Recent Progress of Hybrid Solid‐State Electrolytes for Lithium Batteries
Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 69; pp. 18293 - 18306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries.
Hybrid solid‐state electrolytes (HSSEs) are keys to the development of lithium batteries with enhanced energy density and safety. This Minireview summarizes the recent development of HSSEs and discusses their design principles, performance and ionic conducting mechanism. |
---|---|
AbstractList | Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries.
Hybrid solid‐state electrolytes (HSSEs) are keys to the development of lithium batteries with enhanced energy density and safety. This Minireview summarizes the recent development of HSSEs and discusses their design principles, performance and ionic conducting mechanism. Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries. Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid-state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid-state lithium batteries.Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid-state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid-state lithium batteries. |
Author | Liu, Xiaoyan Li, Xinru Li, Hexing Wu, Hao Bin |
Author_xml | – sequence: 1 givenname: Xiaoyan surname: Liu fullname: Liu, Xiaoyan organization: Shanghai Normal University – sequence: 2 givenname: Xinru surname: Li fullname: Li, Xinru organization: University of California – sequence: 3 givenname: Hexing surname: Li fullname: Li, Hexing organization: Shanghai Normal University – sequence: 4 givenname: Hao Bin orcidid: 0000-0002-0725-6442 surname: Wu fullname: Wu, Hao Bin email: hbwu@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30221404$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq0KBMNl22UVqRs2GY7t2ImX7WjaAQ1qxWUdOfZJMUpiajuqZtdH6DP2SQgaoBJSxepsvu_c_gOyM_gBCXlPYU4B2Km5xX7OgFbAJZXvyIwKRnNeSrFDZqCKMpeCq31yEOMdACjJ-R7Z58AYLaCYkfNLNDik7HvwPwLGmPk2W22a4Gx25Ttn__7-c5V0wmzZoUnBd5uEMWt9yNYu3bqxzz7rlDA4jEdkt9VdxOOnekhuviyvF6t8_e3r2eLTOjcFBZnbljWgtCoYFtJUUmkohLEWSw26sRVIqVQrDOiWadZQXWpbtSW1XFG00wGH5GTb9z74nyPGVPcuGuw6PaAfY80oVEyoUpYT-vEVeufHMEzbTZTgQnIm2ER9eKLGpkdb3wfX67Cpn780AfMtYIKPMWD7glCoH2OoH2OoX2KYhOKVYNz0ReeHFLTr_q-prfbLdbh5Y0i9WC0v_rkPCXOcZw |
CitedBy_id | crossref_primary_10_1039_D0CC05728B crossref_primary_10_1016_j_carbon_2020_01_077 crossref_primary_10_1016_j_cej_2024_150455 crossref_primary_10_1039_C9CP02117E crossref_primary_10_1016_j_matdes_2020_108563 crossref_primary_10_1021_acsaem_1c01570 crossref_primary_10_1016_j_ensm_2024_103570 crossref_primary_10_1021_acsaem_0c00662 crossref_primary_10_3390_membranes12040416 crossref_primary_10_1002_metm_13 crossref_primary_10_3389_fenrg_2019_00142 crossref_primary_10_1016_j_susmat_2021_e00297 crossref_primary_10_1039_D0EE00153H crossref_primary_10_1016_j_apsadv_2025_100709 crossref_primary_10_1016_j_jechem_2023_03_045 crossref_primary_10_3390_nano9050721 crossref_primary_10_1038_s41467_022_29743_1 crossref_primary_10_1021_acsaem_9b02543 crossref_primary_10_1016_j_ceramint_2020_01_170 crossref_primary_10_1016_j_jelechem_2023_117712 crossref_primary_10_1002_smll_202309317 crossref_primary_10_1039_D0NR04244G crossref_primary_10_1016_j_jssc_2023_124459 crossref_primary_10_1021_acsami_9b15374 crossref_primary_10_1016_j_jechem_2020_04_013 crossref_primary_10_1021_acsaem_2c00282 crossref_primary_10_1021_acsaem_0c00410 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1002_advs_202206887 crossref_primary_10_3390_gels10030199 crossref_primary_10_1002_advs_201903088 crossref_primary_10_1039_D3QM00736G crossref_primary_10_3390_polym15132920 crossref_primary_10_1016_j_isci_2021_102055 crossref_primary_10_1088_1361_6528_ac2093 crossref_primary_10_2174_1573413716666191230153257 crossref_primary_10_3389_fenrg_2020_571440 crossref_primary_10_1007_s40242_021_0007_z crossref_primary_10_1021_acsaem_2c01487 crossref_primary_10_1021_acsami_1c11058 crossref_primary_10_1002_chem_201904461 crossref_primary_10_1002_slct_202101891 crossref_primary_10_1039_C9TA07165B crossref_primary_10_1002_aenm_202002869 crossref_primary_10_1016_j_enchem_2021_100058 crossref_primary_10_3390_polym14224804 crossref_primary_10_1016_j_jpowsour_2022_231172 crossref_primary_10_1021_acssuschemeng_1c02886 crossref_primary_10_1016_j_ssi_2020_115437 crossref_primary_10_1016_j_ceramint_2022_10_303 crossref_primary_10_1021_acsami_1c23962 crossref_primary_10_3389_fenrg_2019_00123 crossref_primary_10_1016_j_ceja_2022_100439 crossref_primary_10_1016_j_jechem_2021_01_013 crossref_primary_10_1016_j_est_2023_109048 crossref_primary_10_1016_j_scib_2022_01_026 crossref_primary_10_1007_s41918_022_00131_z crossref_primary_10_1021_acsapm_1c01248 crossref_primary_10_1002_aenm_202301886 crossref_primary_10_1016_j_ensm_2019_06_021 crossref_primary_10_1080_10667857_2020_1726005 crossref_primary_10_3389_fenrg_2020_00202 crossref_primary_10_1002_elan_202200123 crossref_primary_10_1021_acsaem_2c02085 crossref_primary_10_3390_batteries9060314 crossref_primary_10_1016_j_nxener_2023_100042 crossref_primary_10_1016_j_electacta_2021_139701 crossref_primary_10_1016_j_joule_2019_11_015 crossref_primary_10_1016_j_memsci_2022_121095 crossref_primary_10_1039_D3TA01588B crossref_primary_10_1016_j_psep_2024_08_123 crossref_primary_10_1021_acs_energyfuels_1c01609 crossref_primary_10_1039_D0TA06697D crossref_primary_10_1016_j_adapen_2021_100070 crossref_primary_10_1016_j_ssi_2020_115419 crossref_primary_10_1002_smll_202206355 crossref_primary_10_3390_en14144223 crossref_primary_10_1016_j_apmate_2023_100154 crossref_primary_10_1021_acsaem_1c04001 crossref_primary_10_1016_j_cej_2022_139340 crossref_primary_10_1016_j_jssc_2021_122644 crossref_primary_10_1039_D0CC00454E crossref_primary_10_1016_j_jpowsour_2021_230372 crossref_primary_10_1016_j_cej_2021_133522 crossref_primary_10_1016_j_jcis_2022_05_002 crossref_primary_10_1007_s42864_019_00018_5 crossref_primary_10_1142_S1793604723400088 crossref_primary_10_1016_j_mattod_2021_08_005 crossref_primary_10_1016_j_nxmate_2024_100173 crossref_primary_10_1002_smll_202207831 crossref_primary_10_1021_acs_jchemed_0c00182 crossref_primary_10_1016_j_cej_2020_124478 crossref_primary_10_1039_D3MA00125C crossref_primary_10_1016_j_materresbull_2023_112586 crossref_primary_10_1039_D4YA00138A crossref_primary_10_1039_D0TA08169H crossref_primary_10_1016_j_cej_2021_133352 crossref_primary_10_1016_j_ensm_2020_10_006 crossref_primary_10_1021_acsaem_2c01689 crossref_primary_10_1039_D0QM00936A crossref_primary_10_1016_j_ssi_2024_116571 crossref_primary_10_1021_acsami_0c15692 crossref_primary_10_1016_j_ijoes_2024_100656 crossref_primary_10_1021_acsaem_1c03836 crossref_primary_10_1016_j_scriptamat_2022_115101 crossref_primary_10_1002_ppsc_202000164 crossref_primary_10_1016_j_elecom_2023_107491 crossref_primary_10_1002_batt_202400048 crossref_primary_10_1007_s40145_022_0580_8 crossref_primary_10_1021_acsami_0c02291 crossref_primary_10_1021_acsami_4c09099 crossref_primary_10_3390_nano10081606 crossref_primary_10_1007_s11581_021_04291_8 crossref_primary_10_1002_adfm_202309706 crossref_primary_10_1007_s40820_023_01055_z crossref_primary_10_1021_acsaelm_3c00176 crossref_primary_10_1063_1674_0068_cjcp2402020 crossref_primary_10_1002_adem_201900737 crossref_primary_10_1002_adfm_202009925 crossref_primary_10_1016_j_cjche_2021_07_008 crossref_primary_10_1016_j_ceramint_2022_05_274 crossref_primary_10_1021_acs_energyfuels_0c02111 crossref_primary_10_1016_j_cclet_2023_109189 crossref_primary_10_1016_j_ensm_2022_11_029 crossref_primary_10_1002_smll_202303625 crossref_primary_10_1016_j_xcrp_2021_100706 crossref_primary_10_1039_D0DT03336G crossref_primary_10_3389_fchem_2022_1013965 crossref_primary_10_1021_acs_jpcc_2c04213 crossref_primary_10_1002_adfm_202303718 |
Cites_doi | 10.1016/j.nanoen.2018.01.028 10.1073/pnas.1708489114 10.1002/anie.201407603 10.1002/aenm.201300654 10.1039/C7EE00988G 10.1002/anie.201004551 10.1134/S1023193518040092 10.1039/C6TA04767J 10.1039/C5CC02581H 10.1021/ar300291s 10.1021/ja205827z 10.1016/j.nanoen.2016.10.060 10.1002/anie.201607539 10.1021/acsenergylett.7b00849 10.1002/ange.201406011 10.1021/jacs.7b12292 10.1002/chem.201300326 10.1021/acs.nanolett.5b04117 10.1002/ange.201509014 10.1038/nenergy.2017.35 10.1021/acsami.8b01631 10.1002/ange.201607329 10.1002/advs.201500306 10.1021/jacs.8b03814 10.1021/acsami.8b02240 10.1007/s12274-017-1763-4 10.1021/nl202692y 10.1073/pnas.1600422113 10.1007/s12274-017-1498-2 10.1021/acs.chemrev.5b00563 10.1002/adma.201707476 10.1002/adma.201201953 10.1038/nmat4041 10.1002/adma.201701169 10.1021/acs.jpcc.6b11136 10.1002/adma.201705702 10.1016/S0167-2738(02)00366-1 10.1002/aenm.201702657 10.1149/1.1828952 10.1002/aenm.201700883 10.1016/0167-2738(88)90314-1 10.1021/acs.nanolett.7b00221 10.1021/acs.chemmater.5b04278 10.1016/S0378-7753(02)00365-8 10.1002/ange.201608924 10.1021/jacs.7b06197 10.1002/ange.201710633 10.1002/ange.201607539 10.1039/C7TA05832B 10.1021/acs.chemmater.5b02986 10.1002/anie.201406011 10.1002/adma.201704436 10.1016/j.jpowsour.2007.06.234 10.1039/C5NR06888F 10.1016/j.ensm.2016.07.003 10.1038/natrevmats.2016.103 10.1039/c3ee43143f 10.1002/anie.201509014 10.1038/nenergy.2016.141 10.1021/jacs.7b10864 10.1002/ange.201710841 10.1021/cm060656c 10.1016/j.nanoen.2017.12.037 10.1039/C6TA10066J 10.1038/451652a 10.1149/2.1501707jes 10.1039/C6TA02907H 10.1021/jacs.7b06364 10.1021/acs.nanolett.5b00739 10.1016/j.nanoen.2016.09.002 10.1039/C7EE02723K 10.1002/ange.201609497 10.1039/C5CC08279J 10.1021/jacs.6b05341 10.1002/ange.201004551 10.1002/aenm.201701437 10.1002/anie.201608924 10.1021/acs.nanolett.5b00600 10.1039/C0CS00059K 10.1038/nenergy.2016.42 10.1039/C7TA07653C 10.1016/j.joule.2018.07.010 10.1039/C4TA02667E 10.1039/c2jm15345a 10.1016/j.nanoen.2017.01.028 10.1002/adma.201103161 10.1007/s41918-018-0011-2 10.1016/j.nanoen.2016.11.045 10.1039/b903034d 10.1002/aenm.201602367 10.1002/anie.201710633 10.1038/s41467-017-01187-y 10.1016/j.ssi.2008.01.095 10.1002/cssc.201402969 10.1021/acs.chemrev.6b00509 10.1016/j.jpowsour.2017.10.059 10.1002/ange.201407603 10.1021/acsami.6b05301 10.1021/acsami.7b17301 10.1039/C7TA04320A 10.1002/anie.201710841 10.1021/acs.nanolett.7b00715 10.1002/aenm.201702754 10.1021/jacs.6b05568 10.1126/sciadv.aap9252 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201803616 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 18306 |
ExternalDocumentID | 30221404 10_1002_chem_201803616 CHEM201803616 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Thousand Young Talents Program – fundername: China Postdoctoral Science Foundation funderid: No. 2018M632147 – fundername: China Postdoctoral Science Foundation grantid: No. 2018M632147 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4106-df2b09a942e46c869a045cdde7a0abd806699f5c0af2a2b1a7ad8f71d391ed963 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 18:31:14 EDT 2025 Fri Jul 25 10:39:42 EDT 2025 Thu Apr 03 07:05:55 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Tue Jul 01 01:29:42 EDT 2025 Wed Jan 22 16:53:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 69 |
Keywords | hybrid materials lithium metal anode ionic conductivity solid lithium batteries solid-state electrolyte |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4106-df2b09a942e46c869a045cdde7a0abd806699f5c0af2a2b1a7ad8f71d391ed963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0725-6442 |
PMID | 30221404 |
PQID | 2153563252 |
PQPubID | 986340 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2108259767 proquest_journals_2153563252 pubmed_primary_30221404 crossref_primary_10_1002_chem_201803616 crossref_citationtrail_10_1002_chem_201803616 wiley_primary_10_1002_chem_201803616_CHEM201803616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 10, 2018 |
PublicationDateYYYYMMDD | 2018-12-10 |
PublicationDate_xml | – month: 12 year: 2018 text: December 10, 2018 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2014 2014; 53 126 2017; 7 2017; 8 2017; 2 2017; 3 1988; 28–30 2002; 112 2018; 45 2012; 12 2017; 114 2017; 117 2018; 46 2013; 19 2017; 31 2018; 8 2014; 4 2014; 2 2018; 1 2017; 33 2018 2018; 57 130 2007; 174 2016; 113 2014; 13 2018; 30 2016; 116 2011; 23 2017; 164 2017; 121 2012; 24 2014; 7 2012; 22 2015; 15 2015; 6 2018; 140 2005; 152 2013; 46 2015; 51 2011; 40 2016; 52 2006; 18 2010 2010; 49 122 2017; 29 2017; 372 2017 2017; 56 129 2016; 16 2015; 8 2011; 133 2017; 139 2016; 4 2016; 5 2016; 1 2016 2016; 55 128 2015; 27 2002; 152–153 2016; 3 2017; 17 2017; 10 2018 2016; 138 2008; 179 2016; 28 2018; 11 2008; 451 2018; 54 2018; 10 2009; 0 2016; 8 e_1_2_9_52_2 e_1_2_9_98_1 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_56_2 e_1_2_9_94_1 e_1_2_9_33_1 e_1_2_9_75_2 e_1_2_9_90_1 e_1_2_9_107_1 e_1_2_9_103_3 e_1_2_9_103_2 e_1_2_9_14_2 e_1_2_9_37_1 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_41_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_2 e_1_2_9_6_2 e_1_2_9_60_1 e_1_2_9_2_2 e_1_2_9_111_2 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_2 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_34_2 e_1_2_9_95_1 e_1_2_9_76_2 e_1_2_9_11_2 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_2 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_2 e_1_2_9_84_2 e_1_2_9_65_1 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_9_2 e_1_2_9_27_2 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_54_3 e_1_2_9_77_2 e_1_2_9_54_2 e_1_2_9_12_1 e_1_2_9_96_2 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 Dai J. (e_1_2_9_30_1) 2018 e_1_2_9_16_2 e_1_2_9_58_1 e_1_2_9_39_2 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_20_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_85_2 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_2 e_1_2_9_113_1 e_1_2_9_24_2 e_1_2_9_47_1 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_97_2 e_1_2_9_97_3 e_1_2_9_55_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_2 e_1_2_9_13_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_17_2 e_1_2_9_40_2 e_1_2_9_63_1 e_1_2_9_21_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_67_1 e_1_2_9_82_3 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_3_2 Fujie K. (e_1_2_9_105_2) 2015; 6 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_2 |
References_xml | – volume: 57 130 start-page: 2096 2118 year: 2018 2018 end-page: 2100 2122 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 152 start-page: 205 year: 2005 end-page: 209 publication-title: J. Electrochem. Soc. – volume: 140 start-page: 7429 year: 2018 end-page: 7432 publication-title: J. Am. Chem. Soc. – volume: 152–153 start-page: 137 year: 2002 end-page: 142 publication-title: Solid State Ionics – volume: 5 start-page: 24677 year: 2017 end-page: 24685 publication-title: J. Mater. Chem. A – volume: 56 129 start-page: 753 771 year: 2017 2017 end-page: 756 774 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 2740 year: 2015 end-page: 2745 publication-title: Nano Lett. – volume: 8 start-page: 636 year: 2015 end-page: 641 publication-title: ChemSusChem – volume: 7 start-page: 1700883 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1701437 year: 2017 publication-title: Adv. Energy Mater. – volume: 28 start-page: 848 year: 2016 end-page: 856 publication-title: Chem. Mater. – volume: 112 start-page: 209 year: 2002 end-page: 215 publication-title: J. Power Sources – volume: 7 start-page: 1602367 year: 2017 publication-title: Adv. Energy Mater. – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 667 year: 2014 end-page: 671 publication-title: Energy Environ. Sci. – volume: 56 129 start-page: 16313 16531 year: 2017 2017 end-page: 16317 16535 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 16042 year: 2016 publication-title: Nat. Energy – volume: 2 start-page: 17035 year: 2017 publication-title: Nat. Energy – volume: 23 start-page: 5081 year: 2011 end-page: 5085 publication-title: Adv. Mater. – volume: 28 start-page: 447 year: 2016 end-page: 454 publication-title: Nano Energy – volume: 139 start-page: 13779 year: 2017 end-page: 13785 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1086 year: 2017 publication-title: Nat. Commun. – volume: 179 start-page: 752 year: 2008 end-page: 760 publication-title: Solid State Ionics – volume: 140 start-page: 82 year: 2018 end-page: 85 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1660 year: 2017 end-page: 1667 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1707476 year: 2018 publication-title: Adv. Mater. – volume: 140 start-page: 896 year: 2018 end-page: 899 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 139 year: 2016 end-page: 164 publication-title: Energy Storage Mater. – volume: 52 start-page: 1637 year: 2016 end-page: 1640 publication-title: Chem. Commun. – volume: 10 start-page: 13588 year: 2018 end-page: 13597 publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 9385 year: 2016 end-page: 9388 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 3398 year: 2015 end-page: 3402 publication-title: Nano Lett. – volume: 114 start-page: 11069 year: 2017 end-page: 11074 publication-title: Proc. Natl. Acad. Sci. USA – volume: 116 start-page: 140 year: 2016 end-page: 162 publication-title: Chem. Rev. – volume: 46 start-page: 2376 year: 2013 end-page: 2384 publication-title: Acc. Chem. Res. – volume: 10 start-page: 4256 year: 2017 end-page: 4265 publication-title: Nano Res. – volume: 51 start-page: 9313 year: 2015 end-page: 9316 publication-title: Chem. Commun. – volume: 8 start-page: 1702754 year: 2018 publication-title: Adv. Energy Mater. – volume: 55 128 start-page: 12538 12726 year: 2016 2016 end-page: 12542 12730 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 start-page: 961 year: 2014 publication-title: Nat. Mater. – volume: 8 start-page: 1545 year: 2016 end-page: 1554 publication-title: Nanoscale – volume: 18 start-page: 3931 year: 2006 end-page: 3936 publication-title: Chem. Mater. – volume: 6 start-page: 4306 year: 2015 end-page: 4310 publication-title: Chem. Mater. – volume: 28–30 start-page: 975 year: 1988 end-page: 978 publication-title: Solid State Ionics – volume: 4 start-page: 13822 year: 2016 end-page: 13829 publication-title: J. Mater. Chem. A – volume: 55 128 start-page: 1737 1769 year: 2016 2016 end-page: 1741 1773 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 9767 year: 2016 end-page: 9770 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 13260 year: 2017 end-page: 13263 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4940 year: 2017 end-page: 4948 publication-title: J. Mater. Chem. A – volume: 1 start-page: 113 year: 2018 end-page: 138 publication-title: Electrochem. Energy Rev. – volume: 8 start-page: 20710 year: 2016 end-page: 20719 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 459 year: 2016 end-page: 465 publication-title: Nano Lett. – volume: 10 start-page: 4113 year: 2018 end-page: 4120 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 3182 year: 2017 end-page: 3187 publication-title: Nano Lett. – volume: 3 start-page: 1500306 year: 2016 publication-title: Adv. Sci. – volume: 29 start-page: 1701169 year: 2017 publication-title: Adv. Mater. – volume: 49 122 start-page: 9158 9344 year: 2010 2010 end-page: 9161 9347 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 0 start-page: 3068 year: 2009 end-page: 3070 publication-title: Chem. Commun. – volume: 12 start-page: 1152 year: 2012 end-page: 1156 publication-title: Nano Lett. – volume: 53 126 start-page: 11562 11746 year: 2014 2014 end-page: 11566 11750 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 2734 year: 2017 end-page: 2751 publication-title: ACS Energy Lett. – volume: 33 start-page: 363 year: 2017 end-page: 386 publication-title: Nano Energy – volume: 1 start-page: 16141 year: 2016 publication-title: Nat. Energy – volume: 31 start-page: 478 year: 2017 end-page: 485 publication-title: Nano Energy – volume: 30 start-page: 1705702 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 16984 year: 2017 end-page: 16993 publication-title: J. Mater. Chem. A – volume: 117 start-page: 6755 year: 2017 end-page: 6833 publication-title: Chem. Rev. – volume: 133 start-page: 14522 year: 2011 end-page: 14525 publication-title: J. Am. Chem. Soc. – volume: 451 start-page: 652 year: 2008 end-page: 657 publication-title: Nature – volume: 17 start-page: 2967 year: 2017 end-page: 2972 publication-title: Nano Lett. – volume: 11 start-page: 185 year: 2018 end-page: 201 publication-title: Energy Environ. Sci. – volume: 10 start-page: 15691 year: 2018 end-page: 15696 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1702657 year: 2018 publication-title: Adv. Energy Mater. – volume: 164 start-page: 1695 year: 2017 end-page: 1702 publication-title: J. Electrochem. Soc. – volume: 113 start-page: 7094 year: 2016 end-page: 7099 publication-title: Proc. Natl. Acad. Sci. USA – year: 2018 publication-title: Adv. Mater. – volume: 22 start-page: 4066 year: 2012 end-page: 4072 publication-title: J. Mater. Chem. – volume: 27 start-page: 7355 year: 2015 end-page: 7361 publication-title: Chem. Mater. – volume: 31 start-page: 9 year: 2017 end-page: 18 publication-title: Nano Energy – volume: 3 start-page: 9252 year: 2017 publication-title: Sci. Adv. – volume: 45 start-page: 413 year: 2018 end-page: 419 publication-title: Nano Energy – volume: 4 start-page: 10070 year: 2016 end-page: 10083 publication-title: J. Mater. Chem. A – volume: 5 start-page: 18457 year: 2017 end-page: 18463 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1704436 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 13873 year: 2014 end-page: 13883 publication-title: J. Mater. Chem. A – volume: 19 start-page: 5533 year: 2013 end-page: 5536 publication-title: Chem. Eur. J. – volume: 10 start-page: 4139 year: 2017 end-page: 4174 publication-title: Nano Res. – volume: 54 start-page: 325 year: 2018 end-page: 343 publication-title: Russ. J. Electrochem. – volume: 24 start-page: 4430 year: 2012 end-page: 4435 publication-title: Adv. Mater. – volume: 40 start-page: 907 year: 2011 end-page: 925 publication-title: Chem. Soc. Rev. – volume: 174 start-page: 741 year: 2007 end-page: 744 publication-title: J. Power Sources – volume: 121 start-page: 2563 year: 2017 end-page: 2573 publication-title: J. Phys. Chem. C – volume: 46 start-page: 176 year: 2018 end-page: 184 publication-title: Nano Energy – volume: 372 start-page: 1 year: 2017 end-page: 7 publication-title: J. Power Sources – volume: 4 start-page: 1300654 year: 2014 publication-title: Adv. Energy Mater. – volume: 55 128 start-page: 15344 15570 year: 2016 2016 end-page: 15348 15572 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 11302 11484 year: 2014 2014 end-page: 11305 11487 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_9_81_1 – ident: e_1_2_9_58_1 doi: 10.1016/j.nanoen.2018.01.028 – ident: e_1_2_9_18_2 doi: 10.1073/pnas.1708489114 – ident: e_1_2_9_85_1 doi: 10.1002/anie.201407603 – ident: e_1_2_9_38_2 doi: 10.1002/aenm.201300654 – year: 2018 ident: e_1_2_9_30_1 publication-title: Adv. Mater. – ident: e_1_2_9_94_1 doi: 10.1039/C7EE00988G – ident: e_1_2_9_82_2 doi: 10.1002/anie.201004551 – ident: e_1_2_9_78_1 – ident: e_1_2_9_36_1 doi: 10.1134/S1023193518040092 – ident: e_1_2_9_86_1 doi: 10.1039/C6TA04767J – ident: e_1_2_9_110_1 doi: 10.1039/C5CC02581H – ident: e_1_2_9_96_2 doi: 10.1021/ar300291s – ident: e_1_2_9_99_1 doi: 10.1021/ja205827z – ident: e_1_2_9_93_1 doi: 10.1016/j.nanoen.2016.10.060 – ident: e_1_2_9_54_2 doi: 10.1002/anie.201607539 – ident: e_1_2_9_23_2 doi: 10.1021/acsenergylett.7b00849 – ident: e_1_2_9_103_3 doi: 10.1002/ange.201406011 – ident: e_1_2_9_114_1 doi: 10.1021/jacs.7b12292 – ident: e_1_2_9_100_1 doi: 10.1002/chem.201300326 – ident: e_1_2_9_8_1 – ident: e_1_2_9_40_2 doi: 10.1021/acs.nanolett.5b04117 – ident: e_1_2_9_111_2 doi: 10.1002/ange.201509014 – ident: e_1_2_9_16_2 doi: 10.1038/nenergy.2017.35 – ident: e_1_2_9_66_1 doi: 10.1021/acsami.8b01631 – ident: e_1_2_9_22_1 – ident: e_1_2_9_97_2 doi: 10.1002/ange.201607329 – ident: e_1_2_9_91_1 doi: 10.1002/advs.201500306 – ident: e_1_2_9_95_1 – ident: e_1_2_9_115_1 doi: 10.1021/jacs.8b03814 – ident: e_1_2_9_61_1 doi: 10.1021/acsami.8b02240 – ident: e_1_2_9_13_2 doi: 10.1007/s12274-017-1763-4 – ident: e_1_2_9_39_2 doi: 10.1021/nl202692y – ident: e_1_2_9_65_1 doi: 10.1073/pnas.1600422113 – ident: e_1_2_9_48_1 doi: 10.1007/s12274-017-1498-2 – ident: e_1_2_9_24_2 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_9_108_1 doi: 10.1002/adma.201707476 – ident: e_1_2_9_83_2 doi: 10.1002/adma.201201953 – ident: e_1_2_9_72_2 doi: 10.1038/nmat4041 – ident: e_1_2_9_1_1 – ident: e_1_2_9_11_2 doi: 10.1002/adma.201701169 – ident: e_1_2_9_52_2 doi: 10.1021/acs.jpcc.6b11136 – ident: e_1_2_9_10_2 doi: 10.1002/adma.201705702 – ident: e_1_2_9_31_1 doi: 10.1016/S0167-2738(02)00366-1 – ident: e_1_2_9_9_2 doi: 10.1002/aenm.201702657 – ident: e_1_2_9_63_1 doi: 10.1149/1.1828952 – ident: e_1_2_9_71_2 doi: 10.1002/aenm.201700883 – ident: e_1_2_9_43_1 doi: 10.1016/0167-2738(88)90314-1 – ident: e_1_2_9_49_1 doi: 10.1021/acs.nanolett.7b00221 – ident: e_1_2_9_12_1 – ident: e_1_2_9_90_1 doi: 10.1021/acs.chemmater.5b04278 – ident: e_1_2_9_44_1 doi: 10.1016/S0378-7753(02)00365-8 – ident: e_1_2_9_15_1 – ident: e_1_2_9_34_2 doi: 10.1002/ange.201608924 – ident: e_1_2_9_107_1 doi: 10.1021/jacs.7b06197 – ident: e_1_2_9_37_1 – ident: e_1_2_9_113_2 doi: 10.1002/ange.201710633 – ident: e_1_2_9_50_1 – ident: e_1_2_9_54_3 doi: 10.1002/ange.201607539 – ident: e_1_2_9_55_2 doi: 10.1039/C7TA05832B – ident: e_1_2_9_53_1 – ident: e_1_2_9_104_2 doi: 10.1021/acs.chemmater.5b02986 – ident: e_1_2_9_103_2 doi: 10.1002/anie.201406011 – ident: e_1_2_9_106_1 doi: 10.1002/adma.201704436 – ident: e_1_2_9_45_1 doi: 10.1016/j.jpowsour.2007.06.234 – ident: e_1_2_9_89_1 doi: 10.1039/C5NR06888F – ident: e_1_2_9_21_2 doi: 10.1016/j.ensm.2016.07.003 – ident: e_1_2_9_6_2 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_9_73_1 – ident: e_1_2_9_101_1 doi: 10.1039/c3ee43143f – ident: e_1_2_9_111_1 doi: 10.1002/anie.201509014 – ident: e_1_2_9_5_2 doi: 10.1038/nenergy.2016.141 – ident: e_1_2_9_102_1 – ident: e_1_2_9_35_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_9_67_2 doi: 10.1002/ange.201710841 – ident: e_1_2_9_74_2 doi: 10.1021/cm060656c – ident: e_1_2_9_57_1 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_9_60_1 doi: 10.1039/C6TA10066J – ident: e_1_2_9_2_2 doi: 10.1038/451652a – ident: e_1_2_9_27_2 doi: 10.1149/2.1501707jes – ident: e_1_2_9_20_2 doi: 10.1039/C6TA02907H – ident: e_1_2_9_4_1 – ident: e_1_2_9_62_1 doi: 10.1021/jacs.7b06364 – ident: e_1_2_9_88_1 doi: 10.1021/acs.nanolett.5b00739 – ident: e_1_2_9_46_1 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_9_68_1 doi: 10.1039/C7EE02723K – ident: e_1_2_9_97_3 doi: 10.1002/ange.201609497 – ident: e_1_2_9_32_1 doi: 10.1039/C5CC08279J – ident: e_1_2_9_33_1 doi: 10.1021/jacs.6b05341 – ident: e_1_2_9_82_3 doi: 10.1002/ange.201004551 – ident: e_1_2_9_59_1 doi: 10.1002/aenm.201701437 – ident: e_1_2_9_34_1 doi: 10.1002/anie.201608924 – ident: e_1_2_9_51_2 doi: 10.1021/acs.nanolett.5b00600 – ident: e_1_2_9_80_2 doi: 10.1039/C0CS00059K – ident: e_1_2_9_14_2 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_9_92_1 doi: 10.1039/C7TA07653C – ident: e_1_2_9_109_1 doi: 10.1016/j.joule.2018.07.010 – ident: e_1_2_9_41_2 doi: 10.1039/C4TA02667E – ident: e_1_2_9_84_2 doi: 10.1039/c2jm15345a – ident: e_1_2_9_70_1 – ident: e_1_2_9_7_1 doi: 10.1016/j.nanoen.2017.01.028 – ident: e_1_2_9_76_2 doi: 10.1002/adma.201103161 – ident: e_1_2_9_25_1 doi: 10.1007/s41918-018-0011-2 – ident: e_1_2_9_42_1 doi: 10.1016/j.nanoen.2016.11.045 – ident: e_1_2_9_75_2 doi: 10.1039/b903034d – ident: e_1_2_9_77_2 doi: 10.1002/aenm.201602367 – ident: e_1_2_9_113_1 doi: 10.1002/anie.201710633 – ident: e_1_2_9_19_1 – ident: e_1_2_9_17_2 doi: 10.1038/s41467-017-01187-y – ident: e_1_2_9_3_2 doi: 10.1016/j.ssi.2008.01.095 – ident: e_1_2_9_87_1 doi: 10.1002/cssc.201402969 – ident: e_1_2_9_29_2 doi: 10.1021/acs.chemrev.6b00509 – ident: e_1_2_9_47_1 doi: 10.1016/j.jpowsour.2017.10.059 – ident: e_1_2_9_85_2 doi: 10.1002/ange.201407603 – ident: e_1_2_9_28_2 doi: 10.1021/acsami.6b05301 – ident: e_1_2_9_56_2 doi: 10.1021/acsami.7b17301 – ident: e_1_2_9_69_1 doi: 10.1039/C7TA04320A – ident: e_1_2_9_67_1 doi: 10.1002/anie.201710841 – ident: e_1_2_9_64_1 doi: 10.1021/acs.nanolett.7b00715 – ident: e_1_2_9_26_1 – ident: e_1_2_9_79_2 doi: 10.1002/aenm.201702754 – ident: e_1_2_9_112_1 doi: 10.1021/jacs.6b05568 – volume: 6 start-page: 4306 year: 2015 ident: e_1_2_9_105_2 publication-title: Chem. Mater. – ident: e_1_2_9_98_1 doi: 10.1126/sciadv.aap9252 |
SSID | ssj0009633 |
Score | 2.6015942 |
SecondaryResourceType | review_article |
Snippet | Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18293 |
SubjectTerms | Batteries Chemistry Electrochemical analysis Electrochemistry Electrolytes Flux density hybrid materials ionic conductivity Lithium Lithium batteries lithium metal anode Molten salt electrolytes Polymers Product design Safety Solid electrolytes solid lithium batteries solid-state electrolyte |
Title | Recent Progress of Hybrid Solid‐State Electrolytes for Lithium Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803616 https://www.ncbi.nlm.nih.gov/pubmed/30221404 https://www.proquest.com/docview/2153563252 https://www.proquest.com/docview/2108259767 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMcH8aIX34_6IoLgqdqmbbo5iuyyiIr4AG8laVJcXHdFdw968iP4Gf0kzjTb6ioi6K2lCW0yk-SXNPkPwE6amiAPaKHKauFjS9QkeRv5UskEAVYLUQaDOTkV7av46Dq5_nSK3-lD1Atu1DLK_poauNKP-x-ioVgmOkkeNrAPDklzmzZsERWdf-hHoXe5WPJx6pMGa6XaGPD98ezjo9I31Bwn13Loac2Cqj7a7Ti53RsO9F7-_EXP8T-lmoOZEZeyA-dI8zBhewswdViFg1uEIwRMHKDYGW3owu6R9QvWfqLzXuyi3-2Yt5fXElxZ0wXW6T4hxDJEYnbcGdx0hnfMSXnizHwJrlrNy8O2PwrE4OcxThl9U3AdoPVibmORN4RUCII5doypCpQ2DcQWKYskD1TBFdehSpVpFGloIhlag0ZYhslev2dXgSljJafQZlLqONFIZ1wLo0KhdBHG1nrgV4bI8pFKOQXL6GZOX5lnVENZXUMe7Nbp750-x48pNyq7ZqN2-pgh8ESJiHjCPdiuH2PN0m8T1bP9IaWhaTRiW-rBivOH-lURIhAJFHnAS6v-8g0Z6VzUd2t_ybQO03RNO2rCYAMmBw9Du4lcNNBbpe-_A4vAA3Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMBlgeWx4bVGQuIUSJzEqY8IgQoUhHhIe4vs2BEVpUVse-ie-An8Rn4JM3ETVNAKCY5JbCX2eOxvnPH3AWynqQnygDaqrBY-eqImytvIl0omCGC1EKUYzNm5aN7EJ3-SKpuQzsI4foh6w408o5yvycFpQ3rvjTUUG0VHycMGTsKhmIRpkvUuo6rLNwYpHF9OTT5OfWJhrXgbA743Xn98XfoANsexa7n4HM2Brj7b5Zzc7Q76ejf_947R8VvtmocfI2jK9t1YWoAJ2_0JMweVItwinCDGxDWKXVBOF86QrFew5pCOfLGrXqdtXp6eS-zKDp22TmeIOJYhKmatdv-2Pbhnjs0Tg_MluDk6vD5o-iMtBj-PMWr0TcF1gAaMuY1F3hBSIRbMcW5MVaC0aSBykbJI8kAVXHEdqlSZRpGGJpKhNWiFZZjq9rr2FzBlrOSkbialjhONAI1rYVQolC7C2FoP_MoSWT4iKie9jE7mKJZ5Rj2U1T3kwU5d_sFRdPy35Hpl2Gzkqn8zxDxRIiKecA-26sfYs_TnRHVtb0BlKJJG5JZ6sOIGRP2qCFEQcRR5wEuzfvINGVFd1FerX6n0G2aa12etrHV8froGs3SfEmzCYB2m-o8Du4Ewqa83S0d4BcSIB5E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4anTR4YWPcsgt4EhJPaRMnceLHqV3VjTFNg0l9i-zYERWlraB9KE_8hP1GfgnnxE22MiEkeExiK7HPxZ8d-_sA3qSpCYqAFqqsFj5GoibK28iXSiYIYLUQlRjM-wsxuI7Phsnwzil-xw_RLLhRZFT5mgJ8ZsrOLWkotolOkocZ5uBQPIDNWAQZ-XXv6pZACt3LicnHqU8krDVtY8A76_XXh6V7WHMdulZjT38bVP3VbsvJ5_ZirtvF998IHf-nWTvweAVM2bHzpCewYSe78LBb68E9hTNEmDhCsUva0YX5kU1LNljSgS_2YToemZ8_birkyk6css54iSiWISZm56P5p9HiC3Ncnjg1fwbX_ZOP3YG_UmLwixjnjL4puQ7QfDG3sSgyIRUiwQIzY6oCpU2GuEXKMikCVXLFdahSZbIyDU0kQ2vQCM-hNZlO7EtgyljJSdtMSh0nGuEZ18KoUChdhrG1Hvi1IfJiRVNOahnj3BEs85x6KG96yIO3TfmZI-j4Y8mD2q75KlC_5Yh4okREPOEeHDWPsWfpv4ma2OmCytA8GnFb6sEL5w_NqyLEQMRQ5AGvrPqXb8iJ6KK52vuXSq9h67LXz89PL97twyO6TbtrwuAAWvOvC3uIGGmuX1Vh8Au9NwZJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+of+Hybrid+Solid%E2%80%90State+Electrolytes+for+Lithium+Batteries&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Liu%2C+Xiaoyan&rft.au=Li%2C+Xinru&rft.au=Li%2C+Hexing&rft.au=Wu%2C+Hao+Bin&rft.date=2018-12-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=69&rft.spage=18293&rft.epage=18306&rft_id=info:doi/10.1002%2Fchem.201803616&rft.externalDBID=10.1002%252Fchem.201803616&rft.externalDocID=CHEM201803616 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |