Recent Progress of Hybrid Solid‐State Electrolytes for Lithium Batteries

Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 69; pp. 18293 - 18306
Main Authors Liu, Xiaoyan, Li, Xinru, Li, Hexing, Wu, Hao Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries. Hybrid solid‐state electrolytes (HSSEs) are keys to the development of lithium batteries with enhanced energy density and safety. This Minireview summarizes the recent development of HSSEs and discusses their design principles, performance and ionic conducting mechanism.
AbstractList Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries. Hybrid solid‐state electrolytes (HSSEs) are keys to the development of lithium batteries with enhanced energy density and safety. This Minireview summarizes the recent development of HSSEs and discusses their design principles, performance and ionic conducting mechanism.
Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid‐state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid‐state lithium batteries.
Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid-state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid-state lithium batteries.Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have been considered as the key for advanced lithium batteries with improved energy density and safety, whereas challenges remain for polymer and inorganic SSEs. Recently, hybrid solid-state electrolytes (HSSEs) that integrate the merits of different electrolyte systems have been under intensive study. Herein, we summarize the recent progress of HSSEs with different compositions and structures. The design principle of each type of HSSEs are discussed, as well as their ionic conducting mechanism, electrochemical performance and effects of compositional/structural control. Finally, challenges and perspectives are provided for the future development of HSSEs and solid-state lithium batteries.
Author Liu, Xiaoyan
Li, Xinru
Li, Hexing
Wu, Hao Bin
Author_xml – sequence: 1
  givenname: Xiaoyan
  surname: Liu
  fullname: Liu, Xiaoyan
  organization: Shanghai Normal University
– sequence: 2
  givenname: Xinru
  surname: Li
  fullname: Li, Xinru
  organization: University of California
– sequence: 3
  givenname: Hexing
  surname: Li
  fullname: Li, Hexing
  organization: Shanghai Normal University
– sequence: 4
  givenname: Hao Bin
  orcidid: 0000-0002-0725-6442
  surname: Wu
  fullname: Wu, Hao Bin
  email: hbwu@zju.edu.cn
  organization: Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30221404$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq0KBMNl22UVqRs2GY7t2ImX7WjaAQ1qxWUdOfZJMUpiajuqZtdH6DP2SQgaoBJSxepsvu_c_gOyM_gBCXlPYU4B2Km5xX7OgFbAJZXvyIwKRnNeSrFDZqCKMpeCq31yEOMdACjJ-R7Z58AYLaCYkfNLNDik7HvwPwLGmPk2W22a4Gx25Ttn__7-c5V0wmzZoUnBd5uEMWt9yNYu3bqxzz7rlDA4jEdkt9VdxOOnekhuviyvF6t8_e3r2eLTOjcFBZnbljWgtCoYFtJUUmkohLEWSw26sRVIqVQrDOiWadZQXWpbtSW1XFG00wGH5GTb9z74nyPGVPcuGuw6PaAfY80oVEyoUpYT-vEVeufHMEzbTZTgQnIm2ER9eKLGpkdb3wfX67Cpn780AfMtYIKPMWD7glCoH2OoH2OoX2KYhOKVYNz0ReeHFLTr_q-prfbLdbh5Y0i9WC0v_rkPCXOcZw
CitedBy_id crossref_primary_10_1039_D0CC05728B
crossref_primary_10_1016_j_carbon_2020_01_077
crossref_primary_10_1016_j_cej_2024_150455
crossref_primary_10_1039_C9CP02117E
crossref_primary_10_1016_j_matdes_2020_108563
crossref_primary_10_1021_acsaem_1c01570
crossref_primary_10_1016_j_ensm_2024_103570
crossref_primary_10_1021_acsaem_0c00662
crossref_primary_10_3390_membranes12040416
crossref_primary_10_1002_metm_13
crossref_primary_10_3389_fenrg_2019_00142
crossref_primary_10_1016_j_susmat_2021_e00297
crossref_primary_10_1039_D0EE00153H
crossref_primary_10_1016_j_apsadv_2025_100709
crossref_primary_10_1016_j_jechem_2023_03_045
crossref_primary_10_3390_nano9050721
crossref_primary_10_1038_s41467_022_29743_1
crossref_primary_10_1021_acsaem_9b02543
crossref_primary_10_1016_j_ceramint_2020_01_170
crossref_primary_10_1016_j_jelechem_2023_117712
crossref_primary_10_1002_smll_202309317
crossref_primary_10_1039_D0NR04244G
crossref_primary_10_1016_j_jssc_2023_124459
crossref_primary_10_1021_acsami_9b15374
crossref_primary_10_1016_j_jechem_2020_04_013
crossref_primary_10_1021_acsaem_2c00282
crossref_primary_10_1021_acsaem_0c00410
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1002_advs_202206887
crossref_primary_10_3390_gels10030199
crossref_primary_10_1002_advs_201903088
crossref_primary_10_1039_D3QM00736G
crossref_primary_10_3390_polym15132920
crossref_primary_10_1016_j_isci_2021_102055
crossref_primary_10_1088_1361_6528_ac2093
crossref_primary_10_2174_1573413716666191230153257
crossref_primary_10_3389_fenrg_2020_571440
crossref_primary_10_1007_s40242_021_0007_z
crossref_primary_10_1021_acsaem_2c01487
crossref_primary_10_1021_acsami_1c11058
crossref_primary_10_1002_chem_201904461
crossref_primary_10_1002_slct_202101891
crossref_primary_10_1039_C9TA07165B
crossref_primary_10_1002_aenm_202002869
crossref_primary_10_1016_j_enchem_2021_100058
crossref_primary_10_3390_polym14224804
crossref_primary_10_1016_j_jpowsour_2022_231172
crossref_primary_10_1021_acssuschemeng_1c02886
crossref_primary_10_1016_j_ssi_2020_115437
crossref_primary_10_1016_j_ceramint_2022_10_303
crossref_primary_10_1021_acsami_1c23962
crossref_primary_10_3389_fenrg_2019_00123
crossref_primary_10_1016_j_ceja_2022_100439
crossref_primary_10_1016_j_jechem_2021_01_013
crossref_primary_10_1016_j_est_2023_109048
crossref_primary_10_1016_j_scib_2022_01_026
crossref_primary_10_1007_s41918_022_00131_z
crossref_primary_10_1021_acsapm_1c01248
crossref_primary_10_1002_aenm_202301886
crossref_primary_10_1016_j_ensm_2019_06_021
crossref_primary_10_1080_10667857_2020_1726005
crossref_primary_10_3389_fenrg_2020_00202
crossref_primary_10_1002_elan_202200123
crossref_primary_10_1021_acsaem_2c02085
crossref_primary_10_3390_batteries9060314
crossref_primary_10_1016_j_nxener_2023_100042
crossref_primary_10_1016_j_electacta_2021_139701
crossref_primary_10_1016_j_joule_2019_11_015
crossref_primary_10_1016_j_memsci_2022_121095
crossref_primary_10_1039_D3TA01588B
crossref_primary_10_1016_j_psep_2024_08_123
crossref_primary_10_1021_acs_energyfuels_1c01609
crossref_primary_10_1039_D0TA06697D
crossref_primary_10_1016_j_adapen_2021_100070
crossref_primary_10_1016_j_ssi_2020_115419
crossref_primary_10_1002_smll_202206355
crossref_primary_10_3390_en14144223
crossref_primary_10_1016_j_apmate_2023_100154
crossref_primary_10_1021_acsaem_1c04001
crossref_primary_10_1016_j_cej_2022_139340
crossref_primary_10_1016_j_jssc_2021_122644
crossref_primary_10_1039_D0CC00454E
crossref_primary_10_1016_j_jpowsour_2021_230372
crossref_primary_10_1016_j_cej_2021_133522
crossref_primary_10_1016_j_jcis_2022_05_002
crossref_primary_10_1007_s42864_019_00018_5
crossref_primary_10_1142_S1793604723400088
crossref_primary_10_1016_j_mattod_2021_08_005
crossref_primary_10_1016_j_nxmate_2024_100173
crossref_primary_10_1002_smll_202207831
crossref_primary_10_1021_acs_jchemed_0c00182
crossref_primary_10_1016_j_cej_2020_124478
crossref_primary_10_1039_D3MA00125C
crossref_primary_10_1016_j_materresbull_2023_112586
crossref_primary_10_1039_D4YA00138A
crossref_primary_10_1039_D0TA08169H
crossref_primary_10_1016_j_cej_2021_133352
crossref_primary_10_1016_j_ensm_2020_10_006
crossref_primary_10_1021_acsaem_2c01689
crossref_primary_10_1039_D0QM00936A
crossref_primary_10_1016_j_ssi_2024_116571
crossref_primary_10_1021_acsami_0c15692
crossref_primary_10_1016_j_ijoes_2024_100656
crossref_primary_10_1021_acsaem_1c03836
crossref_primary_10_1016_j_scriptamat_2022_115101
crossref_primary_10_1002_ppsc_202000164
crossref_primary_10_1016_j_elecom_2023_107491
crossref_primary_10_1002_batt_202400048
crossref_primary_10_1007_s40145_022_0580_8
crossref_primary_10_1021_acsami_0c02291
crossref_primary_10_1021_acsami_4c09099
crossref_primary_10_3390_nano10081606
crossref_primary_10_1007_s11581_021_04291_8
crossref_primary_10_1002_adfm_202309706
crossref_primary_10_1007_s40820_023_01055_z
crossref_primary_10_1021_acsaelm_3c00176
crossref_primary_10_1063_1674_0068_cjcp2402020
crossref_primary_10_1002_adem_201900737
crossref_primary_10_1002_adfm_202009925
crossref_primary_10_1016_j_cjche_2021_07_008
crossref_primary_10_1016_j_ceramint_2022_05_274
crossref_primary_10_1021_acs_energyfuels_0c02111
crossref_primary_10_1016_j_cclet_2023_109189
crossref_primary_10_1016_j_ensm_2022_11_029
crossref_primary_10_1002_smll_202303625
crossref_primary_10_1016_j_xcrp_2021_100706
crossref_primary_10_1039_D0DT03336G
crossref_primary_10_3389_fchem_2022_1013965
crossref_primary_10_1021_acs_jpcc_2c04213
crossref_primary_10_1002_adfm_202303718
Cites_doi 10.1016/j.nanoen.2018.01.028
10.1073/pnas.1708489114
10.1002/anie.201407603
10.1002/aenm.201300654
10.1039/C7EE00988G
10.1002/anie.201004551
10.1134/S1023193518040092
10.1039/C6TA04767J
10.1039/C5CC02581H
10.1021/ar300291s
10.1021/ja205827z
10.1016/j.nanoen.2016.10.060
10.1002/anie.201607539
10.1021/acsenergylett.7b00849
10.1002/ange.201406011
10.1021/jacs.7b12292
10.1002/chem.201300326
10.1021/acs.nanolett.5b04117
10.1002/ange.201509014
10.1038/nenergy.2017.35
10.1021/acsami.8b01631
10.1002/ange.201607329
10.1002/advs.201500306
10.1021/jacs.8b03814
10.1021/acsami.8b02240
10.1007/s12274-017-1763-4
10.1021/nl202692y
10.1073/pnas.1600422113
10.1007/s12274-017-1498-2
10.1021/acs.chemrev.5b00563
10.1002/adma.201707476
10.1002/adma.201201953
10.1038/nmat4041
10.1002/adma.201701169
10.1021/acs.jpcc.6b11136
10.1002/adma.201705702
10.1016/S0167-2738(02)00366-1
10.1002/aenm.201702657
10.1149/1.1828952
10.1002/aenm.201700883
10.1016/0167-2738(88)90314-1
10.1021/acs.nanolett.7b00221
10.1021/acs.chemmater.5b04278
10.1016/S0378-7753(02)00365-8
10.1002/ange.201608924
10.1021/jacs.7b06197
10.1002/ange.201710633
10.1002/ange.201607539
10.1039/C7TA05832B
10.1021/acs.chemmater.5b02986
10.1002/anie.201406011
10.1002/adma.201704436
10.1016/j.jpowsour.2007.06.234
10.1039/C5NR06888F
10.1016/j.ensm.2016.07.003
10.1038/natrevmats.2016.103
10.1039/c3ee43143f
10.1002/anie.201509014
10.1038/nenergy.2016.141
10.1021/jacs.7b10864
10.1002/ange.201710841
10.1021/cm060656c
10.1016/j.nanoen.2017.12.037
10.1039/C6TA10066J
10.1038/451652a
10.1149/2.1501707jes
10.1039/C6TA02907H
10.1021/jacs.7b06364
10.1021/acs.nanolett.5b00739
10.1016/j.nanoen.2016.09.002
10.1039/C7EE02723K
10.1002/ange.201609497
10.1039/C5CC08279J
10.1021/jacs.6b05341
10.1002/ange.201004551
10.1002/aenm.201701437
10.1002/anie.201608924
10.1021/acs.nanolett.5b00600
10.1039/C0CS00059K
10.1038/nenergy.2016.42
10.1039/C7TA07653C
10.1016/j.joule.2018.07.010
10.1039/C4TA02667E
10.1039/c2jm15345a
10.1016/j.nanoen.2017.01.028
10.1002/adma.201103161
10.1007/s41918-018-0011-2
10.1016/j.nanoen.2016.11.045
10.1039/b903034d
10.1002/aenm.201602367
10.1002/anie.201710633
10.1038/s41467-017-01187-y
10.1016/j.ssi.2008.01.095
10.1002/cssc.201402969
10.1021/acs.chemrev.6b00509
10.1016/j.jpowsour.2017.10.059
10.1002/ange.201407603
10.1021/acsami.6b05301
10.1021/acsami.7b17301
10.1039/C7TA04320A
10.1002/anie.201710841
10.1021/acs.nanolett.7b00715
10.1002/aenm.201702754
10.1021/jacs.6b05568
10.1126/sciadv.aap9252
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201803616
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 18306
ExternalDocumentID 30221404
10_1002_chem_201803616
CHEM201803616
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Thousand Young Talents Program
– fundername: China Postdoctoral Science Foundation
  funderid: No. 2018M632147
– fundername: China Postdoctoral Science Foundation
  grantid: No. 2018M632147
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4106-df2b09a942e46c869a045cdde7a0abd806699f5c0af2a2b1a7ad8f71d391ed963
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:31:14 EDT 2025
Fri Jul 25 10:39:42 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Tue Jul 01 01:29:42 EDT 2025
Wed Jan 22 16:53:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 69
Keywords hybrid materials
lithium metal anode
ionic conductivity
solid lithium batteries
solid-state electrolyte
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-df2b09a942e46c869a045cdde7a0abd806699f5c0af2a2b1a7ad8f71d391ed963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-0725-6442
PMID 30221404
PQID 2153563252
PQPubID 986340
PageCount 14
ParticipantIDs proquest_miscellaneous_2108259767
proquest_journals_2153563252
pubmed_primary_30221404
crossref_primary_10_1002_chem_201803616
crossref_citationtrail_10_1002_chem_201803616
wiley_primary_10_1002_chem_201803616_CHEM201803616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 10, 2018
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: December 10, 2018
  day: 10
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2014 2014; 53 126
2017; 7
2017; 8
2017; 2
2017; 3
1988; 28–30
2002; 112
2018; 45
2012; 12
2017; 114
2017; 117
2018; 46
2013; 19
2017; 31
2018; 8
2014; 4
2014; 2
2018; 1
2017; 33
2018 2018; 57 130
2007; 174
2016; 113
2014; 13
2018; 30
2016; 116
2011; 23
2017; 164
2017; 121
2012; 24
2014; 7
2012; 22
2015; 15
2015; 6
2018; 140
2005; 152
2013; 46
2015; 51
2011; 40
2016; 52
2006; 18
2010 2010; 49 122
2017; 29
2017; 372
2017 2017; 56 129
2016; 16
2015; 8
2011; 133
2017; 139
2016; 4
2016; 5
2016; 1
2016 2016; 55 128
2015; 27
2002; 152–153
2016; 3
2017; 17
2017; 10
2018
2016; 138
2008; 179
2016; 28
2018; 11
2008; 451
2018; 54
2018; 10
2009; 0
2016; 8
e_1_2_9_52_2
e_1_2_9_98_1
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_56_2
e_1_2_9_94_1
e_1_2_9_33_1
e_1_2_9_75_2
e_1_2_9_90_1
e_1_2_9_107_1
e_1_2_9_103_3
e_1_2_9_103_2
e_1_2_9_14_2
e_1_2_9_37_1
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_41_2
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_2
e_1_2_9_6_2
e_1_2_9_60_1
e_1_2_9_2_2
e_1_2_9_111_2
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_2
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_34_2
e_1_2_9_95_1
e_1_2_9_76_2
e_1_2_9_11_2
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_2
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_23_2
e_1_2_9_84_2
e_1_2_9_65_1
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_9_2
e_1_2_9_27_2
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_54_3
e_1_2_9_77_2
e_1_2_9_54_2
e_1_2_9_12_1
e_1_2_9_96_2
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
Dai J. (e_1_2_9_30_1) 2018
e_1_2_9_16_2
e_1_2_9_58_1
e_1_2_9_39_2
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_20_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_85_2
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_2
e_1_2_9_113_1
e_1_2_9_24_2
e_1_2_9_47_1
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_97_2
e_1_2_9_97_3
e_1_2_9_55_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_2
e_1_2_9_13_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_17_2
e_1_2_9_40_2
e_1_2_9_63_1
e_1_2_9_21_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_67_1
e_1_2_9_82_3
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_3_2
Fujie K. (e_1_2_9_105_2) 2015; 6
e_1_2_9_112_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_2
References_xml – volume: 57 130
  start-page: 2096 2118
  year: 2018 2018
  end-page: 2100 2122
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 152
  start-page: 205
  year: 2005
  end-page: 209
  publication-title: J. Electrochem. Soc.
– volume: 140
  start-page: 7429
  year: 2018
  end-page: 7432
  publication-title: J. Am. Chem. Soc.
– volume: 152–153
  start-page: 137
  year: 2002
  end-page: 142
  publication-title: Solid State Ionics
– volume: 5
  start-page: 24677
  year: 2017
  end-page: 24685
  publication-title: J. Mater. Chem. A
– volume: 56 129
  start-page: 753 771
  year: 2017 2017
  end-page: 756 774
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 2740
  year: 2015
  end-page: 2745
  publication-title: Nano Lett.
– volume: 8
  start-page: 636
  year: 2015
  end-page: 641
  publication-title: ChemSusChem
– volume: 7
  start-page: 1700883
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1701437
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 848
  year: 2016
  end-page: 856
  publication-title: Chem. Mater.
– volume: 112
  start-page: 209
  year: 2002
  end-page: 215
  publication-title: J. Power Sources
– volume: 7
  start-page: 1602367
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 667
  year: 2014
  end-page: 671
  publication-title: Energy Environ. Sci.
– volume: 56 129
  start-page: 16313 16531
  year: 2017 2017
  end-page: 16317 16535
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16042
  year: 2016
  publication-title: Nat. Energy
– volume: 2
  start-page: 17035
  year: 2017
  publication-title: Nat. Energy
– volume: 23
  start-page: 5081
  year: 2011
  end-page: 5085
  publication-title: Adv. Mater.
– volume: 28
  start-page: 447
  year: 2016
  end-page: 454
  publication-title: Nano Energy
– volume: 139
  start-page: 13779
  year: 2017
  end-page: 13785
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1086
  year: 2017
  publication-title: Nat. Commun.
– volume: 179
  start-page: 752
  year: 2008
  end-page: 760
  publication-title: Solid State Ionics
– volume: 140
  start-page: 82
  year: 2018
  end-page: 85
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1660
  year: 2017
  end-page: 1667
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1707476
  year: 2018
  publication-title: Adv. Mater.
– volume: 140
  start-page: 896
  year: 2018
  end-page: 899
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  publication-title: Energy Storage Mater.
– volume: 52
  start-page: 1637
  year: 2016
  end-page: 1640
  publication-title: Chem. Commun.
– volume: 10
  start-page: 13588
  year: 2018
  end-page: 13597
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 9385
  year: 2016
  end-page: 9388
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 3398
  year: 2015
  end-page: 3402
  publication-title: Nano Lett.
– volume: 114
  start-page: 11069
  year: 2017
  end-page: 11074
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 116
  start-page: 140
  year: 2016
  end-page: 162
  publication-title: Chem. Rev.
– volume: 46
  start-page: 2376
  year: 2013
  end-page: 2384
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 4256
  year: 2017
  end-page: 4265
  publication-title: Nano Res.
– volume: 51
  start-page: 9313
  year: 2015
  end-page: 9316
  publication-title: Chem. Commun.
– volume: 8
  start-page: 1702754
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 55 128
  start-page: 12538 12726
  year: 2016 2016
  end-page: 12542 12730
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 961
  year: 2014
  publication-title: Nat. Mater.
– volume: 8
  start-page: 1545
  year: 2016
  end-page: 1554
  publication-title: Nanoscale
– volume: 18
  start-page: 3931
  year: 2006
  end-page: 3936
  publication-title: Chem. Mater.
– volume: 6
  start-page: 4306
  year: 2015
  end-page: 4310
  publication-title: Chem. Mater.
– volume: 28–30
  start-page: 975
  year: 1988
  end-page: 978
  publication-title: Solid State Ionics
– volume: 4
  start-page: 13822
  year: 2016
  end-page: 13829
  publication-title: J. Mater. Chem. A
– volume: 55 128
  start-page: 1737 1769
  year: 2016 2016
  end-page: 1741 1773
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 9767
  year: 2016
  end-page: 9770
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 13260
  year: 2017
  end-page: 13263
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4940
  year: 2017
  end-page: 4948
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 113
  year: 2018
  end-page: 138
  publication-title: Electrochem. Energy Rev.
– volume: 8
  start-page: 20710
  year: 2016
  end-page: 20719
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 459
  year: 2016
  end-page: 465
  publication-title: Nano Lett.
– volume: 10
  start-page: 4113
  year: 2018
  end-page: 4120
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 3182
  year: 2017
  end-page: 3187
  publication-title: Nano Lett.
– volume: 3
  start-page: 1500306
  year: 2016
  publication-title: Adv. Sci.
– volume: 29
  start-page: 1701169
  year: 2017
  publication-title: Adv. Mater.
– volume: 49 122
  start-page: 9158 9344
  year: 2010 2010
  end-page: 9161 9347
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 0
  start-page: 3068
  year: 2009
  end-page: 3070
  publication-title: Chem. Commun.
– volume: 12
  start-page: 1152
  year: 2012
  end-page: 1156
  publication-title: Nano Lett.
– volume: 53 126
  start-page: 11562 11746
  year: 2014 2014
  end-page: 11566 11750
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 2734
  year: 2017
  end-page: 2751
  publication-title: ACS Energy Lett.
– volume: 33
  start-page: 363
  year: 2017
  end-page: 386
  publication-title: Nano Energy
– volume: 1
  start-page: 16141
  year: 2016
  publication-title: Nat. Energy
– volume: 31
  start-page: 478
  year: 2017
  end-page: 485
  publication-title: Nano Energy
– volume: 30
  start-page: 1705702
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  start-page: 16984
  year: 2017
  end-page: 16993
  publication-title: J. Mater. Chem. A
– volume: 117
  start-page: 6755
  year: 2017
  end-page: 6833
  publication-title: Chem. Rev.
– volume: 133
  start-page: 14522
  year: 2011
  end-page: 14525
  publication-title: J. Am. Chem. Soc.
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  publication-title: Nature
– volume: 17
  start-page: 2967
  year: 2017
  end-page: 2972
  publication-title: Nano Lett.
– volume: 11
  start-page: 185
  year: 2018
  end-page: 201
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 15691
  year: 2018
  end-page: 15696
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1702657
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 164
  start-page: 1695
  year: 2017
  end-page: 1702
  publication-title: J. Electrochem. Soc.
– volume: 113
  start-page: 7094
  year: 2016
  end-page: 7099
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2018
  publication-title: Adv. Mater.
– volume: 22
  start-page: 4066
  year: 2012
  end-page: 4072
  publication-title: J. Mater. Chem.
– volume: 27
  start-page: 7355
  year: 2015
  end-page: 7361
  publication-title: Chem. Mater.
– volume: 31
  start-page: 9
  year: 2017
  end-page: 18
  publication-title: Nano Energy
– volume: 3
  start-page: 9252
  year: 2017
  publication-title: Sci. Adv.
– volume: 45
  start-page: 413
  year: 2018
  end-page: 419
  publication-title: Nano Energy
– volume: 4
  start-page: 10070
  year: 2016
  end-page: 10083
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 18457
  year: 2017
  end-page: 18463
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1704436
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 13873
  year: 2014
  end-page: 13883
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 5533
  year: 2013
  end-page: 5536
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 4139
  year: 2017
  end-page: 4174
  publication-title: Nano Res.
– volume: 54
  start-page: 325
  year: 2018
  end-page: 343
  publication-title: Russ. J. Electrochem.
– volume: 24
  start-page: 4430
  year: 2012
  end-page: 4435
  publication-title: Adv. Mater.
– volume: 40
  start-page: 907
  year: 2011
  end-page: 925
  publication-title: Chem. Soc. Rev.
– volume: 174
  start-page: 741
  year: 2007
  end-page: 744
  publication-title: J. Power Sources
– volume: 121
  start-page: 2563
  year: 2017
  end-page: 2573
  publication-title: J. Phys. Chem. C
– volume: 46
  start-page: 176
  year: 2018
  end-page: 184
  publication-title: Nano Energy
– volume: 372
  start-page: 1
  year: 2017
  end-page: 7
  publication-title: J. Power Sources
– volume: 4
  start-page: 1300654
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 55 128
  start-page: 15344 15570
  year: 2016 2016
  end-page: 15348 15572
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 11302 11484
  year: 2014 2014
  end-page: 11305 11487
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_9_81_1
– ident: e_1_2_9_58_1
  doi: 10.1016/j.nanoen.2018.01.028
– ident: e_1_2_9_18_2
  doi: 10.1073/pnas.1708489114
– ident: e_1_2_9_85_1
  doi: 10.1002/anie.201407603
– ident: e_1_2_9_38_2
  doi: 10.1002/aenm.201300654
– year: 2018
  ident: e_1_2_9_30_1
  publication-title: Adv. Mater.
– ident: e_1_2_9_94_1
  doi: 10.1039/C7EE00988G
– ident: e_1_2_9_82_2
  doi: 10.1002/anie.201004551
– ident: e_1_2_9_78_1
– ident: e_1_2_9_36_1
  doi: 10.1134/S1023193518040092
– ident: e_1_2_9_86_1
  doi: 10.1039/C6TA04767J
– ident: e_1_2_9_110_1
  doi: 10.1039/C5CC02581H
– ident: e_1_2_9_96_2
  doi: 10.1021/ar300291s
– ident: e_1_2_9_99_1
  doi: 10.1021/ja205827z
– ident: e_1_2_9_93_1
  doi: 10.1016/j.nanoen.2016.10.060
– ident: e_1_2_9_54_2
  doi: 10.1002/anie.201607539
– ident: e_1_2_9_23_2
  doi: 10.1021/acsenergylett.7b00849
– ident: e_1_2_9_103_3
  doi: 10.1002/ange.201406011
– ident: e_1_2_9_114_1
  doi: 10.1021/jacs.7b12292
– ident: e_1_2_9_100_1
  doi: 10.1002/chem.201300326
– ident: e_1_2_9_8_1
– ident: e_1_2_9_40_2
  doi: 10.1021/acs.nanolett.5b04117
– ident: e_1_2_9_111_2
  doi: 10.1002/ange.201509014
– ident: e_1_2_9_16_2
  doi: 10.1038/nenergy.2017.35
– ident: e_1_2_9_66_1
  doi: 10.1021/acsami.8b01631
– ident: e_1_2_9_22_1
– ident: e_1_2_9_97_2
  doi: 10.1002/ange.201607329
– ident: e_1_2_9_91_1
  doi: 10.1002/advs.201500306
– ident: e_1_2_9_95_1
– ident: e_1_2_9_115_1
  doi: 10.1021/jacs.8b03814
– ident: e_1_2_9_61_1
  doi: 10.1021/acsami.8b02240
– ident: e_1_2_9_13_2
  doi: 10.1007/s12274-017-1763-4
– ident: e_1_2_9_39_2
  doi: 10.1021/nl202692y
– ident: e_1_2_9_65_1
  doi: 10.1073/pnas.1600422113
– ident: e_1_2_9_48_1
  doi: 10.1007/s12274-017-1498-2
– ident: e_1_2_9_24_2
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_9_108_1
  doi: 10.1002/adma.201707476
– ident: e_1_2_9_83_2
  doi: 10.1002/adma.201201953
– ident: e_1_2_9_72_2
  doi: 10.1038/nmat4041
– ident: e_1_2_9_1_1
– ident: e_1_2_9_11_2
  doi: 10.1002/adma.201701169
– ident: e_1_2_9_52_2
  doi: 10.1021/acs.jpcc.6b11136
– ident: e_1_2_9_10_2
  doi: 10.1002/adma.201705702
– ident: e_1_2_9_31_1
  doi: 10.1016/S0167-2738(02)00366-1
– ident: e_1_2_9_9_2
  doi: 10.1002/aenm.201702657
– ident: e_1_2_9_63_1
  doi: 10.1149/1.1828952
– ident: e_1_2_9_71_2
  doi: 10.1002/aenm.201700883
– ident: e_1_2_9_43_1
  doi: 10.1016/0167-2738(88)90314-1
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.nanolett.7b00221
– ident: e_1_2_9_12_1
– ident: e_1_2_9_90_1
  doi: 10.1021/acs.chemmater.5b04278
– ident: e_1_2_9_44_1
  doi: 10.1016/S0378-7753(02)00365-8
– ident: e_1_2_9_15_1
– ident: e_1_2_9_34_2
  doi: 10.1002/ange.201608924
– ident: e_1_2_9_107_1
  doi: 10.1021/jacs.7b06197
– ident: e_1_2_9_37_1
– ident: e_1_2_9_113_2
  doi: 10.1002/ange.201710633
– ident: e_1_2_9_50_1
– ident: e_1_2_9_54_3
  doi: 10.1002/ange.201607539
– ident: e_1_2_9_55_2
  doi: 10.1039/C7TA05832B
– ident: e_1_2_9_53_1
– ident: e_1_2_9_104_2
  doi: 10.1021/acs.chemmater.5b02986
– ident: e_1_2_9_103_2
  doi: 10.1002/anie.201406011
– ident: e_1_2_9_106_1
  doi: 10.1002/adma.201704436
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jpowsour.2007.06.234
– ident: e_1_2_9_89_1
  doi: 10.1039/C5NR06888F
– ident: e_1_2_9_21_2
  doi: 10.1016/j.ensm.2016.07.003
– ident: e_1_2_9_6_2
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_9_73_1
– ident: e_1_2_9_101_1
  doi: 10.1039/c3ee43143f
– ident: e_1_2_9_111_1
  doi: 10.1002/anie.201509014
– ident: e_1_2_9_5_2
  doi: 10.1038/nenergy.2016.141
– ident: e_1_2_9_102_1
– ident: e_1_2_9_35_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_9_67_2
  doi: 10.1002/ange.201710841
– ident: e_1_2_9_74_2
  doi: 10.1021/cm060656c
– ident: e_1_2_9_57_1
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_9_60_1
  doi: 10.1039/C6TA10066J
– ident: e_1_2_9_2_2
  doi: 10.1038/451652a
– ident: e_1_2_9_27_2
  doi: 10.1149/2.1501707jes
– ident: e_1_2_9_20_2
  doi: 10.1039/C6TA02907H
– ident: e_1_2_9_4_1
– ident: e_1_2_9_62_1
  doi: 10.1021/jacs.7b06364
– ident: e_1_2_9_88_1
  doi: 10.1021/acs.nanolett.5b00739
– ident: e_1_2_9_46_1
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_9_68_1
  doi: 10.1039/C7EE02723K
– ident: e_1_2_9_97_3
  doi: 10.1002/ange.201609497
– ident: e_1_2_9_32_1
  doi: 10.1039/C5CC08279J
– ident: e_1_2_9_33_1
  doi: 10.1021/jacs.6b05341
– ident: e_1_2_9_82_3
  doi: 10.1002/ange.201004551
– ident: e_1_2_9_59_1
  doi: 10.1002/aenm.201701437
– ident: e_1_2_9_34_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_9_51_2
  doi: 10.1021/acs.nanolett.5b00600
– ident: e_1_2_9_80_2
  doi: 10.1039/C0CS00059K
– ident: e_1_2_9_14_2
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_9_92_1
  doi: 10.1039/C7TA07653C
– ident: e_1_2_9_109_1
  doi: 10.1016/j.joule.2018.07.010
– ident: e_1_2_9_41_2
  doi: 10.1039/C4TA02667E
– ident: e_1_2_9_84_2
  doi: 10.1039/c2jm15345a
– ident: e_1_2_9_70_1
– ident: e_1_2_9_7_1
  doi: 10.1016/j.nanoen.2017.01.028
– ident: e_1_2_9_76_2
  doi: 10.1002/adma.201103161
– ident: e_1_2_9_25_1
  doi: 10.1007/s41918-018-0011-2
– ident: e_1_2_9_42_1
  doi: 10.1016/j.nanoen.2016.11.045
– ident: e_1_2_9_75_2
  doi: 10.1039/b903034d
– ident: e_1_2_9_77_2
  doi: 10.1002/aenm.201602367
– ident: e_1_2_9_113_1
  doi: 10.1002/anie.201710633
– ident: e_1_2_9_19_1
– ident: e_1_2_9_17_2
  doi: 10.1038/s41467-017-01187-y
– ident: e_1_2_9_3_2
  doi: 10.1016/j.ssi.2008.01.095
– ident: e_1_2_9_87_1
  doi: 10.1002/cssc.201402969
– ident: e_1_2_9_29_2
  doi: 10.1021/acs.chemrev.6b00509
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jpowsour.2017.10.059
– ident: e_1_2_9_85_2
  doi: 10.1002/ange.201407603
– ident: e_1_2_9_28_2
  doi: 10.1021/acsami.6b05301
– ident: e_1_2_9_56_2
  doi: 10.1021/acsami.7b17301
– ident: e_1_2_9_69_1
  doi: 10.1039/C7TA04320A
– ident: e_1_2_9_67_1
  doi: 10.1002/anie.201710841
– ident: e_1_2_9_64_1
  doi: 10.1021/acs.nanolett.7b00715
– ident: e_1_2_9_26_1
– ident: e_1_2_9_79_2
  doi: 10.1002/aenm.201702754
– ident: e_1_2_9_112_1
  doi: 10.1021/jacs.6b05568
– volume: 6
  start-page: 4306
  year: 2015
  ident: e_1_2_9_105_2
  publication-title: Chem. Mater.
– ident: e_1_2_9_98_1
  doi: 10.1126/sciadv.aap9252
SSID ssj0009633
Score 2.6015942
SecondaryResourceType review_article
Snippet Conventional liquid electrolytes for lithium batteries usually suffer from irreversible decomposition and safety concerns. Solid state electrolytes (SSEs) have...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18293
SubjectTerms Batteries
Chemistry
Electrochemical analysis
Electrochemistry
Electrolytes
Flux density
hybrid materials
ionic conductivity
Lithium
Lithium batteries
lithium metal anode
Molten salt electrolytes
Polymers
Product design
Safety
Solid electrolytes
solid lithium batteries
solid-state electrolyte
Title Recent Progress of Hybrid Solid‐State Electrolytes for Lithium Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803616
https://www.ncbi.nlm.nih.gov/pubmed/30221404
https://www.proquest.com/docview/2153563252
https://www.proquest.com/docview/2108259767
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSyQxEMcL8aIXX7ur7YssCHuKdtLvo4gyiMqyruCtyatxcJwRnTnoyY_gZ_STWNWZbh1FBL110wmdpPL4pTv1L4AtY5AKjLU8q9Kcx9oJXhhtOMJ4lhihRV47iR2fpJ2z-PA8OX_lxe_1IdoPbjQy6vmaBrjStzsvoqFYJ_IkFznOwYI0t-nAFlHRvxf9KOxdPpZ8nHHSYG1UG0O5M5l9clV6h5qT5FovPQfzoJpC-xMnl9ujod4292_0HL9TqwWYG3Mp2_UdaRGmXH8JZvaacHA_4BABExco9pcOdOH0yAYV69yRvxc7HfS69unhsQZXtu8D6_TuEGIZIjE76g4vuqMr5qU8cWf-E84O9v_vdfg4EAM3MW4Zua2kDgtVxNLFqcnTQiEIooFdpkKlbY7YUhRVYkJVSSW1UJmyeZUJGxXCWTTCL5juD_puBRgSn4rIe9U6Gds01Do2VSqcSRJZVJEIgDeGKM1YpZyCZfRKr68sS2qhsm2hAP606a-9PseHKdcbu5bjcXpbIvBESRrJRAbwu32MLUu_TVTfDUaUhrbRiG1ZAMu-P7SvihCBSKAoAFlb9ZMylKRz0d6tfiXTGszSNZ2oEeE6TA9vRm4DuWioN-u-_wzRmwQ0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHLT3QC6UF2pSluBJST4bYeR_RAtrSBVUUJG6RXxGrbncR7B7oqR-hn7GfhJl4E7RUCAmOSWwl9vjxs-P5D8CWMUgFxlqeVWnOY-0EL4w2HGE8S4zQIq-dxI6O095ZfHieNKcJyRfG60O0G27UM-rxmjo4bUjv3KmGYqHIlVzkOAiL9CW8orDeJJ-_d3KnIIXty0eTjzNOKqyNbmMod-bzz89L_8HmPLvWk8_BG9DNZ_szJz-3pxO9bX7fU3R8VrmWYWmGpmzXt6W38MKN3sFit4kItwKHyJg4R7HvdKYLR0g2rljvhly-2I_xcGD__flbsyvb97F1hjfIsQypmPUHk4vB9Bfzap64OF-Fs4P9026Pz2IxcBPjqpHbSuqwUEUsXZyaPC0UsiDa2GUqVNrmSC5FUSUmVJVUUguVKZtXmbBRIZxFK6zBwmg8ch-AIfSpiBxYrZOxTUOtY1OlwpkkkUUViQB4Y4nSzITKKV7GsPQSy7KkGirbGgrgS5v-0kt0PJiy0xi2nHXV6xKZJ0rSSCYygM_tY6xZ-nOiRm48pTS0kkZyywJ47xtE-6oIKYg0igKQtVkf-YaSpC7aq49PybQJi73To37Z_3r8bR1e0306YCPCDixMrqZuAzFpoj_VHeEWGaYIUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPSisBG8qdlAJGQmLlNnYcJ16itqNpKVUFVOou8lWMGGYqmFmUFY_QZ-RJOI4naYcKIcEyia3YPr58Tnz-A_DKWqQC6xytgqypMJ5RZY2lCONVaZlhdesk9u5IDk_EwWl5esWLP-lD9B_c4sho5-s4wM9c2L4UDcU6RU9yVuMczOQNWBMyVzF4w-77SwEp7F4pmLyoaBRh7WQbc769nH95WbrGmsvo2q49g3XQXanTkZPPW_OZ2bLffxN0_J9q3YU7CzAlb1JPugcrfnIfbu108eAewAESJq5Q5Die6ML5kUwDGZ5Hhy_yYToeuZ8_LlpyJXspss74HCmWIBOTw9Hs02j-hSQtT9yaP4STwd7HnSFdRGKgVuCekbrATa60EtwLaWupNJIgWthXOtfG1cgtSoXS5jpwzQ3TlXZ1qJgrFPMOjfAIVifTiX8CBJFPF9F91XkunMyNETZI5m1ZchUKlgHtDNHYhUx5jJYxbpLAMm9iCzV9C2Xwuk9_lgQ6_phys7Nrsxio3xoknqKUBS95Bi_7x9iy8b-JnvjpPKaJ-2jktiqDx6k_9K8qkIGiQlEGvLXqX8rQRKGL_mrjXzK9gJvHu4PmcP_o7VO4HW_H0zUs34TV2de5f4aMNDPP22HwC_PhBv8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Progress+of+Hybrid+Solid%E2%80%90State+Electrolytes+for+Lithium+Batteries&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Liu%2C+Xiaoyan&rft.au=Li%2C+Xinru&rft.au=Li%2C+Hexing&rft.au=Wu%2C+Hao+Bin&rft.date=2018-12-10&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=69&rft.spage=18293&rft.epage=18306&rft_id=info:doi/10.1002%2Fchem.201803616&rft.externalDBID=10.1002%252Fchem.201803616&rft.externalDocID=CHEM201803616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon