Evolution of a chimeric mitochondrial carbonic anhydrase through gene fusion in a haptophyte alga

Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α‐, β‐, γ‐, δ‐, ζ‐, η‐, θ‐ and ι‐CA) have been characterized....

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 596; no. 23; pp. 3051 - 3059
Main Authors Hirakawa, Yoshihisa, Hanawa, Yutaka, Yoneda, Kohei, Suzuki, Iwane
Format Journal Article
LanguageEnglish
Published England 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α‐, β‐, γ‐, δ‐, ζ‐, η‐, θ‐ and ι‐CA) have been characterized. This study reports an interesting gene encoding a fusion protein of β‐CA and ι‐CA found in the haptophyte Isochrysis galbana. Recombinant protein assays demonstrated that the C‐terminal ι‐CA region catalyses CO2 hydration, whereas the N‐terminal β‐CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion‐localized β‐CAs and plastid‐localized ι‐CAs, the fusion CA would show an intermediate stage in which mitochondrial β‐CA is replaced by ι‐CA in a haptophyte species. The present study reports a novel gene encoding two different classes of carbonic anhydrases (CAs) in a haptophyte alga. Its N‐ and C‐terminal regions carry a partial beta‐CA and a complete iota‐CA respectively. The fusion protein would show an evolutionary intermediate stage in which a mitochondrial beta‐CA is replaced by another class of CA.
AbstractList Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α‐, β‐, γ‐, δ‐, ζ‐, η‐, θ‐ and ι‐CA) have been characterized. This study reports an interesting gene encoding a fusion protein of β‐CA and ι‐CA found in the haptophyte Isochrysis galbana. Recombinant protein assays demonstrated that the C‐terminal ι‐CA region catalyses CO2 hydration, whereas the N‐terminal β‐CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion‐localized β‐CAs and plastid‐localized ι‐CAs, the fusion CA would show an intermediate stage in which mitochondrial β‐CA is replaced by ι‐CA in a haptophyte species. The present study reports a novel gene encoding two different classes of carbonic anhydrases (CAs) in a haptophyte alga. Its N‐ and C‐terminal regions carry a partial beta‐CA and a complete iota‐CA respectively. The fusion protein would show an evolutionary intermediate stage in which a mitochondrial beta‐CA is replaced by another class of CA.
Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α‐, β‐, γ‐, δ‐, ζ‐, η‐, θ‐ and ι‐CA) have been characterized. This study reports an interesting gene encoding a fusion protein of β‐CA and ι‐CA found in the haptophyte Isochrysis galbana . Recombinant protein assays demonstrated that the C‐terminal ι‐CA region catalyses CO 2 hydration, whereas the N‐terminal β‐CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion‐localized β‐CAs and plastid‐localized ι‐CAs, the fusion CA would show an intermediate stage in which mitochondrial β‐CA is replaced by ι‐CA in a haptophyte species.
Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most compartments including mitochondria and plastids. Thus far, eight classes of CAs (α-, β-, γ-, δ-, ζ-, η-, θ- and ι-CA) have been characterized. This study reports an interesting gene encoding a fusion protein of β-CA and ι-CA found in the haptophyte Isochrysis galbana. Recombinant protein assays demonstrated that the C-terminal ι-CA region catalyses CO hydration, whereas the N-terminal β-CA region no longer exhibits enzymatic activity. Considering that haptophytes generally have mitochondrion-localized β-CAs and plastid-localized ι-CAs, the fusion CA would show an intermediate stage in which mitochondrial β-CA is replaced by ι-CA in a haptophyte species.
Author Hirakawa, Yoshihisa
Suzuki, Iwane
Yoneda, Kohei
Hanawa, Yutaka
Author_xml – sequence: 1
  givenname: Yoshihisa
  orcidid: 0000-0002-3780-354X
  surname: Hirakawa
  fullname: Hirakawa, Yoshihisa
  email: hirakawa.yoshi.fp@u.tsukuba.ac.jp
  organization: University of Tsukuba
– sequence: 2
  givenname: Yutaka
  surname: Hanawa
  fullname: Hanawa, Yutaka
  organization: University of Tsukuba
– sequence: 3
  givenname: Kohei
  surname: Yoneda
  fullname: Yoneda, Kohei
  organization: University of Tsukuba
– sequence: 4
  givenname: Iwane
  surname: Suzuki
  fullname: Suzuki, Iwane
  organization: University of Tsukuba
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35997667$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFPwyAYQInR6DY9ezMcvXQCLQWOajY1WeJFz4RRWDEtVGg1-_d2Vr164uPL-97hzcGxD94AcInREiNEbjBneZYXJV_iomD0CMz-NsdghhAuMspEfgbmKb2h8c-xOAVnORWClSWbAbX6CM3Qu-BhsFBBXbvWRKdh6_qg6-Cr6FQDtYrb4Me18vW-iioZ2NcxDLsa7ow30A7poHB-VNSq60NX73sDVbNT5-DEqiaZi593AV7Xq5f7x2zz_PB0f7vJdIERzSqkCRalzXNuGRXjKJBQ1JJKUK0pN4zxLeN5qQRmnJS4sphQUtitKhAreL4A15O3i-F9MKmXrUvaNI3yJgxJEoYoo4QIMqI3E6pjSCkaK7voWhX3EiN56CoPFeWhovzuOl5c_ciHbWuqP_435AiUE_DpGrP_zyfXqzsymb8AR9KDnw
CitedBy_id crossref_primary_10_1080_14756366_2023_2173748
crossref_primary_10_1016_j_bmcl_2023_129411
crossref_primary_10_1080_13543776_2024_2365407
Cites_doi 10.1007/s11120-011-9635-3
10.1371/journal.pbio.1001889
10.1093/molbev/mst010
10.3390/ijms21082922
10.1016/j.bbabio.2012.02.014
10.1016/j.bmcl.2014.08.015
10.1002/bies.20638
10.3109/14756366.2015.1059333
10.1038/435042a
10.1016/S1672-0229(06)60016-8
10.1074/jbc.275.8.5521
10.1016/j.algal.2017.10.017
10.1111/j.1365-2958.2005.04560.x
10.1021/bi802246s
10.1105/tpc.109.073726
10.26508/lsa.201900429
10.1093/plphys/kiab351
10.1104/pp.103.023424
10.1371/journal.pone.0028458
10.1111/j.1399-3054.2007.01039.x
10.1073/pnas.1603112113
10.1016/j.bbamcr.2021.118949
10.1080/14756366.2021.1972995
10.3390/ijms22168723
10.1038/s41586-021-03819-2
10.1016/j.molp.2016.09.001
10.1093/bioinformatics/btp348
10.1016/j.plantsci.2017.12.002
10.1002/pmic.200300776
10.1038/nmeth.4285
10.1186/s12915-021-01039-8
10.1093/nar/gky376
10.1038/s41396-019-0426-8
10.3390/metabo7040056
10.1080/14756366.2020.1755852
10.1007/s11120-011-9634-4
10.1042/BCJ20160115
10.3109/14756366.2013.868599
10.1104/pp.104.054148
10.1093/molbev/msaa015
10.1111/j.0022-3646.1997.00845.x
10.1093/bioinformatics/18.2.298
10.1098/rsta.2016.0352
10.1093/jxb/erx173
10.1007/s11120-014-9967-x
10.3390/metabo8010022
ContentType Journal Article
Copyright 2022 Federation of European Biochemical Societies.
Copyright_xml – notice: 2022 Federation of European Biochemical Societies.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/1873-3468.14475
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 3059
ExternalDocumentID 10_1002_1873_3468_14475
35997667
FEB214475
Genre article
Journal Article
GrantInformation_xml – fundername: Institute for Fermentation, Osaka
  funderid: LA‐2022‐011
– fundername: Japan Society for the Promotion of Science
  funderid: KAKENHI 18K06358; KAKENHI 19H03280
– fundername: Institute for Fermentation, Osaka
  grantid: LA-2022-011
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI 18K06358
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI 19H03280
GroupedDBID ---
--K
-~X
.55
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
29H
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHBH
AAHHS
AAIKJ
AALRI
AANLZ
AAQXK
AASGY
AAXRX
AAXUO
AAZKR
ABBQC
ABCUV
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABXDB
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADEZE
ADIYS
ADKYN
ADMGS
ADMUD
ADOZA
ADQTV
ADUVX
ADVLN
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AGHFR
AGYEJ
AHBTC
AI.
AIACR
AIAGR
AITUG
AITYG
AIURR
AIWBW
AJBDE
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FUBAC
G-Q
GBLVA
GI5
GX1
HGLYW
HVGLF
HZ~
IHE
IXB
J1W
KBYEO
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R2-
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SFE
SSZ
SUPJJ
SV3
TEORI
TR2
UHB
UNMZH
VH1
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
X7M
Y6R
YK3
ZGI
ZZTAW
~02
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4105-d0c2196f338f759196909a5f2d95cc58e778b7836a9178261df12524fba407483
ISSN 0014-5793
IngestDate Fri Aug 16 04:11:24 EDT 2024
Fri Aug 23 02:57:32 EDT 2024
Sat Sep 28 08:20:39 EDT 2024
Sat Aug 24 01:02:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords carbonic anhydrase
algae
haptophytes
fusion protein
mitochondria
plastids
Language English
License 2022 Federation of European Biochemical Societies.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4105-d0c2196f338f759196909a5f2d95cc58e778b7836a9178261df12524fba407483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3780-354X
PMID 35997667
PQID 2705752292
PQPubID 23479
PageCount 3059
ParticipantIDs proquest_miscellaneous_2705752292
crossref_primary_10_1002_1873_3468_14475
pubmed_primary_35997667
wiley_primary_10_1002_1873_3468_14475_FEB214475
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2022
References 2017; 7
2009; 25
2018; 29
2002; 18
2021; 22
2019; 2
2019; 13
2005; 137
2005; 435
2017; 68
2018; 268
2004; 4
2016; 31
2020; 37
2014; 24
2020; 35
2006; 4
2000; 275
2014; 29
2021; 187
2017; 375
2011; 6
2009; 48
2003; 132
2018; 46
2021; 36
2010; 22
2007; 29
2018; 8
2011; 109
1997; 33
2017; 14
2021; 596
2021; 1868
2017; 10
2021; 19
2013; 30
2016; 113
2016; 473
2020; 21
2012; 1817
2014; 121
2008; 133
2014; 12
2005; 56
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 68
  start-page: 3763
  year: 2017
  end-page: 72
  article-title: Molecular aspects of the biophysical CO ‐concentrating mechanism and its regulation in marine diatoms
  publication-title: J Exp Bot
– volume: 46
  start-page: W289
  year: 2018
  end-page: 95
  article-title: The Ocean Gene Atlas: exploring the biogeography of plankton genes online
  publication-title: Nucleic Acids Res
– volume: 22
  year: 2021
  article-title: Structural contour map of the iota carbonic anhydrase from the diatom using a multiprong approach
  publication-title: Int J Mol Sci
– volume: 596
  start-page: 583
  year: 2021
  end-page: 9
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 13
  start-page: 2094
  year: 2019
  end-page: 106
  article-title: A new widespread subclass of carbonic anhydrase in marine phytoplankton
  publication-title: ISME J
– volume: 1868
  year: 2021
  article-title: Pyrenoids: CO ‐fixing phase separated liquid organelles
  publication-title: Biochim Biophys Acta Mol Cell Res
– volume: 2
  year: 2019
  article-title: Detecting sequence signals in targeting peptides using deep learning
  publication-title: Life Sci Alliance
– volume: 10
  start-page: 30
  year: 2017
  end-page: 46
  article-title: Plant carbonic anhydrases: structures, locations, evolution, and physiological roles
  publication-title: Mol Plant
– volume: 19
  start-page: 105
  year: 2021
  article-title: Characterization of a novel type of carbonic anhydrase that acts without metal cofactors
  publication-title: BMC Biol
– volume: 275
  start-page: 5521
  year: 2000
  end-page: 6
  article-title: X‐ray structure of β‐carbonic anhydrase from the red alga, , reveals a novel catalytic site for CO hydration
  publication-title: J Biol Chem
– volume: 435
  start-page: 42
  year: 2005
  end-page: 2
  article-title: A cadmium enzyme from a marine diatom
  publication-title: Nature
– volume: 56
  start-page: 549
  year: 2005
  end-page: 58
  article-title: The gene NCE103 (YNL036w) from encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium
  publication-title: Mol Microbiol
– volume: 18
  start-page: 298
  year: 2002
  end-page: 305
  article-title: Extensive feature detection of N‐terminal protein sorting signals
  publication-title: Bioinformatics
– volume: 109
  start-page: 205
  year: 2011
  end-page: 21
  article-title: Localization of putative carbonic anhydrases in two marine diatoms, and
  publication-title: Photosynth Res
– volume: 137
  start-page: 447
  year: 2005
  end-page: 59
  article-title: The mitochondrial oxidative phosphorylation proteome of deduced from the genome sequencing project
  publication-title: Plant Physiol
– volume: 7
  year: 2017
  article-title: An overview of the bacterial carbonic anhydrases
  publication-title: Metabolites
– volume: 6
  year: 2011
  article-title: Structural studies of β‐carbonic anhydrase from the green alga : inhibitor complexes with anions and acetazolamide
  publication-title: PLoS ONE
– volume: 29
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Draft genomes and phenotypic characterization of strains. Toward the production of domesticated strains with high added value
  publication-title: Algal Res
– volume: 24
  start-page: 4389
  year: 2014
  end-page: 96
  article-title: Discovery of a new family of carbonic anhydrases in the malaria pathogen —the η‐carbonic anhydrases
  publication-title: Bioorg Med Chem Lett
– volume: 133
  start-page: 78
  year: 2008
  end-page: 91
  article-title: Expression and regulation of carbonic anhydrases in the marine diatom and in natural phytoplankton assemblages from Great Bay, New Jersey
  publication-title: Physiol Plant
– volume: 187
  start-page: 1387
  year: 2021
  end-page: 98
  article-title: Mitochondrial carbonic anhydrases are needed for optimal photosynthesis at low CO levels in
  publication-title: Plant Physiol
– volume: 113
  start-page: 9828
  year: 2016
  end-page: 33
  article-title: Thylakoid luminal Θ‐carbonic anhydrase critical for growth and photosynthesis in the marine diatom
  publication-title: Proc Natl Acad Sci USA
– volume: 268
  start-page: 11
  year: 2018
  end-page: 7
  article-title: The many types of carbonic anhydrases in photosynthetic organisms
  publication-title: Plant Sci
– volume: 35
  start-page: 1060
  year: 2020
  end-page: 8
  article-title: Bacterial ι‐carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram‐negative bacterium
  publication-title: J Enzyme Inhib Med Chem
– volume: 25
  start-page: 1972
  year: 2009
  end-page: 3
  article-title: trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses
  publication-title: Bioinformatics
– volume: 473
  start-page: 2023
  year: 2016
  end-page: 32
  article-title: Structure and function of carbonic anhydrases
  publication-title: Biochem J
– volume: 29
  start-page: 906
  year: 2014
  end-page: 11
  article-title: Biochemical characterization of the δ‐carbonic anhydrase from the marine diatom , TweCA
  publication-title: J Enzyme Inhib Med Chem
– volume: 22
  start-page: 797
  year: 2010
  end-page: 810
  article-title: Internal architecture of mitochondrial complex I from
  publication-title: Plant Cell
– volume: 4
  start-page: 48
  year: 2006
  end-page: 55
  article-title: PredSL: a tool for the N‐terminal sequence‐based prediction of protein subcellular localization
  publication-title: Genomics Proteomics Bioinformatics
– volume: 29
  start-page: 1048
  year: 2007
  end-page: 58
  article-title: Transit peptide diversity and divergence: a global analysis of plastid targeting signals
  publication-title: Bioessays
– volume: 48
  start-page: 817
  year: 2009
  end-page: 9
  article-title: The archetype γ‐class carbonic anhydrase (cam) contains iron when synthesized in vivo
  publication-title: Biochemistry
– volume: 37
  start-page: 1530
  year: 2020
  end-page: 4
  article-title: IQ‐TREE 2: new models and efficient methods for phylogenetic inference in the genomic era
  publication-title: Mol Biol Evol
– volume: 14
  start-page: 587
  year: 2017
  end-page: 9
  article-title: ModelFinder: fast model selection for accurate phylogenetic estimates
  publication-title: Nat Methods
– volume: 31
  start-page: 689
  year: 2016
  end-page: 94
  article-title: A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization
  publication-title: J Enzyme Inhib Med Chem
– volume: 21
  year: 2020
  article-title: Insights on the functions and ecophysiological relevance of the diverse carbonic anhydrases in microalgae
  publication-title: Int J Mol Sci
– volume: 30
  start-page: 772
  year: 2013
  end-page: 80
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
– volume: 375
  year: 2017
  article-title: Resurrecting ancestral genes in bacteria to interpret ancient biosignatures
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– volume: 1817
  start-page: 1248
  year: 2012
  end-page: 55
  article-title: Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of
  publication-title: Biochim Biophys Acta Bioenerg
– volume: 121
  start-page: 235
  year: 2014
  end-page: 49
  article-title: Localization of putative carbonic anhydrases in the marine diatom,
  publication-title: Photosynth Res
– volume: 109
  start-page: 133
  year: 2011
  end-page: 49
  article-title: The carbonic anhydrase isoforms of : intracellular location, expression, and physiological roles
  publication-title: Photosynth Res
– volume: 12
  year: 2014
  article-title: The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing
  publication-title: PLoS Biol
– volume: 4
  start-page: 1581
  year: 2004
  end-page: 90
  article-title: Predotar: a tool for rapidly screening proteomes for N‐terminal targeting sequences
  publication-title: Proteomics
– volume: 33
  start-page: 845
  year: 1997
  end-page: 50
  article-title: Carbonic anhydrase in the marine diatom (Bacillariophyceae)
  publication-title: J Phycol
– volume: 36
  start-page: 1988
  year: 2021
  end-page: 95
  article-title: An overview on the recently discovered iota‐carbonic anhydrases
  publication-title: J Enzyme Inhib Med Chem
– volume: 132
  start-page: 2126
  year: 2003
  end-page: 34
  article-title: An anaplerotic role for mitochondrial carbonic anhydrase in
  publication-title: Plant Physiol
– volume: 8
  year: 2018
  article-title: An update on the metabolic roles of carbonic anhydrases in the model alga
  publication-title: Metabolites
– ident: e_1_2_8_20_1
  doi: 10.1007/s11120-011-9635-3
– ident: e_1_2_8_28_1
  doi: 10.1371/journal.pbio.1001889
– ident: e_1_2_8_30_1
  doi: 10.1093/molbev/mst010
– ident: e_1_2_8_24_1
  doi: 10.3390/ijms21082922
– ident: e_1_2_8_26_1
  doi: 10.1016/j.bbabio.2012.02.014
– ident: e_1_2_8_13_1
  doi: 10.1016/j.bmcl.2014.08.015
– ident: e_1_2_8_42_1
  doi: 10.1002/bies.20638
– ident: e_1_2_8_14_1
  doi: 10.3109/14756366.2015.1059333
– ident: e_1_2_8_8_1
  doi: 10.1038/435042a
– ident: e_1_2_8_37_1
  doi: 10.1016/S1672-0229(06)60016-8
– ident: e_1_2_8_39_1
  doi: 10.1074/jbc.275.8.5521
– ident: e_1_2_8_41_1
  doi: 10.1016/j.algal.2017.10.017
– ident: e_1_2_8_15_1
  doi: 10.1111/j.1365-2958.2005.04560.x
– ident: e_1_2_8_9_1
  doi: 10.1021/bi802246s
– ident: e_1_2_8_21_1
  doi: 10.1105/tpc.109.073726
– ident: e_1_2_8_35_1
  doi: 10.26508/lsa.201900429
– ident: e_1_2_8_44_1
  doi: 10.1093/plphys/kiab351
– ident: e_1_2_8_45_1
  doi: 10.1104/pp.103.023424
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pone.0028458
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1399-3054.2007.01039.x
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1603112113
– ident: e_1_2_8_25_1
  doi: 10.1016/j.bbamcr.2021.118949
– ident: e_1_2_8_7_1
  doi: 10.1080/14756366.2021.1972995
– ident: e_1_2_8_27_1
  doi: 10.3390/ijms22168723
– ident: e_1_2_8_47_1
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_2_8_5_1
  doi: 10.1016/j.molp.2016.09.001
– ident: e_1_2_8_31_1
  doi: 10.1093/bioinformatics/btp348
– ident: e_1_2_8_3_1
  doi: 10.1016/j.plantsci.2017.12.002
– ident: e_1_2_8_36_1
  doi: 10.1002/pmic.200300776
– ident: e_1_2_8_33_1
  doi: 10.1038/nmeth.4285
– ident: e_1_2_8_12_1
  doi: 10.1186/s12915-021-01039-8
– ident: e_1_2_8_46_1
  doi: 10.1093/nar/gky376
– ident: e_1_2_8_10_1
  doi: 10.1038/s41396-019-0426-8
– ident: e_1_2_8_2_1
  doi: 10.3390/metabo7040056
– ident: e_1_2_8_11_1
  doi: 10.1080/14756366.2020.1755852
– ident: e_1_2_8_18_1
  doi: 10.1007/s11120-011-9634-4
– ident: e_1_2_8_4_1
  doi: 10.1042/BCJ20160115
– ident: e_1_2_8_17_1
  doi: 10.3109/14756366.2013.868599
– ident: e_1_2_8_22_1
  doi: 10.1104/pp.104.054148
– ident: e_1_2_8_32_1
  doi: 10.1093/molbev/msaa015
– ident: e_1_2_8_29_1
  doi: 10.1111/j.0022-3646.1997.00845.x
– ident: e_1_2_8_38_1
  doi: 10.1093/bioinformatics/18.2.298
– ident: e_1_2_8_34_1
  doi: 10.1098/rsta.2016.0352
– ident: e_1_2_8_23_1
  doi: 10.1093/jxb/erx173
– ident: e_1_2_8_43_1
  doi: 10.1007/s11120-014-9967-x
– ident: e_1_2_8_6_1
  doi: 10.3390/metabo8010022
SSID ssj0001819
Score 2.4703057
Snippet Carbonic anhydrases (CAs) are a universal enzyme family that catalyses the interconversion of carbon dioxide and bicarbonate, and they are localized in most...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 3051
SubjectTerms algae
Carbon Dioxide - metabolism
carbonic anhydrase
Carbonic Anhydrases - genetics
Carbonic Anhydrases - metabolism
fusion protein
Gene Fusion
Haptophyta - genetics
Haptophyta - metabolism
haptophytes
mitochondria
Plants - metabolism
plastids
Recombinant Proteins - genetics
Title Evolution of a chimeric mitochondrial carbonic anhydrase through gene fusion in a haptophyte alga
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1873-3468.14475
https://www.ncbi.nlm.nih.gov/pubmed/35997667
https://search.proquest.com/docview/2705752292
Volume 596
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJsReEGywlZuMhBBSla1x4iR-7KZOhQkeYBPjKXKcWIlgydQmTN3f4A9zfEnSwqQxXqLUSU9Vny_H34nPBaE3QIpplgaJwyRhji9Cz4lSETlccLXc8Wgs1I7ux0_B7Mz_cE7PB4NfK1FLTZ3si-sb80r-R6swBnpVWbJ30GwnFAbgHPQLR9AwHP9Jx9OfVrzNcswLExl_AY8pmLUy1S05BJ8nus8NL_NlOodlq-vOA5KzkWwWNuCRj3J-qSoNLOtspJI8Vqnr8fTwy-iHzv7pePismPPv_EoT0G_VIi_yYsF7o1a2l5oabusNDJh2k4lW5VnRb0tdN6aH9vsrbjf77esIQlZCO6yJdX2Hhqbt4X5mrGoEEPB80z-nNbvUdLK1-CLeihUFG-SurMjwkd1o7U312E662qg2bVjW62p3t9JbbtbLOswm0dfuoU0SMgoe_ebk5PPXk26BB1JkvCr7T9uKUWNy8If4dbLzlwez7hBpRnP6CD20rgieGFw9RoOs3EY7k5LX1cUSv8U6OFjvumyj-4ft2YOjtkXgDuIdAHElMcctAPEaAHELQNwBEFsAYgVAbACIixJE9ADECoBP0Nnx9PRo5tieHY5QAcNOOhawBgbS8yIZUqaKL40Zp5KkjApBoywMo0RlDnHmAjkN3FQCxSa-TLgPbDbynqKNEmC4h3CQSAnjLuOu8IEYc9-VLBpHgoauDIg_RO_ayY0vTWmW2BThJrHSQ6z0EGs9DNHrdvJjmCK1JwZArppFTELlsBDCyBDtGq10wjzKgKwH4RAdaDXd9itxB51nd_7Gc7TVP00v0EY9b7KXQHfr5JWF32-CyKAX
link.rule.ids 315,786,790,27957,27958
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+a+chimeric+mitochondrial+carbonic+anhydrase+through+gene+fusion+in+a+haptophyte+alga&rft.jtitle=FEBS+letters&rft.au=Hirakawa%2C+Yoshihisa&rft.au=Hanawa%2C+Yutaka&rft.au=Yoneda%2C+Kohei&rft.au=Suzuki%2C+Iwane&rft.date=2022-12-01&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=596&rft.issue=23&rft.spage=3051&rft.epage=3059&rft_id=info:doi/10.1002%2F1873-3468.14475&rft.externalDBID=10.1002%252F1873-3468.14475&rft.externalDocID=FEB214475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon