Use of proximal operator graph solver for radiation therapy inverse treatment planning

Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variati...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 44; no. 4; pp. 1246 - 1256
Main Authors Liu, Xinmin, Pelizzari, Charles, Belcher, Andrew H., Grelewicz, Zachary, Wiersma, Rodney D.
Format Journal Article
LanguageEnglish
Published United States 01.04.2017
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
2473-4209
DOI10.1002/mp.12165

Cover

Abstract Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variation regularization‐ based optimization and MV+kV optimization, involve constrained or mixed‐norm optimization, and cannot be solved by quasi‐Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems. Methods Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non‐commercial optimizers. Results For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed‐norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory. Conclusions POGS was used for solving inverse treatment planning problems involving constrained or mixed‐norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization‐based optimization and combined MV+kV optimization.
AbstractList Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems. Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers. For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory. POGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization.
Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variation regularization‐ based optimization and MV+kV optimization, involve constrained or mixed‐norm optimization, and cannot be solved by quasi‐Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems. Methods Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non‐commercial optimizers. Results For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed‐norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory. Conclusions POGS was used for solving inverse treatment planning problems involving constrained or mixed‐norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization‐based optimization and combined MV+kV optimization.
Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.PURPOSEMost radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.METHODSRadiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.RESULTSFor inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.POGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization.CONCLUSIONSPOGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization.
Author Pelizzari, Charles
Wiersma, Rodney D.
Liu, Xinmin
Belcher, Andrew H.
Grelewicz, Zachary
Author_xml – sequence: 1
  givenname: Xinmin
  surname: Liu
  fullname: Liu, Xinmin
  organization: The University of Chicago
– sequence: 2
  givenname: Charles
  surname: Pelizzari
  fullname: Pelizzari, Charles
  organization: The University of Chicago
– sequence: 3
  givenname: Andrew H.
  surname: Belcher
  fullname: Belcher, Andrew H.
  organization: The University of Chicago
– sequence: 4
  givenname: Zachary
  surname: Grelewicz
  fullname: Grelewicz, Zachary
  organization: The University of Chicago
– sequence: 5
  givenname: Rodney D.
  surname: Wiersma
  fullname: Wiersma, Rodney D.
  email: rwiersma@uchicago.edu
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28211070$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtP3DAUhS0EgoFW4hdUXrLJ9F4ncSabSgi1FGkqWHS6tZzEnnGV2MbO0M6_x53hWcHKku8537mPY7JvnVWEnCJMEYB9HvwUGfJyj0xYUeVZwaDeJxOAushYAeUROY7xNwDwvIRDcsRmDBEqmJBfi6io09QH99cMsqfOqyBHF-gySL-i0fV3KlCdPoLsjByNs3RcJY3fUGNTLfnHoOQ4KDtS30trjV1-IAda9lF9fHhPyOLb158X37P59eXVxfk8awuEMutYzWe646iqqulk0zWIOi8qzaVGXdSYA5YtYqVzVWmWVy0C52XOJVNNByw_IV92XL9uBtW1qYcge-FDmiVshJNGvK5YsxJLdyfKEmac8QQ4ewAEd7tWcRSDia3q0xzKraPAGa9rztk269PLrKeQx2U-s9rgYgxKP0kQxL87icGL7Z2SdPqftDXjdrmpS9O_Zch2hj-mV5t3weLHzU5_D5UvpBA
CitedBy_id crossref_primary_10_1007_s40747_020_00207_7
crossref_primary_10_1088_2057_1976_ab3ba9
crossref_primary_10_1002_mp_12486
crossref_primary_10_1371_journal_pone_0210385
crossref_primary_10_1007_s00066_021_01867_1
crossref_primary_10_1002_acm2_12326
crossref_primary_10_1088_1361_6560_ac2b82
Cites_doi 10.1088/0031-9155/57/14/4569
10.1088/0031-9155/61/7/2838
10.1145/1816038.1816021
10.1118/1.3675601
10.1016/0167-2789(92)90242-F
10.1007/s12532-013-0061-8
10.1118/1.597070
10.1137/S1052623495293056
10.1561/2200000016
10.1118/1.4915286
10.1007/s10851-010-0251-1
10.1007/978-3-319-19387-8_391
10.1088/0031-9155/59/4/R151
10.1007/s10107-003-0487-2
10.1007/s10107-004-0559-y
10.1137/S1052623403426556
10.1137/0802028
10.1017/CBO9780511804441
10.1145/2049662.2049669
10.1088/0031-9155/54/21/008
10.1186/2047-217X-3-37
10.1007/s10107-002-0347-5
10.1118/1.3491675
10.1088/0031-9155/59/7/1607
10.1118/1.4823757
10.1287/moor.22.1.1
10.1080/10556789908805762
10.1118/1.4919279
10.1118/1.4905373
10.1118/1.3578605
10.1561/2400000003
10.1088/0031-9155/58/11/3705
10.1137/13094671X
10.1080/10556789908805766
10.14319/ijcto.0202.44
10.1118/1.3110163
10.1118/1.4953832
10.1118/1.4960000
10.1088/0031-9155/58/18/6525
ContentType Journal Article
Copyright 2017 American Association of Physicists in Medicine
2017 American Association of Physicists in Medicine.
Copyright_xml – notice: 2017 American Association of Physicists in Medicine
– notice: 2017 American Association of Physicists in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1002/mp.12165
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 1256
ExternalDocumentID PMC5508626
28211070
10_1002_mp_12165
MP12165
Genre article
Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: T32 EB002103
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
LH4
5PM
ID FETCH-LOGICAL-c4105-d2968fd61e77bdabdb11f347f6af1f4913015c117f3e7f237c1066536a2ebd023
ISSN 0094-2405
2473-4209
IngestDate Thu Aug 21 18:29:29 EDT 2025
Fri Sep 05 08:26:20 EDT 2025
Mon Jul 21 06:05:23 EDT 2025
Tue Jul 01 03:54:29 EDT 2025
Thu Apr 24 22:56:03 EDT 2025
Wed Jan 22 16:36:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords combined MV+kV optimization
convex optimization
alternating direction method of multipliers
proximal operator graph solver
constrained optimization
inverse treatment planning
Language English
License http://onlinelibrary.wiley.com/termsAndConditions
http://doi.wiley.com/10.1002/tdm_license_1
2017 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4105-d2968fd61e77bdabdb11f347f6af1f4913015c117f3e7f237c1066536a2ebd023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1002/mp.12165
PMID 28211070
PQID 1869966202
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5508626
proquest_miscellaneous_1869966202
pubmed_primary_28211070
crossref_primary_10_1002_mp_12165
crossref_citationtrail_10_1002_mp_12165
wiley_primary_10_1002_mp_12165_MP12165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
2017-Apr
20170401
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2017
References 2004; 100
2010; 38
2010; 37
1997; 22
2013; 40
2011; 40
1993; 20
1997
2012; 39
2004
2012; 57
2011; 38
2011; 3
2003; 95
1997; 7
1999
2014; 1
2009; 36
1962; 255
2013; 58
2014; 3
2009; 54
2014; 2
2015; 42
2016; 43
2014; 59
1999; 11
2016; 61
2016
2015
2005; 16
2012; 24
2014; 7
2006; 106
2014; 6
1992; 60
1992; 2
Moreau (10.1002/mp.12165-BIB0036|mp12165-cit-0036) 1962; 255
Monteiro (10.1002/mp.12165-BIB0016|mp12165-cit-0016) 1997; 7
Zhu (10.1002/mp.12165-BIB0008|mp12165-cit-0008) 2009; 36
10.1002/mp.12165-BIB0041|mp12165-cit-0041
Nesterov (10.1002/mp.12165-BIB0017|mp12165-cit-0017) 1997; 22
Nguyen (10.1002/mp.12165-BIB0026|mp12165-cit-0026) 2015; 42
Liu (10.1002/mp.12165-BIB0031|mp12165-cit-0031) 2016
Cisternas (10.1002/mp.12165-BIB0039|mp12165-cit-0039) 2015
Rudin (10.1002/mp.12165-BIB0009|mp12165-cit-0009) 1992; 60
Na (10.1002/mp.12165-BIB0023|mp12165-cit-0023) 2013; 58
Li (10.1002/mp.12165-BIB0047|mp12165-cit-0047) 2014; 2
Morales (10.1002/mp.12165-BIB0007|mp12165-cit-0007) 2011; 38
10.1002/mp.12165-BIB0029|mp12165-cit-0029
Lee (10.1002/mp.12165-BIB0044|mp12165-cit-0044) 2010; 38
10.1002/mp.12165-BIB0035|mp12165-cit-0035
10.1002/mp.12165-BIB0012|mp12165-cit-0012
Craft (10.1002/mp.12165-BIB0038|mp12165-cit-0038) 2014; 3
Gao (10.1002/mp.12165-BIB0024|mp12165-cit-0024) 2016; 61
Currie (10.1002/mp.12165-BIB0032|mp12165-cit-0032) 2012; 24
Parikh (10.1002/mp.12165-BIB0037|mp12165-cit-0037) 2014; 1
Men (10.1002/mp.12165-BIB0043|mp12165-cit-0043) 2009; 54
O’Connor (10.1002/mp.12165-BIB0027|mp12165-cit-0027) 2014; 7
Pratx (10.1002/mp.12165-BIB0046|mp12165-cit-0046) 2011; 38
Wiersma (10.1002/mp.12165-BIB0004|mp12165-cit-0004) 2013; 40
Nguyen (10.1002/mp.12165-BIB0010|mp12165-cit-0010) 2016; 43
Liu (10.1002/mp.12165-BIB0005|mp12165-cit-0005) 2015; 42
Wächter (10.1002/mp.12165-BIB0019|mp12165-cit-0019) 2006; 106
Dong (10.1002/mp.12165-BIB0030|mp12165-cit-0030) 2016; 43
Boyd (10.1002/mp.12165-BIB0034|mp12165-cit-0034) 2004
Grelewicz (10.1002/mp.12165-BIB0011|mp12165-cit-0011) 2014; 59
Tütüncü (10.1002/mp.12165-BIB0015|mp12165-cit-0015) 2003; 95
10.1002/mp.12165-BIB0033|mp12165-cit-0033
Ziegenhein (10.1002/mp.12165-BIB0042|mp12165-cit-0042) 2013; 58
Mehrotra (10.1002/mp.12165-BIB0020|mp12165-cit-0020) 1992; 2
Chambolle (10.1002/mp.12165-BIB0025|mp12165-cit-0025) 2011; 40
Peng (10.1002/mp.12165-BIB0002|mp12165-cit-0002) 2012; 57
Craft (10.1002/mp.12165-BIB0003|mp12165-cit-0003) 2012; 39
Men (10.1002/mp.12165-BIB0001|mp12165-cit-0001) 2010; 37
Hoover (10.1002/mp.12165-BIB0006|mp12165-cit-0006) 2015; 42
Boyd (10.1002/mp.12165-BIB0022|mp12165-cit-0022) 2011; 3
Toh (10.1002/mp.12165-BIB0014|mp12165-cit-0014) 1999; 11
Bortfeld (10.1002/mp.12165-BIB0040|mp12165-cit-0040) 1993; 20
Parikh (10.1002/mp.12165-BIB0028|mp12165-cit-0028) 2014; 6
Sturm (10.1002/mp.12165-BIB0013|mp12165-cit-0013) 1999; 11
Gould (10.1002/mp.12165-BIB0021|mp12165-cit-0021) 2004; 100
Wächter (10.1002/mp.12165-BIB0018|mp12165-cit-0018) 2005; 16
Jia (10.1002/mp.12165-BIB0045|mp12165-cit-0045) 2014; 59
21158290 - Med Phys. 2010 Nov;37(11):5787-91
25652486 - Med Phys. 2015 Feb;42(2):726-34
23656861 - Phys Med Biol. 2013 Jun 7;58(11):3705-15
27370141 - Med Phys. 2016 Jul;43(7):4263
26127028 - Med Phys. 2015 Jun;42(6):2757-63
24320420 - Med Phys. 2013 Nov;40(11):111712
19544809 - Med Phys. 2009 May;36(5):1895-905
25678961 - Gigascience. 2014 Dec 12;3(1):37
21776805 - Med Phys. 2011 May;38(5):2685-97
22320778 - Med Phys. 2012 Feb;39(2):686-96
24614611 - Phys Med Biol. 2014 Apr 7;59(7):1607-21
19826201 - Phys Med Biol. 2009 Nov 7;54(21):6565-73
25832076 - Med Phys. 2015 Apr;42(4):1858-70
22722760 - Phys Med Biol. 2012 Jul 21;57(14):4569-88
27587028 - Med Phys. 2016 Sep;43(9):4973
26987680 - Phys Med Biol. 2016 Apr 7;61(7):2838-50
8497215 - Med Phys. 1993 Mar-Apr;20(2 Pt 1):311-8
24002571 - Phys Med Biol. 2013 Sep 21;58(18):6525-40
24486639 - Phys Med Biol. 2014 Feb 21;59(4):R151-82
References_xml – volume: 58
  start-page: 6525
  year: 2013
  article-title: Toward a web‐based real‐time radiation treatment planning system in a cloud computing environment
  publication-title: Phys Med Biol
– volume: 100
  start-page: 95
  year: 2004
  end-page: 132
  article-title: Preprocessing for quadratic programming
  publication-title: Math Program
– volume: 11
  start-page: 545
  year: 1999
  end-page: 581
  article-title: Sdpt3a matlab software package for semidefinite programming, version 1.3
  publication-title: Optim Methods Softw
– volume: 24
  start-page: 32
  year: 2012
  article-title: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user
  publication-title: Found Comput‐Aid Operat
– volume: 42
  start-page: 2757
  year: 2015
  end-page: 2763
  article-title: Robotic real‐time translational and rotational head motion correction during frameless stereotactic radiosurgery
  publication-title: Med Phys
– volume: 40
  start-page: 120
  year: 2011
  end-page: 145
  article-title: A first‐order primal‐dual algorithm for convex problems with applications to imaging
  publication-title: J Math Imaging Vision
– volume: 2
  start-page: 575
  year: 1992
  end-page: 601
  article-title: On the implementation of a primal‐dual interior point method
  publication-title: SIAM J Optim
– start-page: 1608
  year: 2015
  end-page: 1611
– volume: 54
  start-page: 6565
  year: 2009
  article-title: Gpu‐based ultrafast imrt plan optimization
  publication-title: Phys Med Biol
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
– volume: 20
  start-page: 311
  year: 1993
  end-page: 318
  article-title: Decomposition of pencil beam kernels for fast dose calculations in three‐dimensional treatment planning
  publication-title: Med Phys
– start-page: 457
  year: 2015
– volume: 57
  start-page: 4569
  issue: 14
  year: 2012
  article-title: A new column‐generation‐ based algorithm for vmat treatment plan optimization
  publication-title: Phys Med Biol
– volume: 43
  start-page: 4263
  year: 2016
  end-page: 4272
  article-title: A comprehensive formulation for volumetric modulated arc therapy planning
  publication-title: Med Phys
– volume: 59
  start-page: 1607
  year: 2014
  article-title: Combined mv+kv inverse treatment planning for optimal kv dose incorporation in igrt
  publication-title: Phys Med Biol
– volume: 11
  start-page: 625
  year: 1999
  end-page: 653
  article-title: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones
  publication-title: Optim Methods Softw
– start-page: 5599
  year: 2016
  end-page: 5604
  article-title: Constrained quadratic optimization for radiation treatment planning by use of graph form admm
  publication-title: Proc Am Control Conf
– volume: 38
  start-page: 2685
  year: 2011
  end-page: 2697
  article-title: Gpu computing in medical physics: a review
  publication-title: Med Phys
– volume: 6
  start-page: 77
  year: 2014
  end-page: 102
  article-title: Block splitting for distributed optimization
  publication-title: Math Program Comput
– volume: 7
  start-page: 663
  year: 1997
  end-page: 678
  article-title: Primal–dual path‐following algorithms for semidefinite programming
  publication-title: SIAM J Optim
– volume: 16
  start-page: 1
  year: 2005
  end-page: 31
  article-title: Line search filter methods for nonlinear programming: motivation and global convergence
  publication-title: SIAM J Optim
– volume: 7
  start-page: 1724
  year: 2014
  end-page: 1754
  article-title: Primal‐dual decomposition by operator splitting and applications to image deblurring
  publication-title: SIAM J Imaging Sci
– volume: 2
  start-page: 020244
  year: 2014
  article-title: Gpu‐monte carlo based fast imrt plan optimization
  publication-title: Int J Cancer Ther Oncol
– volume: 95
  start-page: 189
  year: 2003
  end-page: 217
  article-title: Solving semidefinite‐quadratic‐linear programs using sdpt3
  publication-title: Math Program
– volume: 61
  start-page: 2838
  year: 2016
  article-title: Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization
  publication-title: Phys Med Biol
– volume: 43
  start-page: 4973
  year: 2016
  end-page: 4982
  article-title: Optimization of rotational arc station parameter optimized radiation therapy
  publication-title: Med Phys
– volume: 40
  start-page: 111712
  year: 2013
  article-title: Spatial and temporal performance of 3d optical surface imaging for real‐time head position tracking
  publication-title: Med Phys
– volume: 42
  start-page: 726
  year: 2015
  end-page: 734
  article-title: Feasibility of a unified approach to intensity‐modulated radiation therapy and volume‐modulated arc therapy optimization and delivery
  publication-title: Med Phys
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends R in Machine Learning
– year: 2004
– year: 1997
– volume: 1
  start-page: 123
  year: 2014
  end-page: 231
  article-title: Proximal algorithms
  publication-title: Foundations Trends Optimization
– volume: 38
  start-page: 451
  year: 2010
  end-page: 460
  article-title: Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu
  publication-title: ACM SIGARCH Comput Architect News
– volume: 58
  start-page: 3705
  year: 2013
  article-title: Performance‐optimized clinical imrt planning on modern cpus
  publication-title: Phys Med Biol
– volume: 22
  start-page: 1
  year: 1997
  end-page: 42
  article-title: Self‐scaled barriers and interior‐point methods for convex programming
  publication-title: Math Oper Res
– volume: 59
  start-page: R151
  year: 2014
  article-title: Gpu‐based high‐performance computing for radiation therapy
  publication-title: Phys Med Biol
– volume: 255
  start-page: 2897
  year: 1962
  end-page: 2899
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: CR Acad Sci Paris Sér A Math
– volume: 37
  start-page: 5787
  year: 2010
  end-page: 5791
  article-title: Ultrafast treatment plan optimization for volu‐ metric modulated arc therapy (vmat)
  publication-title: Med Phys
– volume: 39
  start-page: 686
  year: 2012
  end-page: 696
  article-title: Multicriteria vmat optimization
  publication-title: Med Phys
– volume: 3
  start-page: 37
  year: 2014
  article-title: Shared data for intensity modulated radiation therapy (imrt) optimization research: the cort dataset
  publication-title: GigaScience
– volume: 38
  start-page: 7
  year: 2011
  article-title: Remark on algorithm 778: L‐bfgs‐b: Fortran subroutines for large‐ scale bound constrained optimization
  publication-title: ACM Trans Math Softw
– volume: 42
  start-page: 1858
  year: 2015
  end-page: 1870
  article-title: Dose domain regularization of mlc leaf patterns for highly complex imrt plans
  publication-title: Med Phys
– volume: 36
  start-page: 1895
  year: 2009
  end-page: 1905
  article-title: Search for imrt inverse plans with piecewise constant fluence maps using compressed sensing techniques
  publication-title: Med Phys
– year: 2015
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  article-title: On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming
  publication-title: Math Program
– year: 1999
– volume: 57
  start-page: 4569
  issue: 14
  year: 2012
  ident: 10.1002/mp.12165-BIB0002|mp12165-cit-0002
  article-title: A new column-generation- based algorithm for vmat treatment plan optimization
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/57/14/4569
– volume: 61
  start-page: 2838
  year: 2016
  ident: 10.1002/mp.12165-BIB0024|mp12165-cit-0024
  article-title: Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/7/2838
– ident: 10.1002/mp.12165-BIB0033|mp12165-cit-0033
– ident: 10.1002/mp.12165-BIB0041|mp12165-cit-0041
– volume: 38
  start-page: 451
  year: 2010
  ident: 10.1002/mp.12165-BIB0044|mp12165-cit-0044
  article-title: Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu
  publication-title: ACM SIGARCH Comput Architect News
  doi: 10.1145/1816038.1816021
– volume: 39
  start-page: 686
  year: 2012
  ident: 10.1002/mp.12165-BIB0003|mp12165-cit-0003
  article-title: Multicriteria vmat optimization
  publication-title: Med Phys
  doi: 10.1118/1.3675601
– volume: 60
  start-page: 259
  year: 1992
  ident: 10.1002/mp.12165-BIB0009|mp12165-cit-0009
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume: 6
  start-page: 77
  year: 2014
  ident: 10.1002/mp.12165-BIB0028|mp12165-cit-0028
  article-title: Block splitting for distributed optimization
  publication-title: Math Program Comput
  doi: 10.1007/s12532-013-0061-8
– volume: 20
  start-page: 311
  year: 1993
  ident: 10.1002/mp.12165-BIB0040|mp12165-cit-0040
  article-title: Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning
  publication-title: Med Phys
  doi: 10.1118/1.597070
– volume: 7
  start-page: 663
  year: 1997
  ident: 10.1002/mp.12165-BIB0016|mp12165-cit-0016
  article-title: Primal-dual path-following algorithms for semidefinite programming
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623495293056
– volume: 3
  start-page: 1
  year: 2011
  ident: 10.1002/mp.12165-BIB0022|mp12165-cit-0022
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends R in Machine Learning
  doi: 10.1561/2200000016
– volume: 42
  start-page: 1858
  year: 2015
  ident: 10.1002/mp.12165-BIB0026|mp12165-cit-0026
  article-title: Dose domain regularization of mlc leaf patterns for highly complex imrt plans
  publication-title: Med Phys
  doi: 10.1118/1.4915286
– volume: 40
  start-page: 120
  year: 2011
  ident: 10.1002/mp.12165-BIB0025|mp12165-cit-0025
  article-title: A first-order primal-dual algorithm for convex problems with applications to imaging
  publication-title: J Math Imaging Vision
  doi: 10.1007/s10851-010-0251-1
– start-page: 1608
  volume-title: World Congress on Medical Physics and Biomedical Engineering, June 7-12, Toronto, Canada
  year: 2015
  ident: 10.1002/mp.12165-BIB0039|mp12165-cit-0039
  doi: 10.1007/978-3-319-19387-8_391
– volume: 59
  start-page: R151
  year: 2014
  ident: 10.1002/mp.12165-BIB0045|mp12165-cit-0045
  article-title: Gpu-based high-performance computing for radiation therapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/4/R151
– volume: 255
  start-page: 2897
  year: 1962
  ident: 10.1002/mp.12165-BIB0036|mp12165-cit-0036
  article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien
  publication-title: CR Acad Sci Paris Sér A Math
– volume: 100
  start-page: 95
  year: 2004
  ident: 10.1002/mp.12165-BIB0021|mp12165-cit-0021
  article-title: Preprocessing for quadratic programming
  publication-title: Math Program
  doi: 10.1007/s10107-003-0487-2
– volume: 106
  start-page: 25
  year: 2006
  ident: 10.1002/mp.12165-BIB0019|mp12165-cit-0019
  article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
  publication-title: Math Program
  doi: 10.1007/s10107-004-0559-y
– volume: 16
  start-page: 1
  year: 2005
  ident: 10.1002/mp.12165-BIB0018|mp12165-cit-0018
  article-title: Line search filter methods for nonlinear programming: motivation and global convergence
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623403426556
– start-page: 5599
  year: 2016
  ident: 10.1002/mp.12165-BIB0031|mp12165-cit-0031
  article-title: Constrained quadratic optimization for radiation treatment planning by use of graph form admm
  publication-title: Proc Am Control Conf
– volume: 2
  start-page: 575
  year: 1992
  ident: 10.1002/mp.12165-BIB0020|mp12165-cit-0020
  article-title: On the implementation of a primal-dual interior point method
  publication-title: SIAM J Optim
  doi: 10.1137/0802028
– volume-title: Convex optimization
  year: 2004
  ident: 10.1002/mp.12165-BIB0034|mp12165-cit-0034
  doi: 10.1017/CBO9780511804441
– volume: 38
  start-page: 7
  year: 2011
  ident: 10.1002/mp.12165-BIB0007|mp12165-cit-0007
  article-title: Remark on algorithm 778: L-bfgs-b: Fortran subroutines for large- scale bound constrained optimization
  publication-title: ACM Trans Math Softw
  doi: 10.1145/2049662.2049669
– volume: 54
  start-page: 6565
  year: 2009
  ident: 10.1002/mp.12165-BIB0043|mp12165-cit-0043
  article-title: Gpu-based ultrafast imrt plan optimization
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/21/008
– volume: 3
  start-page: 37
  year: 2014
  ident: 10.1002/mp.12165-BIB0038|mp12165-cit-0038
  article-title: Shared data for intensity modulated radiation therapy (imrt) optimization research: the cort dataset
  publication-title: GigaScience
  doi: 10.1186/2047-217X-3-37
– volume: 95
  start-page: 189
  year: 2003
  ident: 10.1002/mp.12165-BIB0015|mp12165-cit-0015
  article-title: Solving semidefinite-quadratic-linear programs using sdpt3
  publication-title: Math Program
  doi: 10.1007/s10107-002-0347-5
– volume: 37
  start-page: 5787
  year: 2010
  ident: 10.1002/mp.12165-BIB0001|mp12165-cit-0001
  article-title: Ultrafast treatment plan optimization for volu- metric modulated arc therapy (vmat)
  publication-title: Med Phys
  doi: 10.1118/1.3491675
– volume: 59
  start-page: 1607
  year: 2014
  ident: 10.1002/mp.12165-BIB0011|mp12165-cit-0011
  article-title: Combined mv+kv inverse treatment planning for optimal kv dose incorporation in igrt
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/7/1607
– volume: 40
  start-page: 111712
  year: 2013
  ident: 10.1002/mp.12165-BIB0004|mp12165-cit-0004
  article-title: Spatial and temporal performance of 3d optical surface imaging for real-time head position tracking
  publication-title: Med Phys
  doi: 10.1118/1.4823757
– volume: 22
  start-page: 1
  year: 1997
  ident: 10.1002/mp.12165-BIB0017|mp12165-cit-0017
  article-title: Self-scaled barriers and interior-point methods for convex programming
  publication-title: Math Oper Res
  doi: 10.1287/moor.22.1.1
– ident: 10.1002/mp.12165-BIB0029|mp12165-cit-0029
– volume: 11
  start-page: 545
  year: 1999
  ident: 10.1002/mp.12165-BIB0014|mp12165-cit-0014
  article-title: Sdpt3a matlab software package for semidefinite programming, version 1.3
  publication-title: Optim Methods Softw
  doi: 10.1080/10556789908805762
– volume: 42
  start-page: 2757
  year: 2015
  ident: 10.1002/mp.12165-BIB0005|mp12165-cit-0005
  article-title: Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery
  publication-title: Med Phys
  doi: 10.1118/1.4919279
– volume: 42
  start-page: 726
  year: 2015
  ident: 10.1002/mp.12165-BIB0006|mp12165-cit-0006
  article-title: Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery
  publication-title: Med Phys
  doi: 10.1118/1.4905373
– volume: 38
  start-page: 2685
  year: 2011
  ident: 10.1002/mp.12165-BIB0046|mp12165-cit-0046
  article-title: Gpu computing in medical physics: a review
  publication-title: Med Phys
  doi: 10.1118/1.3578605
– ident: 10.1002/mp.12165-BIB0012|mp12165-cit-0012
– volume: 1
  start-page: 123
  year: 2014
  ident: 10.1002/mp.12165-BIB0037|mp12165-cit-0037
  article-title: Proximal algorithms
  publication-title: Foundations Trends Optimization
  doi: 10.1561/2400000003
– volume: 58
  start-page: 3705
  year: 2013
  ident: 10.1002/mp.12165-BIB0042|mp12165-cit-0042
  article-title: Performance-optimized clinical imrt planning on modern cpus
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/11/3705
– volume: 7
  start-page: 1724
  year: 2014
  ident: 10.1002/mp.12165-BIB0027|mp12165-cit-0027
  article-title: Primal-dual decomposition by operator splitting and applications to image deblurring
  publication-title: SIAM J Imaging Sci
  doi: 10.1137/13094671X
– ident: 10.1002/mp.12165-BIB0035|mp12165-cit-0035
– volume: 11
  start-page: 625
  year: 1999
  ident: 10.1002/mp.12165-BIB0013|mp12165-cit-0013
  article-title: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones
  publication-title: Optim Methods Softw
  doi: 10.1080/10556789908805766
– volume: 24
  start-page: 32
  year: 2012
  ident: 10.1002/mp.12165-BIB0032|mp12165-cit-0032
  article-title: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user
  publication-title: Found Comput-Aid Operat
– volume: 2
  start-page: 020244
  year: 2014
  ident: 10.1002/mp.12165-BIB0047|mp12165-cit-0047
  article-title: Gpu-monte carlo based fast imrt plan optimization
  publication-title: Int J Cancer Ther Oncol
  doi: 10.14319/ijcto.0202.44
– volume: 36
  start-page: 1895
  year: 2009
  ident: 10.1002/mp.12165-BIB0008|mp12165-cit-0008
  article-title: Search for imrt inverse plans with piecewise constant fluence maps using compressed sensing techniques
  publication-title: Med Phys
  doi: 10.1118/1.3110163
– volume: 43
  start-page: 4263
  year: 2016
  ident: 10.1002/mp.12165-BIB0010|mp12165-cit-0010
  article-title: A comprehensive formulation for volumetric modulated arc therapy planning
  publication-title: Med Phys
  doi: 10.1118/1.4953832
– volume: 43
  start-page: 4973
  year: 2016
  ident: 10.1002/mp.12165-BIB0030|mp12165-cit-0030
  article-title: Optimization of rotational arc station parameter optimized radiation therapy
  publication-title: Med Phys
  doi: 10.1118/1.4960000
– volume: 58
  start-page: 6525
  year: 2013
  ident: 10.1002/mp.12165-BIB0023|mp12165-cit-0023
  article-title: Toward a web-based real-time radiation treatment planning system in a cloud computing environment
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/18/6525
– reference: 25678961 - Gigascience. 2014 Dec 12;3(1):37
– reference: 25832076 - Med Phys. 2015 Apr;42(4):1858-70
– reference: 8497215 - Med Phys. 1993 Mar-Apr;20(2 Pt 1):311-8
– reference: 26127028 - Med Phys. 2015 Jun;42(6):2757-63
– reference: 26987680 - Phys Med Biol. 2016 Apr 7;61(7):2838-50
– reference: 19544809 - Med Phys. 2009 May;36(5):1895-905
– reference: 21158290 - Med Phys. 2010 Nov;37(11):5787-91
– reference: 24002571 - Phys Med Biol. 2013 Sep 21;58(18):6525-40
– reference: 24486639 - Phys Med Biol. 2014 Feb 21;59(4):R151-82
– reference: 24320420 - Med Phys. 2013 Nov;40(11):111712
– reference: 22320778 - Med Phys. 2012 Feb;39(2):686-96
– reference: 22722760 - Phys Med Biol. 2012 Jul 21;57(14):4569-88
– reference: 21776805 - Med Phys. 2011 May;38(5):2685-97
– reference: 27370141 - Med Phys. 2016 Jul;43(7):4263
– reference: 27587028 - Med Phys. 2016 Sep;43(9):4973
– reference: 25652486 - Med Phys. 2015 Feb;42(2):726-34
– reference: 19826201 - Phys Med Biol. 2009 Nov 7;54(21):6565-73
– reference: 24614611 - Phys Med Biol. 2014 Apr 7;59(7):1607-21
– reference: 23656861 - Phys Med Biol. 2013 Jun 7;58(11):3705-15
SSID ssj0006350
Score 2.2707798
Snippet Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the...
Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1246
SubjectTerms Algorithms
alternating direction method of multipliers
combined MV+kV optimization
constrained optimization
convex optimization
inverse treatment planning
proximal operator graph solver
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Title Use of proximal operator graph solver for radiation therapy inverse treatment planning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12165
https://www.ncbi.nlm.nih.gov/pubmed/28211070
https://www.proquest.com/docview/1869966202
https://pubmed.ncbi.nlm.nih.gov/PMC5508626
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJhAvCMYtbENGQvBQZUvcNE4eJwaq0IomsaKKl8hOHBGpTaPRCtFfzzm246ZbkQYvaZW4TtLv8_HxuZmQt1yGcSzK0JfDRPkRqKx-kuaJnwspJCuLWEaYKDz-Eo8m0efpcNrrrbrZJUt5kq935pX8D6pwDnDFLNl_QNZ1CifgO-ALR0AYjnfCeGIM8RiKUs1Rq2yU9pr3dRnqPtwcXkkHEl5jCQINtUm4wmw_DMhQnUjzxu5f1NVXWz-OMYBoCy1mTQuzn4czIlxUK8RqWtXzqt5I21m1XguTym7d-m71r2YtW0xIZX900gkFmqlfVa5N298F5oX97honYMLbxLRYgZtG6MAZdgWuKfhoiRV1pCfoGnFnJgbdK94p5U3V2HmDpTHMThPbhbRvTHAu7NCUaGbZvMn0L--RfcY5evf3z87HF1_dFA5amMldsk_fVi0O2Gl712095tbi5HaMbXfto5WXq8fkkV110DNDoSekp-oD8mBs4yoOyP1Lg-9T8g04RRclbTlFW05RzSlqOEWBU9RxilpOUcsp6jhFW049I5NPH68-jHy794afY-CvX7A0TmCohopzWQhZyDAsBxEvcWCXUQqqTzjMw5CXA8VLNuB5iE68QSyYkgUogs_JXr2o1UtCmZBpEqVJUEAHCXQMMiBQrBR5wVWRJh553_6TWW4L0-P-KLPsJl4eeeNaNqYYy642LRgZSEp0f4laLVY_M9x8DRb3LGAeeWHAcb2wRBtCAo_wLdhcA6zCvn2lrn7oauywxEergEfeaYD_-mDZ-FJ_vrrDSxySh5vRdET2ltcrdQzK71K-tlT9AwbYtKY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+proximal+operator+graph+solver+for+radiation+therapy+inverse+treatment+planning&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Liu%2C+Xinmin&rft.au=Pelizzari%2C+Charles&rft.au=Belcher%2C+Andrew+H.&rft.au=Grelewicz%2C+Zachary&rft.date=2017-04-01&rft.issn=0094-2405&rft.volume=44&rft.issue=4&rft.spage=1246&rft.epage=1256&rft_id=info:doi/10.1002%2Fmp.12165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_12165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon