Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase

Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a c...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 16; pp. e1807495 - n/a
Main Authors Tang, Shuai, Zhang, Yi‐Yang, Zhang, Xia‐Guang, Li, Jun‐Tao, Wang, Xue‐Yin, Yan, Jia‐Wei, Wu, De‐Yin, Zheng, Ming‐Sen, Dong, Quan‐Feng, Mao, Bing‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2. Stable Na plating/stripping electrochemical behaviors are achieved by using the in situ formed sodiophilic sodium‐metal (metal = Au, Sn, Sb) alloy interphase. By simultaneous control over the stripping cut‐off potential and employment of anchored metal particles, Na plating/stripping cycling is extended to 2000 times at 2 mA cm−2 with an average Coulombic efficiency of 99.9% on the sodium‐metal alloy‐based interphase.
AbstractList Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2.
Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm −2 .
Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2. Stable Na plating/stripping electrochemical behaviors are achieved by using the in situ formed sodiophilic sodium‐metal (metal = Au, Sn, Sb) alloy interphase. By simultaneous control over the stripping cut‐off potential and employment of anchored metal particles, Na plating/stripping cycling is extended to 2000 times at 2 mA cm−2 with an average Coulombic efficiency of 99.9% on the sodium‐metal alloy‐based interphase.
Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au-Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M-Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying-dealloying leads to falling-off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low-cost Cu@Sn-NPs and Cu@Sb-MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm .
Author Tang, Shuai
Zhang, Yi‐Yang
Yan, Jia‐Wei
Wu, De‐Yin
Dong, Quan‐Feng
Li, Jun‐Tao
Zheng, Ming‐Sen
Zhang, Xia‐Guang
Mao, Bing‐Wei
Wang, Xue‐Yin
Author_xml – sequence: 1
  givenname: Shuai
  surname: Tang
  fullname: Tang, Shuai
  organization: Xiamen University
– sequence: 2
  givenname: Yi‐Yang
  surname: Zhang
  fullname: Zhang, Yi‐Yang
  organization: Xiamen University
– sequence: 3
  givenname: Xia‐Guang
  surname: Zhang
  fullname: Zhang, Xia‐Guang
  organization: Xiamen University
– sequence: 4
  givenname: Jun‐Tao
  surname: Li
  fullname: Li, Jun‐Tao
  organization: Xiamen University
– sequence: 5
  givenname: Xue‐Yin
  surname: Wang
  fullname: Wang, Xue‐Yin
  organization: Xiamen University
– sequence: 6
  givenname: Jia‐Wei
  surname: Yan
  fullname: Yan, Jia‐Wei
  organization: Xiamen University
– sequence: 7
  givenname: De‐Yin
  surname: Wu
  fullname: Wu, De‐Yin
  organization: Xiamen University
– sequence: 8
  givenname: Ming‐Sen
  surname: Zheng
  fullname: Zheng, Ming‐Sen
  organization: Xiamen University
– sequence: 9
  givenname: Quan‐Feng
  surname: Dong
  fullname: Dong, Quan‐Feng
  email: qfdong@xmu.edu.cn
  organization: Xiamen University
– sequence: 10
  givenname: Bing‐Wei
  orcidid: 0000-0002-9015-0162
  surname: Mao
  fullname: Mao, Bing‐Wei
  email: bwmao@xmu.edu.cn
  organization: Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30811702$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFK0dkiQuXLGM7iePjspS2UoFKC-fIcWZZV04cHEdVpB54BJ6RJ6lX2xaJCydr7G8-jec_IUe975GQ1wyWDIC_122nlxxYBTJXxTOyYAVnWQ6qOCILUKLIVJlXx-RkHG8AQJVQviDHAirGJPAFudtE3TikXzS9djra_gfVfUs3Mdhh2FdnDk0M3uyws2MMM70OvvMRW9rM9LKnGxsnuvZ9eptMtL6nfpsUdOWcn__8-v1Bj4nd-Nb6YWedNakpYhh26f4leb7VbsRXD-cp-f7p7Nv6Irv6en65Xl1lJmdQZI0UUhuFEio0DfAGdc6EzFuVbxVUmlWyZSJXIESOHFuGlYASJW-0AKWEOCXvDt4h-J8TjrFOfzHonO7RT2PNkwG4ZKpM6Nt_0Bs_hT5NV3OeNl5IISBRywNlgh_HgNt6CLbTYa4Z1Ptc6n0u9VMuqeHNg3ZqOmyf8McgEqAOwK11OP9HV68-fl79ld8DPSicKg
CitedBy_id crossref_primary_10_1016_j_xcrp_2021_100374
crossref_primary_10_1002_eem2_12460
crossref_primary_10_1021_acs_nanolett_9b05355
crossref_primary_10_1039_D0CS00033G
crossref_primary_10_1002_adma_202202898
crossref_primary_10_1002_aenm_202102497
crossref_primary_10_1007_s12274_020_2820_y
crossref_primary_10_1016_j_matchemphys_2023_127837
crossref_primary_10_1016_j_jcis_2021_12_076
crossref_primary_10_1002_adfm_202302062
crossref_primary_10_3390_batteries9070345
crossref_primary_10_1016_j_jpowsour_2021_230294
crossref_primary_10_1002_adma_202210447
crossref_primary_10_1002_smll_202107368
crossref_primary_10_1016_j_jechem_2022_08_016
crossref_primary_10_1039_D2NR06120A
crossref_primary_10_1002_adfm_202004613
crossref_primary_10_1007_s11426_020_9808_6
crossref_primary_10_1021_acs_nanolett_1c03844
crossref_primary_10_1016_j_coelec_2020_100671
crossref_primary_10_1016_j_jechem_2021_06_026
crossref_primary_10_1002_aenm_202400367
crossref_primary_10_1016_j_cej_2021_133270
crossref_primary_10_1016_j_orgel_2020_105819
crossref_primary_10_1021_acsenergylett_1c02127
crossref_primary_10_1039_D3EE02372A
crossref_primary_10_1002_eom2_12269
crossref_primary_10_1002_smll_202104021
crossref_primary_10_1016_j_matt_2019_12_020
crossref_primary_10_1002_adma_202311256
crossref_primary_10_1021_acsmaterialslett_9b00118
crossref_primary_10_1002_adma_202102802
crossref_primary_10_1002_aenm_202100359
crossref_primary_10_1016_j_tsf_2024_140291
crossref_primary_10_1016_j_ensm_2020_06_040
crossref_primary_10_1039_D1EE01341F
crossref_primary_10_1016_j_enchem_2024_100117
crossref_primary_10_1016_j_ensm_2021_07_032
crossref_primary_10_1021_acsami_9b10097
crossref_primary_10_1016_j_ensm_2022_03_018
crossref_primary_10_1016_j_cej_2021_134272
crossref_primary_10_1021_acsaem_3c01938
crossref_primary_10_1002_smll_202003815
crossref_primary_10_1016_j_ensm_2022_12_025
crossref_primary_10_1002_adfm_202315989
crossref_primary_10_1021_acs_energyfuels_1c00347
crossref_primary_10_1002_smll_202007578
crossref_primary_10_1002_adfm_202312750
crossref_primary_10_1016_j_powera_2024_100137
crossref_primary_10_1002_adfm_202009605
crossref_primary_10_1016_j_mtener_2024_101565
crossref_primary_10_1039_D0TA04768F
crossref_primary_10_3390_batteries8120272
crossref_primary_10_1039_D0CS00867B
crossref_primary_10_1039_D1TA05270E
crossref_primary_10_1016_j_nanoen_2024_109971
crossref_primary_10_1002_eem2_12350
crossref_primary_10_1016_j_ensm_2020_07_021
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1039_D0TA05298A
crossref_primary_10_1126_sciadv_abm7489
crossref_primary_10_1002_aenm_202101228
crossref_primary_10_1016_j_mtener_2023_101271
crossref_primary_10_1039_D0TA04715E
crossref_primary_10_1039_D0TA02469D
crossref_primary_10_1016_j_jcis_2024_05_094
crossref_primary_10_1016_j_jpowsour_2023_233518
crossref_primary_10_1039_C9TA05176G
crossref_primary_10_1038_s41467_024_47415_0
crossref_primary_10_1021_acsaem_9b02508
crossref_primary_10_1039_D0MA00695E
crossref_primary_10_1021_acsami_2c22068
crossref_primary_10_1002_adma_202204636
crossref_primary_10_1002_smll_202203409
crossref_primary_10_1016_j_cej_2024_153490
crossref_primary_10_1021_jacs_3c11134
crossref_primary_10_1126_sciadv_adh8060
crossref_primary_10_1016_j_jallcom_2022_164762
crossref_primary_10_1021_acs_nanolett_0c01257
crossref_primary_10_1002_aenm_202204125
crossref_primary_10_1002_advs_202003178
crossref_primary_10_1002_aenm_202204402
crossref_primary_10_1016_j_jpowsour_2022_231862
crossref_primary_10_1002_adfm_202313823
crossref_primary_10_1016_j_jpowsour_2021_230653
crossref_primary_10_1007_s12274_023_5889_2
crossref_primary_10_1002_adma_202109767
crossref_primary_10_1002_adma_202406837
crossref_primary_10_1016_j_cej_2022_136917
crossref_primary_10_1016_j_jechem_2021_07_022
crossref_primary_10_1021_acsenergylett_2c01979
crossref_primary_10_1016_j_ensm_2023_103020
crossref_primary_10_1002_adfm_202210206
crossref_primary_10_1007_s40242_021_0449_3
crossref_primary_10_1039_D0EE02203A
crossref_primary_10_1002_smtd_202100833
crossref_primary_10_1021_acsaem_0c00055
crossref_primary_10_1073_pnas_2315871121
crossref_primary_10_1021_acsanm_3c03486
crossref_primary_10_1007_s40843_021_1964_0
crossref_primary_10_1002_adma_202106005
crossref_primary_10_2139_ssrn_4145275
crossref_primary_10_1039_D2NH00152G
crossref_primary_10_1039_D0TA02016H
crossref_primary_10_1016_j_ensm_2024_103631
crossref_primary_10_1039_D1MA00247C
crossref_primary_10_1002_smll_202102126
crossref_primary_10_1002_aenm_202000802
crossref_primary_10_1002_smll_202102400
crossref_primary_10_1063_5_0197966
crossref_primary_10_1002_adfm_202401914
crossref_primary_10_1021_acssuschemeng_9b06534
crossref_primary_10_1021_acsami_2c00530
crossref_primary_10_1016_j_jechem_2022_06_033
crossref_primary_10_1039_D4EE00136B
crossref_primary_10_1021_acs_chemmater_2c03518
crossref_primary_10_1002_adfm_202110280
crossref_primary_10_1007_s00339_024_07659_5
crossref_primary_10_1016_j_nanoen_2023_108814
crossref_primary_10_34133_energymatadv_0063
crossref_primary_10_1002_cey2_299
crossref_primary_10_1016_j_jpowsour_2022_231885
crossref_primary_10_1021_acsaem_0c01260
crossref_primary_10_1002_adfm_202306558
crossref_primary_10_1007_s12613_023_2685_7
crossref_primary_10_1007_s10008_023_05493_y
crossref_primary_10_1021_acsami_1c01571
crossref_primary_10_1039_D0EE02423F
crossref_primary_10_1039_D0TA10884G
crossref_primary_10_1002_eem2_12393
crossref_primary_10_1002_smtd_201900856
crossref_primary_10_1002_adma_202305368
crossref_primary_10_1007_s12274_022_4621_y
crossref_primary_10_1016_j_cej_2021_128997
crossref_primary_10_1039_D3TA01055D
crossref_primary_10_1016_j_jechem_2022_06_026
crossref_primary_10_1002_adma_202301967
crossref_primary_10_1039_C9TA08312J
crossref_primary_10_1149_1945_7111_ac8a1c
crossref_primary_10_1021_acsami_3c09442
crossref_primary_10_1002_sus2_95
crossref_primary_10_1016_j_apsusc_2021_149578
crossref_primary_10_1016_j_ensm_2020_10_028
crossref_primary_10_1016_j_nanoen_2020_105457
crossref_primary_10_1039_D3SC06468A
crossref_primary_10_1021_acs_jpclett_1c02248
Cites_doi 10.1039/C8EE01373J
10.1002/adma.201501527
10.1021/jacs.5b12423
10.1002/aenm.201701261
10.1002/adma.201801334
10.1039/C3EE40795K
10.1039/C5CC00825E
10.1021/jacs.7b01398
10.1021/acscentsci.5b00328
10.1002/adfm.201200691
10.1002/anie.201803049
10.1002/ange.201608607
10.1016/j.nanoen.2018.03.039
10.1002/adma.201504373
10.1002/aenm.201602528
10.1002/adma.201606663
10.1021/acsami.8b10292
10.1002/aenm.201601526
10.1016/j.ensm.2018.05.016
10.1038/s41467-018-03466-8
10.1039/C4TA00106K
10.1038/nenergy.2016.10
10.1002/adma.201700622
10.1016/j.ensm.2018.04.014
10.1016/j.nanoen.2018.03.069
10.1021/acs.nanolett.6b05174
10.1016/j.nanoen.2016.09.013
10.1021/acs.accounts.7b00402
10.1002/adfm.201602353
10.1039/C7CC07485A
10.1038/nnano.2016.32
10.1002/anie.201801818
10.1002/adma.201304126
10.1021/acs.nanolett.7b03185
10.1021/acs.accounts.5b00482
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201807495
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201807495
30811702
ADMA201807495
Genre article
Journal Article
GrantInformation_xml – fundername: NSFC
  funderid: 21621091; 21533006; U1305246
– fundername: MOST
  funderid: 2015CB251102; 2012CB932902
– fundername: NSFC
  grantid: 21621091
– fundername: NSFC
  grantid: 21533006
– fundername: NSFC
  grantid: U1305246
– fundername: MOST
  grantid: 2012CB932902
– fundername: MOST
  grantid: 2015CB251102
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4105-b737ac9e708ecb02bea41374d94f908a187d13490334e2ed1e8306e72ba309933
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Thu Aug 15 22:42:35 EDT 2024
Thu Oct 10 17:58:57 EDT 2024
Thu Nov 21 21:08:59 EST 2024
Wed Oct 16 00:51:18 EDT 2024
Sat Aug 24 01:04:11 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords sodium metal anodes
sodiophilic
alloying
plating/stripping cycles
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-b737ac9e708ecb02bea41374d94f908a187d13490334e2ed1e8306e72ba309933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9015-0162
PMID 30811702
PQID 2210057330
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2187027196
proquest_journals_2210057330
crossref_primary_10_1002_adma_201807495
pubmed_primary_30811702
wiley_primary_10_1002_adma_201807495_ADMA201807495
PublicationCentury 2000
PublicationDate 2019-Apr
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-Apr
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 50
2018; 9
2016 2016; 1 11
2017 2017 2017; 7 7 29
2017 2018; 53 15
2017; 17
2015 2014; 27 2
2018 2018; 30 10
2015 2016; 1 30
2018 2018; 8 48
2017 2016; 17 26
2013 2018 2019 2014; 23 11 16 26
2016 2017 2017; 49 29 139
2016 2016 2014; 128 28 7
2015 2016; 51 138
2018; 48
2018; 57
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_3_3
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_7_3
e_1_2_4_8_2
e_1_2_4_9_1
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_10_2
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_13_1
e_1_2_4_13_2
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_15_2
e_1_2_4_15_3
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_18_2
References_xml – volume: 1 30
  start-page: 449 825
  year: 2015 2016
  publication-title: ACS Cent. Sci. Nano Energy
– volume: 27 2
  start-page: 5343 8668
  year: 2015 2014
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 48
  start-page: 101
  year: 2018
  publication-title: Nano Energy
– volume: 9
  start-page: 1339
  year: 2018
  publication-title: Nat. Commun.
– volume: 49 29 139
  start-page: 231 1700622 7273
  year: 2016 2017 2017
  publication-title: Acc. Chem. Res. Adv. Mater. J. Am. Chem. Soc.
– volume: 50
  start-page: 2642
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 1 11
  start-page: 16010 626
  year: 2016 2016
  publication-title: Nat. Energy Nat. Nanotechnol.
– volume: 30 10
  start-page: 1801334 30417
  year: 2018 2018
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces
– volume: 51 138
  start-page: 7665 1955
  year: 2015 2016
  publication-title: Chem. Commun. J. Am. Chem. Soc.
– volume: 57
  start-page: 9069
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8 48
  start-page: 1701261 369
  year: 2018 2018
  publication-title: Adv. Energy Mater. Nano Energy
– volume: 53 15
  start-page: 12910 274
  year: 2017 2018
  publication-title: Chem. Commun. Energy Storage Mater.
– volume: 17 26
  start-page: 1296 7094
  year: 2017 2016
  publication-title: Nano Lett. Adv. Funct. Mater.
– volume: 128 28 7
  start-page: 15536 7065 513
  year: 2016 2016 2014
  publication-title: Angew. Chem.,Int. Ed. Adv. Mater. Energy Environ. Sci.
– volume: 17
  start-page: 5862
  year: 2017
  publication-title: Nano Lett.
– volume: 23 11 16 26
  start-page: 947 2673 6 1261
  year: 2013 2018 2019 2014
  publication-title: Adv. Funct. Mater. Energy Environ. Sci. Energy Storage Mater. Adv. Mater.
– volume: 7 7 29
  start-page: 1601526 1602528 1606663
  year: 2017 2017 2017
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Adv. Mater.
– volume: 57
  start-page: 7734
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_4_1_2
  doi: 10.1039/C8EE01373J
– ident: e_1_2_4_18_1
  doi: 10.1002/adma.201501527
– ident: e_1_2_4_2_2
  doi: 10.1021/jacs.5b12423
– ident: e_1_2_4_11_1
  doi: 10.1002/aenm.201701261
– ident: e_1_2_4_12_1
  doi: 10.1002/adma.201801334
– ident: e_1_2_4_3_3
  doi: 10.1039/C3EE40795K
– ident: e_1_2_4_2_1
  doi: 10.1039/C5CC00825E
– ident: e_1_2_4_15_3
  doi: 10.1021/jacs.7b01398
– ident: e_1_2_4_4_1
  doi: 10.1021/acscentsci.5b00328
– ident: e_1_2_4_1_1
  doi: 10.1002/adfm.201200691
– ident: e_1_2_4_5_1
  doi: 10.1002/anie.201803049
– ident: e_1_2_4_3_1
  doi: 10.1002/ange.201608607
– ident: e_1_2_4_14_1
  doi: 10.1016/j.nanoen.2018.03.039
– ident: e_1_2_4_3_2
  doi: 10.1002/adma.201504373
– ident: e_1_2_4_7_2
  doi: 10.1002/aenm.201602528
– ident: e_1_2_4_7_3
  doi: 10.1002/adma.201606663
– ident: e_1_2_4_12_2
  doi: 10.1021/acsami.8b10292
– ident: e_1_2_4_7_1
  doi: 10.1002/aenm.201601526
– ident: e_1_2_4_10_2
  doi: 10.1016/j.ensm.2018.05.016
– ident: e_1_2_4_17_1
  doi: 10.1038/s41467-018-03466-8
– ident: e_1_2_4_18_2
  doi: 10.1039/C4TA00106K
– ident: e_1_2_4_13_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_4_15_2
  doi: 10.1002/adma.201700622
– ident: e_1_2_4_1_3
  doi: 10.1016/j.ensm.2018.04.014
– ident: e_1_2_4_11_2
  doi: 10.1016/j.nanoen.2018.03.069
– ident: e_1_2_4_8_1
  doi: 10.1021/acs.nanolett.6b05174
– ident: e_1_2_4_4_2
  doi: 10.1016/j.nanoen.2016.09.013
– ident: e_1_2_4_16_1
  doi: 10.1021/acs.accounts.7b00402
– ident: e_1_2_4_8_2
  doi: 10.1002/adfm.201602353
– ident: e_1_2_4_10_1
  doi: 10.1039/C7CC07485A
– ident: e_1_2_4_13_2
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_4_6_1
  doi: 10.1002/anie.201801818
– ident: e_1_2_4_1_4
  doi: 10.1002/adma.201304126
– ident: e_1_2_4_9_1
  doi: 10.1021/acs.nanolett.7b03185
– ident: e_1_2_4_15_1
  doi: 10.1021/acs.accounts.5b00482
SSID ssj0009606
Score 2.6603594
Snippet Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1807495
SubjectTerms Alloy plating
alloying
Alloys
Antimony
Control stability
Copper
Electrochemistry
Gold
Materials science
plating/stripping cycles
sodiophilic
Sodium
sodium metal anodes
Stripping
Substrates
Thin films
Tin
Title Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807495
https://www.ncbi.nlm.nih.gov/pubmed/30811702
https://www.proquest.com/docview/2210057330
https://search.proquest.com/docview/2187027196
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEIBHqKdyAMpvaEFGQuKU1rGdTXJcoFVBalVRKvUWjR1vW7FKKrp7aMWBR-gz9kmYsTdpFw5IcMufHcdjZ8b2-BuAtzJDrZzK0rJCGqAYk6dImi_ldcTMmYnJPW9O3tsf7R6Zz8f58Z1d_JEPMUy4cc8I_2vu4Ggvtm6hodgEblDGNJeKd5kzO4-toi-3_Cg2zwNsT-dpNTJlT22Uams5-bJW-sPUXLZcg-rZeQjYFzp6nHzbnM_sprv6jef4P1_1CB4s7FIxjg1pDe759jHcv0MrfAI_yDC1Uy_2URywB117IrBtxOHse4A8nIjtGFLH9THkxEHw9fONsJfiUysOz2ZzwRFCe2at6CaUhRhPp93lzc_r96RRKb-uOevOeZ7HiegSeUrXn8LRzvbXD7vpInhD6thzNLWFLtBVvpCld1Yq65H0ZWGaykwqWWJWFg2jEaXWxivfZL6k0YsvlEVNVqvWz2Cl7Vr_AsSI8rCMVB2VyhQuQ-VzJCVbWq0Vok3gXS-8-jwyOupIY1Y112c91GcCG71s60VfvagVjXoDFlIm8Ga4TRXFSyfY-m5Oz1BxaQBPv6sEnsc2MbxKS96sK1UCKkj2L2Woxx_3xsPZy39JtA6rdFxFB6INWCGp-VdkG83s69D-fwESWAT8
link.rule.ids 315,782,786,1377,27931,27932,46301,46725
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB715wAcKFCgoQWMhNRTWsd2Nslxoa220F1VtJW4RbbjLVVXSQW7hyIOPALPyJMwY29SFg5I9BgndhyPJzNjf_4G4DVPtBRWJHFeaAxQlEpjjZYvpn3ExKqxSh0dTh6OeoMz9e5j2qIJ6SxM4IfoFtxIM_z_mhScFqR3b1hDdeWJgxKicynSZVhFnReE6tv7cMMgRQ66p9uTaVz0VN7yNnKxu1h_0S795Wwu-q7e-BysgWm7HTAnlzuzqdmxX_9gdLzVdz2A-3PXlPXDXHoIS65-BPd-Iyxch2_om5qJYyPNjglEV58zXVfsZPrZ8zycs_2QVce2aeTYsYf7uYqZa3ZYs5OL6YxRktCWtpY1Y2yC9SeT5vrn9x9v0Khie0110VzRUo9lARX5Ccsfw9nB_unbQTzP3xBbAo_GJpOZtoXLeO6s4cI4jSYzU1WhxgXPdZJnFbEjcimVE65KXI4BjMuE0RIdVymfwErd1G4DWA_bMMSq2suFymyihUs12tncSCm0NhFst9IrrwJNRxkImUVJ41l24xnBVivccq6uX0qBga9nhuQRvOpu40DR7omuXTPDZ7C7GMPjHyuCp2FSdK-SnM7rchGB8KL9Rx_K_t6w3109-59KL-HO4HR4VB4djt5vwl0sLwKeaAtWUILuObpKU_PCK8MvaEEJGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlXl0Dc0LW1dCYlTWMd2XsflsQJaVqsCErfIdryAukpW7e6Bqgd-Ar-RX8LY3gSWHirBMU7sOB5P5ht7_A3AGo0kZ5pFYZZLdFCEiEOJli-0-4iRFkMRG3s4-aCf7B6L_ZP45M4pfs8P0S64Wc1w_2ur4ONy2LklDZWl4w2KLJtLHi_AU5HgZLWw6MctgZTF545tj8dhnoisoW2krDNff94s_YM156Grsz29lyCbXvuQk58b04na0H_uETo-5rNewYsZMCVdP5NewxNTvYGlO3SFb-EvIlM1MqQvycCG0FWnRFYlOZz8ciwPp2TH59TRTRI5MnDBfqYk6oLsVeTwfDIlNkVoQ1pL6iE2QbqjUX1xfXm1iSYV26vL83psF3o08TGRZ1j-Do57O0dbu-Ese0OobehoqFKeSp2blGZGK8qUkWgwU1HmYpjTTEZZWlpuRMq5MMyUkcnQfTEpU5IjbOV8GRarujLvgSTYhrKcqknGRKojyUws0cpminMmpQpgvRFeMfYkHYWnY2aFHc-iHc8AVhvZFjNl_V0wdHsdLyQN4Gt7GwfK7p3IytRTfAa7ix48_q8CWPFzon0Vp_a0LmUBMCfZ__Sh6G4fdNurDw-p9AWeDbZ7xfe9_reP8ByLcx9MtAqLKEDzCXHSRH12qnADJGsHvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Na+Plating+and+Stripping+Electrochemistry+Promoted+by+In+Situ+Construction+of+an+Alloy%E2%80%90Based+Sodiophilic+Interphase&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tang%2C+Shuai&rft.au=Yi%E2%80%90Yang+Zhang&rft.au=Xia%E2%80%90Guang+Zhang&rft.au=Jun%E2%80%90Tao+Li&rft.date=2019-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201807495&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon