Low‐Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High‐Performance Photovoltaics
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, result...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 35; pp. e1901966 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn
PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.
A new type of ACI perovskite is prepared through the alternating ordering of BEA2+ and MA+ cations in the interlayer space (B‐ACI). The high exciton extraction efficiency and a narrow distribution of quantum well widths of B‐ACI perovskite enable a device with a record efficiency of 17.39%. Furthermore, the devices show stronger resistance to humidity, heating, and light soaks than previous equivalents. |
---|---|
AbstractList | Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+ ) and monoammonium (MA+ ) cations in the interlayer space (B-ACI) with the formula (BEA)0.5 MAn PbnI3n+1 . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5 MA3 Pb3 I10 and 17.39% for (BEA)0.5 Cs0.15 (FA0.83 MA0.17 )2.85 Pb3 (I0.83 Br0.17 )10 without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+ ) and monoammonium (MA+ ) cations in the interlayer space (B-ACI) with the formula (BEA)0.5 MAn PbnI3n+1 . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5 MA3 Pb3 I10 and 17.39% for (BEA)0.5 Cs0.15 (FA0.83 MA0.17 )2.85 Pb3 (I0.83 Br0.17 )10 without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. A new type of ACI perovskite is prepared through the alternating ordering of BEA2+ and MA+ cations in the interlayer space (B‐ACI). The high exciton extraction efficiency and a narrow distribution of quantum well widths of B‐ACI perovskite enable a device with a record efficiency of 17.39%. Furthermore, the devices show stronger resistance to humidity, heating, and light soaks than previous equivalents. Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA ) and monoammonium (MA ) cations in the interlayer space (B-ACI) with the formula (BEA) MA PbnI . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA) MA Pb I and 17.39% for (BEA) Cs (FA MA ) Pb (I Br ) without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAnPbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA 2+ ) and monoammonium (MA + ) cations in the interlayer space ( B ‐ACI) with the formula (BEA) 0.5 MA n Pb n I 3 n +1 . Compared to the typical LDRP counterparts, these B ‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B ‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA) 0.5 MA 3 Pb 3 I 10 and 17.39% for (BEA) 0.5 Cs 0.15 (FA 0.83 MA 0.17 ) 2.85 Pb 3 (I 0.83 Br 0.17 ) 10 without hysteresis. Furthermore, the triple cations B ‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. |
Author | Liu, Xiao‐Long Li, Fengyu Hu, Xiaotian Liang, Chao Gu, Hao Song, Yanlin Li, Pengwei Zhang, Yiqiang Xing, Guichuan Tao, Xutang Liu, Xiao‐Tao |
Author_xml | – sequence: 1 givenname: Pengwei surname: Li fullname: Li, Pengwei organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Chao surname: Liang fullname: Liang, Chao organization: Avenida da Universidade – sequence: 3 givenname: Xiao‐Long surname: Liu fullname: Liu, Xiao‐Long organization: Shandong University – sequence: 4 givenname: Fengyu surname: Li fullname: Li, Fengyu organization: National Laboratory for Molecular Sciences (BNLMS) – sequence: 5 givenname: Yiqiang surname: Zhang fullname: Zhang, Yiqiang organization: Zhengzhou University – sequence: 6 givenname: Xiao‐Tao surname: Liu fullname: Liu, Xiao‐Tao organization: Zhengzhou University – sequence: 7 givenname: Hao surname: Gu fullname: Gu, Hao organization: Avenida da Universidade – sequence: 8 givenname: Xiaotian surname: Hu fullname: Hu, Xiaotian organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Guichuan surname: Xing fullname: Xing, Guichuan email: gcxing@umac.mo organization: Avenida da Universidade – sequence: 10 givenname: Xutang surname: Tao fullname: Tao, Xutang organization: Shandong University – sequence: 11 givenname: Yanlin orcidid: 0000-0002-2600-6342 surname: Song fullname: Song, Yanlin email: ylsong@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31267588$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFDEYh4NU7LZ69SgDXrzMmmSSbHJcdtUKW-xBzyGTybip-VOTTJfe_Aj9jP0kZt22QkGEQEh4nh-87-8EHIUYDACvEZwjCPF7NXg1xxCJehh7BmaIYtQSKOgRmEHR0VYwwo_BSc6XEELBIHsBjjuE2YJyPgPTJu7uft2urTch2xiUay5Mitf5hy0mNztbts3aKu9jsJNvVBia8xji48fSFZOCCqVZqVL93IwxNWf2-7am1qT68ipo01xsY4nX0RVldX4Jno_KZfPq_j4F3z5--Lo6azdfPn1eLTetJgiydlSEcSrg0CHKhgVDjGve04FRNPZk1Jxro5FAChoMeS9Ir8mwUF2PBcKIq-4UvDvkXqX4czK5SG-zNs6pYOKUJca0ZgpEREXfPkEv41Qnc3tqIRglBNJKvbmnpt6bQV4l61W6kQ8LrQA5ADrFnJMZpbblz2ZKUtZJBOW-N7nvTT72VrX5E-0h-Z-COAg768zNf2i5XJ8v_7q_AXMtrbA |
CitedBy_id | crossref_primary_10_1021_acsami_0c16514 crossref_primary_10_1002_solr_202100675 crossref_primary_10_1039_D1SE00589H crossref_primary_10_1002_adma_202105083 crossref_primary_10_1002_adfm_202104342 crossref_primary_10_1002_adfm_202104868 crossref_primary_10_1016_j_jechem_2020_08_022 crossref_primary_10_1002_adma_202205258 crossref_primary_10_1007_s11431_022_2285_1 crossref_primary_10_1002_adom_202000370 crossref_primary_10_1002_ange_202112022 crossref_primary_10_1002_admi_202201501 crossref_primary_10_1002_solr_202100286 crossref_primary_10_1002_aenm_202000694 crossref_primary_10_1002_smtd_202300421 crossref_primary_10_1021_acsnano_0c00875 crossref_primary_10_1021_acsenergylett_1c00620 crossref_primary_10_1039_D0TA02706E crossref_primary_10_1002_adom_202100390 crossref_primary_10_1039_D0TA00525H crossref_primary_10_1002_solr_201900310 crossref_primary_10_1002_anie_202112022 crossref_primary_10_1039_C9EE03757H crossref_primary_10_1002_aenm_202300188 crossref_primary_10_1002_adma_202002582 crossref_primary_10_1002_adma_202404795 crossref_primary_10_1039_D0QM01002B crossref_primary_10_1021_acs_nanolett_3c03887 crossref_primary_10_1002_smll_202003098 crossref_primary_10_1002_adfm_202207911 crossref_primary_10_1002_anie_202217910 crossref_primary_10_1002_anie_202000460 crossref_primary_10_1002_aenm_202301006 crossref_primary_10_1021_acsami_0c16402 crossref_primary_10_1039_D0TA04589F crossref_primary_10_1002_smll_202203571 crossref_primary_10_59717_j_xinn_mater_2024_100084 crossref_primary_10_1039_D1TA07537C crossref_primary_10_1021_acssuschemeng_4c02343 crossref_primary_10_1039_D2QM01315K crossref_primary_10_1002_solr_201900578 crossref_primary_10_1002_admi_202201259 crossref_primary_10_1002_adfm_202205289 crossref_primary_10_1002_smll_202003145 crossref_primary_10_1021_acsami_4c04615 crossref_primary_10_1021_acsmaterialslett_2c01104 crossref_primary_10_1021_acsenergylett_2c00485 crossref_primary_10_20517_microstructures_2024_74 crossref_primary_10_1002_smll_202108090 crossref_primary_10_1002_solr_202000586 crossref_primary_10_1002_smll_201906997 crossref_primary_10_1016_j_cej_2021_131450 crossref_primary_10_1038_s43246_020_0036_z crossref_primary_10_1016_j_nanoen_2022_107822 crossref_primary_10_1007_s10311_021_01306_8 crossref_primary_10_1002_adma_202303275 crossref_primary_10_1002_anie_202117067 crossref_primary_10_1021_acs_nanolett_1c01505 crossref_primary_10_1038_s41578_023_00560_2 crossref_primary_10_1016_j_jcis_2023_05_132 crossref_primary_10_1016_j_solener_2021_01_004 crossref_primary_10_1002_aenm_202002558 crossref_primary_10_1016_j_trechm_2022_08_009 crossref_primary_10_1016_j_cplett_2020_138192 crossref_primary_10_1039_D0EE01833C crossref_primary_10_1002_ange_202217910 crossref_primary_10_1016_j_chempr_2023_11_010 crossref_primary_10_1021_jacs_3c13576 crossref_primary_10_1002_smll_202304332 crossref_primary_10_1002_adma_201903937 crossref_primary_10_1002_ange_202104958 crossref_primary_10_1002_ange_202000460 crossref_primary_10_1016_j_scib_2022_05_019 crossref_primary_10_1002_ange_202117067 crossref_primary_10_1002_smll_201905081 crossref_primary_10_1002_adma_201904735 crossref_primary_10_1002_adma_202405684 crossref_primary_10_1002_aenm_202003877 crossref_primary_10_1002_solr_202100979 crossref_primary_10_1002_advs_202310263 crossref_primary_10_1039_D1NR03886A crossref_primary_10_1039_D0TC04746E crossref_primary_10_1002_adom_202302159 crossref_primary_10_1088_1361_6633_ab9f88 crossref_primary_10_1002_adfm_202000794 crossref_primary_10_1002_anie_202104958 crossref_primary_10_1007_s40820_023_01110_9 crossref_primary_10_1002_anie_202007353 crossref_primary_10_1002_adma_202404517 crossref_primary_10_1039_D3CC01183F crossref_primary_10_1002_adom_202102227 crossref_primary_10_1039_D1TA03749H crossref_primary_10_1134_S0036023622070087 crossref_primary_10_1002_adma_202210611 crossref_primary_10_1021_acs_inorgchem_3c04140 crossref_primary_10_1002_solr_202000087 crossref_primary_10_1002_aenm_202204233 crossref_primary_10_1039_D4TA02141J crossref_primary_10_1007_s42114_023_00691_8 crossref_primary_10_1002_eem2_12666 crossref_primary_10_1039_D3TC04411D crossref_primary_10_1002_adma_202106822 crossref_primary_10_1002_ange_202007353 |
Cites_doi | 10.1002/adma.201306281 10.1021/jacs.7b09096 10.1021/jacs.7b01815 10.1002/anie.201708434 10.1039/C8TA06976J 10.1021/jacs.5b03796 10.1021/jacs.8b13104 10.1103/PhysRevB.42.1417 10.1002/ange.201406466 10.1038/s41467-018-04419-x 10.1038/nnano.2016.110 10.1002/adma.201804372 10.1021/acs.nanolett.5b02985 10.1038/ncomms14558 10.1021/acsenergylett.9b00403 10.1021/jacs.7b11157 10.1126/science.1243167 10.1002/adma.201703487 10.1021/jacs.8b00542 10.1002/adma.201601369 10.1016/j.joule.2018.11.026 10.1002/aenm.201700162 10.1002/adfm.201604733 10.1038/s41467-018-04659-x 10.1038/nenergy.2017.135 10.1021/jacs.5b11740 10.1002/adma.201604278 10.1002/adma.201805323 10.1021/acs.chemmater.8b02970 10.1002/adma.201800710 10.1002/eem2.12022 10.1002/aenm.201800051 10.1002/aenm.201803384 10.1038/nature18306 10.1039/C7EE01145H 10.1126/science.aac7660 10.1103/PhysRevB.46.4092 10.1021/jacs.7b12551 10.1021/ed084p685 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201901966 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 31267588 10_1002_adma_201901966 ADMA201901966 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: K.C. Wong Education Foundation – fundername: Macau Science and Technology Development Funds funderid: FDCT‐116/2016/A3; FDCT‐091/2017/A2; FDCT‐014/2017/AMJ; SRG2016‐00087‐FST; MYRG2018‐00148‐IAPME – fundername: National Key R&D Program of China funderid: 2018YFA0208501; 2016YFB0401603; 2016YFC1100502; 2016YFB0401100 – fundername: National Nature Science Foundation of China funderid: 51773206; 51573192; 21522308; 91733302; 61605073; 2015CB932200 – fundername: Beijing Natural Science Foundation funderid: 2194093 – fundername: University of Macau – fundername: National Nature Science Foundation of China grantid: 51773206 – fundername: National Key R&D Program of China grantid: 2016YFB0401100 – fundername: Beijing Natural Science Foundation grantid: 2194093 – fundername: National Nature Science Foundation of China grantid: 91733302 – fundername: National Key R&D Program of China grantid: 2016YFB0401603 – fundername: National Nature Science Foundation of China grantid: 51573192 – fundername: National Key R&D Program of China grantid: 2018YFA0208501 – fundername: National Key R&D Program of China grantid: 2016YFC1100502 – fundername: Macau Science and Technology Development Funds grantid: MYRG2018-00148-IAPME |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4106-fa468590d3156d76168c8b5d651fb4fc88cec191a0e208b94bc4d7a3b291218a3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:10:23 EDT 2025 Fri Jul 25 06:00:28 EDT 2025 Wed Feb 19 02:31:37 EST 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 00:44:53 EDT 2025 Wed Jan 22 16:38:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | low-dimensional perovskites ultrafast transient absorption carrier extraction efficiency perovskite solar cells |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4106-fa468590d3156d76168c8b5d651fb4fc88cec191a0e208b94bc4d7a3b291218a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2600-6342 |
PMID | 31267588 |
PQID | 2279654405 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2251689149 proquest_journals_2279654405 pubmed_primary_31267588 crossref_citationtrail_10_1002_adma_201901966 crossref_primary_10_1002_adma_201901966 wiley_primary_10_1002_adma_201901966_ADMA201901966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 15 2017; 8 2019; 9 2019; 4 2019; 3 2017; 2 2018; 140 2017; 27 2016; 10 2014; 26 2013; 342 2017; 29 2015; 349 2019; 141 2017; 139 2016; 11 2018; 6 2018; 9 1990; 42 2018; 8 2015; 137 2018; 1 2016; 536 2017; 10 2017; 56 2018; 30 1992; 46 2016; 138 2007; 84 2016; 28 2014; 126 Wang N. (e_1_2_4_27_1) 2016; 10 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 56 start-page: 14893 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 669 year: 2016 publication-title: Nat. Photonics – volume: 9 start-page: 2254 year: 2018 publication-title: Nat. Commun. – volume: 29 start-page: 1604278 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 2013 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 872 year: 2016 publication-title: Nat. Nanotechnol. – volume: 30 start-page: 1805323 year: 2018 publication-title: Adv. Mater. – volume: 30 start-page: 1804372 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 1803384 year: 2019 publication-title: Adv. Energy Mater. – volume: 126 start-page: 11414 year: 2014 publication-title: Angew. Chem. – volume: 46 start-page: 4092 year: 1992 publication-title: Phys. Rev. B – volume: 27 start-page: 1604733 year: 2017 publication-title: Adv. Funct. Mater. – volume: 84 start-page: 685 year: 2007 publication-title: J. Chem. Educ. – volume: 30 start-page: 1800710 year: 2018 publication-title: Adv. Mater. – volume: 30 start-page: 1703487 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 459 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 17135 year: 2017 publication-title: Nat. Energy – volume: 139 start-page: 16297 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2095 year: 2017 publication-title: Energy Environ. Sci. – volume: 8 start-page: 14558 year: 2017 publication-title: Nat. Commun. – volume: 140 start-page: 3775 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 138 start-page: 2649 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1700162 year: 2017 publication-title: Adv. Energy Mater. – volume: 137 start-page: 7843 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 6693 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 1518 year: 2015 publication-title: Science – volume: 6 start-page: 18871 year: 2018 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1800051 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 start-page: 7691 year: 2018 publication-title: Chem. Mater. – volume: 3 start-page: 794 year: 2019 publication-title: Joule – volume: 1 start-page: 221 year: 2018 publication-title: Energy Environ. Mater. – volume: 536 start-page: 312 year: 2016 publication-title: Nature – volume: 42 start-page: 1417 year: 1990 publication-title: Phys. Rev. B – volume: 4 start-page: 1216 year: 2019 publication-title: ACS Energy Lett. – volume: 140 start-page: 2890 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 4653 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 7515 year: 2016 publication-title: Adv. Mater. – volume: 141 start-page: 2684 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 6521 year: 2015 publication-title: Nano Lett. – ident: e_1_2_4_33_1 doi: 10.1002/adma.201306281 – ident: e_1_2_4_11_1 doi: 10.1021/jacs.7b09096 – ident: e_1_2_4_17_1 doi: 10.1021/jacs.7b01815 – ident: e_1_2_4_22_1 doi: 10.1002/anie.201708434 – ident: e_1_2_4_32_1 doi: 10.1039/C8TA06976J – ident: e_1_2_4_8_1 doi: 10.1021/jacs.5b03796 – ident: e_1_2_4_28_1 doi: 10.1021/jacs.8b13104 – ident: e_1_2_4_35_1 doi: 10.1103/PhysRevB.42.1417 – ident: e_1_2_4_7_1 doi: 10.1002/ange.201406466 – ident: e_1_2_4_12_1 doi: 10.1038/s41467-018-04419-x – ident: e_1_2_4_14_1 doi: 10.1038/nnano.2016.110 – ident: e_1_2_4_9_1 doi: 10.1002/adma.201804372 – ident: e_1_2_4_21_1 doi: 10.1021/acs.nanolett.5b02985 – ident: e_1_2_4_26_1 doi: 10.1038/ncomms14558 – ident: e_1_2_4_40_1 doi: 10.1021/acsenergylett.9b00403 – ident: e_1_2_4_39_1 doi: 10.1021/jacs.7b11157 – ident: e_1_2_4_36_1 doi: 10.1126/science.1243167 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201703487 – ident: e_1_2_4_4_1 doi: 10.1021/jacs.8b00542 – ident: e_1_2_4_15_1 doi: 10.1002/adma.201601369 – volume: 10 start-page: 669 year: 2016 ident: e_1_2_4_27_1 publication-title: Nat. Photonics – ident: e_1_2_4_30_1 doi: 10.1016/j.joule.2018.11.026 – ident: e_1_2_4_3_1 doi: 10.1002/aenm.201700162 – ident: e_1_2_4_18_1 doi: 10.1002/adfm.201604733 – ident: e_1_2_4_23_1 doi: 10.1038/s41467-018-04659-x – ident: e_1_2_4_38_1 doi: 10.1038/nenergy.2017.135 – ident: e_1_2_4_1_1 doi: 10.1021/jacs.5b11740 – ident: e_1_2_4_25_1 doi: 10.1002/adma.201604278 – ident: e_1_2_4_24_1 doi: 10.1002/adma.201805323 – ident: e_1_2_4_20_1 doi: 10.1021/acs.chemmater.8b02970 – ident: e_1_2_4_29_1 doi: 10.1002/adma.201800710 – ident: e_1_2_4_16_1 doi: 10.1002/eem2.12022 – ident: e_1_2_4_19_1 doi: 10.1002/aenm.201800051 – ident: e_1_2_4_31_1 doi: 10.1002/aenm.201803384 – ident: e_1_2_4_5_1 doi: 10.1038/nature18306 – ident: e_1_2_4_6_1 doi: 10.1039/C7EE01145H – ident: e_1_2_4_2_1 doi: 10.1126/science.aac7660 – ident: e_1_2_4_34_1 doi: 10.1103/PhysRevB.46.4092 – ident: e_1_2_4_13_1 doi: 10.1021/jacs.7b12551 – ident: e_1_2_4_37_1 doi: 10.1021/ed084p685 |
SSID | ssj0009606 |
Score | 2.593925 |
Snippet | Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic... Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1901966 |
SubjectTerms | carrier extraction efficiency Carrier transport Cations Crystal structure Devices Diffusion barriers Electromagnetic absorption Energy conversion efficiency Excitons Interlayers low‐dimensional perovskites Materials science perovskite solar cells Perovskite structure Perovskites Photovoltaic cells Quantum wells Solar cells Solar energy Structural analysis ultrafast transient absorption |
Title | Low‐Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High‐Performance Photovoltaics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901966 https://www.ncbi.nlm.nih.gov/pubmed/31267588 https://www.proquest.com/docview/2279654405 https://www.proquest.com/docview/2251689149 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQkTm4TPxLnuOpSVYiiFaJSb5FfESvaBDUJlXriJ_Ab-SXMxLvZLgghwS0PJ7GdGc834_FnQl45njnllWNCuMDAXmfMmlowU6TBO4WUbTije_w-PzqRb0_V6bVV_JEfYgq4oWaM4zUquLHd_oY01PiRNwgNGkB2GIQxYQtR0YcNfxTC85FsTyhW5lKvWRtTvr_9-LZV-g1qbiPX0fQc3iFmXemYcfJ5b-jtnrv6hc_xf1p1l9xe4VI6i4J0j9wIzX1y6xpb4QMyvGsvf3z7Psf9ACKXB12Ei_ZrhwHgjmJEl86XBgV7OZxT03gKI0Y7XZidjcHHpqcHMUxIATBTTDSBty42Cxjo4lPbtzBs9mbpuofk5PDNx4Mjttq1gTkJ_iWrjcy1KlMvwDX0RZ7l2mmrfK6y2sraae2CAy_RpIGn2pbSOukLIywvM8AbRjwiO03bhCeEGvBmrPA8Fa6URcqNL50BzFIr6UpdFAlh679WuRWlOe6scVZFMmZeYXdWU3cm5PVU_ksk8_hjyd21EFQrpe4qJFvMlQSIm5CX021QR5xjMU1oByyjoMEl-J0JeRyFZ_qUyDi6ZzohfBSBv9Shms2PZ9PZ03956Bm5iccxYXGX7PQXQ3gOIKq3L0ZF-QnGLBXZ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPlGcJLWAkJE5uk9jO47jqtlpgt1qhVuIW-RWxoiSom4DEiZ_Ab-SX1BNvsiwIIcExjp34MWN_Mx5_Bnih40gLIzRlTFvq1uuIKlkyKtPQGi2Qsg13dGenyeScv34n-mhCPAvj-SEGhxtqRjdfo4KjQ_pwzRoqTUcchCuaw-zX4QZe6430-eO3awYpBOgd3R4TNE941vM2hvHhZvnNdek3sLmJXbvF52QHVF9tH3Py4aBt1IH--guj43-16w7cXkFTMvKydBeu2eoebP9EWHgf2mn95ce372O8EsDTeZC5vaw_L9EHvCTo1CXjhUTZXrQfiawMcZNGPSSMLjr_Y9WQI-8pJA4zE4w1cV-dr88wkPn7uqndzNnIhV4-gPOT47OjCV1d3EA1dyYmLSVPMpGHhjnr0KRJlGQ6U8K48SkVL3WWaaudoShDG4eZyrnS3KSSqTiPHOSQ7CFsVXVlHwGRzqBRzMQh0zlPw1iaXEsHW0rBdZ6laQC0H7ZCr1jN8XKNi8LzMccFdmcxdGcAL4f8nzyfxx9z7vdSUKz0elkg32IiuEO5ATwfXjuNxG0WWdm6xTzCNTh3pmcAu156hl-xKEYLLQsg7mTgL3UoRuPZaHh6_C-FnsHNydlsWkxfnb7Zg1uY7uMX92GruWztE4epGvW005orFzcZ9Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt4kdiH1cNqwJttUJU6i3yIxErSlJ1E5A48RP4jfwSPPFutgtCSHCMYye2M-P5Zux8A_DC0tQKJ2zMmK1ib6_T2OiaxTpPKmcFUrbhju7hUbZ_zN-ciJMLf_EHfogx4IaaMazXqOBnrt5dk4ZqN_AGoUHzkP0yXOFZojB5Q_FuTSCF-Hxg22MiVhmXK9rGhO5utt80S79hzU3oOtie6U3Qq16HIycfd_rO7NivvxA6_s-wbsGNJTAlkyBJt-FS1dyB6xfoCu9Cf9B--fHte4EJAQKZB5lV5-3nBUaAFwRDuqSYa5Tsef-J6MYRv2S0Y8HkdIg-Nh3ZC3FC4hEzwZMm_qmz9R8MZPah7Vq_bnZ6bhf34Hj66v3efrxM2xBb7h3MuNY8k0Iljnnf0OVZmkkrjXCZSGvDayulrax3E3VS0UQaxY3lLtfMUJV6wKHZfdhq2qZ6CER7d8YwRxNmFc8Tqp2y2oOWWnCrZJ5HEK--WmmXnOaYWuO0DGzMtMTpLMfpjODlWP8ssHn8seb2SgjKpVYvSmRbzAT3GDeC5-Ntr4-4yaKbqu2xjvADVt7xjOBBEJ7xVSyl6J_JCOggAn_pQzkpDifj1aN_afQMrs6KaXnw-ujtY7iGxeHw4jZsded99cQDqs48HXTmJ7T1GKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Dimensional+Perovskites+with+Diammonium+and+Monoammonium+Alternant+Cations+for+High-Performance+Photovoltaics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Pengwei&rft.au=Liang%2C+Chao&rft.au=Liu%2C+Xiao-Long&rft.au=Li%2C+Fengyu&rft.date=2019-08-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=35&rft.spage=e1901966&rft_id=info:doi/10.1002%2Fadma.201901966&rft_id=info%3Apmid%2F31267588&rft.externalDocID=31267588 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |