Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification
Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 14; no. 50; pp. e1803387 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification.
Highly flexible fire‐resistant photothermal paper is fabricated using ultralong hydroxyapatite nanowires and carbon nanotubes for highly efficient solar energy‐driven seawater desalination and wastewater purification, it has a high performance in recycling and long‐time usage, and it has promising application in the production of clean drinkable water from seawater and wastewater to mitigate the water scarcity crisis. |
---|---|
AbstractList | Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m
−2
and 92.8% at 10 kW m
−2
are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification. Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m and 92.8% at 10 kW m are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification. Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification. Highly flexible fire‐resistant photothermal paper is fabricated using ultralong hydroxyapatite nanowires and carbon nanotubes for highly efficient solar energy‐driven seawater desalination and wastewater purification, it has a high performance in recycling and long‐time usage, and it has promising application in the production of clean drinkable water from seawater and wastewater to mitigate the water scarcity crisis. Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification.Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire-resistant photothermal paper by combining carbon nanotubes (CNTs) and fire-resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy-driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN-based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m-2 and 92.8% at 10 kW m-2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long-time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy-driven seawater desalination and wastewater purification. Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global water crisis. For this purpose, this study reports a flexible fire‐resistant photothermal paper by combining carbon nanotubes (CNTs) and fire‐resistant inorganic paper based on ultralong hydroxyapatite nanowires (HNs) for efficient solar energy‐driven water steam generation and water purification. Benefiting from the structural characteristics of the HN/CNT photothermal paper, the black CNT surface layer exhibits a high light absorbability and photothermal conversion capability, the HN‐based inorganic paper acts as a thermal insulator with a high temperature stability, low thermal conductivity, and interconnected porous structure. By combining these advantages, high water evaporation efficiencies of 83.2% at 1 kW m−2 and 92.8% at 10 kW m−2 are achieved. In addition, the HN/CNT photothermal paper has a stable water evaporation capability during recycling and long‐time usage. The promising potential of the HN/CNT photothermal paper for efficient production of drinkable water from both actual seawater and simulative wastewater samples containing heavy metal ions, dyes, and bacteria is also demonstrated. The highly flexible HN/CNT photothermal paper is promising for application in highly efficient solar energy‐driven seawater desalination and wastewater purification. |
Author | Zhu, Ying‐Jie Yang, Ri‐Long Xiong, Zhi‐Chao Qin, Dong‐Dong Chen, Fei‐Fei |
Author_xml | – sequence: 1 givenname: Zhi‐Chao surname: Xiong fullname: Xiong, Zhi‐Chao organization: Chinese Academy of Sciences – sequence: 2 givenname: Ying‐Jie orcidid: 0000-0002-5044-5046 surname: Zhu fullname: Zhu, Ying‐Jie email: y.j.zhu@mail.sic.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Dong‐Dong surname: Qin fullname: Qin, Dong‐Dong organization: Chinese Academy of Sciences – sequence: 4 givenname: Fei‐Fei surname: Chen fullname: Chen, Fei‐Fei organization: Chinese Academy of Sciences – sequence: 5 givenname: Ri‐Long surname: Yang fullname: Yang, Ri‐Long organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30370652$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URB6wZYkssWEzg1_9WqIhQ5AGGBEilpbbXZ04ctuD7SbpHZ_AB_B1fAmeTBKkSIiVr0rn3ipXHaI95x0g9JySOSWEvY6DtXNGaE04r6tH6ICWlM_KmjV795qSfXQY4yUhnDJRPUH7nPCKlAU7QL-WFq5NawEvTYDfP35-hmhiUi7h9YVPPl1AGJTFa7WBgBd-2AQTjTvHZzYFZX1WJ1MX_PWkNiqZBPijcv4qZ0WsXIcXKrTe3RTT2OZi7wM-9VYFfOwgnE-55dtgvoPDX1XKLdZjML3ROcu7p-hxr2yEZ7fvETpbHn9ZnMxWn969X7xZzbSgpJqJlpWged8UdUc49G0PWjcFBWCk17RhRdcRWlSF6AralR2pVZZsq-tWQc-P0Ktd7ib4byPEJAcTNVirHPgxSkZZ2RBRM5HRlw_QSz8Gl6fLVCGauqwEzdSLW2psB-hkXtqgwiTv9p4BsQN08DEG6KU26ebPeavGSkrk9rxye155f95smz-w3SX_09DsDFfGwvQfWp5-WK3-ev8Aty69iA |
CitedBy_id | crossref_primary_10_1002_smll_202200175 crossref_primary_10_1021_acsami_9b22338 crossref_primary_10_1039_C9NJ03563J crossref_primary_10_1016_j_energy_2024_132354 crossref_primary_10_1039_D3MA00075C crossref_primary_10_1021_acsnano_1c06277 crossref_primary_10_1021_acsapm_0c01107 crossref_primary_10_3390_nano9101435 crossref_primary_10_1002_solr_202201014 crossref_primary_10_1016_j_applthermaleng_2019_114379 crossref_primary_10_1002_adfm_202106247 crossref_primary_10_1016_j_matchemphys_2020_123998 crossref_primary_10_1039_C8CS00489G crossref_primary_10_1016_j_advmem_2024_100108 crossref_primary_10_1039_C9TA05935K crossref_primary_10_1016_j_desal_2023_116833 crossref_primary_10_1016_j_desal_2023_116954 crossref_primary_10_1016_j_cej_2020_127672 crossref_primary_10_1021_acsami_0c05986 crossref_primary_10_1039_D0TA04326E crossref_primary_10_1021_acs_chemrev_3c00159 crossref_primary_10_1007_s00339_019_2839_7 crossref_primary_10_1021_acsami_0c11332 crossref_primary_10_1021_acsenergylett_0c00394 crossref_primary_10_1039_C9SM01167F crossref_primary_10_26599_NRE_2024_9120114 crossref_primary_10_1039_D1TA01538A crossref_primary_10_1016_j_cej_2021_132060 crossref_primary_10_1016_j_talanta_2023_124979 crossref_primary_10_3390_molecules27155020 crossref_primary_10_1016_j_solmat_2020_110910 crossref_primary_10_1002_smll_202105198 crossref_primary_10_1016_j_nanoen_2020_104465 crossref_primary_10_1016_j_nanoen_2021_106789 crossref_primary_10_1021_acssuschemeng_9b02488 crossref_primary_10_1016_j_cej_2024_153168 crossref_primary_10_1021_acsabm_0c00232 crossref_primary_10_1039_D2CS00513A crossref_primary_10_1016_j_desal_2020_114382 crossref_primary_10_1039_D1TA03610F crossref_primary_10_1039_D2NR04857D crossref_primary_10_1016_j_desal_2023_117114 crossref_primary_10_1016_j_desal_2024_118502 crossref_primary_10_1039_D2CE00225F crossref_primary_10_1007_s12274_019_2608_0 crossref_primary_10_1039_D3CC00984J crossref_primary_10_1016_j_cej_2021_130344 crossref_primary_10_1002_eom2_12018 crossref_primary_10_1016_j_carbon_2019_05_010 crossref_primary_10_1016_j_apsusc_2020_148667 crossref_primary_10_1016_j_apmt_2019_07_011 crossref_primary_10_1016_j_cej_2024_153394 crossref_primary_10_1016_j_nantod_2022_101526 crossref_primary_10_1021_acssuschemeng_0c07608 crossref_primary_10_1016_j_jcis_2022_12_016 crossref_primary_10_1021_acsami_1c10482 crossref_primary_10_1039_D0TA01004A crossref_primary_10_1002_gch2_201900040 crossref_primary_10_1002_adhm_202001851 crossref_primary_10_1002_cjoc_202100170 crossref_primary_10_1039_D2TA02557D crossref_primary_10_3390_nano12111800 crossref_primary_10_1021_acsapm_4c01693 crossref_primary_10_1021_acsami_2c15997 crossref_primary_10_1016_j_carbon_2020_03_059 crossref_primary_10_1016_j_jece_2021_106915 crossref_primary_10_1002_ente_201900721 crossref_primary_10_1016_j_seppur_2022_122852 crossref_primary_10_1016_j_cej_2021_130118 crossref_primary_10_1016_j_desal_2022_115581 crossref_primary_10_1016_j_colsurfa_2021_127786 crossref_primary_10_1016_j_seppur_2024_130958 crossref_primary_10_1016_j_enconman_2021_114938 crossref_primary_10_1016_j_jcis_2024_01_035 crossref_primary_10_1002_smll_201900338 crossref_primary_10_4028_www_scientific_net_MSF_1002_468 crossref_primary_10_1021_acsmaterialslett_3c00452 crossref_primary_10_1039_C9TA06034K crossref_primary_10_1002_smll_202100490 crossref_primary_10_1007_s40843_021_1721_6 crossref_primary_10_1039_D0RA05513A crossref_primary_10_1016_j_scitotenv_2020_143546 crossref_primary_10_1021_acsami_1c04419 crossref_primary_10_1002_smll_202104048 crossref_primary_10_1002_smll_201902070 crossref_primary_10_1039_C9NR10357K crossref_primary_10_1002_ejic_202000940 crossref_primary_10_1039_C9MH01443H crossref_primary_10_1016_j_cej_2023_143689 crossref_primary_10_1021_acsaem_4c03384 crossref_primary_10_1016_j_cej_2022_136470 crossref_primary_10_1002_smll_202206917 crossref_primary_10_1016_j_jece_2022_109085 crossref_primary_10_1021_acsbiomaterials_9b01183 crossref_primary_10_1039_D1TA05058C crossref_primary_10_1002_adsu_202100122 crossref_primary_10_1016_j_solmat_2021_111350 crossref_primary_10_1016_j_ijthermalsci_2022_107712 crossref_primary_10_1002_pol_20210942 crossref_primary_10_1016_j_jcis_2023_07_135 crossref_primary_10_1039_D1TA02202D crossref_primary_10_1016_j_nanoen_2022_108115 crossref_primary_10_1002_smsc_202300096 crossref_primary_10_1007_s40843_022_2407_2 crossref_primary_10_1021_acsami_0c06233 crossref_primary_10_1007_s10853_023_08269_x crossref_primary_10_1016_j_cis_2024_103154 crossref_primary_10_29026_oea_2023_220061 crossref_primary_10_1016_j_colsurfa_2022_128272 crossref_primary_10_1021_acsami_1c09398 crossref_primary_10_1021_acsami_9b18948 crossref_primary_10_1002_adfm_202106978 crossref_primary_10_1007_s12274_023_6034_y crossref_primary_10_1007_s40042_021_00220_0 crossref_primary_10_1016_j_seppur_2020_116595 crossref_primary_10_1021_acsnano_1c01590 crossref_primary_10_1002_adma_201908269 crossref_primary_10_1016_j_jece_2024_112004 crossref_primary_10_1016_j_cej_2024_158254 crossref_primary_10_1021_acsenergylett_9b02611 crossref_primary_10_1002_admi_202100332 crossref_primary_10_1016_j_nanoen_2021_106468 crossref_primary_10_1039_D1TA08410K crossref_primary_10_1021_acs_chemmater_0c04166 crossref_primary_10_1016_j_applthermaleng_2025_125656 crossref_primary_10_1039_D0TA07518C crossref_primary_10_1021_acsami_0c04682 crossref_primary_10_1021_acsami_0c15692 crossref_primary_10_1039_C9TA12703H crossref_primary_10_1016_j_trechm_2022_06_005 crossref_primary_10_1039_D4CC00635F crossref_primary_10_1016_j_cej_2024_158085 crossref_primary_10_1016_j_jcis_2023_06_063 crossref_primary_10_1002_cey2_331 crossref_primary_10_1007_s11356_021_17326_4 crossref_primary_10_1002_eem2_12158 crossref_primary_10_1002_ente_202201502 crossref_primary_10_1021_acsami_1c06226 crossref_primary_10_1016_j_jece_2024_113480 crossref_primary_10_1021_acsabm_0c00618 crossref_primary_10_1021_acsami_0c10461 crossref_primary_10_5004_dwt_2023_30056 crossref_primary_10_1039_D4MH00591K crossref_primary_10_1039_D1TA06732J crossref_primary_10_1021_acssuschemeng_0c06665 crossref_primary_10_1039_D3SC05344J crossref_primary_10_1016_j_compositesa_2022_107061 crossref_primary_10_1002_pat_5353 crossref_primary_10_1039_D2NR05159A crossref_primary_10_2174_1872210516666220325153220 crossref_primary_10_1038_s44221_023_00059_8 crossref_primary_10_1002_advs_202205809 crossref_primary_10_1016_j_desal_2024_117998 crossref_primary_10_1142_S1793292024500528 |
Cites_doi | 10.1002/aenm.201702884 10.1021/ja1058923 10.1002/adma.201603730 10.1039/C7TA03262E 10.1016/j.desal.2012.10.015 10.1038/nnano.2016.240 10.1021/acsami.7b19281 10.1016/j.rser.2016.08.058 10.1021/acsenergylett.8b00433 10.1038/ncomms5449 10.1039/C7TA03870D 10.1021/acsami.7b07759 10.1038/nphoton.2016.75 10.1038/ncomms10103 10.1039/C8TA00187A 10.1039/C7TA06384A 10.1021/acsnano.6b08415 10.1002/gch2.201600003 10.1002/anie.201601823 10.1002/adma.201603504 10.1016/j.desal.2014.11.011 10.1002/adma.201701756 10.1039/C7MH01064H 10.1126/sciadv.1501227 10.1002/smll.201401071 10.1002/adfm.201707134 10.1039/C8EE00220G 10.1002/adma.201500135 10.1016/j.powtec.2014.08.041 10.1021/acsnano.8b00047 10.1002/adma.201501832 10.1016/j.nanoen.2018.02.018 10.1038/nenergy.2016.126 10.1021/acsnano.7b01965 10.1021/acsnano.7b08196 10.1126/science.334.6058.922 10.1016/j.cej.2015.12.045 10.1021/acsami.7b08619 10.1016/j.desal.2014.12.046 10.1016/j.memsci.2014.09.016 10.1021/acsnano.6b08193 10.1126/science.1200488 10.1002/adfm.201704505 10.1016/j.nanoen.2017.09.005 10.1038/s41565-018-0097-z 10.1073/pnas.1613031113 10.1039/C7TA01361B 10.1002/chem.201304439 10.1002/adma.201703548 10.1002/chem.201604552 10.1038/nature06599 10.1002/adma.201606762 10.1002/adma.201601819 10.1039/C8EE00567B |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201803387 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30370652 10_1002_smll_201803387 SMLL201803387 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shanghai Sailing Program funderid: 16YF1413000 – fundername: National Natural Science Foundation of China funderid: 21601199 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 18ZR1445200 – fundername: Shanghai Sailing Program grantid: 16YF1413000 – fundername: National Natural Science Foundation of China grantid: 21601199 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 18ZR1445200 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4107-4b26ec3f958d03efbfecc951ee20fc1925dd015754d51d6d08a54d251d68baef3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 03:13:23 EDT 2025 Fri Jul 25 12:14:27 EDT 2025 Mon Jul 21 06:18:12 EDT 2025 Thu Apr 24 22:51:15 EDT 2025 Tue Jul 01 02:10:38 EDT 2025 Wed Jan 22 16:32:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | water purification hydroxyapatite carbon nanotubes photothermal paper nanowires |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4107-4b26ec3f958d03efbfecc951ee20fc1925dd015754d51d6d08a54d251d68baef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5044-5046 |
PMID | 30370652 |
PQID | 2154986741 |
PQPubID | 1046358 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2126904824 proquest_journals_2154986741 pubmed_primary_30370652 crossref_citationtrail_10_1002_smll_201803387 crossref_primary_10_1002_smll_201803387 wiley_primary_10_1002_smll_201803387_SMLL201803387 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Dec |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010 2016; 132 55 2011 2017; 334 5 2015; 366 2015 2017 2017 2017 2017 2017; 27 29 1 5 9 5 2017; 23 2016; 10 2016 2014; 288 268 2011 2017; 333 67 2017; 29 2017 2018; 11 10 2018; 46 2014; 20 2016; 11 2008 2013 2016; 452 309 1 2018; 6 2015 2016; 6 2 2015; 357 2014 2014; 5 10 2015; 474 2017 2017 2015 2018 2017; 41 11 27 28 9 2018 2018 2018 2016; 11 13 12 113 2018 2018; 8 6 2018; 12 2016; 28 2018 2018; 28 3 2018 2017 2018; 5 11 11 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_17_6 e_1_2_7_17_5 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_2 Xiong Z. C. (e_1_2_7_25_1) 2018; 6 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_9_5 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 5 11 11 start-page: 323 3752 1985 year: 2018 2017 2018 publication-title: Mater. Horiz. ACS Nano Energy Environ. Sci. – volume: 12 start-page: 3159 year: 2018 publication-title: ACS Nano – volume: 11 10 start-page: 3690 7832 year: 2017 2018 publication-title: ACS Nano ACS Appl. Mater. Interfaces – volume: 333 67 start-page: 712 1308 year: 2011 2017 publication-title: Science Renewable Sustainable Energy Rev. – volume: 29 start-page: 1603730 year: 2017 publication-title: Adv. Mater. – volume: 132 55 start-page: 13172 10606 year: 2010 2016 publication-title: J. Am. Chem. Soc. Angew. Chem., Int. Ed. – volume: 41 11 27 28 9 start-page: 269 5087 4302 1707134 28596 year: 2017 2017 2015 2018 2017 publication-title: Nano Energy ACS Nano Adv. Mater. Adv. Funct. Mater. ACS Appl. Mater. Interfaces – volume: 357 start-page: 77 year: 2015 publication-title: Desalination – volume: 29 start-page: 1606762 year: 2017 publication-title: Adv. Mater. – volume: 29 start-page: 1701756 year: 2017 publication-title: Adv. Mater. – volume: 474 start-page: 39 year: 2015 publication-title: J. Membr. Sci. – volume: 46 start-page: 415 year: 2018 publication-title: Nano Energy – volume: 10 start-page: 393 year: 2016 publication-title: Nat. Photonics – volume: 6 2 start-page: 10103 e1501227 year: 2015 2016 publication-title: Nat. Commun. Sci. Adv. – volume: 28 3 start-page: 1704505 1165 year: 2018 2018 publication-title: Adv. Funct. Mater. ACS Energy Lett. – volume: 28 start-page: 9400 year: 2016 publication-title: Adv. Mater. – volume: 11 start-page: 995 year: 2016 publication-title: Nat. Nanotechnol. – volume: 11 13 12 113 start-page: 1510 489 829 13953 year: 2018 2018 2018 2016 publication-title: Energy Environ. Sci. Nat. Nanotechnol. ACS Nano Proc. Natl. Acad. Sci. USA – volume: 288 268 start-page: 505 306 year: 2016 2014 publication-title: Chem. Eng. J. Powder Technol. – volume: 8 6 start-page: 1702884 7942 year: 2018 2018 publication-title: Adv. Energy Mater. J. Mater. Chem. A – volume: 23 start-page: 4597 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 452 309 1 start-page: 301 197 16126 year: 2008 2013 2016 publication-title: Nature Desalination Nat. Energy – volume: 29 start-page: 1703548 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 17482 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 29 1 5 9 5 start-page: 2768 1603504 1600003 16359 29958 20044 year: 2015 2017 2017 2017 2017 2017 publication-title: Adv. Mater. Adv. Mater. Global Challenges J. Mater. Chem. A ACS Appl. Mater. Interfaces J. Mater. Chem. A – volume: 6 start-page: 576 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 10 start-page: 4449 3234 year: 2014 2014 publication-title: Nat. Commun. Small – volume: 334 5 start-page: 922 7691 year: 2011 2017 publication-title: Science J. Mater. Chem. A – volume: 20 start-page: 1242 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 366 start-page: 59 year: 2015 publication-title: Desalination – ident: e_1_2_7_16_1 doi: 10.1002/aenm.201702884 – ident: e_1_2_7_19_1 doi: 10.1021/ja1058923 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201603730 – ident: e_1_2_7_17_4 doi: 10.1039/C7TA03262E – ident: e_1_2_7_2_2 doi: 10.1016/j.desal.2012.10.015 – ident: e_1_2_7_26_1 doi: 10.1038/nnano.2016.240 – ident: e_1_2_7_20_2 doi: 10.1021/acsami.7b19281 – ident: e_1_2_7_1_2 doi: 10.1016/j.rser.2016.08.058 – ident: e_1_2_7_15_2 doi: 10.1021/acsenergylett.8b00433 – ident: e_1_2_7_10_1 doi: 10.1038/ncomms5449 – ident: e_1_2_7_30_1 doi: 10.1039/C7TA03870D – ident: e_1_2_7_17_5 doi: 10.1021/acsami.7b07759 – ident: e_1_2_7_8_1 doi: 10.1038/nphoton.2016.75 – ident: e_1_2_7_6_1 doi: 10.1038/ncomms10103 – ident: e_1_2_7_16_2 doi: 10.1039/C8TA00187A – ident: e_1_2_7_17_6 doi: 10.1039/C7TA06384A – ident: e_1_2_7_5_2 doi: 10.1021/acsnano.6b08415 – ident: e_1_2_7_17_3 doi: 10.1002/gch2.201600003 – ident: e_1_2_7_19_2 doi: 10.1002/anie.201601823 – ident: e_1_2_7_17_2 doi: 10.1002/adma.201603504 – ident: e_1_2_7_28_1 doi: 10.1016/j.desal.2014.11.011 – ident: e_1_2_7_14_1 doi: 10.1002/adma.201701756 – ident: e_1_2_7_5_1 doi: 10.1039/C7MH01064H – ident: e_1_2_7_6_2 doi: 10.1126/sciadv.1501227 – ident: e_1_2_7_10_2 doi: 10.1002/smll.201401071 – ident: e_1_2_7_9_4 doi: 10.1002/adfm.201707134 – volume: 6 start-page: 576 year: 2018 ident: e_1_2_7_25_1 publication-title: J. Mater. Chem. A – ident: e_1_2_7_4_1 doi: 10.1039/C8EE00220G – ident: e_1_2_7_17_1 doi: 10.1002/adma.201500135 – ident: e_1_2_7_18_2 doi: 10.1016/j.powtec.2014.08.041 – ident: e_1_2_7_23_1 doi: 10.1021/acsnano.8b00047 – ident: e_1_2_7_9_3 doi: 10.1002/adma.201501832 – ident: e_1_2_7_13_1 doi: 10.1016/j.nanoen.2018.02.018 – ident: e_1_2_7_2_3 doi: 10.1038/nenergy.2016.126 – ident: e_1_2_7_9_2 doi: 10.1021/acsnano.7b01965 – ident: e_1_2_7_4_3 doi: 10.1021/acsnano.7b08196 – ident: e_1_2_7_3_1 doi: 10.1126/science.334.6058.922 – ident: e_1_2_7_18_1 doi: 10.1016/j.cej.2015.12.045 – ident: e_1_2_7_9_5 doi: 10.1021/acsami.7b08619 – ident: e_1_2_7_27_1 doi: 10.1016/j.desal.2014.12.046 – ident: e_1_2_7_29_1 doi: 10.1016/j.memsci.2014.09.016 – ident: e_1_2_7_20_1 doi: 10.1021/acsnano.6b08193 – ident: e_1_2_7_1_1 doi: 10.1126/science.1200488 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201704505 – ident: e_1_2_7_9_1 doi: 10.1016/j.nanoen.2017.09.005 – ident: e_1_2_7_4_2 doi: 10.1038/s41565-018-0097-z – ident: e_1_2_7_4_4 doi: 10.1073/pnas.1613031113 – ident: e_1_2_7_3_2 doi: 10.1039/C7TA01361B – ident: e_1_2_7_21_1 doi: 10.1002/chem.201304439 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201703548 – ident: e_1_2_7_24_1 doi: 10.1002/chem.201604552 – ident: e_1_2_7_2_1 doi: 10.1038/nature06599 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201606762 – ident: e_1_2_7_12_1 doi: 10.1002/adma.201601819 – ident: e_1_2_7_5_3 doi: 10.1039/C8EE00567B |
SSID | ssj0031247 |
Score | 2.608286 |
Snippet | Efficient utilization of abundant solar energy for clean water generation is considered a sustainable and environment friendly approach to mitigate the global... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1803387 |
SubjectTerms | Carbon nanotubes Clean energy Desalination Drinking water Evaporation Fire resistance Heavy metals High temperature Hydroxyapatite Nanotechnology Nanowires Photothermal conversion photothermal paper Seawater Solar energy Steam generation Surface layers Thermal conductivity Wastewater Water purification |
Title | Flexible Fire‐Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energy‐Driven Water Purification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201803387 https://www.ncbi.nlm.nih.gov/pubmed/30370652 https://www.proquest.com/docview/2154986741 https://www.proquest.com/docview/2126904824 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLamXrGL8bMNyjbkSUhcpU0dJ40v0daqQu1UtavWu8iOHSHRJVV-LtgVj8AD8HQ8Cec4bWiZENK4cxw7dpzz8zk-_kzIe-5xHieh78Rc9WGCIoQjjRZOT3rg3gTztT21ZHITjBb809Jf7uzir_khmh9uqBnWXqOCS1V0f5OGFvcrXDrohS7MsnA7OQZsISqaNfxRHjgve7oK-CwHibe2rI0u6-5X3_dKj6DmPnK1rmf4nMhtp-uIky-dqlSd-OEPPsf_easX5GiDS-nHWpBekgOTviKHO2yFx-THEMkz1crQIdjJn9--z0yB6DMt6fRzVtqtXPfwjKlcm5yioQEDAjXpYoW_UzJIjb5qfAmJYdyloWDaM-RKLqhMNb2SucpSm1lWCjIBT9M5Tr3pwO5QhCavc7TO9A4Qck6nVY6BTla2TshiOLi9Gjmbwx1AKmDK6XDFAhN7ifBD7XomUQkIE8A9Y5ibxD2UEg1Qpe9z7fd0oN1QQpJhOlTSJN4paaVZat4QqvxYBAywikkArLhCskBLxaUA9BmomLeJs_24UbxhPscDOFZRzdnMIhz1qBn1NvnQlF_XnB9_LXm-lZVoo_tFxJD1LgwAqrXJZXMbtBaXYmRqsgrLsECA8WTQude1jDVNAajAtWfWJsxKyj_6EM0n43Fz9fYplc7IM0zXUTrnpFXmlbkArFWqd1affgF8SiW9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH8a2wF2YAzY6BhgJCRO2VLHSeMj2lYVaKdqWwW3yI4dIdElU5oc4MRH4APs0_FJeM9pshWEkODmunbiJO_Pz_bz7wG8EoEQaRaHXir0ACcoUnrKGun1VYDuTfLQuKwlk9NoNBPvPoZtNCGdhWn4IboFN9IMZ69JwWlB-vCGNXRxOae9g37s4zRrcAc2KK030ecfn3UMUgG6L5dfBb2WR9RbLW-jzw9X-6_6pd_A5ip2dc5nuAW6HXYTc_L5oK70Qfr1F0bH_3quB3B_CU3Zm0aWtmHN5g9h8xZh4SO4HhJ_pp5bNkRT-ePb9zO7IACaV2z6qajcaa5LvMZUXdmSka1BG4I92WxOKyoFlkZfDD2FokjuyjK07gXRJS-Yyg07UqUucldZ1RorEVKzc5p9sxN3SBFveVySgWYfECSXbFqXFOvkxOsxzIYnF0cjb5nfAQUDZ52e0DyyaZDJMDZ-YDOdoTwh4rOW-1naJ0ExiFYGoTBh30TGjxUWOZVjrWwW7MB6XuT2CTAdpjLiCFdshnjFl4pHRmmhJALQSKeiB177dZN0SX5OOTjmSUPbzBN660n31nvwumt_1dB-_LHlfissyVL9Fwkn4rs4QrTWg5fd36i4tBujclvU1IZHEu0nx8HtNkLW3QpxBW0_8x5wJyp_GUNyPhmPu197_9LpBdwdXUzGyfjt6funcI_qm6CdfVivyto-Q-hV6edOuX4CuVIp2Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CQUKw4P0oDGAkJFaZSR3HjZdoOlGBzqiaoWJ2kR07QqKTVGmygBWfwAfwdXwJ9zptmIIQEuwcx46d5D6OX-cCvBCREHmRxEEuzAgHKEoF2lkVDHWE7k3x2PqoJUfHcjIXb87iswun-Dt-iH7CjTTD22tS8KUt9n-Shq7OF7R0MExCHGWNLsMVIUNFwRvGJz2BVITey4dXQacVEPPWhrYx5Pvb9bfd0m9Ycxu6et-T3gS96XW35eTjXtuYvfzzL4SO__Nat-DGGpiyV50k3YZLrrwD1y_QFd6FbymxZ5qFYykayu9fvp64FcHPsmGzD1Xjz3Kd4zNmeulqRpYGLQjWZPMFzadUmJp8svQSmvZxN46hba-ILHnFdGnZga5NVfrMpjWYiYCandLYmx36I4rY5Lgm88zeI0Su2aytaaeTF657ME8P3x1MgnV0BxQLHHMGwnDp8qhQcWLDyBWmQGlCvOccD4t8SGJiEauMYmHjoZU2TDQmOaUTo10R3YedsirdQ2AmzpXkCFZcgWglVJpLq43QCuGnNLkYQLD5uVm-pj6nCByLrCNt5hl99az_6gN42ZdfdqQffyy5u5GVbK38q4wT7V0iEasN4Hl_G9WW1mJ06aqWynCp0Hpy7NyDTsb6phBV0OIzHwD3kvKXPmSnR9Npf_XoXyo9g6uzcZpNXx-_fQzXKLvbsbMLO03duieIuxrz1KvWDyL6KIg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Fire%E2%80%90Resistant+Photothermal+Paper+Comprising+Ultralong+Hydroxyapatite+Nanowires+and+Carbon+Nanotubes+for+Solar+Energy%E2%80%90Driven+Water+Purification&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Xiong%2C+Zhi%E2%80%90Chao&rft.au=Zhu%2C+Ying%E2%80%90Jie&rft.au=Qin%2C+Dong%E2%80%90Dong&rft.au=Chen%2C+Fei%E2%80%90Fei&rft.date=2018-12-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=14&rft.issue=50&rft_id=info:doi/10.1002%2Fsmll.201803387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201803387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |