Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization
Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best per...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 46; pp. 20405 - 20410 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
09.11.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth.
A multiple‐agent‐therapy probe based on a peptide‐conjugated‐AIEgen was developed with extracellular MMP‐2 and intracellular CB response. When approaching tumor cells, it can be separated into different agents, which then enter the tumor cells by their dominant pathway with high cellular internalization efficiency and effective multimodal cancer therapy. |
---|---|
AbstractList | Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth. Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FCsiRNA‐PyTPA. When approaching the region near tumor cells, FCsiRNA‐PyTPA responds to extracellular MMP‐2 and is cleaved into FCsiRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of CsiRNA, and ROS production of PyTPA are activated to inhibit tumor growth. A multiple‐agent‐therapy probe based on a peptide‐conjugated‐AIEgen was developed with extracellular MMP‐2 and intracellular CB response. When approaching tumor cells, it can be separated into different agents, which then enter the tumor cells by their dominant pathway with high cellular internalization efficiency and effective multimodal cancer therapy. Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide-conjugated-AIEgen (FC-PyTPA) is presented: upon loading with siRNA, it self-assembles into FC -PyTPA. When approaching the region near tumor cells, FC -PyTPA responds to extracellular MMP-2 and is cleaved into FC and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae-mediated endocytosis. This two-part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self-assembly of nanofiber precursor F, gene interference of C , and ROS production of PyTPA are activated to inhibit tumor growth. Abstract Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if entering the cell as a whole, may not be optimal for each therapeutic agent (with different physicochemical properties), to achieve their best performance, hindering strategy optimization. A peptide‐conjugated‐AIEgen (FC‐PyTPA) is presented: upon loading with siRNA, it self‐assembles into FC siRNA ‐PyTPA. When approaching the region near tumor cells, FC siRNA ‐PyTPA responds to extracellular MMP‐2 and is cleaved into FC siRNA and PyTPA. The former enters cells mainly by macropinocytosis and the latter is internalized into cells mainly through caveolae‐mediated endocytosis. This two‐part strategy greatly improves the internalization efficiency of each individual therapeutic agent. Inside the cell, self‐assembly of nanofiber precursor F, gene interference of C siRNA , and ROS production of PyTPA are activated to inhibit tumor growth. |
Author | Guo, Jingjing Zhao, Zujin Hong, Yuning Yang, Juliang Lou, Xiaoding Dai, Jun Xia, Fan Cheng, Yong Wang, Quan |
Author_xml | – sequence: 1 givenname: Juliang surname: Yang fullname: Yang, Juliang organization: China University of Geosciences – sequence: 2 givenname: Jun surname: Dai fullname: Dai, Jun organization: Huazhong University of Science and Technology – sequence: 3 givenname: Quan surname: Wang fullname: Wang, Quan organization: China University of Geosciences – sequence: 4 givenname: Yong surname: Cheng fullname: Cheng, Yong organization: China University of Geosciences – sequence: 5 givenname: Jingjing surname: Guo fullname: Guo, Jingjing organization: South China University of Technology – sequence: 6 givenname: Zujin surname: Zhao fullname: Zhao, Zujin organization: South China University of Technology – sequence: 7 givenname: Yuning surname: Hong fullname: Hong, Yuning organization: La Trobe University – sequence: 8 givenname: Xiaoding orcidid: 0000-0002-6556-2034 surname: Lou fullname: Lou, Xiaoding email: louxiaoding@cug.edu.cn organization: China University of Geosciences – sequence: 9 givenname: Fan surname: Xia fullname: Xia, Fan organization: China University of Geosciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32720727$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0b1u2zAQB3CiSNDEadeOAYEuXeSQlETSo-E4jYF8De4sUNTRoUGJLimhcKY8Qp6xTxIKTlOgS6cjcD_-cbiboKPOd4DQF0qmlBB2oToLU0YYITM64x_QKS0ZzXIh8qP0LvI8E7KkJ2gS4zZ5KQn_iE5yJhgRTJyi7Xpoffj9_LIOdrOBAA2-tFHFCG3t9tgbrPDt4Hq7c5DUfANdP-pHCGq3xw_B14CND3hpjNU2dfECnBucCnjV9RA65eyT6q3vPqFjo1yEz2_1DP24Wq4X19nN_ffVYn6T6YISnmlNhRRG80YKzUvdyJoUtUkFgNC84KYWdc0KI5khsiGFbIoZbxqmU4uVPD9D3w65u-B_DhD7qrVRp6FUB36IFSuYJKUUfKRf_6FbP4wjjypFSZrWmtT0oHTwMQYw1S7YVoV9RUk1XqEar1C9XyF9OH-LHeoWmnf-Z-0JzA7gl3Ww_09cNb9bLf-GvwLX-plN |
CitedBy_id | crossref_primary_10_1002_ange_202313139 crossref_primary_10_1021_acsnano_2c03219 crossref_primary_10_1002_smll_202103712 crossref_primary_10_1039_D1TB02352G crossref_primary_10_1021_acs_analchem_3c01988 crossref_primary_10_1021_acs_biochem_1c00386 crossref_primary_10_1002_advs_202207228 crossref_primary_10_1002_ange_202106195 crossref_primary_10_1002_ange_202317578 crossref_primary_10_1021_acsabm_1c00398 crossref_primary_10_1039_D2SC02025D crossref_primary_10_1021_acsami_1c02600 crossref_primary_10_1007_s11426_021_1051_9 crossref_primary_10_1016_j_dyepig_2022_110080 crossref_primary_10_1021_acsnano_1c08928 crossref_primary_10_1002_adhm_202100945 crossref_primary_10_1021_acsnano_1c02882 crossref_primary_10_1002_asia_202100102 crossref_primary_10_1007_s40242_021_1265_5 crossref_primary_10_1039_D1CS01138C crossref_primary_10_1002_adhm_202101036 crossref_primary_10_1016_j_ccr_2021_214267 crossref_primary_10_1016_j_xcrp_2022_100743 crossref_primary_10_1016_j_nantod_2021_101312 crossref_primary_10_1002_adma_202311733 crossref_primary_10_1016_j_cej_2021_134327 crossref_primary_10_1002_EXP_20210265 crossref_primary_10_1002_cjoc_202200718 crossref_primary_10_2139_ssrn_4111368 crossref_primary_10_1002_adma_202101158 crossref_primary_10_3390_bios12080667 crossref_primary_10_1002_anie_202117798 crossref_primary_10_1021_acs_analchem_1c03727 crossref_primary_10_1021_jacs_2c06111 crossref_primary_10_1039_D0NA00899K crossref_primary_10_6023_cjoc202203028 crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1016_j_jconrel_2023_07_064 crossref_primary_10_1002_btm2_10417 crossref_primary_10_1002_adma_202207330 crossref_primary_10_1016_j_ccr_2022_214552 crossref_primary_10_1039_D2TB02349K crossref_primary_10_1002_adhm_202304108 crossref_primary_10_1002_adma_202104615 crossref_primary_10_1016_j_enmf_2022_09_001 crossref_primary_10_1021_acs_langmuir_1c03331 crossref_primary_10_1016_j_biomaterials_2021_121255 crossref_primary_10_1021_acs_analchem_2c04872 crossref_primary_10_1021_acs_analchem_1c04422 crossref_primary_10_2147_IJN_S384196 crossref_primary_10_1039_D0QM00503G crossref_primary_10_1093_nsr_nwaa306 crossref_primary_10_1016_j_engreg_2022_01_005 crossref_primary_10_1038_s41467_023_38601_7 crossref_primary_10_1002_adom_202100966 crossref_primary_10_1016_j_cej_2024_149539 crossref_primary_10_1002_ange_202117798 crossref_primary_10_1002_anie_202313139 crossref_primary_10_1021_acs_analchem_2c00776 crossref_primary_10_1002_anie_202317578 crossref_primary_10_1021_acsami_3c01682 crossref_primary_10_1002_anie_202106195 crossref_primary_10_1016_j_apsb_2022_02_027 crossref_primary_10_1016_j_addr_2024_115327 crossref_primary_10_1007_s40242_021_0430_1 crossref_primary_10_1021_acsnano_3c04017 crossref_primary_10_1021_acs_analchem_2c00583 crossref_primary_10_1021_acsnano_9b09818 crossref_primary_10_1186_s12951_022_01553_z crossref_primary_10_3390_nano11113002 crossref_primary_10_1016_j_dyepig_2023_111384 crossref_primary_10_1002_chem_202203225 crossref_primary_10_1016_j_biomaterials_2022_121528 crossref_primary_10_1016_j_colsurfb_2022_112765 |
Cites_doi | 10.1002/anie.201408476 10.1002/adma.201904914 10.1002/ange.201906099 10.1038/s41587-019-0135-x 10.1038/nature19764 10.1038/s41551-018-0284-0 10.1126/sciadv.aaz8985 10.1016/j.jconrel.2014.08.023 10.1038/s41467-019-11631-w 10.1002/ange.201710237 10.1002/ange.201901527 10.1021/jacs.5b00922 10.1002/anie.201814552 10.1073/pnas.1304987110 10.1038/s41467-019-12142-4 10.1038/nature13187 10.1002/smll.201703321 10.1002/ange.201908997 10.1021/acs.chemrev.7b00258 10.1073/pnas.0408191101 10.1126/science.1114397 10.1002/ange.201814552 10.1002/anie.201710237 10.1038/s42003-018-0204-6 10.1038/natrevmats.2016.75 10.1093/nar/gkl388 10.1021/acs.chemrev.7b00522 10.1126/sciadv.aax0937 10.1021/acsnano.8b09786 10.1002/anie.201908997 10.1016/j.ccr.2019.213076 10.1038/s41467-019-10385-9 10.1038/nrd2591 10.1038/ncomms7456 10.1021/acs.nanolett.8b03936 10.1038/ncomms5904 10.1002/smll.201900205 10.1158/0008-5472.CAN-12-1668 10.1002/ange.201005740 10.1002/anie.201908185 10.1002/adma.201605357 10.1021/ja510156v 10.1042/bj20031253 10.1002/anie.201906099 10.1002/anie.201910187 10.1126/sciadv.1500821 10.1021/jacs.9b03346 10.1002/ange.201408476 10.1038/nrclinonc.2017.166 10.1021/jacs.8b13512 10.1016/j.cell.2010.03.015 10.1016/j.addr.2009.04.005 10.1021/nn300524f 10.1021/acs.accounts.9b00356 10.1038/nature10812 10.1016/j.cell.2017.01.018 10.1002/adma.201806331 10.1021/jacs.7b11114 10.1016/j.chempr.2019.07.015 10.1002/adma.201806444 10.1002/anie.201005740 10.1002/adma.201704196 10.1002/anie.201901527 10.1002/ange.201908185 10.1002/ange.201910187 10.1126/sciadv.aaw6264 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM K9. 7X8 |
DOI | 10.1002/anie.202009196 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 20410 |
ExternalDocumentID | 10_1002_anie_202009196 32720727 ANIE202009196 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21788102, 21722507, 21525523, 21974128, 21874121 – fundername: Natural Science Foundation of Hubei Province funderid: 2019CFA043 – fundername: Australian Research Council funderid: DE170100058 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4106-cc1787fc6d87c65cd8b04bfd8bee01346fb7bb24f82f08d048d496dd2c46f2563 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Aug 16 05:59:26 EDT 2024 Thu Oct 10 16:30:54 EDT 2024 Fri Aug 23 00:49:06 EDT 2024 Sat Sep 28 08:35:37 EDT 2024 Sat Aug 24 01:03:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | caveolae-mediated endocytosis macropinocytosis nanofibers/gene/ROS multiple-agent-therapy probes peptide-conjugated-AIEgens |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4106-cc1787fc6d87c65cd8b04bfd8bee01346fb7bb24f82f08d048d496dd2c46f2563 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6556-2034 |
PMID | 32720727 |
PQID | 2456381091 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2428058766 proquest_journals_2456381091 crossref_primary_10_1002_anie_202009196 pubmed_primary_32720727 wiley_primary_10_1002_anie_202009196_ANIE202009196 |
PublicationCentury | 2000 |
PublicationDate | November 9, 2020 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: November 9, 2020 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 101 2015; 1 2012; 483 2015; 6 2017; 2 2018; 140 2019; 5 2019; 31 2006; 34 2019; 52 2009; 61 2019; 10 2019; 13 2019; 15 2019; 37 2020; 402 2020 2020; 59 132 2019; 19 2010; 141 2014; 194 2017; 29 2019; 141 2019 2019; 58 131 2017; 117 2006; 311 2020; 6 2014; 5 2014; 508 2018; 2 2004; 377 2015; 137 2016; 538 2018; 1 2013; 73 2018 2018; 57 130 2015 2015; 54 127 2011 2011; 50 123 2013; 110 2012; 6 2017; 168 2012; 5 2018; 15 2018; 14 2010; 9 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_47_3 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_64_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_1 e_1_2_2_66_1 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_26_1 e_1_2_2_45_3 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_59_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_74_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_32_1 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_55_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_15_1 e_1_2_2_34_3 e_1_2_2_55_3 e_1_2_2_72_1 e_1_2_2_70_2 e_1_2_2_3_2 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_48_3 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_27_1 e_1_2_2_69_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_67_2 e_1_2_2_61_1 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_50_3 e_1_2_2_50_2 e_1_2_2_18_3 e_1_2_2_52_3 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_73_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_71_2 Panariti A. (e_1_2_2_31_2) 2012; 5 |
References_xml | – volume: 508 start-page: 113 year: 2014 end-page: 117 publication-title: Nature – volume: 59 132 start-page: 9288 9374 year: 2020 2020 end-page: 9292 9378 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 168 start-page: 613 year: 2017 end-page: 628 publication-title: Cell – volume: 1 start-page: 202 year: 2018 publication-title: Commun. Biol. – volume: 54 127 start-page: 1780 1800 year: 2015 2015 end-page: 1786 1806 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 year: 2018 publication-title: Small – volume: 311 start-page: 622 year: 2006 end-page: 627 publication-title: Science – volume: 58 131 start-page: 14758 14900 year: 2019 2019 end-page: 14763 14905 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 5049 5103 year: 2019 2019 end-page: 5053 5107 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 6456 year: 2015 publication-title: Nat. Commun. – volume: 402 year: 2020 publication-title: Coord. Chem. Rev. – volume: 117 start-page: 14015 year: 2017 end-page: 14041 publication-title: Chem. Rev. – volume: 37 start-page: 761 year: 2019 end-page: 765 publication-title: Nat. Biotechnol. – volume: 15 start-page: 81 year: 2018 end-page: 94 publication-title: Nat. Rev. Clin. Oncol. – volume: 141 start-page: 7271 year: 2019 end-page: 7274 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 4406 year: 2019 end-page: 4411 publication-title: J. Am. Chem. Soc. – volume: 377 start-page: 159 year: 2004 end-page: 169 publication-title: Biochem. J. – volume: 137 start-page: 770 year: 2015 end-page: 775 publication-title: J. Am. Chem. Soc. – volume: 538 start-page: 183 year: 2016 end-page: 192 publication-title: Nature – volume: 5 start-page: 87 year: 2012 end-page: 100 publication-title: Nanotechnol. Sci. Appl. – volume: 58 131 start-page: 16229 16375 year: 2019 2019 end-page: 16235 16381 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 3051 year: 2019 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 5 start-page: 4904 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 3491 year: 2012 end-page: 3498 publication-title: ACS Nano – volume: 194 start-page: 103 year: 2014 end-page: 112 publication-title: J. Controlled Release – volume: 19 start-page: 318 year: 2019 end-page: 330 publication-title: Nano Lett. – volume: 61 start-page: 704 year: 2009 end-page: 709 publication-title: Adv. Drug Delivery Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 483 start-page: 176 year: 2012 end-page: 181 publication-title: Nature – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 615 year: 2010 end-page: 627 publication-title: Nat. Rev. Drug Discovery – volume: 10 start-page: 3646 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 2412 year: 2019 publication-title: Nat. Commun. – volume: 2 start-page: 850 year: 2018 end-page: 864 publication-title: Nat. Biomed. Eng. – volume: 58 131 start-page: 15287 15431 year: 2019 2019 end-page: 15294 15438 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4418 year: 2019 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 140 start-page: 106 year: 2018 end-page: 109 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 137 start-page: 6726 year: 2015 end-page: 6729 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 13566 year: 2017 end-page: 13638 publication-title: Chem. Rev. – volume: 13 start-page: 5306 year: 2019 end-page: 5325 publication-title: ACS Nano – volume: 58 131 start-page: 10423 10532 year: 2019 2019 end-page: 10432 10541 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 73 start-page: 804 year: 2013 end-page: 812 publication-title: Cancer Res. – volume: 57 130 start-page: 1813 1831 year: 2018 2018 end-page: 1816 1834 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 34 year: 2006 publication-title: Nucleic Acids Res. – volume: 141 start-page: 52 year: 2010 end-page: 67 publication-title: Cell – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 101 start-page: 17867 year: 2004 end-page: 17872 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 2657 year: 2019 end-page: 2677 publication-title: Chem – volume: 50 123 start-page: 3058 3114 year: 2011 2011 end-page: 3062 3118 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 16075 year: 2017 publication-title: Nat. Rev. Mater. – volume: 110 start-page: 17047 year: 2013 end-page: 17052 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_2_55_2 doi: 10.1002/anie.201408476 – ident: e_1_2_2_37_2 doi: 10.1002/adma.201904914 – ident: e_1_2_2_32_1 – ident: e_1_2_2_34_3 doi: 10.1002/ange.201906099 – ident: e_1_2_2_62_2 doi: 10.1038/s41587-019-0135-x – ident: e_1_2_2_30_2 doi: 10.1038/nature19764 – ident: e_1_2_2_27_1 doi: 10.1038/s41551-018-0284-0 – ident: e_1_2_2_63_2 doi: 10.1126/sciadv.aaz8985 – ident: e_1_2_2_70_2 doi: 10.1016/j.jconrel.2014.08.023 – ident: e_1_2_2_22_2 doi: 10.1038/s41467-019-11631-w – ident: e_1_2_2_48_3 doi: 10.1002/ange.201710237 – ident: e_1_2_2_50_3 doi: 10.1002/ange.201901527 – ident: e_1_2_2_54_2 doi: 10.1021/jacs.5b00922 – ident: e_1_2_2_45_2 doi: 10.1002/anie.201814552 – ident: e_1_2_2_15_1 – ident: e_1_2_2_64_2 doi: 10.1073/pnas.1304987110 – ident: e_1_2_2_7_2 doi: 10.1038/s41467-019-12142-4 – ident: e_1_2_2_74_2 – ident: e_1_2_2_4_2 doi: 10.1038/nature13187 – ident: e_1_2_2_41_2 doi: 10.1002/smll.201703321 – ident: e_1_2_2_28_1 – ident: e_1_2_2_18_3 doi: 10.1002/ange.201908997 – ident: e_1_2_2_5_1 doi: 10.1021/acs.chemrev.7b00258 – ident: e_1_2_2_57_2 doi: 10.1073/pnas.0408191101 – ident: e_1_2_2_60_2 doi: 10.1126/science.1114397 – ident: e_1_2_2_58_1 – volume: 5 start-page: 87 year: 2012 ident: e_1_2_2_31_2 publication-title: Nanotechnol. Sci. Appl. contributor: fullname: Panariti A. – ident: e_1_2_2_45_3 doi: 10.1002/ange.201814552 – ident: e_1_2_2_48_2 doi: 10.1002/anie.201710237 – ident: e_1_2_2_11_2 doi: 10.1038/s42003-018-0204-6 – ident: e_1_2_2_6_1 – ident: e_1_2_2_29_2 doi: 10.1038/natrevmats.2016.75 – ident: e_1_2_2_69_1 – ident: e_1_2_2_71_2 doi: 10.1093/nar/gkl388 – ident: e_1_2_2_66_1 – ident: e_1_2_2_39_1 – ident: e_1_2_2_51_2 doi: 10.1021/acs.chemrev.7b00522 – ident: e_1_2_2_67_2 doi: 10.1126/sciadv.aax0937 – ident: e_1_2_2_49_1 – ident: e_1_2_2_9_2 doi: 10.1021/acsnano.8b09786 – ident: e_1_2_2_18_2 doi: 10.1002/anie.201908997 – ident: e_1_2_2_43_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_33_2 doi: 10.1016/j.ccr.2019.213076 – ident: e_1_2_2_40_2 doi: 10.1038/s41467-019-10385-9 – ident: e_1_2_2_59_2 doi: 10.1038/nrd2591 – ident: e_1_2_2_14_2 doi: 10.1038/ncomms7456 – ident: e_1_2_2_38_2 doi: 10.1021/acs.nanolett.8b03936 – ident: e_1_2_2_24_2 doi: 10.1038/ncomms5904 – ident: e_1_2_2_10_2 doi: 10.1002/smll.201900205 – ident: e_1_2_2_25_2 doi: 10.1158/0008-5472.CAN-12-1668 – ident: e_1_2_2_52_3 doi: 10.1002/ange.201005740 – ident: e_1_2_2_47_2 doi: 10.1002/anie.201908185 – ident: e_1_2_2_12_2 doi: 10.1002/adma.201605357 – ident: e_1_2_2_42_2 doi: 10.1021/ja510156v – ident: e_1_2_2_26_1 doi: 10.1042/bj20031253 – ident: e_1_2_2_34_2 doi: 10.1002/anie.201906099 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201910187 – ident: e_1_2_2_23_2 doi: 10.1126/sciadv.1500821 – ident: e_1_2_2_44_2 doi: 10.1021/jacs.9b03346 – ident: e_1_2_2_55_3 doi: 10.1002/ange.201408476 – ident: e_1_2_2_61_1 – ident: e_1_2_2_2_2 doi: 10.1038/nrclinonc.2017.166 – ident: e_1_2_2_46_2 doi: 10.1021/jacs.8b13512 – ident: e_1_2_2_53_1 – ident: e_1_2_2_65_2 doi: 10.1016/j.cell.2010.03.015 – ident: e_1_2_2_68_2 doi: 10.1016/j.addr.2009.04.005 – ident: e_1_2_2_56_2 doi: 10.1021/nn300524f – ident: e_1_2_2_16_2 doi: 10.1021/acs.accounts.9b00356 – ident: e_1_2_2_72_1 – ident: e_1_2_2_73_2 doi: 10.1038/nature10812 – ident: e_1_2_2_3_2 doi: 10.1016/j.cell.2017.01.018 – ident: e_1_2_2_36_2 doi: 10.1002/adma.201806331 – ident: e_1_2_2_20_2 doi: 10.1021/jacs.7b11114 – ident: e_1_2_2_17_2 doi: 10.1016/j.chempr.2019.07.015 – ident: e_1_2_2_8_2 doi: 10.1002/adma.201806444 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201005740 – ident: e_1_2_2_13_2 doi: 10.1002/adma.201704196 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201901527 – ident: e_1_2_2_47_3 doi: 10.1002/ange.201908185 – ident: e_1_2_2_21_1 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201910187 – ident: e_1_2_2_19_2 doi: 10.1126/sciadv.aaw6264 |
SSID | ssj0028806 |
Score | 2.6237473 |
Snippet | Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe, if... Abstract Integration of multiple agent therapy (MAT) into one probe is promising for improving therapeutic efficiency for cancer treatment. However, MAT probe,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 20405 |
SubjectTerms | Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Caveolae caveolae-mediated endocytosis Chemical compounds Endocytosis Endocytosis - drug effects Humans Internalization macropinocytosis Molecular Probes - chemistry multiple-agent-therapy probes Nanofibers nanofibers/gene/ROS Neoplasms - pathology Neoplasms - therapy Optimization peptide-conjugated-AIEgens Pharmacology Physicochemical properties RNA, Small Interfering - administration & dosage siRNA Tumor cells Tumors |
Title | Tumor‐Triggered Disassembly of a Multiple‐Agent‐Therapy Probe for Efficient Cellular Internalization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009196 https://www.ncbi.nlm.nih.gov/pubmed/32720727 https://www.proquest.com/docview/2456381091 https://search.proquest.com/docview/2428058766 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQF7iwL4GCjITEKW1qu1mOVRcVJCqEWqm3KHZsBHRBXQ5w4hP4Rr6EmWxQOCDBKYlsJ47t8byxZ54JOQ8CJZhWxgb0pm2hDYiUhMmQGVTvnuSeSbwtum6nL64GtcGXKP6UH6JYcEPJSOZrFPBIziqfpKEYgQ32Ha7uwyiCSbjKPfTpat4W_FEMBmcaXsS5jafQ56yNDqssF1_WSj-g5jJyTVRPe5NEeaVTj5PH8mIuy-rlG5_jf_5qi2xkuJTW04G0TVb0eIesNfLj4HbJQ28xmkzfX996YM_f4QmftHk_A-itR3L4TCeGRvQ6806EXHUM2cLcKWsBvcGwIwoImbYS0gpIpQ09HKIXLM2WJYdZTOge6bdbvUbHzg5qsJUAk9JWqgpyb5Qb-55ykW5AOkIauGgNEFO4RnpSMmF8Zhw_hkkjFoEbx0xBEmAuvk9Wx5OxPiQUzKfYiSTX3FciAlstBgQVSM1MxAVXzCIXeUeFTykfR5gyL7MQ2y4s2s4ipbwfw0wuZyFu8yKnWVC1yFmRDC2J2yTRWE8WmIf5Tg20BLziIO3_4lMct60B8lmEJb34Sx3CeveyVTwd_aXQMVnH-yT8MSiR1fl0oU8AB83laTLWPwDuFQLE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHODCvpTVSEicAsE2aXKsSqsWSoVQK3GLYsdGQGkRtAc48Ql8I1_CTDZUOCDBKUrsbPaM_caeeQOwHwRacqOtg-jNONJYVCmFgyG3NL2XlSjbxNui7TW68uz6JPcmpFiYlB-iWHAjzUjGa1JwWpA--mINpRBsNPBoeR_FaBKmUecFZW84vSoYpDiKZxpgJIRDeehz3kaXH43fPz4v_QCb49g1mXzq86Dyz059Tu4PR0N1qF-_MTr-678WYC6DpqySytIiTJj-EsxU84xwy3DXGT0Mnj7e3jto0t9Qkk92evuM6Ns8qN4LG1gWsYvMQRFrVShqi2qnxAXskiKPGIJkVkt4K7CUVU2vR46wLFuZ7GVhoSvQrdc61YaT5WpwtESr0tH6GFXfai_2y9ojxgHlSmXxYAyiTOlZVVaKS-tz6_oxjhuxDLw45hqLEHaJVZjqD_pmHRhaULEbKWGEr2WE5lqMICpQhttISKF5CQ7yngofU0qOMCVf5iG1XVi0XQm28o4MM9V8Dmmnl2jNguMS7BXF2JK0UxL1zWBEdbjvnuBEgY9YSwWgeJWgnWtEfSXgSTf-8g1hpd2sFWcbf7lpF2YanYtW2Gq2zzdhlq4n0ZDBFkwNn0ZmG2HRUO0kgv8JBN0G3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkYAL-1JWIyFxCgTbpMmxKq1YK4SKxC2KHRsBpUWlPcCJT-Ab-RJmskHhgASnKLGdOJ4Z-43teQbYDgItudHWQfRmHGksmpTCzpBbGt4rSlRsstui6R1dyZPrg-svUfwpP0Qx4UaWkfTXZOCPsd37JA2lCGz072h2H7VoFMakh_CXYNFlQSDFUTvT-CIhHDqGPqdtdPnecPnhYekH1hyGrsnY05iGKK91uuXkfnfQV7v65Ruh439-awamMmDKqqkmzcKI6czBRC0_D24e7lqDh27v_fWthQ79DR3xyQ5vnxB7mwfVfmZdyyJ2nm1PxFxVitmi3CltAbuguCOGEJnVE9YKTGU1027TNliWzUu2s6DQBbhq1Fu1Iyc7qcHREn1KR-t9NHyrvdivaI_4BpQrlcWLMYgxpWdVRSkurc-t68fYa8Qy8OKYa0xC0CUWodTpdswyMPSfYjdSwghfywidtRghVKAMt5GQQvMy7OSCCh9TQo4wpV7mIbVdWLRdGdZyOYaZYT6FtM5LpGbBfhm2imRsSVoniTqmO6A83HcPcJjAVyyl8i8-JWjdGjFfGXgixV_qEFabx_XibuUvhTZh_OKwEZ4dN09XYZIeJ6GQwRqU-r2BWUdM1Fcbidp_APBzBYs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor-Triggered+Disassembly+of+a+Multiple-Agent-Therapy+Probe+for+Efficient+Cellular+Internalization&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yang%2C+Juliang&rft.au=Dai%2C+Jun&rft.au=Wang%2C+Quan&rft.au=Cheng%2C+Yong&rft.date=2020-11-09&rft.eissn=1521-3773&rft.volume=59&rft.issue=46&rft.spage=20405&rft_id=info:doi/10.1002%2Fanie.202009196&rft_id=info%3Apmid%2F32720727&rft.externalDocID=32720727 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |