Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization

Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best per...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 46; pp. 20405 - 20410
Main Authors Yang, Juliang, Dai, Jun, Wang, Quan, Cheng, Yong, Guo, Jingjing, Zhao, Zujin, Hong, Yuning, Lou, Xiaoding, Xia, Fan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.11.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth. A multiple‐agent‐therapy probe based on a peptide‐conjugated‐AIEgen was developed with extracellular MMP‐2 and intracellular CB response. When approaching tumor cells, it can be separated into different agents, which then enter the tumor cells by their dominant pathway with high cellular internalization efficiency and effective multimodal cancer therapy.
AbstractList Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth.
Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth. A multiple‐agent‐therapy probe based on a peptide‐conjugated‐AIEgen was developed with extracellular MMP‐2 and intracellular CB response. When approaching tumor cells, it can be separated into different agents, which then enter the tumor cells by their dominant pathway with high cellular internalization efficiency and effective multimodal cancer therapy.
Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide-conjugated-AIEgen (FC-PyTPA) is presented: upon loading with siRNA, it self-assembles into FC -PyTPA. When approaching the region near tumor cells, FC -PyTPA responds to extracellular MMP-2 and is cleaved into FC and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae-mediated endocytosis. This two-part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self-assembly of nanofiber precursor F, gene interference of C , and ROS production of PyTPA are activated to inhibit tumor growth.
Abstract Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FC siRNA ‐PyTPA. When approaching the region near tumor cells, FC siRNA ‐PyTPA responds to extracellular MMP‐2 and is cleaved into FC siRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of C siRNA , and ROS production of PyTPA are activated to inhibit tumor growth.
Author Guo, Jingjing
Zhao, Zujin
Hong, Yuning
Yang, Juliang
Lou, Xiaoding
Dai, Jun
Xia, Fan
Cheng, Yong
Wang, Quan
Author_xml – sequence: 1
  givenname: Juliang
  surname: Yang
  fullname: Yang, Juliang
  organization: China University of Geosciences
– sequence: 2
  givenname: Jun
  surname: Dai
  fullname: Dai, Jun
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Quan
  surname: Wang
  fullname: Wang, Quan
  organization: China University of Geosciences
– sequence: 4
  givenname: Yong
  surname: Cheng
  fullname: Cheng, Yong
  organization: China University of Geosciences
– sequence: 5
  givenname: Jingjing
  surname: Guo
  fullname: Guo, Jingjing
  organization: South China University of Technology
– sequence: 6
  givenname: Zujin
  surname: Zhao
  fullname: Zhao, Zujin
  organization: South China University of Technology
– sequence: 7
  givenname: Yuning
  surname: Hong
  fullname: Hong, Yuning
  organization: La Trobe University
– sequence: 8
  givenname: Xiaoding
  orcidid: 0000-0002-6556-2034
  surname: Lou
  fullname: Lou, Xiaoding
  email: louxiaoding@cug.edu.cn
  organization: China University of Geosciences
– sequence: 9
  givenname: Fan
  surname: Xia
  fullname: Xia, Fan
  organization: China University of Geosciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32720727$$D View this record in MEDLINE/PubMed
BookMark eNqF0b1u2zAQB3CiSNDEadeOAYEuXeSQlETSo-E4jYF8De4sUNTRoUGJLimhcKY8Qp6xTxIKTlOgS6cjcD_-cbiboKPOd4DQF0qmlBB2oToLU0YYITM64x_QKS0ZzXIh8qP0LvI8E7KkJ2gS4zZ5KQn_iE5yJhgRTJyi7Xpoffj9_LIOdrOBAA2-tFHFCG3t9tgbrPDt4Hq7c5DUfANdP-pHCGq3xw_B14CND3hpjNU2dfECnBucCnjV9RA65eyT6q3vPqFjo1yEz2_1DP24Wq4X19nN_ffVYn6T6YISnmlNhRRG80YKzUvdyJoUtUkFgNC84KYWdc0KI5khsiGFbIoZbxqmU4uVPD9D3w65u-B_DhD7qrVRp6FUB36IFSuYJKUUfKRf_6FbP4wjjypFSZrWmtT0oHTwMQYw1S7YVoV9RUk1XqEar1C9XyF9OH-LHeoWmnf-Z-0JzA7gl3Ww_09cNb9bLf-GvwLX-plN
CitedBy_id crossref_primary_10_1002_ange_202313139
crossref_primary_10_1021_acsnano_2c03219
crossref_primary_10_1002_smll_202103712
crossref_primary_10_1039_D1TB02352G
crossref_primary_10_1021_acs_analchem_3c01988
crossref_primary_10_1021_acs_biochem_1c00386
crossref_primary_10_1002_advs_202207228
crossref_primary_10_1002_ange_202106195
crossref_primary_10_1002_ange_202317578
crossref_primary_10_1021_acsabm_1c00398
crossref_primary_10_1039_D2SC02025D
crossref_primary_10_1021_acsami_1c02600
crossref_primary_10_1007_s11426_021_1051_9
crossref_primary_10_1016_j_dyepig_2022_110080
crossref_primary_10_1021_acsnano_1c08928
crossref_primary_10_1002_adhm_202100945
crossref_primary_10_1021_acsnano_1c02882
crossref_primary_10_1002_asia_202100102
crossref_primary_10_1007_s40242_021_1265_5
crossref_primary_10_1039_D1CS01138C
crossref_primary_10_1002_adhm_202101036
crossref_primary_10_1016_j_ccr_2021_214267
crossref_primary_10_1016_j_xcrp_2022_100743
crossref_primary_10_1016_j_nantod_2021_101312
crossref_primary_10_1002_adma_202311733
crossref_primary_10_1016_j_cej_2021_134327
crossref_primary_10_1002_EXP_20210265
crossref_primary_10_1002_cjoc_202200718
crossref_primary_10_2139_ssrn_4111368
crossref_primary_10_1002_adma_202101158
crossref_primary_10_3390_bios12080667
crossref_primary_10_1002_anie_202117798
crossref_primary_10_1021_acs_analchem_1c03727
crossref_primary_10_1021_jacs_2c06111
crossref_primary_10_1039_D0NA00899K
crossref_primary_10_6023_cjoc202203028
crossref_primary_10_1016_j_ccr_2023_215600
crossref_primary_10_1016_j_jconrel_2023_07_064
crossref_primary_10_1002_btm2_10417
crossref_primary_10_1002_adma_202207330
crossref_primary_10_1016_j_ccr_2022_214552
crossref_primary_10_1039_D2TB02349K
crossref_primary_10_1002_adhm_202304108
crossref_primary_10_1002_adma_202104615
crossref_primary_10_1016_j_enmf_2022_09_001
crossref_primary_10_1021_acs_langmuir_1c03331
crossref_primary_10_1016_j_biomaterials_2021_121255
crossref_primary_10_1021_acs_analchem_2c04872
crossref_primary_10_1021_acs_analchem_1c04422
crossref_primary_10_2147_IJN_S384196
crossref_primary_10_1039_D0QM00503G
crossref_primary_10_1093_nsr_nwaa306
crossref_primary_10_1016_j_engreg_2022_01_005
crossref_primary_10_1038_s41467_023_38601_7
crossref_primary_10_1002_adom_202100966
crossref_primary_10_1016_j_cej_2024_149539
crossref_primary_10_1002_ange_202117798
crossref_primary_10_1002_anie_202313139
crossref_primary_10_1021_acs_analchem_2c00776
crossref_primary_10_1002_anie_202317578
crossref_primary_10_1021_acsami_3c01682
crossref_primary_10_1002_anie_202106195
crossref_primary_10_1016_j_apsb_2022_02_027
crossref_primary_10_1016_j_addr_2024_115327
crossref_primary_10_1007_s40242_021_0430_1
crossref_primary_10_1021_acsnano_3c04017
crossref_primary_10_1021_acs_analchem_2c00583
crossref_primary_10_1021_acsnano_9b09818
crossref_primary_10_1186_s12951_022_01553_z
crossref_primary_10_3390_nano11113002
crossref_primary_10_1016_j_dyepig_2023_111384
crossref_primary_10_1002_chem_202203225
crossref_primary_10_1016_j_biomaterials_2022_121528
crossref_primary_10_1016_j_colsurfb_2022_112765
Cites_doi 10.1002/anie.201408476
10.1002/adma.201904914
10.1002/ange.201906099
10.1038/s41587-019-0135-x
10.1038/nature19764
10.1038/s41551-018-0284-0
10.1126/sciadv.aaz8985
10.1016/j.jconrel.2014.08.023
10.1038/s41467-019-11631-w
10.1002/ange.201710237
10.1002/ange.201901527
10.1021/jacs.5b00922
10.1002/anie.201814552
10.1073/pnas.1304987110
10.1038/s41467-019-12142-4
10.1038/nature13187
10.1002/smll.201703321
10.1002/ange.201908997
10.1021/acs.chemrev.7b00258
10.1073/pnas.0408191101
10.1126/science.1114397
10.1002/ange.201814552
10.1002/anie.201710237
10.1038/s42003-018-0204-6
10.1038/natrevmats.2016.75
10.1093/nar/gkl388
10.1021/acs.chemrev.7b00522
10.1126/sciadv.aax0937
10.1021/acsnano.8b09786
10.1002/anie.201908997
10.1016/j.ccr.2019.213076
10.1038/s41467-019-10385-9
10.1038/nrd2591
10.1038/ncomms7456
10.1021/acs.nanolett.8b03936
10.1038/ncomms5904
10.1002/smll.201900205
10.1158/0008-5472.CAN-12-1668
10.1002/ange.201005740
10.1002/anie.201908185
10.1002/adma.201605357
10.1021/ja510156v
10.1042/bj20031253
10.1002/anie.201906099
10.1002/anie.201910187
10.1126/sciadv.1500821
10.1021/jacs.9b03346
10.1002/ange.201408476
10.1038/nrclinonc.2017.166
10.1021/jacs.8b13512
10.1016/j.cell.2010.03.015
10.1016/j.addr.2009.04.005
10.1021/nn300524f
10.1021/acs.accounts.9b00356
10.1038/nature10812
10.1016/j.cell.2017.01.018
10.1002/adma.201806331
10.1021/jacs.7b11114
10.1016/j.chempr.2019.07.015
10.1002/adma.201806444
10.1002/anie.201005740
10.1002/adma.201704196
10.1002/anie.201901527
10.1002/ange.201908185
10.1002/ange.201910187
10.1126/sciadv.aaw6264
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
DOI 10.1002/anie.202009196
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 20410
ExternalDocumentID 10_1002_anie_202009196
32720727
ANIE202009196
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21788102, 21722507, 21525523, 21974128, 21874121
– fundername: Natural Science Foundation of Hubei Province
  funderid: 2019CFA043
– fundername: Australian Research Council
  funderid: DE170100058
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TM
K9.
7X8
ID FETCH-LOGICAL-c4106-cc1787fc6d87c65cd8b04bfd8bee01346fb7bb24f82f08d048d496dd2c46f2563
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 05:59:26 EDT 2024
Thu Oct 10 16:30:54 EDT 2024
Fri Aug 23 00:49:06 EDT 2024
Sat Sep 28 08:35:37 EDT 2024
Sat Aug 24 01:03:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords caveolae-mediated endocytosis
macropinocytosis
nanofibers/gene/ROS
multiple-agent-therapy probes
peptide-conjugated-AIEgens
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-cc1787fc6d87c65cd8b04bfd8bee01346fb7bb24f82f08d048d496dd2c46f2563
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6556-2034
PMID 32720727
PQID 2456381091
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2428058766
proquest_journals_2456381091
crossref_primary_10_1002_anie_202009196
pubmed_primary_32720727
wiley_primary_10_1002_anie_202009196_ANIE202009196
PublicationCentury 2000
PublicationDate November 9, 2020
PublicationDateYYYYMMDD 2020-11-09
PublicationDate_xml – month: 11
  year: 2020
  text: November 9, 2020
  day: 09
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 101
2015; 1
2012; 483
2015; 6
2017; 2
2018; 140
2019; 5
2019; 31
2006; 34
2019; 52
2009; 61
2019; 10
2019; 13
2019; 15
2019; 37
2020; 402
2020 2020; 59 132
2019; 19
2010; 141
2014; 194
2017; 29
2019; 141
2019 2019; 58 131
2017; 117
2006; 311
2020; 6
2014; 5
2014; 508
2018; 2
2004; 377
2015; 137
2016; 538
2018; 1
2013; 73
2018 2018; 57 130
2015 2015; 54 127
2011 2011; 50 123
2013; 110
2012; 6
2017; 168
2012; 5
2018; 15
2018; 14
2010; 9
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_47_3
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_1
e_1_2_2_66_1
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_26_1
e_1_2_2_45_3
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_59_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_55_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_15_1
e_1_2_2_34_3
e_1_2_2_55_3
e_1_2_2_72_1
e_1_2_2_70_2
e_1_2_2_3_2
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_48_3
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_27_1
e_1_2_2_69_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_67_2
e_1_2_2_61_1
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_50_3
e_1_2_2_50_2
e_1_2_2_18_3
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_73_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_71_2
Panariti A. (e_1_2_2_31_2) 2012; 5
References_xml – volume: 508
  start-page: 113
  year: 2014
  end-page: 117
  publication-title: Nature
– volume: 59 132
  start-page: 9288 9374
  year: 2020 2020
  end-page: 9292 9378
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 168
  start-page: 613
  year: 2017
  end-page: 628
  publication-title: Cell
– volume: 1
  start-page: 202
  year: 2018
  publication-title: Commun. Biol.
– volume: 54 127
  start-page: 1780 1800
  year: 2015 2015
  end-page: 1786 1806
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 311
  start-page: 622
  year: 2006
  end-page: 627
  publication-title: Science
– volume: 58 131
  start-page: 14758 14900
  year: 2019 2019
  end-page: 14763 14905
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 5049 5103
  year: 2019 2019
  end-page: 5053 5107
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 6456
  year: 2015
  publication-title: Nat. Commun.
– volume: 402
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 117
  start-page: 14015
  year: 2017
  end-page: 14041
  publication-title: Chem. Rev.
– volume: 37
  start-page: 761
  year: 2019
  end-page: 765
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 81
  year: 2018
  end-page: 94
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 141
  start-page: 7271
  year: 2019
  end-page: 7274
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 4406
  year: 2019
  end-page: 4411
  publication-title: J. Am. Chem. Soc.
– volume: 377
  start-page: 159
  year: 2004
  end-page: 169
  publication-title: Biochem. J.
– volume: 137
  start-page: 770
  year: 2015
  end-page: 775
  publication-title: J. Am. Chem. Soc.
– volume: 538
  start-page: 183
  year: 2016
  end-page: 192
  publication-title: Nature
– volume: 5
  start-page: 87
  year: 2012
  end-page: 100
  publication-title: Nanotechnol. Sci. Appl.
– volume: 58 131
  start-page: 16229 16375
  year: 2019 2019
  end-page: 16235 16381
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 3051
  year: 2019
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 4904
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3491
  year: 2012
  end-page: 3498
  publication-title: ACS Nano
– volume: 194
  start-page: 103
  year: 2014
  end-page: 112
  publication-title: J. Controlled Release
– volume: 19
  start-page: 318
  year: 2019
  end-page: 330
  publication-title: Nano Lett.
– volume: 61
  start-page: 704
  year: 2009
  end-page: 709
  publication-title: Adv. Drug Delivery Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 483
  start-page: 176
  year: 2012
  end-page: 181
  publication-title: Nature
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 615
  year: 2010
  end-page: 627
  publication-title: Nat. Rev. Drug Discovery
– volume: 10
  start-page: 3646
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 2412
  year: 2019
  publication-title: Nat. Commun.
– volume: 2
  start-page: 850
  year: 2018
  end-page: 864
  publication-title: Nat. Biomed. Eng.
– volume: 58 131
  start-page: 15287 15431
  year: 2019 2019
  end-page: 15294 15438
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4418
  year: 2019
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 140
  start-page: 106
  year: 2018
  end-page: 109
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 137
  start-page: 6726
  year: 2015
  end-page: 6729
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 13566
  year: 2017
  end-page: 13638
  publication-title: Chem. Rev.
– volume: 13
  start-page: 5306
  year: 2019
  end-page: 5325
  publication-title: ACS Nano
– volume: 58 131
  start-page: 10423 10532
  year: 2019 2019
  end-page: 10432 10541
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 73
  start-page: 804
  year: 2013
  end-page: 812
  publication-title: Cancer Res.
– volume: 57 130
  start-page: 1813 1831
  year: 2018 2018
  end-page: 1816 1834
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 34
  year: 2006
  publication-title: Nucleic Acids Res.
– volume: 141
  start-page: 52
  year: 2010
  end-page: 67
  publication-title: Cell
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 101
  start-page: 17867
  year: 2004
  end-page: 17872
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 2657
  year: 2019
  end-page: 2677
  publication-title: Chem
– volume: 50 123
  start-page: 3058 3114
  year: 2011 2011
  end-page: 3062 3118
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 16075
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 110
  start-page: 17047
  year: 2013
  end-page: 17052
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_2_55_2
  doi: 10.1002/anie.201408476
– ident: e_1_2_2_37_2
  doi: 10.1002/adma.201904914
– ident: e_1_2_2_32_1
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.201906099
– ident: e_1_2_2_62_2
  doi: 10.1038/s41587-019-0135-x
– ident: e_1_2_2_30_2
  doi: 10.1038/nature19764
– ident: e_1_2_2_27_1
  doi: 10.1038/s41551-018-0284-0
– ident: e_1_2_2_63_2
  doi: 10.1126/sciadv.aaz8985
– ident: e_1_2_2_70_2
  doi: 10.1016/j.jconrel.2014.08.023
– ident: e_1_2_2_22_2
  doi: 10.1038/s41467-019-11631-w
– ident: e_1_2_2_48_3
  doi: 10.1002/ange.201710237
– ident: e_1_2_2_50_3
  doi: 10.1002/ange.201901527
– ident: e_1_2_2_54_2
  doi: 10.1021/jacs.5b00922
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.201814552
– ident: e_1_2_2_15_1
– ident: e_1_2_2_64_2
  doi: 10.1073/pnas.1304987110
– ident: e_1_2_2_7_2
  doi: 10.1038/s41467-019-12142-4
– ident: e_1_2_2_74_2
– ident: e_1_2_2_4_2
  doi: 10.1038/nature13187
– ident: e_1_2_2_41_2
  doi: 10.1002/smll.201703321
– ident: e_1_2_2_28_1
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201908997
– ident: e_1_2_2_5_1
  doi: 10.1021/acs.chemrev.7b00258
– ident: e_1_2_2_57_2
  doi: 10.1073/pnas.0408191101
– ident: e_1_2_2_60_2
  doi: 10.1126/science.1114397
– ident: e_1_2_2_58_1
– volume: 5
  start-page: 87
  year: 2012
  ident: e_1_2_2_31_2
  publication-title: Nanotechnol. Sci. Appl.
  contributor:
    fullname: Panariti A.
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.201814552
– ident: e_1_2_2_48_2
  doi: 10.1002/anie.201710237
– ident: e_1_2_2_11_2
  doi: 10.1038/s42003-018-0204-6
– ident: e_1_2_2_6_1
– ident: e_1_2_2_29_2
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_2_69_1
– ident: e_1_2_2_71_2
  doi: 10.1093/nar/gkl388
– ident: e_1_2_2_66_1
– ident: e_1_2_2_39_1
– ident: e_1_2_2_51_2
  doi: 10.1021/acs.chemrev.7b00522
– ident: e_1_2_2_67_2
  doi: 10.1126/sciadv.aax0937
– ident: e_1_2_2_49_1
– ident: e_1_2_2_9_2
  doi: 10.1021/acsnano.8b09786
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201908997
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_33_2
  doi: 10.1016/j.ccr.2019.213076
– ident: e_1_2_2_40_2
  doi: 10.1038/s41467-019-10385-9
– ident: e_1_2_2_59_2
  doi: 10.1038/nrd2591
– ident: e_1_2_2_14_2
  doi: 10.1038/ncomms7456
– ident: e_1_2_2_38_2
  doi: 10.1021/acs.nanolett.8b03936
– ident: e_1_2_2_24_2
  doi: 10.1038/ncomms5904
– ident: e_1_2_2_10_2
  doi: 10.1002/smll.201900205
– ident: e_1_2_2_25_2
  doi: 10.1158/0008-5472.CAN-12-1668
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201005740
– ident: e_1_2_2_47_2
  doi: 10.1002/anie.201908185
– ident: e_1_2_2_12_2
  doi: 10.1002/adma.201605357
– ident: e_1_2_2_42_2
  doi: 10.1021/ja510156v
– ident: e_1_2_2_26_1
  doi: 10.1042/bj20031253
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.201906099
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201910187
– ident: e_1_2_2_23_2
  doi: 10.1126/sciadv.1500821
– ident: e_1_2_2_44_2
  doi: 10.1021/jacs.9b03346
– ident: e_1_2_2_55_3
  doi: 10.1002/ange.201408476
– ident: e_1_2_2_61_1
– ident: e_1_2_2_2_2
  doi: 10.1038/nrclinonc.2017.166
– ident: e_1_2_2_46_2
  doi: 10.1021/jacs.8b13512
– ident: e_1_2_2_53_1
– ident: e_1_2_2_65_2
  doi: 10.1016/j.cell.2010.03.015
– ident: e_1_2_2_68_2
  doi: 10.1016/j.addr.2009.04.005
– ident: e_1_2_2_56_2
  doi: 10.1021/nn300524f
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.accounts.9b00356
– ident: e_1_2_2_72_1
– ident: e_1_2_2_73_2
  doi: 10.1038/nature10812
– ident: e_1_2_2_3_2
  doi: 10.1016/j.cell.2017.01.018
– ident: e_1_2_2_36_2
  doi: 10.1002/adma.201806331
– ident: e_1_2_2_20_2
  doi: 10.1021/jacs.7b11114
– ident: e_1_2_2_17_2
  doi: 10.1016/j.chempr.2019.07.015
– ident: e_1_2_2_8_2
  doi: 10.1002/adma.201806444
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201005740
– ident: e_1_2_2_13_2
  doi: 10.1002/adma.201704196
– ident: e_1_2_2_50_2
  doi: 10.1002/anie.201901527
– ident: e_1_2_2_47_3
  doi: 10.1002/ange.201908185
– ident: e_1_2_2_21_1
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201910187
– ident: e_1_2_2_19_2
  doi: 10.1126/sciadv.aaw6264
SSID ssj0028806
Score 2.6237473
Snippet Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if...
Abstract Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 20405
SubjectTerms Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Caveolae
caveolae-mediated endocytosis
Chemical compounds
Endocytosis
Endocytosis - drug effects
Humans
Internalization
macropinocytosis
Molecular Probes - chemistry
multiple-agent-therapy probes
Nanofibers
nanofibers/gene/ROS
Neoplasms - pathology
Neoplasms - therapy
Optimization
peptide-conjugated-AIEgens
Pharmacology
Physicochemical properties
RNA, Small Interfering - administration & dosage
siRNA
Tumor cells
Tumors
Title Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009196
https://www.ncbi.nlm.nih.gov/pubmed/32720727
https://www.proquest.com/docview/2456381091
https://search.proquest.com/docview/2428058766
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4GCjITEKW1qu1mOVRcVJCqEWqm3KHZsBHRBXQ5w4hP4Rr6EmWxQOCDBKYlsJ47t8byxZ54JOQ8CJZhWxgb0pm2hDYiUhMmQGVTvnuSeSbwtum6nL64GtcGXKP6UH6JYcEPJSOZrFPBIziqfpKEYgQ32Ha7uwyiCSbjKPfTpat4W_FEMBmcaXsS5jafQ56yNDqssF1_WSj-g5jJyTVRPe5NEeaVTj5PH8mIuy-rlG5_jf_5qi2xkuJTW04G0TVb0eIesNfLj4HbJQ28xmkzfX996YM_f4QmftHk_A-itR3L4TCeGRvQ6806EXHUM2cLcKWsBvcGwIwoImbYS0gpIpQ09HKIXLM2WJYdZTOge6bdbvUbHzg5qsJUAk9JWqgpyb5Qb-55ykW5AOkIauGgNEFO4RnpSMmF8Zhw_hkkjFoEbx0xBEmAuvk9Wx5OxPiQUzKfYiSTX3FciAlstBgQVSM1MxAVXzCIXeUeFTykfR5gyL7MQ2y4s2s4ipbwfw0wuZyFu8yKnWVC1yFmRDC2J2yTRWE8WmIf5Tg20BLziIO3_4lMct60B8lmEJb34Sx3CeveyVTwd_aXQMVnH-yT8MSiR1fl0oU8AB83laTLWPwDuFQLE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvpTVSEicAsE2aXKsSqsWSoVQK3GLYsdGQGkRtAc48Ql8I1_CTDZUOCDBKUrsbPaM_caeeQOwHwRacqOtg-jNONJYVCmFgyG3NL2XlSjbxNui7TW68uz6JPcmpFiYlB-iWHAjzUjGa1JwWpA--mINpRBsNPBoeR_FaBKmUecFZW84vSoYpDiKZxpgJIRDeehz3kaXH43fPz4v_QCb49g1mXzq86Dyz059Tu4PR0N1qF-_MTr-678WYC6DpqySytIiTJj-EsxU84xwy3DXGT0Mnj7e3jto0t9Qkk92evuM6Ns8qN4LG1gWsYvMQRFrVShqi2qnxAXskiKPGIJkVkt4K7CUVU2vR46wLFuZ7GVhoSvQrdc61YaT5WpwtESr0tH6GFXfai_2y9ojxgHlSmXxYAyiTOlZVVaKS-tz6_oxjhuxDLw45hqLEHaJVZjqD_pmHRhaULEbKWGEr2WE5lqMICpQhttISKF5CQ7yngofU0qOMCVf5iG1XVi0XQm28o4MM9V8Dmmnl2jNguMS7BXF2JK0UxL1zWBEdbjvnuBEgY9YSwWgeJWgnWtEfSXgSTf-8g1hpd2sFWcbf7lpF2YanYtW2Gq2zzdhlq4n0ZDBFkwNn0ZmG2HRUO0kgv8JBN0G3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-1JWIyFxCgTbpMmxKq1YK4SKxC2KHRsBpUWlPcCJT-Ab-RJmskHhgASnKLGdOJ4Z-43teQbYDgItudHWQfRmHGksmpTCzpBbGt4rSlRsstui6R1dyZPrg-svUfwpP0Qx4UaWkfTXZOCPsd37JA2lCGz072h2H7VoFMakh_CXYNFlQSDFUTvT-CIhHDqGPqdtdPnecPnhYekH1hyGrsnY05iGKK91uuXkfnfQV7v65Ruh439-awamMmDKqqkmzcKI6czBRC0_D24e7lqDh27v_fWthQ79DR3xyQ5vnxB7mwfVfmZdyyJ2nm1PxFxVitmi3CltAbuguCOGEJnVE9YKTGU1027TNliWzUu2s6DQBbhq1Fu1Iyc7qcHREn1KR-t9NHyrvdivaI_4BpQrlcWLMYgxpWdVRSkurc-t68fYa8Qy8OKYa0xC0CUWodTpdswyMPSfYjdSwghfywidtRghVKAMt5GQQvMy7OSCCh9TQo4wpV7mIbVdWLRdGdZyOYaZYT6FtM5LpGbBfhm2imRsSVoniTqmO6A83HcPcJjAVyyl8i8-JWjdGjFfGXgixV_qEFabx_XibuUvhTZh_OKwEZ4dN09XYZIeJ6GQwRqU-r2BWUdM1Fcbidp_APBzBYs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-Triggered+Disassembly+of+a+Multiple-Agent-Therapy+Probe+for+Efficient+Cellular+Internalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Juliang&rft.au=Dai%2C+Jun&rft.au=Wang%2C+Quan&rft.au=Cheng%2C+Yong&rft.date=2020-11-09&rft.eissn=1521-3773&rft.volume=59&rft.issue=46&rft.spage=20405&rft_id=info:doi/10.1002%2Fanie.202009196&rft_id=info%3Apmid%2F32720727&rft.externalDocID=32720727
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon