A Dual‐Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity

Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐M...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 1; pp. 172 - 176
Main Authors Yao, Ming‐Shui, Zheng, Jia‐Jia, Wu, Ai‐Qian, Xu, Gang, Nagarkar, Sanjog S., Zhang, Gen, Tsujimoto, Masahiko, Sakaki, Shigeyoshi, Horike, Satoshi, Otake, Kenichi, Kitagawa, Susumu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.01.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. Makes sense: As two ligands offer more opportunity than one to tune MOF conductivity and topology, a 2D π‐conjugated copper‐based electronically conductive MOF with two different trigonal organic ligands was developed (see structure). The semiconductivity and high porosity of the resulting nanowires provided a low conductivity baseline and highly accessible surface areas, thus resulting in excellent room‐temperature chemiresistive sensing properties.
AbstractList Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. Makes sense: As two ligands offer more opportunity than one to tune MOF conductivity and topology, a 2D π‐conjugated copper‐based electronically conductive MOF with two different trigonal organic ligands was developed (see structure). The semiconductivity and high porosity of the resulting nanowires provided a low conductivity baseline and highly accessible surface areas, thus resulting in excellent room‐temperature chemiresistive sensing properties.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10  S cm with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m  g ) of the Cu (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10-5  S cm-1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2  g-1 ) of the Cu3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10-5  S cm-1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2  g-1 ) of the Cu3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu 3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity ( σ ≈2.53×10 −5  S cm −1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m 2  g −1 ) of the Cu 3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Author Otake, Kenichi
Tsujimoto, Masahiko
Sakaki, Shigeyoshi
Yao, Ming‐Shui
Wu, Ai‐Qian
Zheng, Jia‐Jia
Kitagawa, Susumu
Zhang, Gen
Xu, Gang
Horike, Satoshi
Nagarkar, Sanjog S.
Author_xml – sequence: 1
  givenname: Ming‐Shui
  orcidid: 0000-0003-1604-2611
  surname: Yao
  fullname: Yao, Ming‐Shui
  organization: Kyoto University
– sequence: 2
  givenname: Jia‐Jia
  surname: Zheng
  fullname: Zheng, Jia‐Jia
  organization: Kyoto University
– sequence: 3
  givenname: Ai‐Qian
  surname: Wu
  fullname: Wu, Ai‐Qian
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Gang
  surname: Xu
  fullname: Xu, Gang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Sanjog S.
  surname: Nagarkar
  fullname: Nagarkar, Sanjog S.
  organization: Kyoto University
– sequence: 6
  givenname: Gen
  surname: Zhang
  fullname: Zhang, Gen
  organization: Kyoto University
– sequence: 7
  givenname: Masahiko
  surname: Tsujimoto
  fullname: Tsujimoto, Masahiko
  organization: Kyoto University
– sequence: 8
  givenname: Shigeyoshi
  surname: Sakaki
  fullname: Sakaki, Shigeyoshi
  organization: Kyoto University
– sequence: 9
  givenname: Satoshi
  surname: Horike
  fullname: Horike, Satoshi
  organization: Kyoto University
– sequence: 10
  givenname: Kenichi
  orcidid: 0000-0002-7904-5003
  surname: Otake
  fullname: Otake, Kenichi
  email: ootake.kenichi.8a@kyoto-u.ac.jp
  organization: Kyoto University
– sequence: 11
  givenname: Susumu
  orcidid: 0000-0001-6956-9543
  surname: Kitagawa
  fullname: Kitagawa, Susumu
  email: kitagawa@icems.kyoto-u.ac.jp
  organization: Kyoto University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31595640$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO3DAUhq2KilvZdllF6oZNBl9iO1mOhuEiDS0LurYc50wxSmxqO6DZ8Qg8I0-Cp8O0ElJVeWH76Pt_nXP-A7TjvAOEPhM8IRjTE-0sTCgmDc5HfED7hFNSMinZTn5XjJWy5mQPHcR4l_m6xmIX7THCGy4qvI_aaXE66v7l6Xlhf2rXFdc--DEWM-9DZ51O1rtc61cDhGJ2C4MNEG1MPhSPNt0WV74be52gywrXjSbZB5tWxdYp5s8n9HGp-whHb_ch-nE2v5ldlIvv55ez6aI0FcGi5ARYhbmpKlqLltR62dSMc5ASmMwFTkxLJROd5oRgivMkjWBaGm5AtCDZITre-N4H_2uEmNRgo4G-1w7ySIoyzNabakhGv75D7_wYXO4uU7RmgmNJM_XljRrbATp1H-ygw0ptt5eBagOYPGkMsFTGpt8rS0HbXhGs1iGpdUjqT0hZNnkn2zr_U9BsBI-2h9V_aDX9djn_q30FvrykMg
CitedBy_id crossref_primary_10_1021_acsanm_3c04264
crossref_primary_10_1039_C9CS00778D
crossref_primary_10_1016_j_ccr_2022_214693
crossref_primary_10_1002_ange_202401679
crossref_primary_10_1002_anie_202413115
crossref_primary_10_1002_adma_202200999
crossref_primary_10_1016_j_diamond_2024_111430
crossref_primary_10_1039_D4TA05484A
crossref_primary_10_1016_j_ccr_2022_214459
crossref_primary_10_1002_anie_202104461
crossref_primary_10_1007_s12274_020_2823_8
crossref_primary_10_3389_fmats_2021_690732
crossref_primary_10_1016_j_cej_2024_157253
crossref_primary_10_1016_j_cej_2023_143927
crossref_primary_10_1002_anie_202303819
crossref_primary_10_1039_D0SC05147K
crossref_primary_10_1016_j_ccr_2021_213915
crossref_primary_10_1021_acsanm_2c03643
crossref_primary_10_1021_acs_analchem_1c02183
crossref_primary_10_1021_acs_nanolett_1c00179
crossref_primary_10_1021_acs_chemrev_9b00766
crossref_primary_10_1002_ange_201914461
crossref_primary_10_1002_anie_202215234
crossref_primary_10_1016_j_chempr_2023_06_005
crossref_primary_10_3390_nano12060913
crossref_primary_10_1021_jacs_1c05839
crossref_primary_10_1039_D2CE00088A
crossref_primary_10_1016_j_ccr_2023_215558
crossref_primary_10_1002_smll_202203715
crossref_primary_10_1360_TB_2023_0412
crossref_primary_10_1016_j_ccr_2020_213479
crossref_primary_10_1002_adfm_202102855
crossref_primary_10_2139_ssrn_3992989
crossref_primary_10_1002_smll_202402255
crossref_primary_10_1016_j_cej_2023_142818
crossref_primary_10_1021_jacs_0c06329
crossref_primary_10_1002_ange_202318387
crossref_primary_10_1002_anie_202502066
crossref_primary_10_1039_D2TA08921A
crossref_primary_10_1016_j_jcis_2022_01_094
crossref_primary_10_1134_S263516762360133X
crossref_primary_10_1039_D0NR06396G
crossref_primary_10_1007_s40843_023_2626_0
crossref_primary_10_1016_j_jssc_2024_124806
crossref_primary_10_1039_D4NH00140K
crossref_primary_10_1021_acsnano_4c01518
crossref_primary_10_1039_C9CS00594C
crossref_primary_10_1038_s41467_023_42959_z
crossref_primary_10_1039_D4TA01820F
crossref_primary_10_1021_acssensors_3c00965
crossref_primary_10_1002_cnma_202300313
crossref_primary_10_1039_D0CC01092H
crossref_primary_10_3390_bios12060367
crossref_primary_10_1021_acs_jpclett_0c02988
crossref_primary_10_1002_anie_202318387
crossref_primary_10_1002_ange_202303903
crossref_primary_10_1002_chem_202100610
crossref_primary_10_1002_ange_202413115
crossref_primary_10_1002_smll_202411386
crossref_primary_10_1016_j_apmt_2024_102224
crossref_primary_10_1002_anie_202416178
crossref_primary_10_1002_sstr_202100210
crossref_primary_10_1039_D3TA04490D
crossref_primary_10_1063_5_0075283
crossref_primary_10_20517_ss_2024_32
crossref_primary_10_1021_acsnano_1c10544
crossref_primary_10_1039_D1MA00341K
crossref_primary_10_1016_j_mtsust_2024_100899
crossref_primary_10_1039_D1DT02323C
crossref_primary_10_1002_adfm_202308497
crossref_primary_10_1021_acsami_4c06072
crossref_primary_10_4019_bjscc_83_42
crossref_primary_10_1002_ange_202215234
crossref_primary_10_1016_j_chempr_2020_12_007
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1002_adma_202204140
crossref_primary_10_1002_anie_202303903
crossref_primary_10_1016_j_cocr_2025_100006
crossref_primary_10_1002_cplu_202000428
crossref_primary_10_1002_cssc_202401463
crossref_primary_10_1016_j_nimb_2023_05_063
crossref_primary_10_1002_adma_202406748
crossref_primary_10_1016_j_jhazmat_2020_123042
crossref_primary_10_1021_jacs_2c09007
crossref_primary_10_1021_acssensors_3c02200
crossref_primary_10_1016_j_snb_2022_132094
crossref_primary_10_1016_j_cej_2024_157692
crossref_primary_10_1021_acsami_2c22983
crossref_primary_10_1016_j_jhazmat_2021_125906
crossref_primary_10_1021_jacs_0c02389
crossref_primary_10_1016_j_microc_2024_109992
crossref_primary_10_1039_D1RA05103B
crossref_primary_10_1007_s10934_022_01275_5
crossref_primary_10_1021_acs_analchem_4c02522
crossref_primary_10_1021_acs_cgd_4c00152
crossref_primary_10_1002_smtd_202000396
crossref_primary_10_1021_acsmaterialslett_0c00229
crossref_primary_10_1002_smll_202206988
crossref_primary_10_1007_s11705_020_2013_y
crossref_primary_10_1021_acscatal_2c02002
crossref_primary_10_1002_ange_202502066
crossref_primary_10_1016_j_trechm_2023_03_002
crossref_primary_10_1021_acsanm_4c03199
crossref_primary_10_1002_adom_202100622
crossref_primary_10_1007_s12274_022_4459_3
crossref_primary_10_1002_adma_202109870
crossref_primary_10_1002_advs_202104374
crossref_primary_10_1002_ange_202303819
crossref_primary_10_1016_j_ccr_2024_215691
crossref_primary_10_1039_D4TA02438A
crossref_primary_10_1016_j_est_2025_115920
crossref_primary_10_1021_acs_chemrev_0c01049
crossref_primary_10_1021_acs_cgd_3c01162
crossref_primary_10_1002_anie_201914461
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1002_anie_202401679
crossref_primary_10_1007_s40820_020_0407_5
crossref_primary_10_1016_j_cej_2020_127221
crossref_primary_10_1007_s10800_022_01735_5
crossref_primary_10_1002_ange_202416178
crossref_primary_10_1002_adfm_202403656
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_1016_j_ccr_2020_213743
crossref_primary_10_1016_j_cjsc_2024_100251
crossref_primary_10_1002_adma_202408396
crossref_primary_10_1002_ange_202501821
crossref_primary_10_1002_smll_202409786
crossref_primary_10_1002_ange_202104461
crossref_primary_10_1016_j_trac_2024_117679
crossref_primary_10_1093_nsr_nwab197
crossref_primary_10_1002_celc_202001418
crossref_primary_10_1021_acs_analchem_3c02417
crossref_primary_10_1039_D4CC02433H
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1021_acsnano_4c14989
crossref_primary_10_1016_j_mtchem_2022_100981
crossref_primary_10_1016_j_cclet_2024_110571
crossref_primary_10_1021_acsmaterialslett_1c00455
crossref_primary_10_1016_j_cej_2024_148793
crossref_primary_10_1002_anie_202501821
crossref_primary_10_1039_D1CE00206F
crossref_primary_10_1021_acs_accounts_3c00718
crossref_primary_10_1021_acs_inorgchem_3c02647
crossref_primary_10_1021_acsnanoscienceau_3c00024
crossref_primary_10_6023_A22010024
crossref_primary_10_1002_ange_202422382
crossref_primary_10_1002_tcr_202300141
crossref_primary_10_1016_j_colsurfa_2023_132176
crossref_primary_10_1021_acs_analchem_2c03766
crossref_primary_10_1039_D1CE01429C
crossref_primary_10_1016_j_jcis_2022_10_059
crossref_primary_10_1007_s12274_023_5405_8
crossref_primary_10_1016_j_trac_2024_117603
crossref_primary_10_1002_anie_202422382
crossref_primary_10_1016_j_chempr_2023_08_026
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1021_acs_inorgchem_0c03364
crossref_primary_10_1039_D1MA00535A
crossref_primary_10_1016_j_coelec_2020_100661
crossref_primary_10_1016_j_apcatb_2024_124131
crossref_primary_10_1016_j_jhazmat_2022_128321
crossref_primary_10_1016_j_ecoenv_2024_116065
crossref_primary_10_1021_acs_inorgchem_1c00361
Cites_doi 10.1038/s41563-018-0189-z
10.1021/jacs.5b10385
10.1002/anie.201506219
10.1002/ange.201709558
10.1021/jacs.8b13397
10.1021/jacs.6b08511
10.1126/science.aar6833
10.1021/jacs.8b06006
10.1002/adma.201506457
10.1002/ange.201411854
10.1021/jacs.9b00654
10.1016/j.chempr.2019.04.013
10.1021/jacs.8b06666
10.1002/ange.201506219
10.1038/s41560-017-0044-5
10.1002/anie.201709558
10.1038/ncomms10942
10.1039/C7TA02069D
10.1002/anie.201411854
10.1021/jp4114199
10.1038/s41557-018-0170-0
10.1038/nmat4766
10.1021/nl034220x
10.1016/j.snb.2013.11.004
10.1039/C8CS00829A
10.1002/adfm.201702067
10.1021/jacs.5b09600
10.1021/ja312380b
10.1021/jacs.8b11527
10.1021/jacs.8b11257
10.1016/j.apcatb.2014.03.048
10.1021/acs.chemrev.8b00311
10.1021/ja300420t
10.1126/science.aat0586
10.1021/jacs.7b05742
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201909096
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 176
ExternalDocumentID 31595640
10_1002_anie_201909096
ANIE201909096
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: the National Natural Science Foundation of China
  funderid: 21801243, 21822109
– fundername: the Natural Science Foundation of Fujian Province
  funderid: 2019J01129
– fundername: a KAKENHI Grant-in-Aid for Scientific Research (S)
  funderid: JP18H05262
– fundername: KAKENHI Grant-in-Aid for Specially Promoted Research
  funderid: JP25000007
– fundername: the National Natural Science Foundation of China
  grantid: 21801243, 21822109
– fundername: the Natural Science Foundation of Fujian Province
  grantid: 2019J01129
– fundername: a KAKENHI Grant-in-Aid for Scientific Research (S)
  grantid: JP18H05262
– fundername: KAKENHI Grant-in-Aid for Specially Promoted Research
  grantid: JP25000007
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4106-51e3405c44286b18af98355e77e376b151cb2736da511020806963a7c5ce6be73
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 08:35:48 EDT 2025
Fri Jul 25 10:38:31 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 02:26:59 EDT 2025
Wed Jan 22 16:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords nanowires
porous coordination polymers
semiconductors
gas sensors
metal-organic frameworks
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4106-51e3405c44286b18af98355e77e376b151cb2736da511020806963a7c5ce6be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7904-5003
0000-0003-1604-2611
0000-0001-6956-9543
PMID 31595640
PQID 2328365072
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2303201991
proquest_journals_2328365072
pubmed_primary_31595640
crossref_citationtrail_10_1002_anie_201909096
crossref_primary_10_1002_anie_201909096
wiley_primary_10_1002_anie_201909096_ANIE201909096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2, 2020
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: January 2, 2020
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 362
2017; 5
2014; 118
2018; 140
2019; 5
2019; 31
2019; 11
2017; 27
2014; 192
2017 2017; 56 129
2019; 141
2017; 139
2014; 156
2019; 363
2018; 17
2016; 7
2018; 3
2016 2016; 55 128
2012; 134
2015; 137
2017; 16
2019; 48
2003; 3
2015 2015; 54 127
2013; 135
2019; 119
2012; 24
2016; 28
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_43_2
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_13_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_30_3
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_15_1
e_1_2_2_36_1
Heinke L. (e_1_2_2_3_2) 2019; 31
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_9_2
e_1_2_2_46_2
Hmadeh M. (e_1_2_2_34_2) 2012; 24
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 192
  start-page: 658
  year: 2014
  end-page: 663
  publication-title: Sens. Actuators B
– volume: 17
  start-page: 1027
  year: 2018
  publication-title: Nat. Mater.
– volume: 140
  start-page: 14533
  year: 2018
  end-page: 14537
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 6565
  year: 2014
  end-page: 6575
  publication-title: J. Phys. Chem. C
– volume: 119
  start-page: 478
  year: 2019
  end-page: 598
  publication-title: Chem. Rev.
– volume: 16
  start-page: 220
  year: 2017
  end-page: 224
  publication-title: Nat. Mater.
– volume: 7
  start-page: 10942
  year: 2016
  publication-title: Nat. Commun.
– volume: 134
  start-page: 4553
  year: 2012
  end-page: 4556
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 10863
  year: 2017
  end-page: 10867
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 13780
  year: 2015
  end-page: 13783
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 30
  year: 2018
  publication-title: Nat. Energy
– volume: 28
  start-page: 5229
  year: 2016
  end-page: 5234
  publication-title: Adv. Mater.
– volume: 141
  start-page: 1045
  year: 2019
  end-page: 1053
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 5005
  year: 2019
  end-page: 5013
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 3566 3628
  year: 2016 2016
  end-page: 3579 3642
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 16510 16737
  year: 2017 2017
  end-page: 16514 16741
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 929
  year: 2003
  end-page: 933
  publication-title: Nano Lett.
– volume: 24
  start-page: 3511
  year: 2012
  end-page: 3513
  publication-title: Chem.
– volume: 139
  start-page: 1360
  year: 2017
  end-page: 1363
  publication-title: J. Am. Chem. Soc.
– volume: 156
  start-page: 428
  year: 2014
  end-page: 437
  publication-title: Appl. Catal. B
– volume: 141
  start-page: 3385
  year: 2019
  end-page: 3389
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 109
  year: 2019
  end-page: 116
  publication-title: Nat. Chem.
– volume: 27
  start-page: 1702067
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 16139
  year: 2017
  end-page: 16143
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 2462
  year: 2013
  end-page: 2465
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1938
  year: 2019
  end-page: 1963
  publication-title: Chem
– volume: 140
  start-page: 11174
  year: 2018
  end-page: 11178
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 4349 4423
  year: 2015 2015
  end-page: 4352 4426
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 15703
  year: 2015
  end-page: 15711
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1806324
  year: 2019
  publication-title: Adv.
– volume: 141
  start-page: 2046
  year: 2019
  end-page: 2053
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 2783
  year: 2019
  end-page: 2828
  publication-title: Chem. Soc. Rev.
– volume: 363
  start-page: 387
  year: 2019
  end-page: 391
  publication-title: Science
– volume: 362
  start-page: 443
  year: 2018
  end-page: 446
  publication-title: Science
– ident: e_1_2_2_20_2
  doi: 10.1038/s41563-018-0189-z
– ident: e_1_2_2_32_1
– ident: e_1_2_2_37_1
  doi: 10.1021/jacs.5b10385
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201506219
– ident: e_1_2_2_38_1
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201709558
– ident: e_1_2_2_7_2
  doi: 10.1021/jacs.8b13397
– ident: e_1_2_2_31_1
  doi: 10.1021/jacs.6b08511
– ident: e_1_2_2_9_2
  doi: 10.1126/science.aar6833
– ident: e_1_2_2_45_1
– ident: e_1_2_2_15_1
– ident: e_1_2_2_4_2
  doi: 10.1021/jacs.8b06006
– ident: e_1_2_2_28_1
– ident: e_1_2_2_25_1
– ident: e_1_2_2_41_1
  doi: 10.1002/adma.201506457
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.201411854
– ident: e_1_2_2_13_2
  doi: 10.1021/jacs.9b00654
– ident: e_1_2_2_19_2
  doi: 10.1016/j.chempr.2019.04.013
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.8b06666
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201506219
– ident: e_1_2_2_27_2
  doi: 10.1038/s41560-017-0044-5
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201709558
– volume: 31
  start-page: 1806324
  year: 2019
  ident: e_1_2_2_3_2
  publication-title: Adv.
– ident: e_1_2_2_24_1
  doi: 10.1038/ncomms10942
– ident: e_1_2_2_39_2
  doi: 10.1039/C7TA02069D
– ident: e_1_2_2_1_1
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.201411854
– ident: e_1_2_2_46_2
  doi: 10.1021/jp4114199
– ident: e_1_2_2_2_2
  doi: 10.1038/s41557-018-0170-0
– ident: e_1_2_2_26_2
  doi: 10.1038/nmat4766
– ident: e_1_2_2_12_1
– ident: e_1_2_2_43_2
  doi: 10.1021/nl034220x
– ident: e_1_2_2_40_2
  doi: 10.1016/j.snb.2013.11.004
– ident: e_1_2_2_6_2
  doi: 10.1039/C8CS00829A
– volume: 24
  start-page: 3511
  year: 2012
  ident: e_1_2_2_34_2
  publication-title: Chem.
– ident: e_1_2_2_36_1
  doi: 10.1002/adfm.201702067
– ident: e_1_2_2_42_1
– ident: e_1_2_2_35_1
  doi: 10.1021/jacs.5b09600
– ident: e_1_2_2_18_1
– ident: e_1_2_2_16_2
  doi: 10.1021/ja312380b
– ident: e_1_2_2_8_1
– ident: e_1_2_2_11_2
  doi: 10.1021/jacs.8b11527
– ident: e_1_2_2_33_2
  doi: 10.1021/jacs.8b11257
– ident: e_1_2_2_47_2
  doi: 10.1016/j.apcatb.2014.03.048
– ident: e_1_2_2_14_2
  doi: 10.1021/acs.chemrev.8b00311
– ident: e_1_2_2_5_1
– ident: e_1_2_2_44_2
  doi: 10.1021/ja300420t
– ident: e_1_2_2_10_2
  doi: 10.1126/science.aat0586
– ident: e_1_2_2_21_1
– ident: e_1_2_2_17_2
  doi: 10.1021/jacs.7b05742
SSID ssj0028806
Score 2.6376016
Snippet Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous...
Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms Conductivity
Coordination polymers
Gas sensors
Ligands
Metal-organic frameworks
Nanotechnology
Nanowires
Organic chemistry
Polymers
Porosity
porous coordination polymers
Quinones
semiconductors
Topology
Title A Dual‐Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201909096
https://www.ncbi.nlm.nih.gov/pubmed/31595640
https://www.proquest.com/docview/2328365072
https://www.proquest.com/docview/2303201991
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOiFn7ZAYKlcqVJPhqxjx-vjagHRqrtCCCRukeN4EWKbVPtzgBOPwDPyJMwkm9ClQkignJLYiTOesT9Pxt8AfM8QdajQSe6VsFxaa7i1bckVastQS9fRjhz6_UF8fC5_XaiLf3bxV_wQjcONLKMcr8nAbTrZfyINpR3YFJplQjyIc5sCtggVnTb8UQKVs9peFEWcstDXrI2h2F-svjgr_Qc1F5FrOfUcrYKtG11FnFzvzabpnrt9xuf4nq9ag5U5LmXdSpHW4YPPP8Fyr04H9xnSLjuY2dHD3f3vq0ubZ-ykGBezCesVuHy9qnyKeG1088ePWVkPF_IlBwkjXy_rFxllCvMZ1siJZLbMWsHqJ1FoyBc4Pzo86x3zeYIG7iQuJblq-wgBn5O4honTdscODQI65bX2OG6lCCZcivAozizCOsoGGsZo71Y75Xyceh1twFJe5H4LmJZGKjPUxuAAYVVsjSNiIBuaTBiE1gHwuoMSN2cvpyQao6TiXRYJSS5pJBfAj6b834q348WSrbq_k7n9ThLEmR1Up1CLAL41t1Hi9DvF5h7li2Uo-TyFjgWwWelJ86oIUaKKZRiAKHv7lTYk3cHPw-Zs-y2VduCjIFcAeYdEC5am45nfRbw0Tb-WNvEITwgLBg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4ty2G58P8TWMBIIE7eTR07rg8cqnZXLdtWCO1KewuO46IVJUH9EVpOPAKvwqvwCDwJM_lDBSEkpD2gnJLajjOe8Xye2t8APM0QdajQSe6VsFxaa7i1HckVastMS9fVjgL6k2k8PJEvT9XpFnxtzsJU_BBtwI0so5yvycApIL3_kzWUjmDT3iwT4hXX-yqP_PlHXLUtX4wGOMTPhDg8OO4PeZ1YgDuJSyCuOj5CoOIkYu847XTtzCAQUV5rj_aWohN0Kbr1OLMIRyiLZRijnlrtlPNx6nWE7V6Cy5RGnOj6B69bxiqB5lAdaIoiTnnvG57IUOxv9nfTD_4GbjexcunsDq_Bt0ZM1R6Xd3vrVbrnPv3CIPlfyfE6XK2hN-tVtnIDtnx-E3b6Tca7W5D22GBt598_fxmfvbV5xl4Vi2K9ZP0C-3hWhU3x2fz8vV-wst7CL0uaFUbhbDYpMkqG5jOskROPbpmYgzUt0e6X23ByIZ94B7bzIvf3gGlppDIzbQzOgVbF1jjiPrKhyYTB1UMAvNGIxNUE7ZQnZJ5U1NIioZFK2pEK4Hlb_kNFTfLHkruNgiX1FLVMEEp3I8TnWgTwpP0ZJU7_GNnco3yxTBhRK6YTwN1KMdtXRQiEVSzDAESpXn_pQ9Kbjg7au_v_Uukx7AyPJ-NkPJoePYArgiIfFAwTu7C9Wqz9Q4SHq_RRaZAM3ly05v4AihVk0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_ksDBYwE4uQ269jx-sBhtdtVl7arClGpt-A4XlSxTar9ESonHoFH4VV4BZ6EmfyhBSEkpB5QTkn8F3vG83lifwPwPEPUoUInuVfCcmmt4dZ2JFcoLRMtXVc7cugfjuO9Y_n6RJ2swdfmLEzFD9E63EgzyvmaFPw8m-z8JA2lE9i0NcuEeMX1tsp9f_ERF23zV6MBjvALIYa7b_t7vI4rwJ3EFRBXHR8hTnESoXecdrp2YhCHKK-1R3VL0Qa6FK16nFlEIxTEMoxRTK12yvk49TrCcq_AVRljzQTD3rSEVQK1oTrPFEWcwt43NJGh2Flt76oZ_A3brkLl0tYNb8G3ppeqLS4ftpeLdNt9-oVA8n_qxttwswberFdpyh1Y8_lduN5v4t3dg7THBks7_f75y8Hpe5tn7KiYFcs56xfYxtPKaYrPphdnfsbKfDM_L0lWGDmz2WGRUSg0n2GOnFh0y7AcrCmJ9r7ch-NL-cQNWM-L3G8C09JIZSbaGJwBrYqtccR8ZEOTCYNrhwB4IxCJq-nZKUrINKmIpUVCI5W0IxXAyzb9eUVM8seUW418JfUENU8QSHcjROdaBPCsfY09Tv-LbO6xfzFNGFEpphPAg0ou26oihMEqlmEAopSuv7Qh6Y1Hu-3dw3_J9BSuHQ2GycFovP8Ibghye5AnTGzB-mK29I8RGy7SJ6U6Mnh32YL7A8eNY4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Ligand+Porous+Coordination+Polymer+Chemiresistor+with+Modulated+Conductivity+and+Porosity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Ming-Shui&rft.au=Zheng%2C+Jia-Jia&rft.au=Wu%2C+Ai-Qian&rft.au=Xu%2C+Gang&rft.date=2020-01-02&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=1&rft.spage=172&rft_id=info:doi/10.1002%2Fanie.201909096&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon