A Dual‐Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐M...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 1; pp. 172 - 176 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.01.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Makes sense: As two ligands offer more opportunity than one to tune MOF conductivity and topology, a 2D π‐conjugated copper‐based electronically conductive MOF with two different trigonal organic ligands was developed (see structure). The semiconductivity and high porosity of the resulting nanowires provided a low conductivity baseline and highly accessible surface areas, thus resulting in excellent room‐temperature chemiresistive sensing properties. |
---|---|
AbstractList | Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.
Makes sense: As two ligands offer more opportunity than one to tune MOF conductivity and topology, a 2D π‐conjugated copper‐based electronically conductive MOF with two different trigonal organic ligands was developed (see structure). The semiconductivity and high porosity of the resulting nanowires provided a low conductivity baseline and highly accessible surface areas, thus resulting in excellent room‐temperature chemiresistive sensing properties. Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10−5 S cm−1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g−1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10 S cm with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m g ) of the Cu (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10-5 S cm-1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g-1 ) of the Cu3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π-conjugated EC-MOF containing copper units with mixed trigonal ligands was developed: Cu3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11-hexahydrotriphenylene, THQ=tetrahydroxy-1,4-quinone). The modulated conductivity (σ≈2.53×10-5 S cm-1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g-1 ) of the Cu3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu 3 (HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity ( σ ≈2.53×10 −5 S cm −1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m 2 g −1 ) of the Cu 3 (HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor. |
Author | Otake, Kenichi Tsujimoto, Masahiko Sakaki, Shigeyoshi Yao, Ming‐Shui Wu, Ai‐Qian Zheng, Jia‐Jia Kitagawa, Susumu Zhang, Gen Xu, Gang Horike, Satoshi Nagarkar, Sanjog S. |
Author_xml | – sequence: 1 givenname: Ming‐Shui orcidid: 0000-0003-1604-2611 surname: Yao fullname: Yao, Ming‐Shui organization: Kyoto University – sequence: 2 givenname: Jia‐Jia surname: Zheng fullname: Zheng, Jia‐Jia organization: Kyoto University – sequence: 3 givenname: Ai‐Qian surname: Wu fullname: Wu, Ai‐Qian organization: Chinese Academy of Sciences – sequence: 4 givenname: Gang surname: Xu fullname: Xu, Gang organization: Chinese Academy of Sciences – sequence: 5 givenname: Sanjog S. surname: Nagarkar fullname: Nagarkar, Sanjog S. organization: Kyoto University – sequence: 6 givenname: Gen surname: Zhang fullname: Zhang, Gen organization: Kyoto University – sequence: 7 givenname: Masahiko surname: Tsujimoto fullname: Tsujimoto, Masahiko organization: Kyoto University – sequence: 8 givenname: Shigeyoshi surname: Sakaki fullname: Sakaki, Shigeyoshi organization: Kyoto University – sequence: 9 givenname: Satoshi surname: Horike fullname: Horike, Satoshi organization: Kyoto University – sequence: 10 givenname: Kenichi orcidid: 0000-0002-7904-5003 surname: Otake fullname: Otake, Kenichi email: ootake.kenichi.8a@kyoto-u.ac.jp organization: Kyoto University – sequence: 11 givenname: Susumu orcidid: 0000-0001-6956-9543 surname: Kitagawa fullname: Kitagawa, Susumu email: kitagawa@icems.kyoto-u.ac.jp organization: Kyoto University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31595640$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO3DAUhq2KilvZdllF6oZNBl9iO1mOhuEiDS0LurYc50wxSmxqO6DZ8Qg8I0-Cp8O0ElJVeWH76Pt_nXP-A7TjvAOEPhM8IRjTE-0sTCgmDc5HfED7hFNSMinZTn5XjJWy5mQPHcR4l_m6xmIX7THCGy4qvI_aaXE66v7l6Xlhf2rXFdc--DEWM-9DZ51O1rtc61cDhGJ2C4MNEG1MPhSPNt0WV74be52gywrXjSbZB5tWxdYp5s8n9HGp-whHb_ch-nE2v5ldlIvv55ez6aI0FcGi5ARYhbmpKlqLltR62dSMc5ASmMwFTkxLJROd5oRgivMkjWBaGm5AtCDZITre-N4H_2uEmNRgo4G-1w7ySIoyzNabakhGv75D7_wYXO4uU7RmgmNJM_XljRrbATp1H-ygw0ptt5eBagOYPGkMsFTGpt8rS0HbXhGs1iGpdUjqT0hZNnkn2zr_U9BsBI-2h9V_aDX9djn_q30FvrykMg |
CitedBy_id | crossref_primary_10_1021_acsanm_3c04264 crossref_primary_10_1039_C9CS00778D crossref_primary_10_1016_j_ccr_2022_214693 crossref_primary_10_1002_ange_202401679 crossref_primary_10_1002_anie_202413115 crossref_primary_10_1002_adma_202200999 crossref_primary_10_1016_j_diamond_2024_111430 crossref_primary_10_1039_D4TA05484A crossref_primary_10_1016_j_ccr_2022_214459 crossref_primary_10_1002_anie_202104461 crossref_primary_10_1007_s12274_020_2823_8 crossref_primary_10_3389_fmats_2021_690732 crossref_primary_10_1016_j_cej_2024_157253 crossref_primary_10_1016_j_cej_2023_143927 crossref_primary_10_1002_anie_202303819 crossref_primary_10_1039_D0SC05147K crossref_primary_10_1016_j_ccr_2021_213915 crossref_primary_10_1021_acsanm_2c03643 crossref_primary_10_1021_acs_analchem_1c02183 crossref_primary_10_1021_acs_nanolett_1c00179 crossref_primary_10_1021_acs_chemrev_9b00766 crossref_primary_10_1002_ange_201914461 crossref_primary_10_1002_anie_202215234 crossref_primary_10_1016_j_chempr_2023_06_005 crossref_primary_10_3390_nano12060913 crossref_primary_10_1021_jacs_1c05839 crossref_primary_10_1039_D2CE00088A crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1002_smll_202203715 crossref_primary_10_1360_TB_2023_0412 crossref_primary_10_1016_j_ccr_2020_213479 crossref_primary_10_1002_adfm_202102855 crossref_primary_10_2139_ssrn_3992989 crossref_primary_10_1002_smll_202402255 crossref_primary_10_1016_j_cej_2023_142818 crossref_primary_10_1021_jacs_0c06329 crossref_primary_10_1002_ange_202318387 crossref_primary_10_1002_anie_202502066 crossref_primary_10_1039_D2TA08921A crossref_primary_10_1016_j_jcis_2022_01_094 crossref_primary_10_1134_S263516762360133X crossref_primary_10_1039_D0NR06396G crossref_primary_10_1007_s40843_023_2626_0 crossref_primary_10_1016_j_jssc_2024_124806 crossref_primary_10_1039_D4NH00140K crossref_primary_10_1021_acsnano_4c01518 crossref_primary_10_1039_C9CS00594C crossref_primary_10_1038_s41467_023_42959_z crossref_primary_10_1039_D4TA01820F crossref_primary_10_1021_acssensors_3c00965 crossref_primary_10_1002_cnma_202300313 crossref_primary_10_1039_D0CC01092H crossref_primary_10_3390_bios12060367 crossref_primary_10_1021_acs_jpclett_0c02988 crossref_primary_10_1002_anie_202318387 crossref_primary_10_1002_ange_202303903 crossref_primary_10_1002_chem_202100610 crossref_primary_10_1002_ange_202413115 crossref_primary_10_1002_smll_202411386 crossref_primary_10_1016_j_apmt_2024_102224 crossref_primary_10_1002_anie_202416178 crossref_primary_10_1002_sstr_202100210 crossref_primary_10_1039_D3TA04490D crossref_primary_10_1063_5_0075283 crossref_primary_10_20517_ss_2024_32 crossref_primary_10_1021_acsnano_1c10544 crossref_primary_10_1039_D1MA00341K crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_1039_D1DT02323C crossref_primary_10_1002_adfm_202308497 crossref_primary_10_1021_acsami_4c06072 crossref_primary_10_4019_bjscc_83_42 crossref_primary_10_1002_ange_202215234 crossref_primary_10_1016_j_chempr_2020_12_007 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1002_adma_202204140 crossref_primary_10_1002_anie_202303903 crossref_primary_10_1016_j_cocr_2025_100006 crossref_primary_10_1002_cplu_202000428 crossref_primary_10_1002_cssc_202401463 crossref_primary_10_1016_j_nimb_2023_05_063 crossref_primary_10_1002_adma_202406748 crossref_primary_10_1016_j_jhazmat_2020_123042 crossref_primary_10_1021_jacs_2c09007 crossref_primary_10_1021_acssensors_3c02200 crossref_primary_10_1016_j_snb_2022_132094 crossref_primary_10_1016_j_cej_2024_157692 crossref_primary_10_1021_acsami_2c22983 crossref_primary_10_1016_j_jhazmat_2021_125906 crossref_primary_10_1021_jacs_0c02389 crossref_primary_10_1016_j_microc_2024_109992 crossref_primary_10_1039_D1RA05103B crossref_primary_10_1007_s10934_022_01275_5 crossref_primary_10_1021_acs_analchem_4c02522 crossref_primary_10_1021_acs_cgd_4c00152 crossref_primary_10_1002_smtd_202000396 crossref_primary_10_1021_acsmaterialslett_0c00229 crossref_primary_10_1002_smll_202206988 crossref_primary_10_1007_s11705_020_2013_y crossref_primary_10_1021_acscatal_2c02002 crossref_primary_10_1002_ange_202502066 crossref_primary_10_1016_j_trechm_2023_03_002 crossref_primary_10_1021_acsanm_4c03199 crossref_primary_10_1002_adom_202100622 crossref_primary_10_1007_s12274_022_4459_3 crossref_primary_10_1002_adma_202109870 crossref_primary_10_1002_advs_202104374 crossref_primary_10_1002_ange_202303819 crossref_primary_10_1016_j_ccr_2024_215691 crossref_primary_10_1039_D4TA02438A crossref_primary_10_1016_j_est_2025_115920 crossref_primary_10_1021_acs_chemrev_0c01049 crossref_primary_10_1021_acs_cgd_3c01162 crossref_primary_10_1002_anie_201914461 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1002_anie_202401679 crossref_primary_10_1007_s40820_020_0407_5 crossref_primary_10_1016_j_cej_2020_127221 crossref_primary_10_1007_s10800_022_01735_5 crossref_primary_10_1002_ange_202416178 crossref_primary_10_1002_adfm_202403656 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_1016_j_ccr_2020_213743 crossref_primary_10_1016_j_cjsc_2024_100251 crossref_primary_10_1002_adma_202408396 crossref_primary_10_1002_ange_202501821 crossref_primary_10_1002_smll_202409786 crossref_primary_10_1002_ange_202104461 crossref_primary_10_1016_j_trac_2024_117679 crossref_primary_10_1093_nsr_nwab197 crossref_primary_10_1002_celc_202001418 crossref_primary_10_1021_acs_analchem_3c02417 crossref_primary_10_1039_D4CC02433H crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1021_acsnano_4c14989 crossref_primary_10_1016_j_mtchem_2022_100981 crossref_primary_10_1016_j_cclet_2024_110571 crossref_primary_10_1021_acsmaterialslett_1c00455 crossref_primary_10_1016_j_cej_2024_148793 crossref_primary_10_1002_anie_202501821 crossref_primary_10_1039_D1CE00206F crossref_primary_10_1021_acs_accounts_3c00718 crossref_primary_10_1021_acs_inorgchem_3c02647 crossref_primary_10_1021_acsnanoscienceau_3c00024 crossref_primary_10_6023_A22010024 crossref_primary_10_1002_ange_202422382 crossref_primary_10_1002_tcr_202300141 crossref_primary_10_1016_j_colsurfa_2023_132176 crossref_primary_10_1021_acs_analchem_2c03766 crossref_primary_10_1039_D1CE01429C crossref_primary_10_1016_j_jcis_2022_10_059 crossref_primary_10_1007_s12274_023_5405_8 crossref_primary_10_1016_j_trac_2024_117603 crossref_primary_10_1002_anie_202422382 crossref_primary_10_1016_j_chempr_2023_08_026 crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1021_acs_inorgchem_0c03364 crossref_primary_10_1039_D1MA00535A crossref_primary_10_1016_j_coelec_2020_100661 crossref_primary_10_1016_j_apcatb_2024_124131 crossref_primary_10_1016_j_jhazmat_2022_128321 crossref_primary_10_1016_j_ecoenv_2024_116065 crossref_primary_10_1021_acs_inorgchem_1c00361 |
Cites_doi | 10.1038/s41563-018-0189-z 10.1021/jacs.5b10385 10.1002/anie.201506219 10.1002/ange.201709558 10.1021/jacs.8b13397 10.1021/jacs.6b08511 10.1126/science.aar6833 10.1021/jacs.8b06006 10.1002/adma.201506457 10.1002/ange.201411854 10.1021/jacs.9b00654 10.1016/j.chempr.2019.04.013 10.1021/jacs.8b06666 10.1002/ange.201506219 10.1038/s41560-017-0044-5 10.1002/anie.201709558 10.1038/ncomms10942 10.1039/C7TA02069D 10.1002/anie.201411854 10.1021/jp4114199 10.1038/s41557-018-0170-0 10.1038/nmat4766 10.1021/nl034220x 10.1016/j.snb.2013.11.004 10.1039/C8CS00829A 10.1002/adfm.201702067 10.1021/jacs.5b09600 10.1021/ja312380b 10.1021/jacs.8b11527 10.1021/jacs.8b11257 10.1016/j.apcatb.2014.03.048 10.1021/acs.chemrev.8b00311 10.1021/ja300420t 10.1126/science.aat0586 10.1021/jacs.7b05742 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201909096 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 176 |
ExternalDocumentID | 31595640 10_1002_anie_201909096 ANIE201909096 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China funderid: 21801243, 21822109 – fundername: the Natural Science Foundation of Fujian Province funderid: 2019J01129 – fundername: a KAKENHI Grant-in-Aid for Scientific Research (S) funderid: JP18H05262 – fundername: KAKENHI Grant-in-Aid for Specially Promoted Research funderid: JP25000007 – fundername: the National Natural Science Foundation of China grantid: 21801243, 21822109 – fundername: the Natural Science Foundation of Fujian Province grantid: 2019J01129 – fundername: a KAKENHI Grant-in-Aid for Scientific Research (S) grantid: JP18H05262 – fundername: KAKENHI Grant-in-Aid for Specially Promoted Research grantid: JP25000007 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4106-51e3405c44286b18af98355e77e376b151cb2736da511020806963a7c5ce6be73 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 08:35:48 EDT 2025 Fri Jul 25 10:38:31 EDT 2025 Wed Feb 19 02:30:41 EST 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 02:26:59 EDT 2025 Wed Jan 22 16:35:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | nanowires porous coordination polymers semiconductors gas sensors metal-organic frameworks |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4106-51e3405c44286b18af98355e77e376b151cb2736da511020806963a7c5ce6be73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7904-5003 0000-0003-1604-2611 0000-0001-6956-9543 |
PMID | 31595640 |
PQID | 2328365072 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2303201991 proquest_journals_2328365072 pubmed_primary_31595640 crossref_citationtrail_10_1002_anie_201909096 crossref_primary_10_1002_anie_201909096 wiley_primary_10_1002_anie_201909096_ANIE201909096 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2, 2020 |
PublicationDateYYYYMMDD | 2020-01-02 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2, 2020 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 362 2017; 5 2014; 118 2018; 140 2019; 5 2019; 31 2019; 11 2017; 27 2014; 192 2017 2017; 56 129 2019; 141 2017; 139 2014; 156 2019; 363 2018; 17 2016; 7 2018; 3 2016 2016; 55 128 2012; 134 2015; 137 2017; 16 2019; 48 2003; 3 2015 2015; 54 127 2013; 135 2019; 119 2012; 24 2016; 28 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_43_2 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_13_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_30_3 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_15_1 e_1_2_2_36_1 Heinke L. (e_1_2_2_3_2) 2019; 31 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_9_2 e_1_2_2_46_2 Hmadeh M. (e_1_2_2_34_2) 2012; 24 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 192 start-page: 658 year: 2014 end-page: 663 publication-title: Sens. Actuators B – volume: 17 start-page: 1027 year: 2018 publication-title: Nat. Mater. – volume: 140 start-page: 14533 year: 2018 end-page: 14537 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 6565 year: 2014 end-page: 6575 publication-title: J. Phys. Chem. C – volume: 119 start-page: 478 year: 2019 end-page: 598 publication-title: Chem. Rev. – volume: 16 start-page: 220 year: 2017 end-page: 224 publication-title: Nat. Mater. – volume: 7 start-page: 10942 year: 2016 publication-title: Nat. Commun. – volume: 134 start-page: 4553 year: 2012 end-page: 4556 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 10863 year: 2017 end-page: 10867 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 13780 year: 2015 end-page: 13783 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 30 year: 2018 publication-title: Nat. Energy – volume: 28 start-page: 5229 year: 2016 end-page: 5234 publication-title: Adv. Mater. – volume: 141 start-page: 1045 year: 2019 end-page: 1053 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 5005 year: 2019 end-page: 5013 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 3566 3628 year: 2016 2016 end-page: 3579 3642 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 16510 16737 year: 2017 2017 end-page: 16514 16741 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 929 year: 2003 end-page: 933 publication-title: Nano Lett. – volume: 24 start-page: 3511 year: 2012 end-page: 3513 publication-title: Chem. – volume: 139 start-page: 1360 year: 2017 end-page: 1363 publication-title: J. Am. Chem. Soc. – volume: 156 start-page: 428 year: 2014 end-page: 437 publication-title: Appl. Catal. B – volume: 141 start-page: 3385 year: 2019 end-page: 3389 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 109 year: 2019 end-page: 116 publication-title: Nat. Chem. – volume: 27 start-page: 1702067 year: 2017 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 16139 year: 2017 end-page: 16143 publication-title: J. Mater. Chem. A – volume: 135 start-page: 2462 year: 2013 end-page: 2465 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1938 year: 2019 end-page: 1963 publication-title: Chem – volume: 140 start-page: 11174 year: 2018 end-page: 11178 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 4349 4423 year: 2015 2015 end-page: 4352 4426 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 15703 year: 2015 end-page: 15711 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1806324 year: 2019 publication-title: Adv. – volume: 141 start-page: 2046 year: 2019 end-page: 2053 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2783 year: 2019 end-page: 2828 publication-title: Chem. Soc. Rev. – volume: 363 start-page: 387 year: 2019 end-page: 391 publication-title: Science – volume: 362 start-page: 443 year: 2018 end-page: 446 publication-title: Science – ident: e_1_2_2_20_2 doi: 10.1038/s41563-018-0189-z – ident: e_1_2_2_32_1 – ident: e_1_2_2_37_1 doi: 10.1021/jacs.5b10385 – ident: e_1_2_2_22_2 doi: 10.1002/anie.201506219 – ident: e_1_2_2_38_1 – ident: e_1_2_2_29_3 doi: 10.1002/ange.201709558 – ident: e_1_2_2_7_2 doi: 10.1021/jacs.8b13397 – ident: e_1_2_2_31_1 doi: 10.1021/jacs.6b08511 – ident: e_1_2_2_9_2 doi: 10.1126/science.aar6833 – ident: e_1_2_2_45_1 – ident: e_1_2_2_15_1 – ident: e_1_2_2_4_2 doi: 10.1021/jacs.8b06006 – ident: e_1_2_2_28_1 – ident: e_1_2_2_25_1 – ident: e_1_2_2_41_1 doi: 10.1002/adma.201506457 – ident: e_1_2_2_30_3 doi: 10.1002/ange.201411854 – ident: e_1_2_2_13_2 doi: 10.1021/jacs.9b00654 – ident: e_1_2_2_19_2 doi: 10.1016/j.chempr.2019.04.013 – ident: e_1_2_2_23_2 doi: 10.1021/jacs.8b06666 – ident: e_1_2_2_22_3 doi: 10.1002/ange.201506219 – ident: e_1_2_2_27_2 doi: 10.1038/s41560-017-0044-5 – ident: e_1_2_2_29_2 doi: 10.1002/anie.201709558 – volume: 31 start-page: 1806324 year: 2019 ident: e_1_2_2_3_2 publication-title: Adv. – ident: e_1_2_2_24_1 doi: 10.1038/ncomms10942 – ident: e_1_2_2_39_2 doi: 10.1039/C7TA02069D – ident: e_1_2_2_1_1 – ident: e_1_2_2_30_2 doi: 10.1002/anie.201411854 – ident: e_1_2_2_46_2 doi: 10.1021/jp4114199 – ident: e_1_2_2_2_2 doi: 10.1038/s41557-018-0170-0 – ident: e_1_2_2_26_2 doi: 10.1038/nmat4766 – ident: e_1_2_2_12_1 – ident: e_1_2_2_43_2 doi: 10.1021/nl034220x – ident: e_1_2_2_40_2 doi: 10.1016/j.snb.2013.11.004 – ident: e_1_2_2_6_2 doi: 10.1039/C8CS00829A – volume: 24 start-page: 3511 year: 2012 ident: e_1_2_2_34_2 publication-title: Chem. – ident: e_1_2_2_36_1 doi: 10.1002/adfm.201702067 – ident: e_1_2_2_42_1 – ident: e_1_2_2_35_1 doi: 10.1021/jacs.5b09600 – ident: e_1_2_2_18_1 – ident: e_1_2_2_16_2 doi: 10.1021/ja312380b – ident: e_1_2_2_8_1 – ident: e_1_2_2_11_2 doi: 10.1021/jacs.8b11527 – ident: e_1_2_2_33_2 doi: 10.1021/jacs.8b11257 – ident: e_1_2_2_47_2 doi: 10.1016/j.apcatb.2014.03.048 – ident: e_1_2_2_14_2 doi: 10.1021/acs.chemrev.8b00311 – ident: e_1_2_2_5_1 – ident: e_1_2_2_44_2 doi: 10.1021/ja300420t – ident: e_1_2_2_10_2 doi: 10.1126/science.aat0586 – ident: e_1_2_2_21_1 – ident: e_1_2_2_17_2 doi: 10.1021/jacs.7b05742 |
SSID | ssj0028806 |
Score | 2.6376016 |
Snippet | Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous... Single-ligand-based electronically conductive porous coordination polymers/metal-organic frameworks (EC-PCPs/MOFs) fail to meet the requirements of numerous... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 172 |
SubjectTerms | Conductivity Coordination polymers Gas sensors Ligands Metal-organic frameworks Nanotechnology Nanowires Organic chemistry Polymers Porosity porous coordination polymers Quinones semiconductors Topology |
Title | A Dual‐Ligand Porous Coordination Polymer Chemiresistor with Modulated Conductivity and Porosity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201909096 https://www.ncbi.nlm.nih.gov/pubmed/31595640 https://www.proquest.com/docview/2328365072 https://www.proquest.com/docview/2303201991 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VXOiFn7ZAYKlcqVJPhqxjx-vjagHRqrtCCCRukeN4EWKbVPtzgBOPwDPyJMwkm9ClQkignJLYiTOesT9Pxt8AfM8QdajQSe6VsFxaa7i1bckVastQS9fRjhz6_UF8fC5_XaiLf3bxV_wQjcONLKMcr8nAbTrZfyINpR3YFJplQjyIc5sCtggVnTb8UQKVs9peFEWcstDXrI2h2F-svjgr_Qc1F5FrOfUcrYKtG11FnFzvzabpnrt9xuf4nq9ag5U5LmXdSpHW4YPPP8Fyr04H9xnSLjuY2dHD3f3vq0ubZ-ykGBezCesVuHy9qnyKeG1088ePWVkPF_IlBwkjXy_rFxllCvMZ1siJZLbMWsHqJ1FoyBc4Pzo86x3zeYIG7iQuJblq-wgBn5O4honTdscODQI65bX2OG6lCCZcivAozizCOsoGGsZo71Y75Xyceh1twFJe5H4LmJZGKjPUxuAAYVVsjSNiIBuaTBiE1gHwuoMSN2cvpyQao6TiXRYJSS5pJBfAj6b834q348WSrbq_k7n9ThLEmR1Up1CLAL41t1Hi9DvF5h7li2Uo-TyFjgWwWelJ86oIUaKKZRiAKHv7lTYk3cHPw-Zs-y2VduCjIFcAeYdEC5am45nfRbw0Tb-WNvEITwgLBg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4ty2G58P8TWMBIIE7eTR07rg8cqnZXLdtWCO1KewuO46IVJUH9EVpOPAKvwqvwCDwJM_lDBSEkpD2gnJLajjOe8Xye2t8APM0QdajQSe6VsFxaa7i1HckVastMS9fVjgL6k2k8PJEvT9XpFnxtzsJU_BBtwI0so5yvycApIL3_kzWUjmDT3iwT4hXX-yqP_PlHXLUtX4wGOMTPhDg8OO4PeZ1YgDuJSyCuOj5CoOIkYu847XTtzCAQUV5rj_aWohN0Kbr1OLMIRyiLZRijnlrtlPNx6nWE7V6Cy5RGnOj6B69bxiqB5lAdaIoiTnnvG57IUOxv9nfTD_4GbjexcunsDq_Bt0ZM1R6Xd3vrVbrnPv3CIPlfyfE6XK2hN-tVtnIDtnx-E3b6Tca7W5D22GBt598_fxmfvbV5xl4Vi2K9ZP0C-3hWhU3x2fz8vV-wst7CL0uaFUbhbDYpMkqG5jOskROPbpmYgzUt0e6X23ByIZ94B7bzIvf3gGlppDIzbQzOgVbF1jjiPrKhyYTB1UMAvNGIxNUE7ZQnZJ5U1NIioZFK2pEK4Hlb_kNFTfLHkruNgiX1FLVMEEp3I8TnWgTwpP0ZJU7_GNnco3yxTBhRK6YTwN1KMdtXRQiEVSzDAESpXn_pQ9Kbjg7au_v_Uukx7AyPJ-NkPJoePYArgiIfFAwTu7C9Wqz9Q4SHq_RRaZAM3ly05v4AihVk0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_ksDBYwE4uQ269jx-sBhtdtVl7arClGpt-A4XlSxTar9ESonHoFH4VV4BZ6EmfyhBSEkpB5QTkn8F3vG83lifwPwPEPUoUInuVfCcmmt4dZ2JFcoLRMtXVc7cugfjuO9Y_n6RJ2swdfmLEzFD9E63EgzyvmaFPw8m-z8JA2lE9i0NcuEeMX1tsp9f_ERF23zV6MBjvALIYa7b_t7vI4rwJ3EFRBXHR8hTnESoXecdrp2YhCHKK-1R3VL0Qa6FK16nFlEIxTEMoxRTK12yvk49TrCcq_AVRljzQTD3rSEVQK1oTrPFEWcwt43NJGh2Flt76oZ_A3brkLl0tYNb8G3ppeqLS4ftpeLdNt9-oVA8n_qxttwswberFdpyh1Y8_lduN5v4t3dg7THBks7_f75y8Hpe5tn7KiYFcs56xfYxtPKaYrPphdnfsbKfDM_L0lWGDmz2WGRUSg0n2GOnFh0y7AcrCmJ9r7ch-NL-cQNWM-L3G8C09JIZSbaGJwBrYqtccR8ZEOTCYNrhwB4IxCJq-nZKUrINKmIpUVCI5W0IxXAyzb9eUVM8seUW418JfUENU8QSHcjROdaBPCsfY09Tv-LbO6xfzFNGFEpphPAg0ou26oihMEqlmEAopSuv7Qh6Y1Hu-3dw3_J9BSuHQ2GycFovP8Ibghye5AnTGzB-mK29I8RGy7SJ6U6Mnh32YL7A8eNY4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Ligand+Porous+Coordination+Polymer+Chemiresistor+with+Modulated+Conductivity+and+Porosity&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yao%2C+Ming-Shui&rft.au=Zheng%2C+Jia-Jia&rft.au=Wu%2C+Ai-Qian&rft.au=Xu%2C+Gang&rft.date=2020-01-02&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=1&rft.spage=172&rft_id=info:doi/10.1002%2Fanie.201909096&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |