytaaeTF657ME8P3x1MgnV0BxQLHHMGwnDp8qhQcWLDyBWmQGlCvOccD4t8SGJiEauMYmHjoZU2TDQmOaUTo10R3YedsirdQ2AmzpXkCFZcgWglVJpLq43QCuGnNLkYQLD5uVm-pj6nCByLrCNt5hl99az_6gN42ZdfdqQffyy5u5GVbK38q4wT7V0iEasN4Hl_G9WW1mJ06aqWynCp0Hpy7NyDTsb6phBV0OIzHwD3kvKXPmSnR9Npf_XoXyo9g6uzcZpNXx-_fQzXKLvbsbMLO03duieIuxrz1KvWDyL6KIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Fire%E2%80%90Resistant+Photothermal+Paper+Comprising+Ultralong+Hydroxyapatite+Nanowires+and+Carbon+Nanotubes+for+Solar+Energy%E2%80%90Driven+Water+Purification&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xiong%2C+Zhi%E2%80%90Chao&rft.au=Zhu%2C+Ying%E2%80%90Jie&rft.au=Qin%2C+Dong%E2%80%90Dong&rft.au=Chen%2C+Fei%E2%80%90Fei&rft.date=2018-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=50&rft_id=info:doi/10.1002%2Fsmll.201803387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201803387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon