Use of proximal operator graph solver for radiation therapy inverse treatment planning
Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variati...
Saved in:
Published in | Medical physics (Lancaster) Vol. 44; no. 4; pp. 1246 - 1256 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0094-2405 2473-4209 2473-4209 |
DOI | 10.1002/mp.12165 |
Cover
Abstract | Purpose
Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variation regularization‐ based optimization and MV+kV optimization, involve constrained or mixed‐norm optimization, and cannot be solved by quasi‐Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.
Methods
Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non‐commercial optimizers.
Results
For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed‐norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.
Conclusions
POGS was used for solving inverse treatment planning problems involving constrained or mixed‐norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization‐based optimization and combined MV+kV optimization. |
---|---|
AbstractList | Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.
Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.
For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.
POGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization. Purpose Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the Limited‐memory Broyden‐Fletcher‐Goldfarb‐Shanno (L‐BFGS) algorithm. However, several next generation planning techniques such as total variation regularization‐ based optimization and MV+kV optimization, involve constrained or mixed‐norm optimization, and cannot be solved by quasi‐Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems. Methods Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non‐commercial optimizers. Results For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed‐norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory. Conclusions POGS was used for solving inverse treatment planning problems involving constrained or mixed‐norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization‐based optimization and combined MV+kV optimization. Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.PURPOSEMost radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. However, several next generation planning techniques such as total variation regularization- based optimization and MV+kV optimization, involve constrained or mixed-norm optimization, and cannot be solved by quasi-Newton methods. Using standard optimization algorithms on such problems often leads to prohibitively long optimization times and large memory requirements. This work investigates the use of a recently developed proximal operator graph solver (POGS) in solving such radiation therapy optimization problems.Radiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.METHODSRadiation therapy inverse treatment planning was formulated as a graph form problem, and the proximal operators of POGS for quadratic optimization were derived. POGS was exploited for the first time to impose hard dose constraints along with soft constraints in the objective function. The solver was applied to several clinical treatment sites (TG119, liver, prostate, and head&neck), and the results were compared to the solutions obtained by other commercial and non-commercial optimizers.For inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.RESULTSFor inverse planning optimization with nonnegativity box constraints on beamlet intensity, the speed of POGS can compete with that of LBFGSB in some situations. For constrained and mixed-norm optimization, POGS is about one or two orders of magnitude faster than the other solvers while requiring less computer memory.POGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization.CONCLUSIONSPOGS was used for solving inverse treatment planning problems involving constrained or mixed-norm formulation on several example sites. This approach was found to improve upon standard solvers in terms of computation speed and memory usage, and is capable of solving traditionally difficult problems, such as total variation regularization-based optimization and combined MV+kV optimization. |
Author | Pelizzari, Charles Wiersma, Rodney D. Liu, Xinmin Belcher, Andrew H. Grelewicz, Zachary |
Author_xml | – sequence: 1 givenname: Xinmin surname: Liu fullname: Liu, Xinmin organization: The University of Chicago – sequence: 2 givenname: Charles surname: Pelizzari fullname: Pelizzari, Charles organization: The University of Chicago – sequence: 3 givenname: Andrew H. surname: Belcher fullname: Belcher, Andrew H. organization: The University of Chicago – sequence: 4 givenname: Zachary surname: Grelewicz fullname: Grelewicz, Zachary organization: The University of Chicago – sequence: 5 givenname: Rodney D. surname: Wiersma fullname: Wiersma, Rodney D. email: rwiersma@uchicago.edu organization: The University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28211070$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtP3DAUhS0EgoFW4hdUXrLJ9F4ncSabSgi1FGkqWHS6tZzEnnGV2MbO0M6_x53hWcHKku8537mPY7JvnVWEnCJMEYB9HvwUGfJyj0xYUeVZwaDeJxOAushYAeUROY7xNwDwvIRDcsRmDBEqmJBfi6io09QH99cMsqfOqyBHF-gySL-i0fV3KlCdPoLsjByNs3RcJY3fUGNTLfnHoOQ4KDtS30trjV1-IAda9lF9fHhPyOLb158X37P59eXVxfk8awuEMutYzWe646iqqulk0zWIOi8qzaVGXdSYA5YtYqVzVWmWVy0C52XOJVNNByw_IV92XL9uBtW1qYcge-FDmiVshJNGvK5YsxJLdyfKEmac8QQ4ewAEd7tWcRSDia3q0xzKraPAGa9rztk269PLrKeQx2U-s9rgYgxKP0kQxL87icGL7Z2SdPqftDXjdrmpS9O_Zch2hj-mV5t3weLHzU5_D5UvpBA |
CitedBy_id | crossref_primary_10_1007_s40747_020_00207_7 crossref_primary_10_1088_2057_1976_ab3ba9 crossref_primary_10_1002_mp_12486 crossref_primary_10_1371_journal_pone_0210385 crossref_primary_10_1007_s00066_021_01867_1 crossref_primary_10_1002_acm2_12326 crossref_primary_10_1088_1361_6560_ac2b82 |
Cites_doi | 10.1088/0031-9155/57/14/4569 10.1088/0031-9155/61/7/2838 10.1145/1816038.1816021 10.1118/1.3675601 10.1016/0167-2789(92)90242-F 10.1007/s12532-013-0061-8 10.1118/1.597070 10.1137/S1052623495293056 10.1561/2200000016 10.1118/1.4915286 10.1007/s10851-010-0251-1 10.1007/978-3-319-19387-8_391 10.1088/0031-9155/59/4/R151 10.1007/s10107-003-0487-2 10.1007/s10107-004-0559-y 10.1137/S1052623403426556 10.1137/0802028 10.1017/CBO9780511804441 10.1145/2049662.2049669 10.1088/0031-9155/54/21/008 10.1186/2047-217X-3-37 10.1007/s10107-002-0347-5 10.1118/1.3491675 10.1088/0031-9155/59/7/1607 10.1118/1.4823757 10.1287/moor.22.1.1 10.1080/10556789908805762 10.1118/1.4919279 10.1118/1.4905373 10.1118/1.3578605 10.1561/2400000003 10.1088/0031-9155/58/11/3705 10.1137/13094671X 10.1080/10556789908805766 10.14319/ijcto.0202.44 10.1118/1.3110163 10.1118/1.4953832 10.1118/1.4960000 10.1088/0031-9155/58/18/6525 |
ContentType | Journal Article |
Copyright | 2017 American Association of Physicists in Medicine 2017 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2017 American Association of Physicists in Medicine – notice: 2017 American Association of Physicists in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1002/mp.12165 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 1256 |
ExternalDocumentID | PMC5508626 28211070 10_1002_mp_12165 MP12165 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: T32 EB002103 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 LH4 5PM |
ID | FETCH-LOGICAL-c4105-d2968fd61e77bdabdb11f347f6af1f4913015c117f3e7f237c1066536a2ebd023 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Thu Aug 21 18:29:29 EDT 2025 Fri Sep 05 08:26:20 EDT 2025 Mon Jul 21 06:05:23 EDT 2025 Tue Jul 01 03:54:29 EDT 2025 Thu Apr 24 22:56:03 EDT 2025 Wed Jan 22 16:36:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | combined MV+kV optimization convex optimization alternating direction method of multipliers proximal operator graph solver constrained optimization inverse treatment planning |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions http://doi.wiley.com/10.1002/tdm_license_1 2017 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4105-d2968fd61e77bdabdb11f347f6af1f4913015c117f3e7f237c1066536a2ebd023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1002/mp.12165 |
PMID | 28211070 |
PQID | 1869966202 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5508626 proquest_miscellaneous_1869966202 pubmed_primary_28211070 crossref_primary_10_1002_mp_12165 crossref_citationtrail_10_1002_mp_12165 wiley_primary_10_1002_mp_12165_MP12165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 2017-04-00 2017-Apr 20170401 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2017 |
References | 2004; 100 2010; 38 2010; 37 1997; 22 2013; 40 2011; 40 1993; 20 1997 2012; 39 2004 2012; 57 2011; 38 2011; 3 2003; 95 1997; 7 1999 2014; 1 2009; 36 1962; 255 2013; 58 2014; 3 2009; 54 2014; 2 2015; 42 2016; 43 2014; 59 1999; 11 2016; 61 2016 2015 2005; 16 2012; 24 2014; 7 2006; 106 2014; 6 1992; 60 1992; 2 Moreau (10.1002/mp.12165-BIB0036|mp12165-cit-0036) 1962; 255 Monteiro (10.1002/mp.12165-BIB0016|mp12165-cit-0016) 1997; 7 Zhu (10.1002/mp.12165-BIB0008|mp12165-cit-0008) 2009; 36 10.1002/mp.12165-BIB0041|mp12165-cit-0041 Nesterov (10.1002/mp.12165-BIB0017|mp12165-cit-0017) 1997; 22 Nguyen (10.1002/mp.12165-BIB0026|mp12165-cit-0026) 2015; 42 Liu (10.1002/mp.12165-BIB0031|mp12165-cit-0031) 2016 Cisternas (10.1002/mp.12165-BIB0039|mp12165-cit-0039) 2015 Rudin (10.1002/mp.12165-BIB0009|mp12165-cit-0009) 1992; 60 Na (10.1002/mp.12165-BIB0023|mp12165-cit-0023) 2013; 58 Li (10.1002/mp.12165-BIB0047|mp12165-cit-0047) 2014; 2 Morales (10.1002/mp.12165-BIB0007|mp12165-cit-0007) 2011; 38 10.1002/mp.12165-BIB0029|mp12165-cit-0029 Lee (10.1002/mp.12165-BIB0044|mp12165-cit-0044) 2010; 38 10.1002/mp.12165-BIB0035|mp12165-cit-0035 10.1002/mp.12165-BIB0012|mp12165-cit-0012 Craft (10.1002/mp.12165-BIB0038|mp12165-cit-0038) 2014; 3 Gao (10.1002/mp.12165-BIB0024|mp12165-cit-0024) 2016; 61 Currie (10.1002/mp.12165-BIB0032|mp12165-cit-0032) 2012; 24 Parikh (10.1002/mp.12165-BIB0037|mp12165-cit-0037) 2014; 1 Men (10.1002/mp.12165-BIB0043|mp12165-cit-0043) 2009; 54 O’Connor (10.1002/mp.12165-BIB0027|mp12165-cit-0027) 2014; 7 Pratx (10.1002/mp.12165-BIB0046|mp12165-cit-0046) 2011; 38 Wiersma (10.1002/mp.12165-BIB0004|mp12165-cit-0004) 2013; 40 Nguyen (10.1002/mp.12165-BIB0010|mp12165-cit-0010) 2016; 43 Liu (10.1002/mp.12165-BIB0005|mp12165-cit-0005) 2015; 42 Wächter (10.1002/mp.12165-BIB0019|mp12165-cit-0019) 2006; 106 Dong (10.1002/mp.12165-BIB0030|mp12165-cit-0030) 2016; 43 Boyd (10.1002/mp.12165-BIB0034|mp12165-cit-0034) 2004 Grelewicz (10.1002/mp.12165-BIB0011|mp12165-cit-0011) 2014; 59 Tütüncü (10.1002/mp.12165-BIB0015|mp12165-cit-0015) 2003; 95 10.1002/mp.12165-BIB0033|mp12165-cit-0033 Ziegenhein (10.1002/mp.12165-BIB0042|mp12165-cit-0042) 2013; 58 Mehrotra (10.1002/mp.12165-BIB0020|mp12165-cit-0020) 1992; 2 Chambolle (10.1002/mp.12165-BIB0025|mp12165-cit-0025) 2011; 40 Peng (10.1002/mp.12165-BIB0002|mp12165-cit-0002) 2012; 57 Craft (10.1002/mp.12165-BIB0003|mp12165-cit-0003) 2012; 39 Men (10.1002/mp.12165-BIB0001|mp12165-cit-0001) 2010; 37 Hoover (10.1002/mp.12165-BIB0006|mp12165-cit-0006) 2015; 42 Boyd (10.1002/mp.12165-BIB0022|mp12165-cit-0022) 2011; 3 Toh (10.1002/mp.12165-BIB0014|mp12165-cit-0014) 1999; 11 Bortfeld (10.1002/mp.12165-BIB0040|mp12165-cit-0040) 1993; 20 Parikh (10.1002/mp.12165-BIB0028|mp12165-cit-0028) 2014; 6 Sturm (10.1002/mp.12165-BIB0013|mp12165-cit-0013) 1999; 11 Gould (10.1002/mp.12165-BIB0021|mp12165-cit-0021) 2004; 100 Wächter (10.1002/mp.12165-BIB0018|mp12165-cit-0018) 2005; 16 Jia (10.1002/mp.12165-BIB0045|mp12165-cit-0045) 2014; 59 21158290 - Med Phys. 2010 Nov;37(11):5787-91 25652486 - Med Phys. 2015 Feb;42(2):726-34 23656861 - Phys Med Biol. 2013 Jun 7;58(11):3705-15 27370141 - Med Phys. 2016 Jul;43(7):4263 26127028 - Med Phys. 2015 Jun;42(6):2757-63 24320420 - Med Phys. 2013 Nov;40(11):111712 19544809 - Med Phys. 2009 May;36(5):1895-905 25678961 - Gigascience. 2014 Dec 12;3(1):37 21776805 - Med Phys. 2011 May;38(5):2685-97 22320778 - Med Phys. 2012 Feb;39(2):686-96 24614611 - Phys Med Biol. 2014 Apr 7;59(7):1607-21 19826201 - Phys Med Biol. 2009 Nov 7;54(21):6565-73 25832076 - Med Phys. 2015 Apr;42(4):1858-70 22722760 - Phys Med Biol. 2012 Jul 21;57(14):4569-88 27587028 - Med Phys. 2016 Sep;43(9):4973 26987680 - Phys Med Biol. 2016 Apr 7;61(7):2838-50 8497215 - Med Phys. 1993 Mar-Apr;20(2 Pt 1):311-8 24002571 - Phys Med Biol. 2013 Sep 21;58(18):6525-40 24486639 - Phys Med Biol. 2014 Feb 21;59(4):R151-82 |
References_xml | – volume: 58 start-page: 6525 year: 2013 article-title: Toward a web‐based real‐time radiation treatment planning system in a cloud computing environment publication-title: Phys Med Biol – volume: 100 start-page: 95 year: 2004 end-page: 132 article-title: Preprocessing for quadratic programming publication-title: Math Program – volume: 11 start-page: 545 year: 1999 end-page: 581 article-title: Sdpt3a matlab software package for semidefinite programming, version 1.3 publication-title: Optim Methods Softw – volume: 24 start-page: 32 year: 2012 article-title: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user publication-title: Found Comput‐Aid Operat – volume: 42 start-page: 2757 year: 2015 end-page: 2763 article-title: Robotic real‐time translational and rotational head motion correction during frameless stereotactic radiosurgery publication-title: Med Phys – volume: 40 start-page: 120 year: 2011 end-page: 145 article-title: A first‐order primal‐dual algorithm for convex problems with applications to imaging publication-title: J Math Imaging Vision – volume: 2 start-page: 575 year: 1992 end-page: 601 article-title: On the implementation of a primal‐dual interior point method publication-title: SIAM J Optim – start-page: 1608 year: 2015 end-page: 1611 – volume: 54 start-page: 6565 year: 2009 article-title: Gpu‐based ultrafast imrt plan optimization publication-title: Phys Med Biol – volume: 60 start-page: 259 year: 1992 end-page: 268 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D – volume: 20 start-page: 311 year: 1993 end-page: 318 article-title: Decomposition of pencil beam kernels for fast dose calculations in three‐dimensional treatment planning publication-title: Med Phys – start-page: 457 year: 2015 – volume: 57 start-page: 4569 issue: 14 year: 2012 article-title: A new column‐generation‐ based algorithm for vmat treatment plan optimization publication-title: Phys Med Biol – volume: 43 start-page: 4263 year: 2016 end-page: 4272 article-title: A comprehensive formulation for volumetric modulated arc therapy planning publication-title: Med Phys – volume: 59 start-page: 1607 year: 2014 article-title: Combined mv+kv inverse treatment planning for optimal kv dose incorporation in igrt publication-title: Phys Med Biol – volume: 11 start-page: 625 year: 1999 end-page: 653 article-title: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones publication-title: Optim Methods Softw – start-page: 5599 year: 2016 end-page: 5604 article-title: Constrained quadratic optimization for radiation treatment planning by use of graph form admm publication-title: Proc Am Control Conf – volume: 38 start-page: 2685 year: 2011 end-page: 2697 article-title: Gpu computing in medical physics: a review publication-title: Med Phys – volume: 6 start-page: 77 year: 2014 end-page: 102 article-title: Block splitting for distributed optimization publication-title: Math Program Comput – volume: 7 start-page: 663 year: 1997 end-page: 678 article-title: Primal–dual path‐following algorithms for semidefinite programming publication-title: SIAM J Optim – volume: 16 start-page: 1 year: 2005 end-page: 31 article-title: Line search filter methods for nonlinear programming: motivation and global convergence publication-title: SIAM J Optim – volume: 7 start-page: 1724 year: 2014 end-page: 1754 article-title: Primal‐dual decomposition by operator splitting and applications to image deblurring publication-title: SIAM J Imaging Sci – volume: 2 start-page: 020244 year: 2014 article-title: Gpu‐monte carlo based fast imrt plan optimization publication-title: Int J Cancer Ther Oncol – volume: 95 start-page: 189 year: 2003 end-page: 217 article-title: Solving semidefinite‐quadratic‐linear programs using sdpt3 publication-title: Math Program – volume: 61 start-page: 2838 year: 2016 article-title: Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization publication-title: Phys Med Biol – volume: 43 start-page: 4973 year: 2016 end-page: 4982 article-title: Optimization of rotational arc station parameter optimized radiation therapy publication-title: Med Phys – volume: 40 start-page: 111712 year: 2013 article-title: Spatial and temporal performance of 3d optical surface imaging for real‐time head position tracking publication-title: Med Phys – volume: 42 start-page: 726 year: 2015 end-page: 734 article-title: Feasibility of a unified approach to intensity‐modulated radiation therapy and volume‐modulated arc therapy optimization and delivery publication-title: Med Phys – volume: 3 start-page: 1 year: 2011 end-page: 122 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends R in Machine Learning – year: 2004 – year: 1997 – volume: 1 start-page: 123 year: 2014 end-page: 231 article-title: Proximal algorithms publication-title: Foundations Trends Optimization – volume: 38 start-page: 451 year: 2010 end-page: 460 article-title: Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu publication-title: ACM SIGARCH Comput Architect News – volume: 58 start-page: 3705 year: 2013 article-title: Performance‐optimized clinical imrt planning on modern cpus publication-title: Phys Med Biol – volume: 22 start-page: 1 year: 1997 end-page: 42 article-title: Self‐scaled barriers and interior‐point methods for convex programming publication-title: Math Oper Res – volume: 59 start-page: R151 year: 2014 article-title: Gpu‐based high‐performance computing for radiation therapy publication-title: Phys Med Biol – volume: 255 start-page: 2897 year: 1962 end-page: 2899 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: CR Acad Sci Paris Sér A Math – volume: 37 start-page: 5787 year: 2010 end-page: 5791 article-title: Ultrafast treatment plan optimization for volu‐ metric modulated arc therapy (vmat) publication-title: Med Phys – volume: 39 start-page: 686 year: 2012 end-page: 696 article-title: Multicriteria vmat optimization publication-title: Med Phys – volume: 3 start-page: 37 year: 2014 article-title: Shared data for intensity modulated radiation therapy (imrt) optimization research: the cort dataset publication-title: GigaScience – volume: 38 start-page: 7 year: 2011 article-title: Remark on algorithm 778: L‐bfgs‐b: Fortran subroutines for large‐ scale bound constrained optimization publication-title: ACM Trans Math Softw – volume: 42 start-page: 1858 year: 2015 end-page: 1870 article-title: Dose domain regularization of mlc leaf patterns for highly complex imrt plans publication-title: Med Phys – volume: 36 start-page: 1895 year: 2009 end-page: 1905 article-title: Search for imrt inverse plans with piecewise constant fluence maps using compressed sensing techniques publication-title: Med Phys – year: 2015 – volume: 106 start-page: 25 year: 2006 end-page: 57 article-title: On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming publication-title: Math Program – year: 1999 – volume: 57 start-page: 4569 issue: 14 year: 2012 ident: 10.1002/mp.12165-BIB0002|mp12165-cit-0002 article-title: A new column-generation- based algorithm for vmat treatment plan optimization publication-title: Phys Med Biol doi: 10.1088/0031-9155/57/14/4569 – volume: 61 start-page: 2838 year: 2016 ident: 10.1002/mp.12165-BIB0024|mp12165-cit-0024 article-title: Robust fluence map optimization via alternating direction method of multipliers with empirical parameter optimization publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/7/2838 – ident: 10.1002/mp.12165-BIB0033|mp12165-cit-0033 – ident: 10.1002/mp.12165-BIB0041|mp12165-cit-0041 – volume: 38 start-page: 451 year: 2010 ident: 10.1002/mp.12165-BIB0044|mp12165-cit-0044 article-title: Debunking the 100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu publication-title: ACM SIGARCH Comput Architect News doi: 10.1145/1816038.1816021 – volume: 39 start-page: 686 year: 2012 ident: 10.1002/mp.12165-BIB0003|mp12165-cit-0003 article-title: Multicriteria vmat optimization publication-title: Med Phys doi: 10.1118/1.3675601 – volume: 60 start-page: 259 year: 1992 ident: 10.1002/mp.12165-BIB0009|mp12165-cit-0009 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume: 6 start-page: 77 year: 2014 ident: 10.1002/mp.12165-BIB0028|mp12165-cit-0028 article-title: Block splitting for distributed optimization publication-title: Math Program Comput doi: 10.1007/s12532-013-0061-8 – volume: 20 start-page: 311 year: 1993 ident: 10.1002/mp.12165-BIB0040|mp12165-cit-0040 article-title: Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning publication-title: Med Phys doi: 10.1118/1.597070 – volume: 7 start-page: 663 year: 1997 ident: 10.1002/mp.12165-BIB0016|mp12165-cit-0016 article-title: Primal-dual path-following algorithms for semidefinite programming publication-title: SIAM J Optim doi: 10.1137/S1052623495293056 – volume: 3 start-page: 1 year: 2011 ident: 10.1002/mp.12165-BIB0022|mp12165-cit-0022 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends R in Machine Learning doi: 10.1561/2200000016 – volume: 42 start-page: 1858 year: 2015 ident: 10.1002/mp.12165-BIB0026|mp12165-cit-0026 article-title: Dose domain regularization of mlc leaf patterns for highly complex imrt plans publication-title: Med Phys doi: 10.1118/1.4915286 – volume: 40 start-page: 120 year: 2011 ident: 10.1002/mp.12165-BIB0025|mp12165-cit-0025 article-title: A first-order primal-dual algorithm for convex problems with applications to imaging publication-title: J Math Imaging Vision doi: 10.1007/s10851-010-0251-1 – start-page: 1608 volume-title: World Congress on Medical Physics and Biomedical Engineering, June 7-12, Toronto, Canada year: 2015 ident: 10.1002/mp.12165-BIB0039|mp12165-cit-0039 doi: 10.1007/978-3-319-19387-8_391 – volume: 59 start-page: R151 year: 2014 ident: 10.1002/mp.12165-BIB0045|mp12165-cit-0045 article-title: Gpu-based high-performance computing for radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/4/R151 – volume: 255 start-page: 2897 year: 1962 ident: 10.1002/mp.12165-BIB0036|mp12165-cit-0036 article-title: Fonctions convexes duales et points proximaux dans un espace hilbertien publication-title: CR Acad Sci Paris Sér A Math – volume: 100 start-page: 95 year: 2004 ident: 10.1002/mp.12165-BIB0021|mp12165-cit-0021 article-title: Preprocessing for quadratic programming publication-title: Math Program doi: 10.1007/s10107-003-0487-2 – volume: 106 start-page: 25 year: 2006 ident: 10.1002/mp.12165-BIB0019|mp12165-cit-0019 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Math Program doi: 10.1007/s10107-004-0559-y – volume: 16 start-page: 1 year: 2005 ident: 10.1002/mp.12165-BIB0018|mp12165-cit-0018 article-title: Line search filter methods for nonlinear programming: motivation and global convergence publication-title: SIAM J Optim doi: 10.1137/S1052623403426556 – start-page: 5599 year: 2016 ident: 10.1002/mp.12165-BIB0031|mp12165-cit-0031 article-title: Constrained quadratic optimization for radiation treatment planning by use of graph form admm publication-title: Proc Am Control Conf – volume: 2 start-page: 575 year: 1992 ident: 10.1002/mp.12165-BIB0020|mp12165-cit-0020 article-title: On the implementation of a primal-dual interior point method publication-title: SIAM J Optim doi: 10.1137/0802028 – volume-title: Convex optimization year: 2004 ident: 10.1002/mp.12165-BIB0034|mp12165-cit-0034 doi: 10.1017/CBO9780511804441 – volume: 38 start-page: 7 year: 2011 ident: 10.1002/mp.12165-BIB0007|mp12165-cit-0007 article-title: Remark on algorithm 778: L-bfgs-b: Fortran subroutines for large- scale bound constrained optimization publication-title: ACM Trans Math Softw doi: 10.1145/2049662.2049669 – volume: 54 start-page: 6565 year: 2009 ident: 10.1002/mp.12165-BIB0043|mp12165-cit-0043 article-title: Gpu-based ultrafast imrt plan optimization publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/21/008 – volume: 3 start-page: 37 year: 2014 ident: 10.1002/mp.12165-BIB0038|mp12165-cit-0038 article-title: Shared data for intensity modulated radiation therapy (imrt) optimization research: the cort dataset publication-title: GigaScience doi: 10.1186/2047-217X-3-37 – volume: 95 start-page: 189 year: 2003 ident: 10.1002/mp.12165-BIB0015|mp12165-cit-0015 article-title: Solving semidefinite-quadratic-linear programs using sdpt3 publication-title: Math Program doi: 10.1007/s10107-002-0347-5 – volume: 37 start-page: 5787 year: 2010 ident: 10.1002/mp.12165-BIB0001|mp12165-cit-0001 article-title: Ultrafast treatment plan optimization for volu- metric modulated arc therapy (vmat) publication-title: Med Phys doi: 10.1118/1.3491675 – volume: 59 start-page: 1607 year: 2014 ident: 10.1002/mp.12165-BIB0011|mp12165-cit-0011 article-title: Combined mv+kv inverse treatment planning for optimal kv dose incorporation in igrt publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/7/1607 – volume: 40 start-page: 111712 year: 2013 ident: 10.1002/mp.12165-BIB0004|mp12165-cit-0004 article-title: Spatial and temporal performance of 3d optical surface imaging for real-time head position tracking publication-title: Med Phys doi: 10.1118/1.4823757 – volume: 22 start-page: 1 year: 1997 ident: 10.1002/mp.12165-BIB0017|mp12165-cit-0017 article-title: Self-scaled barriers and interior-point methods for convex programming publication-title: Math Oper Res doi: 10.1287/moor.22.1.1 – ident: 10.1002/mp.12165-BIB0029|mp12165-cit-0029 – volume: 11 start-page: 545 year: 1999 ident: 10.1002/mp.12165-BIB0014|mp12165-cit-0014 article-title: Sdpt3a matlab software package for semidefinite programming, version 1.3 publication-title: Optim Methods Softw doi: 10.1080/10556789908805762 – volume: 42 start-page: 2757 year: 2015 ident: 10.1002/mp.12165-BIB0005|mp12165-cit-0005 article-title: Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery publication-title: Med Phys doi: 10.1118/1.4919279 – volume: 42 start-page: 726 year: 2015 ident: 10.1002/mp.12165-BIB0006|mp12165-cit-0006 article-title: Feasibility of a unified approach to intensity-modulated radiation therapy and volume-modulated arc therapy optimization and delivery publication-title: Med Phys doi: 10.1118/1.4905373 – volume: 38 start-page: 2685 year: 2011 ident: 10.1002/mp.12165-BIB0046|mp12165-cit-0046 article-title: Gpu computing in medical physics: a review publication-title: Med Phys doi: 10.1118/1.3578605 – ident: 10.1002/mp.12165-BIB0012|mp12165-cit-0012 – volume: 1 start-page: 123 year: 2014 ident: 10.1002/mp.12165-BIB0037|mp12165-cit-0037 article-title: Proximal algorithms publication-title: Foundations Trends Optimization doi: 10.1561/2400000003 – volume: 58 start-page: 3705 year: 2013 ident: 10.1002/mp.12165-BIB0042|mp12165-cit-0042 article-title: Performance-optimized clinical imrt planning on modern cpus publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/11/3705 – volume: 7 start-page: 1724 year: 2014 ident: 10.1002/mp.12165-BIB0027|mp12165-cit-0027 article-title: Primal-dual decomposition by operator splitting and applications to image deblurring publication-title: SIAM J Imaging Sci doi: 10.1137/13094671X – ident: 10.1002/mp.12165-BIB0035|mp12165-cit-0035 – volume: 11 start-page: 625 year: 1999 ident: 10.1002/mp.12165-BIB0013|mp12165-cit-0013 article-title: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones publication-title: Optim Methods Softw doi: 10.1080/10556789908805766 – volume: 24 start-page: 32 year: 2012 ident: 10.1002/mp.12165-BIB0032|mp12165-cit-0032 article-title: OPTI: lowering the barrier between open source optimizers and the industrial MATLAB user publication-title: Found Comput-Aid Operat – volume: 2 start-page: 020244 year: 2014 ident: 10.1002/mp.12165-BIB0047|mp12165-cit-0047 article-title: Gpu-monte carlo based fast imrt plan optimization publication-title: Int J Cancer Ther Oncol doi: 10.14319/ijcto.0202.44 – volume: 36 start-page: 1895 year: 2009 ident: 10.1002/mp.12165-BIB0008|mp12165-cit-0008 article-title: Search for imrt inverse plans with piecewise constant fluence maps using compressed sensing techniques publication-title: Med Phys doi: 10.1118/1.3110163 – volume: 43 start-page: 4263 year: 2016 ident: 10.1002/mp.12165-BIB0010|mp12165-cit-0010 article-title: A comprehensive formulation for volumetric modulated arc therapy planning publication-title: Med Phys doi: 10.1118/1.4953832 – volume: 43 start-page: 4973 year: 2016 ident: 10.1002/mp.12165-BIB0030|mp12165-cit-0030 article-title: Optimization of rotational arc station parameter optimized radiation therapy publication-title: Med Phys doi: 10.1118/1.4960000 – volume: 58 start-page: 6525 year: 2013 ident: 10.1002/mp.12165-BIB0023|mp12165-cit-0023 article-title: Toward a web-based real-time radiation treatment planning system in a cloud computing environment publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/18/6525 – reference: 25678961 - Gigascience. 2014 Dec 12;3(1):37 – reference: 25832076 - Med Phys. 2015 Apr;42(4):1858-70 – reference: 8497215 - Med Phys. 1993 Mar-Apr;20(2 Pt 1):311-8 – reference: 26127028 - Med Phys. 2015 Jun;42(6):2757-63 – reference: 26987680 - Phys Med Biol. 2016 Apr 7;61(7):2838-50 – reference: 19544809 - Med Phys. 2009 May;36(5):1895-905 – reference: 21158290 - Med Phys. 2010 Nov;37(11):5787-91 – reference: 24002571 - Phys Med Biol. 2013 Sep 21;58(18):6525-40 – reference: 24486639 - Phys Med Biol. 2014 Feb 21;59(4):R151-82 – reference: 24320420 - Med Phys. 2013 Nov;40(11):111712 – reference: 22320778 - Med Phys. 2012 Feb;39(2):686-96 – reference: 22722760 - Phys Med Biol. 2012 Jul 21;57(14):4569-88 – reference: 21776805 - Med Phys. 2011 May;38(5):2685-97 – reference: 27370141 - Med Phys. 2016 Jul;43(7):4263 – reference: 27587028 - Med Phys. 2016 Sep;43(9):4973 – reference: 25652486 - Med Phys. 2015 Feb;42(2):726-34 – reference: 19826201 - Phys Med Biol. 2009 Nov 7;54(21):6565-73 – reference: 24614611 - Phys Med Biol. 2014 Apr 7;59(7):1607-21 – reference: 23656861 - Phys Med Biol. 2013 Jun 7;58(11):3705-15 |
SSID | ssj0006350 |
Score | 2.2707798 |
Snippet | Purpose
Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi‐Newton methods such as the... Most radiation therapy optimization problems can be formulated as an unconstrained problem and solved efficiently by quasi-Newton methods such as the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1246 |
SubjectTerms | Algorithms alternating direction method of multipliers combined MV+kV optimization constrained optimization convex optimization inverse treatment planning proximal operator graph solver Radiotherapy Dosage Radiotherapy Planning, Computer-Assisted - methods |
Title | Use of proximal operator graph solver for radiation therapy inverse treatment planning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.12165 https://www.ncbi.nlm.nih.gov/pubmed/28211070 https://www.proquest.com/docview/1869966202 https://pubmed.ncbi.nlm.nih.gov/PMC5508626 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJhAvCMYtbENGQvBQZUvcNE4eJwaq0IomsaKKl8hOHBGpTaPRCtFfzzm246ZbkQYvaZW4TtLv8_HxuZmQt1yGcSzK0JfDRPkRqKx-kuaJnwspJCuLWEaYKDz-Eo8m0efpcNrrrbrZJUt5kq935pX8D6pwDnDFLNl_QNZ1CifgO-ALR0AYjnfCeGIM8RiKUs1Rq2yU9pr3dRnqPtwcXkkHEl5jCQINtUm4wmw_DMhQnUjzxu5f1NVXWz-OMYBoCy1mTQuzn4czIlxUK8RqWtXzqt5I21m1XguTym7d-m71r2YtW0xIZX900gkFmqlfVa5N298F5oX97honYMLbxLRYgZtG6MAZdgWuKfhoiRV1pCfoGnFnJgbdK94p5U3V2HmDpTHMThPbhbRvTHAu7NCUaGbZvMn0L--RfcY5evf3z87HF1_dFA5amMldsk_fVi0O2Gl712095tbi5HaMbXfto5WXq8fkkV110DNDoSekp-oD8mBs4yoOyP1Lg-9T8g04RRclbTlFW05RzSlqOEWBU9RxilpOUcsp6jhFW049I5NPH68-jHy794afY-CvX7A0TmCohopzWQhZyDAsBxEvcWCXUQqqTzjMw5CXA8VLNuB5iE68QSyYkgUogs_JXr2o1UtCmZBpEqVJUEAHCXQMMiBQrBR5wVWRJh553_6TWW4L0-P-KLPsJl4eeeNaNqYYy642LRgZSEp0f4laLVY_M9x8DRb3LGAeeWHAcb2wRBtCAo_wLdhcA6zCvn2lrn7oauywxEergEfeaYD_-mDZ-FJ_vrrDSxySh5vRdET2ltcrdQzK71K-tlT9AwbYtKY |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+proximal+operator+graph+solver+for+radiation+therapy+inverse+treatment+planning&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Liu%2C+Xinmin&rft.au=Pelizzari%2C+Charles&rft.au=Belcher%2C+Andrew+H.&rft.au=Grelewicz%2C+Zachary&rft.date=2017-04-01&rft.issn=0094-2405&rft.volume=44&rft.issue=4&rft.spage=1246&rft.epage=1256&rft_id=info:doi/10.1002%2Fmp.12165&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mp_12165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |