Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation

Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 52; pp. 17130 - 17134
Main Authors Chan, Jun Yong, Zhang, Huacheng, Nolvachai, Yada, Hu, Yaoxin, Zhu, Haijin, Forsyth, Maria, Gu, Qinfen, Hoke, David E., Zhang, Xiwang, Marriot, Philip J., Wang, Huanting
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 21.12.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %. Handpicked: A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane was synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into a ZIF framework. The amino acid functions as a chiral (enantiopure) ligand. The l‐His‐ZIF‐8 membrane demonstrates good homochirality and an ability to separate racemic 1‐phenylethanol with up to 76 % ee.
AbstractList Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l ‐histidine ( l ‐His), into the framework of ZIF‐8. The homochiral l ‐His‐ZIF‐8 membrane exhibits a good selectivity for the R ‐enantiomer of 1‐phenylethanol over the S ‐enantiomer, showing a high enantiomeric excess value up to 76 %.
Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %.
Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high‐quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into the framework of ZIF‐8. The homochiral l‐His‐ZIF‐8 membrane exhibits a good selectivity for the R‐enantiomer of 1‐phenylethanol over the S‐enantiomer, showing a high enantiomeric excess value up to 76 %. Handpicked: A homochiral zeolitic imidazolate framework‐8 (ZIF‐8) membrane was synthesized by incorporating a natural amino acid, l‐histidine (l‐His), into a ZIF framework. The amino acid functions as a chiral (enantiopure) ligand. The l‐His‐ZIF‐8 membrane demonstrates good homochirality and an ability to separate racemic 1‐phenylethanol with up to 76 % ee.
Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high-quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework-8 (ZIF-8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l-histidine (l-His), into the framework of ZIF-8. The homochiral l-His-ZIF-8 membrane exhibits a good selectivity for the R-enantiomer of 1-phenylethanol over the S-enantiomer, showing a high enantiomeric excess value up to 76 %.Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the fabrication of high-quality homochiral MOF membranes remains challenging because of the difficulty in controlling growth of MOF membranes with chiral functionalities. A homochiral zeolitic imidazolate framework-8 (ZIF-8) membrane is reported for efficient chiral separation. The membrane is synthesized by incorporating a natural amino acid, l-histidine (l-His), into the framework of ZIF-8. The homochiral l-His-ZIF-8 membrane exhibits a good selectivity for the R-enantiomer of 1-phenylethanol over the S-enantiomer, showing a high enantiomeric excess value up to 76 %.
Author Hu, Yaoxin
Zhang, Huacheng
Nolvachai, Yada
Forsyth, Maria
Chan, Jun Yong
Gu, Qinfen
Zhu, Haijin
Marriot, Philip J.
Zhang, Xiwang
Hoke, David E.
Wang, Huanting
Author_xml – sequence: 1
  givenname: Jun Yong
  surname: Chan
  fullname: Chan, Jun Yong
  organization: Monash University
– sequence: 2
  givenname: Huacheng
  surname: Zhang
  fullname: Zhang, Huacheng
  email: huacheng.zhang@monash.edu
  organization: Monash University
– sequence: 3
  givenname: Yada
  surname: Nolvachai
  fullname: Nolvachai, Yada
  organization: Monash University
– sequence: 4
  givenname: Yaoxin
  surname: Hu
  fullname: Hu, Yaoxin
  organization: Monash University
– sequence: 5
  givenname: Haijin
  surname: Zhu
  fullname: Zhu, Haijin
  organization: Deakin University
– sequence: 6
  givenname: Maria
  surname: Forsyth
  fullname: Forsyth, Maria
  organization: Deakin University
– sequence: 7
  givenname: Qinfen
  surname: Gu
  fullname: Gu, Qinfen
  organization: Australian Synchrotron
– sequence: 8
  givenname: David E.
  surname: Hoke
  fullname: Hoke, David E.
  organization: Monash University
– sequence: 9
  givenname: Xiwang
  surname: Zhang
  fullname: Zhang, Xiwang
  organization: Monash University
– sequence: 10
  givenname: Philip J.
  surname: Marriot
  fullname: Marriot, Philip J.
  organization: Monash University
– sequence: 11
  givenname: Huanting
  orcidid: 0000-0002-9887-5555
  surname: Wang
  fullname: Wang, Huanting
  email: huanting.wang@monash.edu
  organization: Monash University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30370963$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtrHDEURkVwiB9J6zII0riZzZU02hmVZlnbC3ZSJGnSDHpcETkz0kYzi1n_esteP8BgUkmCcz5d7ndI9mKKSMgxgxkD4F91DDjjwFoGist35IBJzirRNGKv3GshqqaVbJ8cjuN14dsW5h_IvgDRgJqLAzKsok15nbKeQoo0eXqRhmT_hKz7MG1piFOimv7GVJ7B0tUQnL5NvZ6QnmU94E3Kf-kVDibriNSnTJfeBxswTnTxEEN_4Frv8j-S9173I356PI_Ir7Plz8VFdfn9fLU4vaxszUBWKK2TBjyAF772zjloPLOCY8t0rRh4BwJBGNNabRg2ppFMKG2UcbwVThyRk13uOqd_Gxynbgijxb4vM6bN2HHG5wq4gnlBv7xCr9MmxzJdoWSjoJatKNTnR2pjBnTdOodB5233tMgCzHaAzWkcM_pnhEF331R331T33FQR6leCDdPDkqasQ_-2pnbaTehx-59PutNvq-WLewfzSqk-
CitedBy_id crossref_primary_10_1016_j_cej_2020_128247
crossref_primary_10_1016_j_aca_2023_341496
crossref_primary_10_1016_j_advmem_2024_100113
crossref_primary_10_1016_j_jssc_2020_121871
crossref_primary_10_1021_acsami_3c08843
crossref_primary_10_1016_j_molliq_2024_125013
crossref_primary_10_1021_acsami_1c24876
crossref_primary_10_1002_smsc_202000035
crossref_primary_10_1002_ange_201910408
crossref_primary_10_1016_j_jcis_2024_03_150
crossref_primary_10_1021_acs_nanolett_2c03778
crossref_primary_10_1038_s41427_022_00451_y
crossref_primary_10_1021_jacs_0c13005
crossref_primary_10_1002_ange_202013885
crossref_primary_10_1016_j_mtchem_2023_101781
crossref_primary_10_1016_j_foodchem_2022_134899
crossref_primary_10_1021_acs_cgd_0c00265
crossref_primary_10_1002_ange_202419916
crossref_primary_10_1016_j_ccr_2023_215392
crossref_primary_10_1016_j_cej_2023_141976
crossref_primary_10_1002_ange_202400475
crossref_primary_10_1016_j_microc_2025_112825
crossref_primary_10_1039_C9NJ04031E
crossref_primary_10_1016_j_microc_2021_107092
crossref_primary_10_1021_acsami_0c09816
crossref_primary_10_1021_acs_analchem_2c01054
crossref_primary_10_1016_j_foodchem_2024_139272
crossref_primary_10_1021_acsanm_0c00481
crossref_primary_10_3390_molecules25081931
crossref_primary_10_1002_adma_202400709
crossref_primary_10_1021_acs_chemrev_1c00740
crossref_primary_10_1039_D4QI00641K
crossref_primary_10_1002_adma_201902009
crossref_primary_10_1016_j_chroma_2025_465781
crossref_primary_10_3390_ma15238456
crossref_primary_10_1002_jssc_201900682
crossref_primary_10_1002_anie_202212139
crossref_primary_10_1016_j_aca_2022_339434
crossref_primary_10_1016_j_talanta_2021_122488
crossref_primary_10_1021_acs_cgd_9b00152
crossref_primary_10_1016_j_ccr_2023_215120
crossref_primary_10_3390_membranes12040357
crossref_primary_10_1021_jacs_1c08487
crossref_primary_10_1002_ange_202012681
crossref_primary_10_1021_acs_inorgchem_9b02341
crossref_primary_10_1021_acs_analchem_4c03558
crossref_primary_10_1039_D5AY00097A
crossref_primary_10_1038_s41467_024_52402_6
crossref_primary_10_1016_j_cej_2021_133586
crossref_primary_10_1002_cssc_201902341
crossref_primary_10_1002_adma_202313749
crossref_primary_10_1002_ange_202212139
crossref_primary_10_1016_j_microc_2024_110282
crossref_primary_10_1016_j_talanta_2024_126331
crossref_primary_10_1039_D0CS00786B
crossref_primary_10_1007_s10311_022_01403_2
crossref_primary_10_1016_j_memsci_2020_118956
crossref_primary_10_1016_j_aca_2023_341759
crossref_primary_10_1021_acs_jpcc_3c02979
crossref_primary_10_1016_j_ccr_2023_215259
crossref_primary_10_1016_j_aca_2024_342995
crossref_primary_10_1016_j_seppur_2022_121880
crossref_primary_10_1002_chir_23480
crossref_primary_10_1016_j_microc_2023_109160
crossref_primary_10_1016_j_jece_2022_109250
crossref_primary_10_1016_j_memsci_2024_123106
crossref_primary_10_1039_D1NJ00169H
crossref_primary_10_1002_anie_202012681
crossref_primary_10_1039_D0SC02856H
crossref_primary_10_1002_ange_202102350
crossref_primary_10_1002_jssc_202200836
crossref_primary_10_3390_membranes13050480
crossref_primary_10_1039_D1GC03668H
crossref_primary_10_1021_acsami_1c25175
crossref_primary_10_1016_j_seppur_2023_124898
crossref_primary_10_1016_j_seppur_2022_120833
crossref_primary_10_1016_j_aca_2024_343606
crossref_primary_10_1039_D4TA08001G
crossref_primary_10_1016_j_seppur_2022_121034
crossref_primary_10_1002_anie_202013885
crossref_primary_10_1016_j_ccr_2025_216559
crossref_primary_10_1016_j_chroma_2021_462082
crossref_primary_10_1016_j_jhazmat_2021_125467
crossref_primary_10_1002_chem_202100911
crossref_primary_10_1007_s10008_024_05942_2
crossref_primary_10_1002_smll_202204858
crossref_primary_10_1002_anie_202400475
crossref_primary_10_1002_anie_202102350
crossref_primary_10_1039_D0CS01236J
crossref_primary_10_1039_D2NJ01748B
crossref_primary_10_1016_j_chroma_2023_464029
crossref_primary_10_1002_cssc_201900706
crossref_primary_10_1039_D4CS00272E
crossref_primary_10_1016_j_supmat_2023_100039
crossref_primary_10_1016_j_cej_2023_141650
crossref_primary_10_1038_s41467_019_12114_8
crossref_primary_10_1016_j_actbio_2022_04_022
crossref_primary_10_1016_j_ccr_2024_216302
crossref_primary_10_1021_acsenergylett_0c02537
crossref_primary_10_1002_adfm_202210046
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1016_j_memsci_2022_121198
crossref_primary_10_1007_s00604_021_05030_6
crossref_primary_10_2139_ssrn_4011753
crossref_primary_10_1002_smll_202301460
crossref_primary_10_1016_j_chroma_2024_464799
crossref_primary_10_1016_j_memsci_2022_121190
crossref_primary_10_1016_j_chroma_2022_463341
crossref_primary_10_1002_smll_202300376
crossref_primary_10_1002_anie_202419916
crossref_primary_10_1002_ijch_202100073
crossref_primary_10_1016_j_cej_2021_131118
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1039_D2CS00031H
crossref_primary_10_1002_smtd_202300278
crossref_primary_10_1002_anie_201910408
crossref_primary_10_1016_j_cjche_2022_06_017
crossref_primary_10_1002_adfm_202101335
crossref_primary_10_1021_acs_analchem_3c01178
crossref_primary_10_1002_bio_3790
crossref_primary_10_1016_j_cej_2021_131801
crossref_primary_10_1016_j_chroma_2025_465652
crossref_primary_10_1016_j_seppur_2023_125704
crossref_primary_10_1021_acs_analchem_4c04160
crossref_primary_10_1016_j_jiec_2023_08_023
crossref_primary_10_1039_D1CC04465F
crossref_primary_10_1016_j_cej_2022_139499
crossref_primary_10_1016_j_cej_2021_131483
crossref_primary_10_1016_j_jpha_2024_101176
crossref_primary_10_1016_j_electacta_2021_139464
crossref_primary_10_1016_j_gee_2022_03_005
crossref_primary_10_1021_jacs_4c04164
crossref_primary_10_1016_j_seppur_2024_129883
crossref_primary_10_1039_D2SC02436E
crossref_primary_10_3390_membranes11040279
crossref_primary_10_1016_j_memsci_2019_117635
crossref_primary_10_1021_acs_chemrev_1c00846
Cites_doi 10.1007/978-1-62703-263-6
10.1002/ange.200704347
10.1016/j.mattod.2016.03.003
10.1002/anie.200503023
10.1002/ange.200602242
10.1002/sia.5261
10.1021/cr200190s
10.1002/anie.201509213
10.1021/ja078317n
10.1038/srep02947
10.1002/ange.201000416
10.1039/C3CS60480B
10.1021/jacs.7b00280
10.1002/cite.201000188
10.1016/j.ces.2014.10.012
10.1002/anie.200602242
10.1134/S0023158411050065
10.1016/S0021-9673(00)00532-X
10.1039/b807083k
10.1002/ange.201006141
10.1039/c2cc32595k
10.1039/C6CS00051G
10.1002/ange.200503023
10.1038/ncomms10487
10.1002/adfm.201201079
10.1021/ja052431t
10.1016/j.tetasy.2008.02.004
10.1002/aic.14194
10.1021/jacs.5b12860
10.1021/jacs.5b05327
10.1016/j.trac.2016.01.016
10.1002/anie.201006141
10.1039/C4CS00159A
10.1039/c3cc39116g
10.1039/C7CS00109F
10.1021/jacs.5b11150
10.1002/adma.201102538
10.1021/ja411887c
10.1039/c3cc42376j
10.1038/nchem.738
10.1039/C7CS00367F
10.1002/anie.200704347
10.1039/b802426j
10.1021/ja212132r
10.1039/b713350b
10.1002/ange.201509213
10.1038/nmat2608
10.1039/b807080f
10.1038/46248
10.1039/C3CE42520G
10.1039/c0cc04734a
10.1002/anie.201000416
10.1016/j.trac.2016.10.013
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201810925
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17134
ExternalDocumentID 30370963
10_1002_anie_201810925
ANIE201810925
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP170102964; DE170100006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4105-e5cd5b0f00f3f4fddd07f1c32e81a4910fd03e03bb8cab1e7b75139ab9bd283d3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:56:15 EDT 2025
Fri Jul 25 10:35:24 EDT 2025
Thu Apr 03 06:53:45 EDT 2025
Tue Jul 01 02:26:36 EDT 2025
Thu Apr 24 22:52:36 EDT 2025
Wed Jan 22 16:32:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords homochiral
chirality
membrane separation
chiral resolution
metal-organic frameworks
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-e5cd5b0f00f3f4fddd07f1c32e81a4910fd03e03bb8cab1e7b75139ab9bd283d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9887-5555
PMID 30370963
PQID 2157904583
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2126902906
proquest_journals_2157904583
pubmed_primary_30370963
crossref_primary_10_1002_anie_201810925
crossref_citationtrail_10_1002_anie_201810925
wiley_primary_10_1002_anie_201810925_ANIE201810925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 21, 2018
PublicationDateYYYYMMDD 2018-12-21
PublicationDate_xml – month: 12
  year: 2018
  text: December 21, 2018
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 86
2013; 3
2016; 19
2013; 49
2015; 124
2013; 45
2008; 19
2017; 46
2011; 83
2009
2008; 37
2011; 52
2010 2010; 49 122
2001; 906
2008 2008; 47 120
1999; 402
2014; 136
2014; 43
2017; 139
2006 2006; 45 118
2016; 7
2013; 59
2016 2016; 55 128
2012; 112
2012; 134
2015; 137
2005; 127
2014; 16
2011; 23
2016; 138
2016; 81
2013
2012; 48
2011; 47
2010; 2
2012; 22
2009; 38
2008; 130
2010; 9
2016; 45
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_49_1
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_28_3
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_8_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_36_2
e_1_2_2_13_1
e_1_2_2_36_3
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_51_2
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_17_3
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_23_2
Habulin M. (e_1_2_2_47_2) 2009
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_3
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_3
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_44_2
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
Scriba G. K. E. (e_1_2_2_3_2) 2013
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_37_3
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_50_1
References_xml – volume: 136
  start-page: 1746
  year: 2014
  end-page: 1749
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 5629
  year: 2011
  end-page: 5632
  publication-title: Adv. Mater.
– volume: 139
  start-page: 4294
  year: 2017
  end-page: 4297
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 15406
  year: 2015
  end-page: 15409
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1248
  year: 2009
  end-page: 1256
  publication-title: Chem. Soc. Rev.
– volume: 46
  start-page: 7374
  year: 2017
  end-page: 7398
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 503
  year: 2016
  end-page: 515
  publication-title: Mater. Today
– year: 2009
– volume: 52
  start-page: 686
  year: 2011
  publication-title: Kinet. Catal.
– volume: 86
  start-page: 25
  year: 2017
  publication-title: TrAC Trends Anal. Chem.
– volume: 49
  start-page: 10569
  year: 2013
  end-page: 10571
  publication-title: Chem. Commun.
– start-page: 1
  year: 2013
  end-page: 27
– volume: 37
  start-page: 1243
  year: 2008
  end-page: 1263
  publication-title: Chem. Soc. Rev.
– volume: 47 120
  start-page: 1245 1265
  year: 2008 2008
  end-page: 1249 1269
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 1477
  year: 2009
  end-page: 1504
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 3268
  year: 2014
  end-page: 3273
  publication-title: CrystEngComm
– volume: 83
  start-page: 90
  year: 2011
  end-page: 103
  publication-title: Chem. Ing. Tech.
– volume: 45 118
  start-page: 6495 6645
  year: 2006 2006
  end-page: 6499 6649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 3245
  year: 2013
  end-page: 3247
  publication-title: Chem. Commun.
– volume: 906
  start-page: 3
  year: 2001
  end-page: 33
  publication-title: J. Chromatogr. A
– volume: 9
  start-page: 172
  year: 2010
  end-page: 178
  publication-title: Nat. Mater.
– volume: 43
  start-page: 4470
  year: 2014
  end-page: 4493
  publication-title: Chem. Soc. Rev.
– volume: 49 122
  start-page: 4121 4215
  year: 2010 2010
  end-page: 4124 4218
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  publication-title: Nature
– volume: 48
  start-page: 7022
  year: 2012
  end-page: 7024
  publication-title: Chem. Commun.
– volume: 47
  start-page: 2559
  year: 2011
  end-page: 2561
  publication-title: Chem. Commun.
– volume: 124
  start-page: 179
  year: 2015
  end-page: 187
  publication-title: Chem. Eng. Sci.
– volume: 137
  start-page: 9409
  year: 2015
  end-page: 9416
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 6116
  year: 2014
  end-page: 6140
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: 1238
  year: 2013
  end-page: 1246
  publication-title: Surf. Interface Anal.
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  publication-title: Chem. Rev.
– volume: 55 128
  start-page: 2048 2088
  year: 2016 2016
  end-page: 2052 2092
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59
  start-page: 4364
  year: 2013
  end-page: 4372
  publication-title: AIChE J.
– volume: 138
  start-page: 2292
  year: 2016
  end-page: 2301
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 838
  year: 2010
  end-page: 846
  publication-title: Nat. Chem.
– volume: 19
  start-page: 519
  year: 2008
  end-page: 536
  publication-title: Tetrahedron: Asymmetry
– volume: 49 122
  start-page: 9863 10059
  year: 2010 2010
  end-page: 9866 10062
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 11
  year: 2016
  end-page: 22
  publication-title: TrAC Trends Anal. Chem.
– volume: 46
  start-page: 3453
  year: 2017
  end-page: 3480
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2947
  year: 2013
  publication-title: Sci. Rep.
– volume: 127
  start-page: 8940
  year: 2005
  end-page: 8941
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 4216
  year: 2012
  end-page: 4224
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 3122
  year: 2016
  end-page: 3144
  publication-title: Chem. Soc. Rev.
– volume: 45 118
  start-page: 916 930
  year: 2006 2006
  end-page: 920 934
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 6904
  year: 2012
  end-page: 6907
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 10487
  year: 2016
  publication-title: Nat. Commun.
– volume: 130
  start-page: 4582
  year: 2008
  end-page: 4583
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  volume-title: Chiral Separations: Methods and Protocols
  year: 2013
  ident: e_1_2_2_3_2
  doi: 10.1007/978-1-62703-263-6
– ident: e_1_2_2_46_1
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.200704347
– ident: e_1_2_2_26_2
  doi: 10.1016/j.mattod.2016.03.003
– ident: e_1_2_2_28_2
  doi: 10.1002/anie.200503023
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.200602242
– ident: e_1_2_2_54_1
  doi: 10.1002/sia.5261
– ident: e_1_2_2_14_2
  doi: 10.1021/cr200190s
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.201509213
– ident: e_1_2_2_34_2
  doi: 10.1021/ja078317n
– ident: e_1_2_2_57_2
  doi: 10.1038/srep02947
– ident: e_1_2_2_31_1
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.201000416
– ident: e_1_2_2_20_2
  doi: 10.1039/C3CS60480B
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.7b00280
– ident: e_1_2_2_12_2
  doi: 10.1002/cite.201000188
– ident: e_1_2_2_4_1
– ident: e_1_2_2_40_2
  doi: 10.1016/j.ces.2014.10.012
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.200602242
– ident: e_1_2_2_48_2
  doi: 10.1134/S0023158411050065
– ident: e_1_2_2_7_2
  doi: 10.1016/S0021-9673(00)00532-X
– ident: e_1_2_2_56_2
  doi: 10.1039/b807083k
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201006141
– ident: e_1_2_2_43_2
  doi: 10.1039/c2cc32595k
– ident: e_1_2_2_24_2
  doi: 10.1039/C6CS00051G
– ident: e_1_2_2_22_1
– ident: e_1_2_2_55_1
– ident: e_1_2_2_28_3
  doi: 10.1002/ange.200503023
– ident: e_1_2_2_33_2
  doi: 10.1038/ncomms10487
– ident: e_1_2_2_51_2
  doi: 10.1002/adfm.201201079
– ident: e_1_2_2_32_2
  doi: 10.1021/ja052431t
– ident: e_1_2_2_5_2
  doi: 10.1016/j.tetasy.2008.02.004
– ident: e_1_2_2_45_2
  doi: 10.1002/aic.14194
– ident: e_1_2_2_1_1
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.5b12860
– ident: e_1_2_2_30_1
  doi: 10.1021/jacs.5b05327
– ident: e_1_2_2_2_2
  doi: 10.1016/j.trac.2016.01.016
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201006141
– ident: e_1_2_2_27_1
– ident: e_1_2_2_9_2
  doi: 10.1039/C4CS00159A
– ident: e_1_2_2_59_1
  doi: 10.1039/c3cc39116g
– volume-title: Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions
  year: 2009
  ident: e_1_2_2_47_2
– ident: e_1_2_2_10_2
  doi: 10.1039/C7CS00109F
– ident: e_1_2_2_42_1
– ident: e_1_2_2_53_1
  doi: 10.1021/jacs.5b11150
– ident: e_1_2_2_19_2
  doi: 10.1002/adma.201102538
– ident: e_1_2_2_39_2
  doi: 10.1021/ja411887c
– ident: e_1_2_2_44_2
  doi: 10.1039/c3cc42376j
– ident: e_1_2_2_35_2
  doi: 10.1038/nchem.738
– ident: e_1_2_2_50_1
– ident: e_1_2_2_58_1
  doi: 10.1039/C7CS00367F
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.200704347
– ident: e_1_2_2_15_2
  doi: 10.1039/b802426j
– ident: e_1_2_2_38_2
  doi: 10.1021/ja212132r
– ident: e_1_2_2_41_1
  doi: 10.1039/b713350b
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.201509213
– ident: e_1_2_2_8_1
– ident: e_1_2_2_18_2
  doi: 10.1038/nmat2608
– ident: e_1_2_2_16_2
  doi: 10.1039/b807080f
– ident: e_1_2_2_13_1
– ident: e_1_2_2_11_2
  doi: 10.1038/46248
– ident: e_1_2_2_52_2
  doi: 10.1039/C3CE42520G
– ident: e_1_2_2_49_1
  doi: 10.1039/c0cc04734a
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.201000416
– ident: e_1_2_2_6_2
  doi: 10.1016/j.trac.2016.10.013
SSID ssj0028806
Score 2.6170459
Snippet Homochiral metal–organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the...
Homochiral metal-organic frameworks (MOFs) have gained much attention because of their chiral properties and disposition for chiral separation. However, the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17130
SubjectTerms Amino acids
chiral resolution
chirality
Enantiomers
Fabrication
Histidine
homochiral
membrane separation
Membranes
Metal-organic frameworks
Selectivity
Separation
Title Incorporation of Homochirality into a Zeolitic Imidazolate Framework Membrane for Efficient Chiral Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201810925
https://www.ncbi.nlm.nih.gov/pubmed/30370963
https://www.proquest.com/docview/2157904583
https://www.proquest.com/docview/2126902906
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqLu2lpfS1FJArVerJ4NjJJjmi1a52K8EBioS4RB4_1FXZBEH2wq_v2E5SFoQqtbdEGSfOeCb-HM98Q8jXRBegMiMYGJuxFEAySDQwnTmV4oRpy5DFf3I6nl-k3y-zywdZ_JEfYvjh5j0jfK-9gyu4O_pDGuozsH1oVpHwUvgscx-w5VHR2cAfJdA4Y3qRlMxXoe9ZG7k42my-OSs9gZqbyDVMPbM3RPWdjhEnvw7XLRzq-0d8jv_zVtvkdYdL6XE0pLfkha13yMtJXw7uHVktPOPlTWcxtHF03qwa_XN5G5A8XdZtQxW9sjGgji5WS6PuceHcWjrrI8DoiV1h72pLESvTaaCvwFmPTsJt6LmNTORN_Z5czKY_JnPW1Wpg2geKMptpkwF3nDvpUmeM4blLtBS2SFSKmMQZLi2XAIVWkNgc8gzBp4ISDCIcIz-Qrbqp7SdCLcoJPc5BOp2WxpRQWqMQtsnCZWPrRoT1Y1Xpjsjc19O4riIFs6i8EqtBiSPybZC_iRQez0ru9UNfda58VyEmysuwvTwiX4bLqHy_s4IKa9ZeRoxL7pnzR-RjNJnhUYgRclwnYmsRBv4vfaiOTxfT4Wz3Xxp9Jq_8sQ-6Ecke2Wpv13YfoVMLB8E9fgO1ARJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHMqF92OhBSMhcXLr2MkmPlarXe1Cdw_QSohLlPFDrNpNqpK99NcztpOgBVVIcEwyTpwZT-azM_6GkPeJLqDKjGBgbMZSAMkg0cB05qoUA6ZVYRf_cjWen6cfv2Z9NqHfCxP5IYYFN-8Z4XvtHdwvSB__Yg31W7B9blaRcCWyu-SeL-sdZlWfBwYpgcMzbjCSkvk69D1vIxfHu-1349IfYHMXu4bgM3tIoO92zDm5ONq2cKRvfmN0_K_3ekQedNCUnsSx9JjcsfUTsj_pK8I9JZuFJ7286gYNbRydN5tGf19fBzBP13Xb0Ip-szGnji42a1Pd4Ny5tXTWJ4HRpd1g92pLES7TaWCwwMBHJ-E29IuNZORN_Yycz6ZnkznryjUw7XNFmc20yYA7zp10qTPG8NwlWgpbJFWKsMQZLi2XAIWuILE55GgvVYECgyDHyOdkr25q-5JQi3JCj3OQTqfKGAXKmgqRmyxcNrZuRFhvrFJ3XOa-pMZlGVmYRemVWA5KHJEPg_xVZPG4VfKgt33ZefOPEmFRrsIf5hF5N1xG5fufK6iwZutlxFhxT54_Ii_imBkehTAhx6kithbB8n_pQ3myWkyHo1f_0ugt2Z-fLU_L08Xq02ty35_3OTgiOSB77fXWHiKSauFN8JWfzlMWaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5VVYWsBISJzcOnacx7Ha7moX6AoBlSoukZ9iBZusSvbSX48fSdoFISQ4JrETZzyT-RzPfAPwOlGFFFxTLLXhOJWSYZkoiRW3InUO05Qhi_90kc3O0rfn_PxaFn_khxh-uHnLCN9rb-BrbY-uSEN9BrYPzSoSUlJ-E26lGSm8Xp98HAikqNPOmF_EGPZl6HvaRkKPtvtvu6XfsOY2dA2-Z7oLoh91DDn5drhp5aG6_IXQ8X9e6z7c64ApOo6a9ABumPoh3Bn39eAewWruKS_XncqgxqJZs2rU1-VFgPJoWbcNEuiLiRF1aL5aanHpVs6tQdM-BAydmpUbXW2QA8toEvgrnNtD43Ab9MlEKvKmfgxn08nn8Qx3xRqw8pGi2HCluSSWEMtsarXWJLeJYtQUiUgdKLGaMEOYlIUSMjG5zLlDn0KWUjuIo9ke7NRNbZ4CMq4dVVkumVVpqXUpS6OFw22ssDwzdgS4n6tKdUzmvqDG9ypyMNPKC7EahDiCN0P7deTw-GPLg37qq86Wf1QOFOVl2F8ewavhshO-31pxAms2vg3NSuKp80fwJKrM8CgHEnK3UHS9aZj4v4yhOl7MJ8PRs3_p9BJufziZVu_ni3f7cNef9gE4NDmAnfZiY547GNXKF8FSfgKUzhUj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+Homochirality+into+a+Zeolitic+Imidazolate+Framework+Membrane+for+Efficient+Chiral+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chan%2C+Jun+Yong&rft.au=Zhang%2C+Huacheng&rft.au=Nolvachai%2C+Yada&rft.au=Hu%2C+Yaoxin&rft.date=2018-12-21&rft.eissn=1521-3773&rft.volume=57&rft.issue=52&rft.spage=17130&rft_id=info:doi/10.1002%2Fanie.201810925&rft_id=info%3Apmid%2F30370963&rft.externalDocID=30370963
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon