Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation
Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 52; pp. 17130 - 17134 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
21.12.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %.
Handpicked: A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane was synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into a ZIF framework. The amino acid functions as a chiral (enantiopure) ligand. The l‐His‐ZIF‐8 membrane demonstrates good homochirality and an ability to separate racemic 1‐phenylethanol with up to 76 % ee. |
---|---|
AbstractList | Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid,
l
‐histidine (
l
‐His), into the framework of ZIF‐8. The homochiral
l
‐His‐ZIF‐8 membrane exhibits a good selectivity for the
R
‐enantiomer of 1‐phenylethanol over the
S
‐enantiomer, showing a high enantiomeric excess value up to 76 %. Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %. Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %. Handpicked: A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane was synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into a ZIF framework. The amino acid functions as a chiral (enantiopure) ligand. The l‐His‐ZIF‐8 membrane demonstrates good homochirality and an ability to separate racemic 1‐phenylethanol with up to 76 % ee. Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high-quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework-8 (ZIF-8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l-histidine (l-His), into the framework of ZIF-8. The homochiral l-His-ZIF-8 membrane exhibits a good selectivity for the R-enantiomer of 1-phenylethanol over the S-enantiomer, showing a high enantiomeric excess value up to 76 %.Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high-quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework-8 (ZIF-8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l-histidine (l-His), into the framework of ZIF-8. The homochiral l-His-ZIF-8 membrane exhibits a good selectivity for the R-enantiomer of 1-phenylethanol over the S-enantiomer, showing a high enantiomeric excess value up to 76 %. |
Author | Hu, Yaoxin Zhang, Huacheng Nolvachai, Yada Forsyth, Maria Chan, Jun Yong Gu, Qinfen Zhu, Haijin Marriot, Philip J. Zhang, Xiwang Hoke, David E. Wang, Huanting |
Author_xml | – sequence: 1 givenname: Jun Yong surname: Chan fullname: Chan, Jun Yong organization: Monash University – sequence: 2 givenname: Huacheng surname: Zhang fullname: Zhang, Huacheng email: huacheng.zhang@monash.edu organization: Monash University – sequence: 3 givenname: Yada surname: Nolvachai fullname: Nolvachai, Yada organization: Monash University – sequence: 4 givenname: Yaoxin surname: Hu fullname: Hu, Yaoxin organization: Monash University – sequence: 5 givenname: Haijin surname: Zhu fullname: Zhu, Haijin organization: Deakin University – sequence: 6 givenname: Maria surname: Forsyth fullname: Forsyth, Maria organization: Deakin University – sequence: 7 givenname: Qinfen surname: Gu fullname: Gu, Qinfen organization: Australian Synchrotron – sequence: 8 givenname: David E. surname: Hoke fullname: Hoke, David E. organization: Monash University – sequence: 9 givenname: Xiwang surname: Zhang fullname: Zhang, Xiwang organization: Monash University – sequence: 10 givenname: Philip J. surname: Marriot fullname: Marriot, Philip J. organization: Monash University – sequence: 11 givenname: Huanting orcidid: 0000-0002-9887-5555 surname: Wang fullname: Wang, Huanting email: huanting.wang@monash.edu organization: Monash University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30370963$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtrHDEURkVwiB9J6zII0riZzZU02hmVZlnbC3ZSJGnSDHpcETkz0kYzi1n_esteP8BgUkmCcz5d7ndI9mKKSMgxgxkD4F91DDjjwFoGist35IBJzirRNGKv3GshqqaVbJ8cjuN14dsW5h_IvgDRgJqLAzKsok15nbKeQoo0eXqRhmT_hKz7MG1piFOimv7GVJ7B0tUQnL5NvZ6QnmU94E3Kf-kVDibriNSnTJfeBxswTnTxEEN_4Frv8j-S9173I356PI_Ir7Plz8VFdfn9fLU4vaxszUBWKK2TBjyAF772zjloPLOCY8t0rRh4BwJBGNNabRg2ppFMKG2UcbwVThyRk13uOqd_Gxynbgijxb4vM6bN2HHG5wq4gnlBv7xCr9MmxzJdoWSjoJatKNTnR2pjBnTdOodB5233tMgCzHaAzWkcM_pnhEF331R331T33FQR6leCDdPDkqasQ_-2pnbaTehx-59PutNvq-WLewfzSqk- |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_128247 crossref_primary_10_1016_j_aca_2023_341496 crossref_primary_10_1016_j_advmem_2024_100113 crossref_primary_10_1016_j_jssc_2020_121871 crossref_primary_10_1021_acsami_3c08843 crossref_primary_10_1016_j_molliq_2024_125013 crossref_primary_10_1021_acsami_1c24876 crossref_primary_10_1002_smsc_202000035 crossref_primary_10_1002_ange_201910408 crossref_primary_10_1016_j_jcis_2024_03_150 crossref_primary_10_1021_acs_nanolett_2c03778 crossref_primary_10_1038_s41427_022_00451_y crossref_primary_10_1021_jacs_0c13005 crossref_primary_10_1002_ange_202013885 crossref_primary_10_1016_j_mtchem_2023_101781 crossref_primary_10_1016_j_foodchem_2022_134899 crossref_primary_10_1021_acs_cgd_0c00265 crossref_primary_10_1002_ange_202419916 crossref_primary_10_1016_j_ccr_2023_215392 crossref_primary_10_1016_j_cej_2023_141976 crossref_primary_10_1002_ange_202400475 crossref_primary_10_1016_j_microc_2025_112825 crossref_primary_10_1039_C9NJ04031E crossref_primary_10_1016_j_microc_2021_107092 crossref_primary_10_1021_acsami_0c09816 crossref_primary_10_1021_acs_analchem_2c01054 crossref_primary_10_1016_j_foodchem_2024_139272 crossref_primary_10_1021_acsanm_0c00481 crossref_primary_10_3390_molecules25081931 crossref_primary_10_1002_adma_202400709 crossref_primary_10_1021_acs_chemrev_1c00740 crossref_primary_10_1039_D4QI00641K crossref_primary_10_1002_adma_201902009 crossref_primary_10_1016_j_chroma_2025_465781 crossref_primary_10_3390_ma15238456 crossref_primary_10_1002_jssc_201900682 crossref_primary_10_1002_anie_202212139 crossref_primary_10_1016_j_aca_2022_339434 crossref_primary_10_1016_j_talanta_2021_122488 crossref_primary_10_1021_acs_cgd_9b00152 crossref_primary_10_1016_j_ccr_2023_215120 crossref_primary_10_3390_membranes12040357 crossref_primary_10_1021_jacs_1c08487 crossref_primary_10_1002_ange_202012681 crossref_primary_10_1021_acs_inorgchem_9b02341 crossref_primary_10_1021_acs_analchem_4c03558 crossref_primary_10_1039_D5AY00097A crossref_primary_10_1038_s41467_024_52402_6 crossref_primary_10_1016_j_cej_2021_133586 crossref_primary_10_1002_cssc_201902341 crossref_primary_10_1002_adma_202313749 crossref_primary_10_1002_ange_202212139 crossref_primary_10_1016_j_microc_2024_110282 crossref_primary_10_1016_j_talanta_2024_126331 crossref_primary_10_1039_D0CS00786B crossref_primary_10_1007_s10311_022_01403_2 crossref_primary_10_1016_j_memsci_2020_118956 crossref_primary_10_1016_j_aca_2023_341759 crossref_primary_10_1021_acs_jpcc_3c02979 crossref_primary_10_1016_j_ccr_2023_215259 crossref_primary_10_1016_j_aca_2024_342995 crossref_primary_10_1016_j_seppur_2022_121880 crossref_primary_10_1002_chir_23480 crossref_primary_10_1016_j_microc_2023_109160 crossref_primary_10_1016_j_jece_2022_109250 crossref_primary_10_1016_j_memsci_2024_123106 crossref_primary_10_1039_D1NJ00169H crossref_primary_10_1002_anie_202012681 crossref_primary_10_1039_D0SC02856H crossref_primary_10_1002_ange_202102350 crossref_primary_10_1002_jssc_202200836 crossref_primary_10_3390_membranes13050480 crossref_primary_10_1039_D1GC03668H crossref_primary_10_1021_acsami_1c25175 crossref_primary_10_1016_j_seppur_2023_124898 crossref_primary_10_1016_j_seppur_2022_120833 crossref_primary_10_1016_j_aca_2024_343606 crossref_primary_10_1039_D4TA08001G crossref_primary_10_1016_j_seppur_2022_121034 crossref_primary_10_1002_anie_202013885 crossref_primary_10_1016_j_ccr_2025_216559 crossref_primary_10_1016_j_chroma_2021_462082 crossref_primary_10_1016_j_jhazmat_2021_125467 crossref_primary_10_1002_chem_202100911 crossref_primary_10_1007_s10008_024_05942_2 crossref_primary_10_1002_smll_202204858 crossref_primary_10_1002_anie_202400475 crossref_primary_10_1002_anie_202102350 crossref_primary_10_1039_D0CS01236J crossref_primary_10_1039_D2NJ01748B crossref_primary_10_1016_j_chroma_2023_464029 crossref_primary_10_1002_cssc_201900706 crossref_primary_10_1039_D4CS00272E crossref_primary_10_1016_j_supmat_2023_100039 crossref_primary_10_1016_j_cej_2023_141650 crossref_primary_10_1038_s41467_019_12114_8 crossref_primary_10_1016_j_actbio_2022_04_022 crossref_primary_10_1016_j_ccr_2024_216302 crossref_primary_10_1021_acsenergylett_0c02537 crossref_primary_10_1002_adfm_202210046 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1016_j_memsci_2022_121198 crossref_primary_10_1007_s00604_021_05030_6 crossref_primary_10_2139_ssrn_4011753 crossref_primary_10_1002_smll_202301460 crossref_primary_10_1016_j_chroma_2024_464799 crossref_primary_10_1016_j_memsci_2022_121190 crossref_primary_10_1016_j_chroma_2022_463341 crossref_primary_10_1002_smll_202300376 crossref_primary_10_1002_anie_202419916 crossref_primary_10_1002_ijch_202100073 crossref_primary_10_1016_j_cej_2021_131118 crossref_primary_10_1039_D0CS00552E crossref_primary_10_1039_D2CS00031H crossref_primary_10_1002_smtd_202300278 crossref_primary_10_1002_anie_201910408 crossref_primary_10_1016_j_cjche_2022_06_017 crossref_primary_10_1002_adfm_202101335 crossref_primary_10_1021_acs_analchem_3c01178 crossref_primary_10_1002_bio_3790 crossref_primary_10_1016_j_cej_2021_131801 crossref_primary_10_1016_j_chroma_2025_465652 crossref_primary_10_1016_j_seppur_2023_125704 crossref_primary_10_1021_acs_analchem_4c04160 crossref_primary_10_1016_j_jiec_2023_08_023 crossref_primary_10_1039_D1CC04465F crossref_primary_10_1016_j_cej_2022_139499 crossref_primary_10_1016_j_cej_2021_131483 crossref_primary_10_1016_j_jpha_2024_101176 crossref_primary_10_1016_j_electacta_2021_139464 crossref_primary_10_1016_j_gee_2022_03_005 crossref_primary_10_1021_jacs_4c04164 crossref_primary_10_1016_j_seppur_2024_129883 crossref_primary_10_1039_D2SC02436E crossref_primary_10_3390_membranes11040279 crossref_primary_10_1016_j_memsci_2019_117635 crossref_primary_10_1021_acs_chemrev_1c00846 |
Cites_doi | 10.1007/978-1-62703-263-6 10.1002/ange.200704347 10.1016/j.mattod.2016.03.003 10.1002/anie.200503023 10.1002/ange.200602242 10.1002/sia.5261 10.1021/cr200190s 10.1002/anie.201509213 10.1021/ja078317n 10.1038/srep02947 10.1002/ange.201000416 10.1039/C3CS60480B 10.1021/jacs.7b00280 10.1002/cite.201000188 10.1016/j.ces.2014.10.012 10.1002/anie.200602242 10.1134/S0023158411050065 10.1016/S0021-9673(00)00532-X 10.1039/b807083k 10.1002/ange.201006141 10.1039/c2cc32595k 10.1039/C6CS00051G 10.1002/ange.200503023 10.1038/ncomms10487 10.1002/adfm.201201079 10.1021/ja052431t 10.1016/j.tetasy.2008.02.004 10.1002/aic.14194 10.1021/jacs.5b12860 10.1021/jacs.5b05327 10.1016/j.trac.2016.01.016 10.1002/anie.201006141 10.1039/C4CS00159A 10.1039/c3cc39116g 10.1039/C7CS00109F 10.1021/jacs.5b11150 10.1002/adma.201102538 10.1021/ja411887c 10.1039/c3cc42376j 10.1038/nchem.738 10.1039/C7CS00367F 10.1002/anie.200704347 10.1039/b802426j 10.1021/ja212132r 10.1039/b713350b 10.1002/ange.201509213 10.1038/nmat2608 10.1039/b807080f 10.1038/46248 10.1039/C3CE42520G 10.1039/c0cc04734a 10.1002/anie.201000416 10.1016/j.trac.2016.10.013 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201810925 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17134 |
ExternalDocumentID | 30370963 10_1002_anie_201810925 ANIE201810925 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP170102964; DE170100006 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4105-e5cd5b0f00f3f4fddd07f1c32e81a4910fd03e03bb8cab1e7b75139ab9bd283d3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:56:15 EDT 2025 Fri Jul 25 10:35:24 EDT 2025 Thu Apr 03 06:53:45 EDT 2025 Tue Jul 01 02:26:36 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 Wed Jan 22 16:32:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | homochiral chirality membrane separation chiral resolution metal-organic frameworks |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4105-e5cd5b0f00f3f4fddd07f1c32e81a4910fd03e03bb8cab1e7b75139ab9bd283d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9887-5555 |
PMID | 30370963 |
PQID | 2157904583 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2126902906 proquest_journals_2157904583 pubmed_primary_30370963 crossref_primary_10_1002_anie_201810925 crossref_citationtrail_10_1002_anie_201810925 wiley_primary_10_1002_anie_201810925_ANIE201810925 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 21, 2018 |
PublicationDateYYYYMMDD | 2018-12-21 |
PublicationDate_xml | – month: 12 year: 2018 text: December 21, 2018 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 86 2013; 3 2016; 19 2013; 49 2015; 124 2013; 45 2008; 19 2017; 46 2011; 83 2009 2008; 37 2011; 52 2010 2010; 49 122 2001; 906 2008 2008; 47 120 1999; 402 2014; 136 2014; 43 2017; 139 2006 2006; 45 118 2016; 7 2013; 59 2016 2016; 55 128 2012; 112 2012; 134 2015; 137 2005; 127 2014; 16 2011; 23 2016; 138 2016; 81 2013 2012; 48 2011; 47 2010; 2 2012; 22 2009; 38 2008; 130 2010; 9 2016; 45 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_49_1 e_1_2_2_6_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_28_3 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_8_1 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_36_2 e_1_2_2_13_1 e_1_2_2_36_3 e_1_2_2_59_1 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_51_2 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_17_3 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_23_2 Habulin M. (e_1_2_2_47_2) 2009 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_3 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_3 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_44_2 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 Scriba G. K. E. (e_1_2_2_3_2) 2013 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_37_3 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_58_1 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_50_1 |
References_xml | – volume: 136 start-page: 1746 year: 2014 end-page: 1749 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 5629 year: 2011 end-page: 5632 publication-title: Adv. Mater. – volume: 139 start-page: 4294 year: 2017 end-page: 4297 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 15406 year: 2015 end-page: 15409 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1248 year: 2009 end-page: 1256 publication-title: Chem. Soc. Rev. – volume: 46 start-page: 7374 year: 2017 end-page: 7398 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 503 year: 2016 end-page: 515 publication-title: Mater. Today – year: 2009 – volume: 52 start-page: 686 year: 2011 publication-title: Kinet. Catal. – volume: 86 start-page: 25 year: 2017 publication-title: TrAC Trends Anal. Chem. – volume: 49 start-page: 10569 year: 2013 end-page: 10571 publication-title: Chem. Commun. – start-page: 1 year: 2013 end-page: 27 – volume: 37 start-page: 1243 year: 2008 end-page: 1263 publication-title: Chem. Soc. Rev. – volume: 47 120 start-page: 1245 1265 year: 2008 2008 end-page: 1249 1269 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 1477 year: 2009 end-page: 1504 publication-title: Chem. Soc. Rev. – volume: 16 start-page: 3268 year: 2014 end-page: 3273 publication-title: CrystEngComm – volume: 83 start-page: 90 year: 2011 end-page: 103 publication-title: Chem. Ing. Tech. – volume: 45 118 start-page: 6495 6645 year: 2006 2006 end-page: 6499 6649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 3245 year: 2013 end-page: 3247 publication-title: Chem. Commun. – volume: 906 start-page: 3 year: 2001 end-page: 33 publication-title: J. Chromatogr. A – volume: 9 start-page: 172 year: 2010 end-page: 178 publication-title: Nat. Mater. – volume: 43 start-page: 4470 year: 2014 end-page: 4493 publication-title: Chem. Soc. Rev. – volume: 49 122 start-page: 4121 4215 year: 2010 2010 end-page: 4124 4218 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 402 start-page: 276 year: 1999 end-page: 279 publication-title: Nature – volume: 48 start-page: 7022 year: 2012 end-page: 7024 publication-title: Chem. Commun. – volume: 47 start-page: 2559 year: 2011 end-page: 2561 publication-title: Chem. Commun. – volume: 124 start-page: 179 year: 2015 end-page: 187 publication-title: Chem. Eng. Sci. – volume: 137 start-page: 9409 year: 2015 end-page: 9416 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 6116 year: 2014 end-page: 6140 publication-title: Chem. Soc. Rev. – volume: 45 start-page: 1238 year: 2013 end-page: 1246 publication-title: Surf. Interface Anal. – volume: 112 start-page: 869 year: 2012 end-page: 932 publication-title: Chem. Rev. – volume: 55 128 start-page: 2048 2088 year: 2016 2016 end-page: 2052 2092 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 start-page: 4364 year: 2013 end-page: 4372 publication-title: AIChE J. – volume: 138 start-page: 2292 year: 2016 end-page: 2301 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 838 year: 2010 end-page: 846 publication-title: Nat. Chem. – volume: 19 start-page: 519 year: 2008 end-page: 536 publication-title: Tetrahedron: Asymmetry – volume: 49 122 start-page: 9863 10059 year: 2010 2010 end-page: 9866 10062 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 81 start-page: 11 year: 2016 end-page: 22 publication-title: TrAC Trends Anal. Chem. – volume: 46 start-page: 3453 year: 2017 end-page: 3480 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 2947 year: 2013 publication-title: Sci. Rep. – volume: 127 start-page: 8940 year: 2005 end-page: 8941 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 4216 year: 2012 end-page: 4224 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 3122 year: 2016 end-page: 3144 publication-title: Chem. Soc. Rev. – volume: 45 118 start-page: 916 930 year: 2006 2006 end-page: 920 934 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 6904 year: 2012 end-page: 6907 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 10487 year: 2016 publication-title: Nat. Commun. – volume: 130 start-page: 4582 year: 2008 end-page: 4583 publication-title: J. Am. Chem. Soc. – start-page: 1 volume-title: Chiral Separations: Methods and Protocols year: 2013 ident: e_1_2_2_3_2 doi: 10.1007/978-1-62703-263-6 – ident: e_1_2_2_46_1 – ident: e_1_2_2_37_3 doi: 10.1002/ange.200704347 – ident: e_1_2_2_26_2 doi: 10.1016/j.mattod.2016.03.003 – ident: e_1_2_2_28_2 doi: 10.1002/anie.200503023 – ident: e_1_2_2_29_3 doi: 10.1002/ange.200602242 – ident: e_1_2_2_54_1 doi: 10.1002/sia.5261 – ident: e_1_2_2_14_2 doi: 10.1021/cr200190s – ident: e_1_2_2_21_2 doi: 10.1002/anie.201509213 – ident: e_1_2_2_34_2 doi: 10.1021/ja078317n – ident: e_1_2_2_57_2 doi: 10.1038/srep02947 – ident: e_1_2_2_31_1 – ident: e_1_2_2_36_3 doi: 10.1002/ange.201000416 – ident: e_1_2_2_20_2 doi: 10.1039/C3CS60480B – ident: e_1_2_2_25_2 doi: 10.1021/jacs.7b00280 – ident: e_1_2_2_12_2 doi: 10.1002/cite.201000188 – ident: e_1_2_2_4_1 – ident: e_1_2_2_40_2 doi: 10.1016/j.ces.2014.10.012 – ident: e_1_2_2_29_2 doi: 10.1002/anie.200602242 – ident: e_1_2_2_48_2 doi: 10.1134/S0023158411050065 – ident: e_1_2_2_7_2 doi: 10.1016/S0021-9673(00)00532-X – ident: e_1_2_2_56_2 doi: 10.1039/b807083k – ident: e_1_2_2_17_3 doi: 10.1002/ange.201006141 – ident: e_1_2_2_43_2 doi: 10.1039/c2cc32595k – ident: e_1_2_2_24_2 doi: 10.1039/C6CS00051G – ident: e_1_2_2_22_1 – ident: e_1_2_2_55_1 – ident: e_1_2_2_28_3 doi: 10.1002/ange.200503023 – ident: e_1_2_2_33_2 doi: 10.1038/ncomms10487 – ident: e_1_2_2_51_2 doi: 10.1002/adfm.201201079 – ident: e_1_2_2_32_2 doi: 10.1021/ja052431t – ident: e_1_2_2_5_2 doi: 10.1016/j.tetasy.2008.02.004 – ident: e_1_2_2_45_2 doi: 10.1002/aic.14194 – ident: e_1_2_2_1_1 – ident: e_1_2_2_23_2 doi: 10.1021/jacs.5b12860 – ident: e_1_2_2_30_1 doi: 10.1021/jacs.5b05327 – ident: e_1_2_2_2_2 doi: 10.1016/j.trac.2016.01.016 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201006141 – ident: e_1_2_2_27_1 – ident: e_1_2_2_9_2 doi: 10.1039/C4CS00159A – ident: e_1_2_2_59_1 doi: 10.1039/c3cc39116g – volume-title: Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions year: 2009 ident: e_1_2_2_47_2 – ident: e_1_2_2_10_2 doi: 10.1039/C7CS00109F – ident: e_1_2_2_42_1 – ident: e_1_2_2_53_1 doi: 10.1021/jacs.5b11150 – ident: e_1_2_2_19_2 doi: 10.1002/adma.201102538 – ident: e_1_2_2_39_2 doi: 10.1021/ja411887c – ident: e_1_2_2_44_2 doi: 10.1039/c3cc42376j – ident: e_1_2_2_35_2 doi: 10.1038/nchem.738 – ident: e_1_2_2_50_1 – ident: e_1_2_2_58_1 doi: 10.1039/C7CS00367F – ident: e_1_2_2_37_2 doi: 10.1002/anie.200704347 – ident: e_1_2_2_15_2 doi: 10.1039/b802426j – ident: e_1_2_2_38_2 doi: 10.1021/ja212132r – ident: e_1_2_2_41_1 doi: 10.1039/b713350b – ident: e_1_2_2_21_3 doi: 10.1002/ange.201509213 – ident: e_1_2_2_8_1 – ident: e_1_2_2_18_2 doi: 10.1038/nmat2608 – ident: e_1_2_2_16_2 doi: 10.1039/b807080f – ident: e_1_2_2_13_1 – ident: e_1_2_2_11_2 doi: 10.1038/46248 – ident: e_1_2_2_52_2 doi: 10.1039/C3CE42520G – ident: e_1_2_2_49_1 doi: 10.1039/c0cc04734a – ident: e_1_2_2_36_2 doi: 10.1002/anie.201000416 – ident: e_1_2_2_6_2 doi: 10.1016/j.trac.2016.10.013 |
SSID | ssj0028806 |
Score | 2.6170459 |
Snippet | Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the... Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17130 |
SubjectTerms | Amino acids chiral resolution chirality Enantiomers Fabrication Histidine homochiral membrane separation Membranes Metal-organic frameworks Selectivity Separation |
Title | Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201810925 https://www.ncbi.nlm.nih.gov/pubmed/30370963 https://www.proquest.com/docview/2157904583 https://www.proquest.com/docview/2126902906 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2lpfS1FJArVerJ4NjJJjmi1a52K8EBioS4RB4_1FXZBEH2wq_v2E5SFoQqtbdEGSfOeCb-HM98Q8jXRBegMiMYGJuxFEAySDQwnTmV4oRpy5DFf3I6nl-k3y-zywdZ_JEfYvjh5j0jfK-9gyu4O_pDGuozsH1oVpHwUvgscx-w5VHR2cAfJdA4Y3qRlMxXoe9ZG7k42my-OSs9gZqbyDVMPbM3RPWdjhEnvw7XLRzq-0d8jv_zVtvkdYdL6XE0pLfkha13yMtJXw7uHVktPOPlTWcxtHF03qwa_XN5G5A8XdZtQxW9sjGgji5WS6PuceHcWjrrI8DoiV1h72pLESvTaaCvwFmPTsJt6LmNTORN_Z5czKY_JnPW1Wpg2geKMptpkwF3nDvpUmeM4blLtBS2SFSKmMQZLi2XAIVWkNgc8gzBp4ISDCIcIz-Qrbqp7SdCLcoJPc5BOp2WxpRQWqMQtsnCZWPrRoT1Y1Xpjsjc19O4riIFs6i8EqtBiSPybZC_iRQez0ru9UNfda58VyEmysuwvTwiX4bLqHy_s4IKa9ZeRoxL7pnzR-RjNJnhUYgRclwnYmsRBv4vfaiOTxfT4Wz3Xxp9Jq_8sQ-6Ecke2Wpv13YfoVMLB8E9fgO1ARJQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF92OhBSMhcXLr2MkmPlarXe1Cdw_QSohLlPFDrNpNqpK99NcztpOgBVVIcEwyTpwZT-azM_6GkPeJLqDKjGBgbMZSAMkg0cB05qoUA6ZVYRf_cjWen6cfv2Z9NqHfCxP5IYYFN-8Z4XvtHdwvSB__Yg31W7B9blaRcCWyu-SeL-sdZlWfBwYpgcMzbjCSkvk69D1vIxfHu-1349IfYHMXu4bgM3tIoO92zDm5ONq2cKRvfmN0_K_3ekQedNCUnsSx9JjcsfUTsj_pK8I9JZuFJ7286gYNbRydN5tGf19fBzBP13Xb0Ip-szGnji42a1Pd4Ny5tXTWJ4HRpd1g92pLES7TaWCwwMBHJ-E29IuNZORN_Yycz6ZnkznryjUw7XNFmc20yYA7zp10qTPG8NwlWgpbJFWKsMQZLi2XAIWuILE55GgvVYECgyDHyOdkr25q-5JQi3JCj3OQTqfKGAXKmgqRmyxcNrZuRFhvrFJ3XOa-pMZlGVmYRemVWA5KHJEPg_xVZPG4VfKgt33ZefOPEmFRrsIf5hF5N1xG5fufK6iwZutlxFhxT54_Ii_imBkehTAhx6kithbB8n_pQ3myWkyHo1f_0ugt2Z-fLU_L08Xq02ty35_3OTgiOSB77fXWHiKSauFN8JWfzlMWaw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5VVYWsBISJzcOnacx7Ha7moX6AoBlSoukZ9iBZusSvbSX48fSdoFISQ4JrETZzyT-RzPfAPwOlGFFFxTLLXhOJWSYZkoiRW3InUO05Qhi_90kc3O0rfn_PxaFn_khxh-uHnLCN9rb-BrbY-uSEN9BrYPzSoSUlJ-E26lGSm8Xp98HAikqNPOmF_EGPZl6HvaRkKPtvtvu6XfsOY2dA2-Z7oLoh91DDn5drhp5aG6_IXQ8X9e6z7c64ApOo6a9ABumPoh3Bn39eAewWruKS_XncqgxqJZs2rU1-VFgPJoWbcNEuiLiRF1aL5aanHpVs6tQdM-BAydmpUbXW2QA8toEvgrnNtD43Ab9MlEKvKmfgxn08nn8Qx3xRqw8pGi2HCluSSWEMtsarXWJLeJYtQUiUgdKLGaMEOYlIUSMjG5zLlDn0KWUjuIo9ke7NRNbZ4CMq4dVVkumVVpqXUpS6OFw22ssDwzdgS4n6tKdUzmvqDG9ypyMNPKC7EahDiCN0P7deTw-GPLg37qq86Wf1QOFOVl2F8ewavhshO-31pxAms2vg3NSuKp80fwJKrM8CgHEnK3UHS9aZj4v4yhOl7MJ8PRs3_p9BJufziZVu_ni3f7cNef9gE4NDmAnfZiY547GNXKF8FSfgKUzhUj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+Homochirality+into+a+Zeolitic+Imidazolate+Framework+Membrane+for+Efficient+Chiral+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chan%2C+Jun+Yong&rft.au=Zhang%2C+Huacheng&rft.au=Nolvachai%2C+Yada&rft.au=Hu%2C+Yaoxin&rft.date=2018-12-21&rft.eissn=1521-3773&rft.volume=57&rft.issue=52&rft.spage=17130&rft_id=info:doi/10.1002%2Fanie.201810925&rft_id=info%3Apmid%2F30370963&rft.externalDocID=30370963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |