Low‐Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High‐Performance Photovoltaics

Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, result...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 35; pp. e1901966 - n/a
Main Authors Li, Pengwei, Liang, Chao, Liu, Xiao‐Long, Li, Fengyu, Zhang, Yiqiang, Liu, Xiao‐Tao, Gu, Hao, Hu, Xiaotian, Xing, Guichuan, Tao, Xutang, Song, Yanlin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. A new type of ACI perovskite is prepared through the alternating ordering of BEA2+ and MA+ cations in the interlayer space (B‐ACI). The high exciton extraction efficiency and a narrow distribution of quantum well widths of B‐ACI perovskite enable a device with a record efficiency of 17.39%. Furthermore, the devices show stronger resistance to humidity, heating, and light soaks than previous equivalents.
AbstractList Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+ ) and monoammonium (MA+ ) cations in the interlayer space (B-ACI) with the formula (BEA)0.5 MAn PbnI3n+1 . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5 MA3 Pb3 I10 and 17.39% for (BEA)0.5 Cs0.15 (FA0.83 MA0.17 )2.85 Pb3 (I0.83 Br0.17 )10 without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+ ) and monoammonium (MA+ ) cations in the interlayer space (B-ACI) with the formula (BEA)0.5 MAn PbnI3n+1 . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5 MA3 Pb3 I10 and 17.39% for (BEA)0.5 Cs0.15 (FA0.83 MA0.17 )2.85 Pb3 (I0.83 Br0.17 )10 without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAn PbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h. A new type of ACI perovskite is prepared through the alternating ordering of BEA2+ and MA+ cations in the interlayer space (B‐ACI). The high exciton extraction efficiency and a narrow distribution of quantum well widths of B‐ACI perovskite enable a device with a record efficiency of 17.39%. Furthermore, the devices show stronger resistance to humidity, heating, and light soaks than previous equivalents.
Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4-Butanediamine (BEA)-based low-dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single-crystal X-ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA ) and monoammonium (MA ) cations in the interlayer space (B-ACI) with the formula (BEA) MA PbnI . Compared to the typical LDRP counterparts, these B-ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B-ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier-free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA) MA Pb I and 17.39% for (BEA) Cs (FA MA ) Pb (I Br ) without hysteresis. Furthermore, the triple cations B-ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA2+) and monoammonium (MA+) cations in the interlayer space (B‐ACI) with the formula (BEA)0.5MAnPbnI3n+1. Compared to the typical LDRP counterparts, these B‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA)0.5MA3Pb3I10 and 17.39% for (BEA)0.5Cs0.15(FA0.83MA0.17)2.85Pb3(I0.83Br0.17)10 without hysteresis. Furthermore, the triple cations B‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.
Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic devices from them. However, poor exciton dissociation and insufficiently fast charge transfer slows the charge extraction in these devices, resulting in inferior performance. 1,4‐Butanediamine (BEA)‐based low‐dimensional perovskites are designed to improve the carrier extraction efficiency in such devices. Structural characterization using single‐crystal X‐ray diffraction reveals that these layered perovskites are formed by the alternating ordering of diammonium (BEA 2+ ) and monoammonium (MA + ) cations in the interlayer space ( B ‐ACI) with the formula (BEA) 0.5 MA n Pb n I 3 n +1 . Compared to the typical LDRP counterparts, these B ‐ACI perovskites deliver a wider light absorption window and lower exciton binding energies with a more stable layered perovskite structure. Additionally, ultrafast transient absorption indicates that B ‐ACI perovskites exhibit a narrow distribution of quantum well widths, leading to a barrier‐free and balanced carrier transport pathway with enhanced carrier diffusion (electron and hole) length over 350 nm. A perovskite solar cell incorporating BEA ligands achieves record efficiencies of 14.86% for (BEA) 0.5 MA 3 Pb 3 I 10 and 17.39% for (BEA) 0.5 Cs 0.15 (FA 0.83 MA 0.17 ) 2.85 Pb 3 (I 0.83 Br 0.17 ) 10 without hysteresis. Furthermore, the triple cations B ‐ACI devices can retain over 90% of their initial power conversion efficiency when stored under ambient atmospheric conditions for 2400 h and show no significant degradation under constant illumination for over 500 h.
Author Liu, Xiao‐Long
Li, Fengyu
Hu, Xiaotian
Liang, Chao
Gu, Hao
Song, Yanlin
Li, Pengwei
Zhang, Yiqiang
Xing, Guichuan
Tao, Xutang
Liu, Xiao‐Tao
Author_xml – sequence: 1
  givenname: Pengwei
  surname: Li
  fullname: Li, Pengwei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Chao
  surname: Liang
  fullname: Liang, Chao
  organization: Avenida da Universidade
– sequence: 3
  givenname: Xiao‐Long
  surname: Liu
  fullname: Liu, Xiao‐Long
  organization: Shandong University
– sequence: 4
  givenname: Fengyu
  surname: Li
  fullname: Li, Fengyu
  organization: National Laboratory for Molecular Sciences (BNLMS)
– sequence: 5
  givenname: Yiqiang
  surname: Zhang
  fullname: Zhang, Yiqiang
  organization: Zhengzhou University
– sequence: 6
  givenname: Xiao‐Tao
  surname: Liu
  fullname: Liu, Xiao‐Tao
  organization: Zhengzhou University
– sequence: 7
  givenname: Hao
  surname: Gu
  fullname: Gu, Hao
  organization: Avenida da Universidade
– sequence: 8
  givenname: Xiaotian
  surname: Hu
  fullname: Hu, Xiaotian
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Guichuan
  surname: Xing
  fullname: Xing, Guichuan
  email: gcxing@umac.mo
  organization: Avenida da Universidade
– sequence: 10
  givenname: Xutang
  surname: Tao
  fullname: Tao, Xutang
  organization: Shandong University
– sequence: 11
  givenname: Yanlin
  orcidid: 0000-0002-2600-6342
  surname: Song
  fullname: Song, Yanlin
  email: ylsong@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31267588$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFDEYh4NU7LZ69SgDXrzMmmSSbHJcdtUKW-xBzyGTybip-VOTTJfe_Aj9jP0kZt22QkGEQEh4nh-87-8EHIUYDACvEZwjCPF7NXg1xxCJehh7BmaIYtQSKOgRmEHR0VYwwo_BSc6XEELBIHsBjjuE2YJyPgPTJu7uft2urTch2xiUay5Mitf5hy0mNztbts3aKu9jsJNvVBia8xji48fSFZOCCqVZqVL93IwxNWf2-7am1qT68ipo01xsY4nX0RVldX4Jno_KZfPq_j4F3z5--Lo6azdfPn1eLTetJgiydlSEcSrg0CHKhgVDjGve04FRNPZk1Jxro5FAChoMeS9Ir8mwUF2PBcKIq-4UvDvkXqX4czK5SG-zNs6pYOKUJca0ZgpEREXfPkEv41Qnc3tqIRglBNJKvbmnpt6bQV4l61W6kQ8LrQA5ADrFnJMZpbblz2ZKUtZJBOW-N7nvTT72VrX5E-0h-Z-COAg768zNf2i5XJ8v_7q_AXMtrbA
CitedBy_id crossref_primary_10_1021_acsami_0c16514
crossref_primary_10_1002_solr_202100675
crossref_primary_10_1039_D1SE00589H
crossref_primary_10_1002_adma_202105083
crossref_primary_10_1002_adfm_202104342
crossref_primary_10_1002_adfm_202104868
crossref_primary_10_1016_j_jechem_2020_08_022
crossref_primary_10_1002_adma_202205258
crossref_primary_10_1007_s11431_022_2285_1
crossref_primary_10_1002_adom_202000370
crossref_primary_10_1002_ange_202112022
crossref_primary_10_1002_admi_202201501
crossref_primary_10_1002_solr_202100286
crossref_primary_10_1002_aenm_202000694
crossref_primary_10_1002_smtd_202300421
crossref_primary_10_1021_acsnano_0c00875
crossref_primary_10_1021_acsenergylett_1c00620
crossref_primary_10_1039_D0TA02706E
crossref_primary_10_1002_adom_202100390
crossref_primary_10_1039_D0TA00525H
crossref_primary_10_1002_solr_201900310
crossref_primary_10_1002_anie_202112022
crossref_primary_10_1039_C9EE03757H
crossref_primary_10_1002_aenm_202300188
crossref_primary_10_1002_adma_202002582
crossref_primary_10_1002_adma_202404795
crossref_primary_10_1039_D0QM01002B
crossref_primary_10_1021_acs_nanolett_3c03887
crossref_primary_10_1002_smll_202003098
crossref_primary_10_1002_adfm_202207911
crossref_primary_10_1002_anie_202217910
crossref_primary_10_1002_anie_202000460
crossref_primary_10_1002_aenm_202301006
crossref_primary_10_1021_acsami_0c16402
crossref_primary_10_1039_D0TA04589F
crossref_primary_10_1002_smll_202203571
crossref_primary_10_59717_j_xinn_mater_2024_100084
crossref_primary_10_1039_D1TA07537C
crossref_primary_10_1021_acssuschemeng_4c02343
crossref_primary_10_1039_D2QM01315K
crossref_primary_10_1002_solr_201900578
crossref_primary_10_1002_admi_202201259
crossref_primary_10_1002_adfm_202205289
crossref_primary_10_1002_smll_202003145
crossref_primary_10_1021_acsami_4c04615
crossref_primary_10_1021_acsmaterialslett_2c01104
crossref_primary_10_1021_acsenergylett_2c00485
crossref_primary_10_20517_microstructures_2024_74
crossref_primary_10_1002_smll_202108090
crossref_primary_10_1002_solr_202000586
crossref_primary_10_1002_smll_201906997
crossref_primary_10_1016_j_cej_2021_131450
crossref_primary_10_1038_s43246_020_0036_z
crossref_primary_10_1016_j_nanoen_2022_107822
crossref_primary_10_1007_s10311_021_01306_8
crossref_primary_10_1002_adma_202303275
crossref_primary_10_1002_anie_202117067
crossref_primary_10_1021_acs_nanolett_1c01505
crossref_primary_10_1038_s41578_023_00560_2
crossref_primary_10_1016_j_jcis_2023_05_132
crossref_primary_10_1016_j_solener_2021_01_004
crossref_primary_10_1002_aenm_202002558
crossref_primary_10_1016_j_trechm_2022_08_009
crossref_primary_10_1016_j_cplett_2020_138192
crossref_primary_10_1039_D0EE01833C
crossref_primary_10_1002_ange_202217910
crossref_primary_10_1016_j_chempr_2023_11_010
crossref_primary_10_1021_jacs_3c13576
crossref_primary_10_1002_smll_202304332
crossref_primary_10_1002_adma_201903937
crossref_primary_10_1002_ange_202104958
crossref_primary_10_1002_ange_202000460
crossref_primary_10_1016_j_scib_2022_05_019
crossref_primary_10_1002_ange_202117067
crossref_primary_10_1002_smll_201905081
crossref_primary_10_1002_adma_201904735
crossref_primary_10_1002_adma_202405684
crossref_primary_10_1002_aenm_202003877
crossref_primary_10_1002_solr_202100979
crossref_primary_10_1002_advs_202310263
crossref_primary_10_1039_D1NR03886A
crossref_primary_10_1039_D0TC04746E
crossref_primary_10_1002_adom_202302159
crossref_primary_10_1088_1361_6633_ab9f88
crossref_primary_10_1002_adfm_202000794
crossref_primary_10_1002_anie_202104958
crossref_primary_10_1007_s40820_023_01110_9
crossref_primary_10_1002_anie_202007353
crossref_primary_10_1002_adma_202404517
crossref_primary_10_1039_D3CC01183F
crossref_primary_10_1002_adom_202102227
crossref_primary_10_1039_D1TA03749H
crossref_primary_10_1134_S0036023622070087
crossref_primary_10_1002_adma_202210611
crossref_primary_10_1021_acs_inorgchem_3c04140
crossref_primary_10_1002_solr_202000087
crossref_primary_10_1002_aenm_202204233
crossref_primary_10_1039_D4TA02141J
crossref_primary_10_1007_s42114_023_00691_8
crossref_primary_10_1002_eem2_12666
crossref_primary_10_1039_D3TC04411D
crossref_primary_10_1002_adma_202106822
crossref_primary_10_1002_ange_202007353
Cites_doi 10.1002/adma.201306281
10.1021/jacs.7b09096
10.1021/jacs.7b01815
10.1002/anie.201708434
10.1039/C8TA06976J
10.1021/jacs.5b03796
10.1021/jacs.8b13104
10.1103/PhysRevB.42.1417
10.1002/ange.201406466
10.1038/s41467-018-04419-x
10.1038/nnano.2016.110
10.1002/adma.201804372
10.1021/acs.nanolett.5b02985
10.1038/ncomms14558
10.1021/acsenergylett.9b00403
10.1021/jacs.7b11157
10.1126/science.1243167
10.1002/adma.201703487
10.1021/jacs.8b00542
10.1002/adma.201601369
10.1016/j.joule.2018.11.026
10.1002/aenm.201700162
10.1002/adfm.201604733
10.1038/s41467-018-04659-x
10.1038/nenergy.2017.135
10.1021/jacs.5b11740
10.1002/adma.201604278
10.1002/adma.201805323
10.1021/acs.chemmater.8b02970
10.1002/adma.201800710
10.1002/eem2.12022
10.1002/aenm.201800051
10.1002/aenm.201803384
10.1038/nature18306
10.1039/C7EE01145H
10.1126/science.aac7660
10.1103/PhysRevB.46.4092
10.1021/jacs.7b12551
10.1021/ed084p685
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201901966
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 31267588
10_1002_adma_201901966
ADMA201901966
Genre article
Journal Article
GrantInformation_xml – fundername: K.C. Wong Education Foundation
– fundername: Macau Science and Technology Development Funds
  funderid: FDCT‐116/2016/A3; FDCT‐091/2017/A2; FDCT‐014/2017/AMJ; SRG2016‐00087‐FST; MYRG2018‐00148‐IAPME
– fundername: National Key R&D Program of China
  funderid: 2018YFA0208501; 2016YFB0401603; 2016YFC1100502; 2016YFB0401100
– fundername: National Nature Science Foundation of China
  funderid: 51773206; 51573192; 21522308; 91733302; 61605073; 2015CB932200
– fundername: Beijing Natural Science Foundation
  funderid: 2194093
– fundername: University of Macau
– fundername: National Nature Science Foundation of China
  grantid: 51773206
– fundername: National Key R&D Program of China
  grantid: 2016YFB0401100
– fundername: Beijing Natural Science Foundation
  grantid: 2194093
– fundername: National Nature Science Foundation of China
  grantid: 91733302
– fundername: National Key R&D Program of China
  grantid: 2016YFB0401603
– fundername: National Nature Science Foundation of China
  grantid: 51573192
– fundername: National Key R&D Program of China
  grantid: 2018YFA0208501
– fundername: National Key R&D Program of China
  grantid: 2016YFC1100502
– fundername: Macau Science and Technology Development Funds
  grantid: MYRG2018-00148-IAPME
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4106-fa468590d3156d76168c8b5d651fb4fc88cec191a0e208b94bc4d7a3b291218a3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:10:23 EDT 2025
Fri Jul 25 06:00:28 EDT 2025
Wed Feb 19 02:31:37 EST 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 00:44:53 EDT 2025
Wed Jan 22 16:38:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords low-dimensional perovskites
ultrafast transient absorption
carrier extraction efficiency
perovskite solar cells
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-fa468590d3156d76168c8b5d651fb4fc88cec191a0e208b94bc4d7a3b291218a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2600-6342
PMID 31267588
PQID 2279654405
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2251689149
proquest_journals_2279654405
pubmed_primary_31267588
crossref_citationtrail_10_1002_adma_201901966
crossref_primary_10_1002_adma_201901966
wiley_primary_10_1002_adma_201901966_ADMA201901966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 15
2017; 8
2019; 9
2019; 4
2019; 3
2017; 2
2018; 140
2017; 27
2016; 10
2014; 26
2013; 342
2017; 29
2015; 349
2019; 141
2017; 139
2016; 11
2018; 6
2018; 9
1990; 42
2018; 8
2015; 137
2018; 1
2016; 536
2017; 10
2017; 56
2018; 30
1992; 46
2016; 138
2007; 84
2016; 28
2014; 126
Wang N. (e_1_2_4_27_1) 2016; 10
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 56
  start-page: 14893
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 669
  year: 2016
  publication-title: Nat. Photonics
– volume: 9
  start-page: 2254
  year: 2018
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1604278
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2013
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 872
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 30
  start-page: 1805323
  year: 2018
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1804372
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1803384
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 126
  start-page: 11414
  year: 2014
  publication-title: Angew. Chem.
– volume: 46
  start-page: 4092
  year: 1992
  publication-title: Phys. Rev. B
– volume: 27
  start-page: 1604733
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 84
  start-page: 685
  year: 2007
  publication-title: J. Chem. Educ.
– volume: 30
  start-page: 1800710
  year: 2018
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1703487
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 459
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 17135
  year: 2017
  publication-title: Nat. Energy
– volume: 139
  start-page: 16297
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2095
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 14558
  year: 2017
  publication-title: Nat. Commun.
– volume: 140
  start-page: 3775
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 138
  start-page: 2649
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1700162
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 7843
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 6693
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 1518
  year: 2015
  publication-title: Science
– volume: 6
  start-page: 18871
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1800051
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 7691
  year: 2018
  publication-title: Chem. Mater.
– volume: 3
  start-page: 794
  year: 2019
  publication-title: Joule
– volume: 1
  start-page: 221
  year: 2018
  publication-title: Energy Environ. Mater.
– volume: 536
  start-page: 312
  year: 2016
  publication-title: Nature
– volume: 42
  start-page: 1417
  year: 1990
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 1216
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 140
  start-page: 2890
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 4653
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 7515
  year: 2016
  publication-title: Adv. Mater.
– volume: 141
  start-page: 2684
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 6521
  year: 2015
  publication-title: Nano Lett.
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201306281
– ident: e_1_2_4_11_1
  doi: 10.1021/jacs.7b09096
– ident: e_1_2_4_17_1
  doi: 10.1021/jacs.7b01815
– ident: e_1_2_4_22_1
  doi: 10.1002/anie.201708434
– ident: e_1_2_4_32_1
  doi: 10.1039/C8TA06976J
– ident: e_1_2_4_8_1
  doi: 10.1021/jacs.5b03796
– ident: e_1_2_4_28_1
  doi: 10.1021/jacs.8b13104
– ident: e_1_2_4_35_1
  doi: 10.1103/PhysRevB.42.1417
– ident: e_1_2_4_7_1
  doi: 10.1002/ange.201406466
– ident: e_1_2_4_12_1
  doi: 10.1038/s41467-018-04419-x
– ident: e_1_2_4_14_1
  doi: 10.1038/nnano.2016.110
– ident: e_1_2_4_9_1
  doi: 10.1002/adma.201804372
– ident: e_1_2_4_21_1
  doi: 10.1021/acs.nanolett.5b02985
– ident: e_1_2_4_26_1
  doi: 10.1038/ncomms14558
– ident: e_1_2_4_40_1
  doi: 10.1021/acsenergylett.9b00403
– ident: e_1_2_4_39_1
  doi: 10.1021/jacs.7b11157
– ident: e_1_2_4_36_1
  doi: 10.1126/science.1243167
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201703487
– ident: e_1_2_4_4_1
  doi: 10.1021/jacs.8b00542
– ident: e_1_2_4_15_1
  doi: 10.1002/adma.201601369
– volume: 10
  start-page: 669
  year: 2016
  ident: e_1_2_4_27_1
  publication-title: Nat. Photonics
– ident: e_1_2_4_30_1
  doi: 10.1016/j.joule.2018.11.026
– ident: e_1_2_4_3_1
  doi: 10.1002/aenm.201700162
– ident: e_1_2_4_18_1
  doi: 10.1002/adfm.201604733
– ident: e_1_2_4_23_1
  doi: 10.1038/s41467-018-04659-x
– ident: e_1_2_4_38_1
  doi: 10.1038/nenergy.2017.135
– ident: e_1_2_4_1_1
  doi: 10.1021/jacs.5b11740
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201604278
– ident: e_1_2_4_24_1
  doi: 10.1002/adma.201805323
– ident: e_1_2_4_20_1
  doi: 10.1021/acs.chemmater.8b02970
– ident: e_1_2_4_29_1
  doi: 10.1002/adma.201800710
– ident: e_1_2_4_16_1
  doi: 10.1002/eem2.12022
– ident: e_1_2_4_19_1
  doi: 10.1002/aenm.201800051
– ident: e_1_2_4_31_1
  doi: 10.1002/aenm.201803384
– ident: e_1_2_4_5_1
  doi: 10.1038/nature18306
– ident: e_1_2_4_6_1
  doi: 10.1039/C7EE01145H
– ident: e_1_2_4_2_1
  doi: 10.1126/science.aac7660
– ident: e_1_2_4_34_1
  doi: 10.1103/PhysRevB.46.4092
– ident: e_1_2_4_13_1
  doi: 10.1021/jacs.7b12551
– ident: e_1_2_4_37_1
  doi: 10.1021/ed084p685
SSID ssj0009606
Score 2.593925
Snippet Low‐dimensional Ruddlesden–Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic...
Low-dimensional Ruddlesden-Popper (LDRP) perovskites are a current theme in solar energy research as researchers attempt to fabricate stable photovoltaic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1901966
SubjectTerms carrier extraction efficiency
Carrier transport
Cations
Crystal structure
Devices
Diffusion barriers
Electromagnetic absorption
Energy conversion efficiency
Excitons
Interlayers
low‐dimensional perovskites
Materials science
perovskite solar cells
Perovskite structure
Perovskites
Photovoltaic cells
Quantum wells
Solar cells
Solar energy
Structural analysis
ultrafast transient absorption
Title Low‐Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for High‐Performance Photovoltaics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901966
https://www.ncbi.nlm.nih.gov/pubmed/31267588
https://www.proquest.com/docview/2279654405
https://www.proquest.com/docview/2251689149
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQT3Dg_QgUZCQkTm4TPxLnuOpSVYiiFaJSb5FfESvaBDUJlXriJ_Ab-SXMxLvZLgghwS0PJ7GdGc834_FnQl45njnllWNCuMDAXmfMmlowU6TBO4WUbTije_w-PzqRb0_V6bVV_JEfYgq4oWaM4zUquLHd_oY01PiRNwgNGkB2GIQxYQtR0YcNfxTC85FsTyhW5lKvWRtTvr_9-LZV-g1qbiPX0fQc3iFmXemYcfJ5b-jtnrv6hc_xf1p1l9xe4VI6i4J0j9wIzX1y6xpb4QMyvGsvf3z7Psf9ACKXB12Ei_ZrhwHgjmJEl86XBgV7OZxT03gKI0Y7XZidjcHHpqcHMUxIATBTTDSBty42Cxjo4lPbtzBs9mbpuofk5PDNx4Mjttq1gTkJ_iWrjcy1KlMvwDX0RZ7l2mmrfK6y2sraae2CAy_RpIGn2pbSOukLIywvM8AbRjwiO03bhCeEGvBmrPA8Fa6URcqNL50BzFIr6UpdFAlh679WuRWlOe6scVZFMmZeYXdWU3cm5PVU_ksk8_hjyd21EFQrpe4qJFvMlQSIm5CX021QR5xjMU1oByyjoMEl-J0JeRyFZ_qUyDi6ZzohfBSBv9Shms2PZ9PZ03956Bm5iccxYXGX7PQXQ3gOIKq3L0ZF-QnGLBXZ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPlGcJLWAkJE5uk9jO47jqtlpgt1qhVuIW-RWxoiSom4DEiZ_Ab-SX1BNvsiwIIcExjp34MWN_Mx5_Bnih40gLIzRlTFvq1uuIKlkyKtPQGi2Qsg13dGenyeScv34n-mhCPAvj-SEGhxtqRjdfo4KjQ_pwzRoqTUcchCuaw-zX4QZe6430-eO3awYpBOgd3R4TNE941vM2hvHhZvnNdek3sLmJXbvF52QHVF9tH3Py4aBt1IH--guj43-16w7cXkFTMvKydBeu2eoebP9EWHgf2mn95ce372O8EsDTeZC5vaw_L9EHvCTo1CXjhUTZXrQfiawMcZNGPSSMLjr_Y9WQI-8pJA4zE4w1cV-dr88wkPn7uqndzNnIhV4-gPOT47OjCV1d3EA1dyYmLSVPMpGHhjnr0KRJlGQ6U8K48SkVL3WWaaudoShDG4eZyrnS3KSSqTiPHOSQ7CFsVXVlHwGRzqBRzMQh0zlPw1iaXEsHW0rBdZ6laQC0H7ZCr1jN8XKNi8LzMccFdmcxdGcAL4f8nzyfxx9z7vdSUKz0elkg32IiuEO5ATwfXjuNxG0WWdm6xTzCNTh3pmcAu156hl-xKEYLLQsg7mTgL3UoRuPZaHh6_C-FnsHNydlsWkxfnb7Zg1uY7uMX92GruWztE4epGvW005orFzcZ9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceD8CBYyExClt4kdiH1cNqwJttUJU6i3yIxErSlJ1E5A48RP4jfwSPPFutgtCSHCMYye2M-P5Zux8A_DC0tQKJ2zMmK1ib6_T2OiaxTpPKmcFUrbhju7hUbZ_zN-ciJMLf_EHfogx4IaaMazXqOBnrt5dk4ZqN_AGoUHzkP0yXOFZojB5Q_FuTSCF-Hxg22MiVhmXK9rGhO5utt80S79hzU3oOtie6U3Qq16HIycfd_rO7NivvxA6_s-wbsGNJTAlkyBJt-FS1dyB6xfoCu9Cf9B--fHte4EJAQKZB5lV5-3nBUaAFwRDuqSYa5Tsef-J6MYRv2S0Y8HkdIg-Nh3ZC3FC4hEzwZMm_qmz9R8MZPah7Vq_bnZ6bhf34Hj66v3efrxM2xBb7h3MuNY8k0Iljnnf0OVZmkkrjXCZSGvDayulrax3E3VS0UQaxY3lLtfMUJV6wKHZfdhq2qZ6CER7d8YwRxNmFc8Tqp2y2oOWWnCrZJ5HEK--WmmXnOaYWuO0DGzMtMTpLMfpjODlWP8ssHn8seb2SgjKpVYvSmRbzAT3GDeC5-Ntr4-4yaKbqu2xjvADVt7xjOBBEJ7xVSyl6J_JCOggAn_pQzkpDifj1aN_afQMrs6KaXnw-ujtY7iGxeHw4jZsded99cQDqs48HXTmJ7T1GKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Dimensional+Perovskites+with+Diammonium+and+Monoammonium+Alternant+Cations+for+High-Performance+Photovoltaics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Pengwei&rft.au=Liang%2C+Chao&rft.au=Liu%2C+Xiao-Long&rft.au=Li%2C+Fengyu&rft.date=2019-08-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=35&rft.spage=e1901966&rft_id=info:doi/10.1002%2Fadma.201901966&rft_id=info%3Apmid%2F31267588&rft.externalDocID=31267588
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon