Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase
Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a c...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 16; pp. e1807495 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2.
Stable Na plating/stripping electrochemical behaviors are achieved by using the in situ formed sodiophilic sodium‐metal (metal = Au, Sn, Sb) alloy interphase. By simultaneous control over the stripping cut‐off potential and employment of anchored metal particles, Na plating/stripping cycling is extended to 2000 times at 2 mA cm−2 with an average Coulombic efficiency of 99.9% on the sodium‐metal alloy‐based interphase. |
---|---|
AbstractList | Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2. Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm −2 . Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au–Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M–Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying–dealloying leads to falling‐off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low‐cost Cu@Sn‐NPs and Cu@Sb‐MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm−2. Stable Na plating/stripping electrochemical behaviors are achieved by using the in situ formed sodiophilic sodium‐metal (metal = Au, Sn, Sb) alloy interphase. By simultaneous control over the stripping cut‐off potential and employment of anchored metal particles, Na plating/stripping cycling is extended to 2000 times at 2 mA cm−2 with an average Coulombic efficiency of 99.9% on the sodium‐metal alloy‐based interphase. Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic Au-Na alloy interphase on a Cu current collector, involving a sputtered Au thin layer, is shown to enable efficient Na plating/stripping for a certain period of time. Herein, electrochemical behaviors of Na plating on different substrates are explored, and it is revealed that the sodiophilic interphase can be achieved universally by in situ formation of M-Na (M = Au, Sn, and Sb) alloys during Na plating prior to Na bulk deposition in the initial cycle. Moreover, it is found that repetitive alloying-dealloying leads to falling-off of thin film sodiophilic materials and thus limits the lifespan of efficient Na cycling. Therefore, an approach is further developed by employing particles of sodiophilic materials combined with the control over the cutoff potential, which significantly improves the stability of Na plating/stripping process. Especially, the low-cost Cu@Sn-NPs and Cu@Sb-MPs composite current collectors allow Na plating and stripping to cycle for 2000 and 1700 times with the average efficiency of 99.9% at 2 mA cm . |
Author | Tang, Shuai Zhang, Yi‐Yang Yan, Jia‐Wei Wu, De‐Yin Dong, Quan‐Feng Li, Jun‐Tao Zheng, Ming‐Sen Zhang, Xia‐Guang Mao, Bing‐Wei Wang, Xue‐Yin |
Author_xml | – sequence: 1 givenname: Shuai surname: Tang fullname: Tang, Shuai organization: Xiamen University – sequence: 2 givenname: Yi‐Yang surname: Zhang fullname: Zhang, Yi‐Yang organization: Xiamen University – sequence: 3 givenname: Xia‐Guang surname: Zhang fullname: Zhang, Xia‐Guang organization: Xiamen University – sequence: 4 givenname: Jun‐Tao surname: Li fullname: Li, Jun‐Tao organization: Xiamen University – sequence: 5 givenname: Xue‐Yin surname: Wang fullname: Wang, Xue‐Yin organization: Xiamen University – sequence: 6 givenname: Jia‐Wei surname: Yan fullname: Yan, Jia‐Wei organization: Xiamen University – sequence: 7 givenname: De‐Yin surname: Wu fullname: Wu, De‐Yin organization: Xiamen University – sequence: 8 givenname: Ming‐Sen surname: Zheng fullname: Zheng, Ming‐Sen organization: Xiamen University – sequence: 9 givenname: Quan‐Feng surname: Dong fullname: Dong, Quan‐Feng email: qfdong@xmu.edu.cn organization: Xiamen University – sequence: 10 givenname: Bing‐Wei orcidid: 0000-0002-9015-0162 surname: Mao fullname: Mao, Bing‐Wei email: bwmao@xmu.edu.cn organization: Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30811702$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFK0dkiQuXLGM7iePjspS2UoFKC-fIcWZZV04cHEdVpB54BJ6RJ6lX2xaJCydr7G8-jec_IUe975GQ1wyWDIC_122nlxxYBTJXxTOyYAVnWQ6qOCILUKLIVJlXx-RkHG8AQJVQviDHAirGJPAFudtE3TikXzS9djra_gfVfUs3Mdhh2FdnDk0M3uyws2MMM70OvvMRW9rM9LKnGxsnuvZ9eptMtL6nfpsUdOWcn__8-v1Bj4nd-Nb6YWedNakpYhh26f4leb7VbsRXD-cp-f7p7Nv6Irv6en65Xl1lJmdQZI0UUhuFEio0DfAGdc6EzFuVbxVUmlWyZSJXIESOHFuGlYASJW-0AKWEOCXvDt4h-J8TjrFOfzHonO7RT2PNkwG4ZKpM6Nt_0Bs_hT5NV3OeNl5IISBRywNlgh_HgNt6CLbTYa4Z1Ptc6n0u9VMuqeHNg3ZqOmyf8McgEqAOwK11OP9HV68-fl79ld8DPSicKg |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2021_100374 crossref_primary_10_1002_eem2_12460 crossref_primary_10_1021_acs_nanolett_9b05355 crossref_primary_10_1039_D0CS00033G crossref_primary_10_1002_adma_202202898 crossref_primary_10_1002_aenm_202102497 crossref_primary_10_1007_s12274_020_2820_y crossref_primary_10_1016_j_matchemphys_2023_127837 crossref_primary_10_1016_j_jcis_2021_12_076 crossref_primary_10_1002_adfm_202302062 crossref_primary_10_3390_batteries9070345 crossref_primary_10_1016_j_jpowsour_2021_230294 crossref_primary_10_1002_adma_202210447 crossref_primary_10_1002_smll_202107368 crossref_primary_10_1016_j_jechem_2022_08_016 crossref_primary_10_1039_D2NR06120A crossref_primary_10_1002_adfm_202004613 crossref_primary_10_1007_s11426_020_9808_6 crossref_primary_10_1021_acs_nanolett_1c03844 crossref_primary_10_1016_j_coelec_2020_100671 crossref_primary_10_1016_j_jechem_2021_06_026 crossref_primary_10_1002_aenm_202400367 crossref_primary_10_1016_j_cej_2021_133270 crossref_primary_10_1016_j_orgel_2020_105819 crossref_primary_10_1021_acsenergylett_1c02127 crossref_primary_10_1039_D3EE02372A crossref_primary_10_1002_eom2_12269 crossref_primary_10_1002_smll_202104021 crossref_primary_10_1016_j_matt_2019_12_020 crossref_primary_10_1002_adma_202311256 crossref_primary_10_1021_acsmaterialslett_9b00118 crossref_primary_10_1002_adma_202102802 crossref_primary_10_1002_aenm_202100359 crossref_primary_10_1016_j_tsf_2024_140291 crossref_primary_10_1016_j_ensm_2020_06_040 crossref_primary_10_1039_D1EE01341F crossref_primary_10_1016_j_enchem_2024_100117 crossref_primary_10_1016_j_ensm_2021_07_032 crossref_primary_10_1021_acsami_9b10097 crossref_primary_10_1016_j_ensm_2022_03_018 crossref_primary_10_1016_j_cej_2021_134272 crossref_primary_10_1021_acsaem_3c01938 crossref_primary_10_1002_smll_202003815 crossref_primary_10_1016_j_ensm_2022_12_025 crossref_primary_10_1002_adfm_202315989 crossref_primary_10_1021_acs_energyfuels_1c00347 crossref_primary_10_1002_smll_202007578 crossref_primary_10_1002_adfm_202312750 crossref_primary_10_1016_j_powera_2024_100137 crossref_primary_10_1002_adfm_202009605 crossref_primary_10_1016_j_mtener_2024_101565 crossref_primary_10_1039_D0TA04768F crossref_primary_10_3390_batteries8120272 crossref_primary_10_1039_D0CS00867B crossref_primary_10_1039_D1TA05270E crossref_primary_10_1016_j_nanoen_2024_109971 crossref_primary_10_1002_eem2_12350 crossref_primary_10_1016_j_ensm_2020_07_021 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1039_D0TA05298A crossref_primary_10_1126_sciadv_abm7489 crossref_primary_10_1002_aenm_202101228 crossref_primary_10_1016_j_mtener_2023_101271 crossref_primary_10_1039_D0TA04715E crossref_primary_10_1039_D0TA02469D crossref_primary_10_1016_j_jcis_2024_05_094 crossref_primary_10_1016_j_jpowsour_2023_233518 crossref_primary_10_1039_C9TA05176G crossref_primary_10_1038_s41467_024_47415_0 crossref_primary_10_1021_acsaem_9b02508 crossref_primary_10_1039_D0MA00695E crossref_primary_10_1021_acsami_2c22068 crossref_primary_10_1002_adma_202204636 crossref_primary_10_1002_smll_202203409 crossref_primary_10_1016_j_cej_2024_153490 crossref_primary_10_1021_jacs_3c11134 crossref_primary_10_1126_sciadv_adh8060 crossref_primary_10_1016_j_jallcom_2022_164762 crossref_primary_10_1021_acs_nanolett_0c01257 crossref_primary_10_1002_aenm_202204125 crossref_primary_10_1002_advs_202003178 crossref_primary_10_1002_aenm_202204402 crossref_primary_10_1016_j_jpowsour_2022_231862 crossref_primary_10_1002_adfm_202313823 crossref_primary_10_1016_j_jpowsour_2021_230653 crossref_primary_10_1007_s12274_023_5889_2 crossref_primary_10_1002_adma_202109767 crossref_primary_10_1002_adma_202406837 crossref_primary_10_1016_j_cej_2022_136917 crossref_primary_10_1016_j_jechem_2021_07_022 crossref_primary_10_1021_acsenergylett_2c01979 crossref_primary_10_1016_j_ensm_2023_103020 crossref_primary_10_1002_adfm_202210206 crossref_primary_10_1007_s40242_021_0449_3 crossref_primary_10_1039_D0EE02203A crossref_primary_10_1002_smtd_202100833 crossref_primary_10_1021_acsaem_0c00055 crossref_primary_10_1073_pnas_2315871121 crossref_primary_10_1021_acsanm_3c03486 crossref_primary_10_1007_s40843_021_1964_0 crossref_primary_10_1002_adma_202106005 crossref_primary_10_2139_ssrn_4145275 crossref_primary_10_1039_D2NH00152G crossref_primary_10_1039_D0TA02016H crossref_primary_10_1016_j_ensm_2024_103631 crossref_primary_10_1039_D1MA00247C crossref_primary_10_1002_smll_202102126 crossref_primary_10_1002_aenm_202000802 crossref_primary_10_1002_smll_202102400 crossref_primary_10_1063_5_0197966 crossref_primary_10_1002_adfm_202401914 crossref_primary_10_1021_acssuschemeng_9b06534 crossref_primary_10_1021_acsami_2c00530 crossref_primary_10_1016_j_jechem_2022_06_033 crossref_primary_10_1039_D4EE00136B crossref_primary_10_1021_acs_chemmater_2c03518 crossref_primary_10_1002_adfm_202110280 crossref_primary_10_1007_s00339_024_07659_5 crossref_primary_10_1016_j_nanoen_2023_108814 crossref_primary_10_34133_energymatadv_0063 crossref_primary_10_1002_cey2_299 crossref_primary_10_1016_j_jpowsour_2022_231885 crossref_primary_10_1021_acsaem_0c01260 crossref_primary_10_1002_adfm_202306558 crossref_primary_10_1007_s12613_023_2685_7 crossref_primary_10_1007_s10008_023_05493_y crossref_primary_10_1021_acsami_1c01571 crossref_primary_10_1039_D0EE02423F crossref_primary_10_1039_D0TA10884G crossref_primary_10_1002_eem2_12393 crossref_primary_10_1002_smtd_201900856 crossref_primary_10_1002_adma_202305368 crossref_primary_10_1007_s12274_022_4621_y crossref_primary_10_1016_j_cej_2021_128997 crossref_primary_10_1039_D3TA01055D crossref_primary_10_1016_j_jechem_2022_06_026 crossref_primary_10_1002_adma_202301967 crossref_primary_10_1039_C9TA08312J crossref_primary_10_1149_1945_7111_ac8a1c crossref_primary_10_1021_acsami_3c09442 crossref_primary_10_1002_sus2_95 crossref_primary_10_1016_j_apsusc_2021_149578 crossref_primary_10_1016_j_ensm_2020_10_028 crossref_primary_10_1016_j_nanoen_2020_105457 crossref_primary_10_1039_D3SC06468A crossref_primary_10_1021_acs_jpclett_1c02248 |
Cites_doi | 10.1039/C8EE01373J 10.1002/adma.201501527 10.1021/jacs.5b12423 10.1002/aenm.201701261 10.1002/adma.201801334 10.1039/C3EE40795K 10.1039/C5CC00825E 10.1021/jacs.7b01398 10.1021/acscentsci.5b00328 10.1002/adfm.201200691 10.1002/anie.201803049 10.1002/ange.201608607 10.1016/j.nanoen.2018.03.039 10.1002/adma.201504373 10.1002/aenm.201602528 10.1002/adma.201606663 10.1021/acsami.8b10292 10.1002/aenm.201601526 10.1016/j.ensm.2018.05.016 10.1038/s41467-018-03466-8 10.1039/C4TA00106K 10.1038/nenergy.2016.10 10.1002/adma.201700622 10.1016/j.ensm.2018.04.014 10.1016/j.nanoen.2018.03.069 10.1021/acs.nanolett.6b05174 10.1016/j.nanoen.2016.09.013 10.1021/acs.accounts.7b00402 10.1002/adfm.201602353 10.1039/C7CC07485A 10.1038/nnano.2016.32 10.1002/anie.201801818 10.1002/adma.201304126 10.1021/acs.nanolett.7b03185 10.1021/acs.accounts.5b00482 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201807495 |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adma_201807495 30811702 ADMA201807495 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: NSFC funderid: 21621091; 21533006; U1305246 – fundername: MOST funderid: 2015CB251102; 2012CB932902 – fundername: NSFC grantid: 21621091 – fundername: NSFC grantid: 21533006 – fundername: NSFC grantid: U1305246 – fundername: MOST grantid: 2012CB932902 – fundername: MOST grantid: 2015CB251102 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMNL AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4105-b737ac9e708ecb02bea41374d94f908a187d13490334e2ed1e8306e72ba309933 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Thu Aug 15 22:42:35 EDT 2024 Thu Oct 10 17:58:57 EDT 2024 Thu Nov 21 21:08:59 EST 2024 Wed Oct 16 00:51:18 EDT 2024 Sat Aug 24 01:04:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | sodium metal anodes sodiophilic alloying plating/stripping cycles |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4105-b737ac9e708ecb02bea41374d94f908a187d13490334e2ed1e8306e72ba309933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9015-0162 |
PMID | 30811702 |
PQID | 2210057330 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2187027196 proquest_journals_2210057330 crossref_primary_10_1002_adma_201807495 pubmed_primary_30811702 wiley_primary_10_1002_adma_201807495_ADMA201807495 |
PublicationCentury | 2000 |
PublicationDate | 2019-Apr |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-Apr |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 50 2018; 9 2016 2016; 1 11 2017 2017 2017; 7 7 29 2017 2018; 53 15 2017; 17 2015 2014; 27 2 2018 2018; 30 10 2015 2016; 1 30 2018 2018; 8 48 2017 2016; 17 26 2013 2018 2019 2014; 23 11 16 26 2016 2017 2017; 49 29 139 2016 2016 2014; 128 28 7 2015 2016; 51 138 2018; 48 2018; 57 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_3_3 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_7_3 e_1_2_4_8_2 e_1_2_4_9_1 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_10_1 e_1_2_4_10_2 e_1_2_4_11_1 e_1_2_4_11_2 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_13_1 e_1_2_4_13_2 e_1_2_4_14_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_15_2 e_1_2_4_15_3 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_18_2 |
References_xml | – volume: 1 30 start-page: 449 825 year: 2015 2016 publication-title: ACS Cent. Sci. Nano Energy – volume: 27 2 start-page: 5343 8668 year: 2015 2014 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 48 start-page: 101 year: 2018 publication-title: Nano Energy – volume: 9 start-page: 1339 year: 2018 publication-title: Nat. Commun. – volume: 49 29 139 start-page: 231 1700622 7273 year: 2016 2017 2017 publication-title: Acc. Chem. Res. Adv. Mater. J. Am. Chem. Soc. – volume: 50 start-page: 2642 year: 2017 publication-title: Acc. Chem. Res. – volume: 1 11 start-page: 16010 626 year: 2016 2016 publication-title: Nat. Energy Nat. Nanotechnol. – volume: 30 10 start-page: 1801334 30417 year: 2018 2018 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces – volume: 51 138 start-page: 7665 1955 year: 2015 2016 publication-title: Chem. Commun. J. Am. Chem. Soc. – volume: 57 start-page: 9069 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 48 start-page: 1701261 369 year: 2018 2018 publication-title: Adv. Energy Mater. Nano Energy – volume: 53 15 start-page: 12910 274 year: 2017 2018 publication-title: Chem. Commun. Energy Storage Mater. – volume: 17 26 start-page: 1296 7094 year: 2017 2016 publication-title: Nano Lett. Adv. Funct. Mater. – volume: 128 28 7 start-page: 15536 7065 513 year: 2016 2016 2014 publication-title: Angew. Chem.,Int. Ed. Adv. Mater. Energy Environ. Sci. – volume: 17 start-page: 5862 year: 2017 publication-title: Nano Lett. – volume: 23 11 16 26 start-page: 947 2673 6 1261 year: 2013 2018 2019 2014 publication-title: Adv. Funct. Mater. Energy Environ. Sci. Energy Storage Mater. Adv. Mater. – volume: 7 7 29 start-page: 1601526 1602528 1606663 year: 2017 2017 2017 publication-title: Adv. Energy Mater. Adv. Energy Mater. Adv. Mater. – volume: 57 start-page: 7734 year: 2018 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_4_1_2 doi: 10.1039/C8EE01373J – ident: e_1_2_4_18_1 doi: 10.1002/adma.201501527 – ident: e_1_2_4_2_2 doi: 10.1021/jacs.5b12423 – ident: e_1_2_4_11_1 doi: 10.1002/aenm.201701261 – ident: e_1_2_4_12_1 doi: 10.1002/adma.201801334 – ident: e_1_2_4_3_3 doi: 10.1039/C3EE40795K – ident: e_1_2_4_2_1 doi: 10.1039/C5CC00825E – ident: e_1_2_4_15_3 doi: 10.1021/jacs.7b01398 – ident: e_1_2_4_4_1 doi: 10.1021/acscentsci.5b00328 – ident: e_1_2_4_1_1 doi: 10.1002/adfm.201200691 – ident: e_1_2_4_5_1 doi: 10.1002/anie.201803049 – ident: e_1_2_4_3_1 doi: 10.1002/ange.201608607 – ident: e_1_2_4_14_1 doi: 10.1016/j.nanoen.2018.03.039 – ident: e_1_2_4_3_2 doi: 10.1002/adma.201504373 – ident: e_1_2_4_7_2 doi: 10.1002/aenm.201602528 – ident: e_1_2_4_7_3 doi: 10.1002/adma.201606663 – ident: e_1_2_4_12_2 doi: 10.1021/acsami.8b10292 – ident: e_1_2_4_7_1 doi: 10.1002/aenm.201601526 – ident: e_1_2_4_10_2 doi: 10.1016/j.ensm.2018.05.016 – ident: e_1_2_4_17_1 doi: 10.1038/s41467-018-03466-8 – ident: e_1_2_4_18_2 doi: 10.1039/C4TA00106K – ident: e_1_2_4_13_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_4_15_2 doi: 10.1002/adma.201700622 – ident: e_1_2_4_1_3 doi: 10.1016/j.ensm.2018.04.014 – ident: e_1_2_4_11_2 doi: 10.1016/j.nanoen.2018.03.069 – ident: e_1_2_4_8_1 doi: 10.1021/acs.nanolett.6b05174 – ident: e_1_2_4_4_2 doi: 10.1016/j.nanoen.2016.09.013 – ident: e_1_2_4_16_1 doi: 10.1021/acs.accounts.7b00402 – ident: e_1_2_4_8_2 doi: 10.1002/adfm.201602353 – ident: e_1_2_4_10_1 doi: 10.1039/C7CC07485A – ident: e_1_2_4_13_2 doi: 10.1038/nnano.2016.32 – ident: e_1_2_4_6_1 doi: 10.1002/anie.201801818 – ident: e_1_2_4_1_4 doi: 10.1002/adma.201304126 – ident: e_1_2_4_9_1 doi: 10.1021/acs.nanolett.7b03185 – ident: e_1_2_4_15_1 doi: 10.1021/acs.accounts.5b00482 |
SSID | ssj0009606 |
Score | 2.6603594 |
Snippet | Sodium metal anodes are poor due to the reversibility of Na plating/stripping, which hinders their practical applications. A strategy to form a sodiophilic... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e1807495 |
SubjectTerms | Alloy plating alloying Alloys Antimony Control stability Copper Electrochemistry Gold Materials science plating/stripping cycles sodiophilic Sodium sodium metal anodes Stripping Substrates Thin films Tin |
Title | Stable Na Plating and Stripping Electrochemistry Promoted by In Situ Construction of an Alloy‐Based Sodiophilic Interphase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201807495 https://www.ncbi.nlm.nih.gov/pubmed/30811702 https://www.proquest.com/docview/2210057330 https://search.proquest.com/docview/2187027196 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEIBHqKdyAMpvaEFGQuKU1rGdTXJcoFVBalVRKvUWjR1vW7FKKrp7aMWBR-gz9kmYsTdpFw5IcMufHcdjZ8b2-BuAtzJDrZzK0rJCGqAYk6dImi_ldcTMmYnJPW9O3tsf7R6Zz8f58Z1d_JEPMUy4cc8I_2vu4Ggvtm6hodgEblDGNJeKd5kzO4-toi-3_Cg2zwNsT-dpNTJlT22Uams5-bJW-sPUXLZcg-rZeQjYFzp6nHzbnM_sprv6jef4P1_1CB4s7FIxjg1pDe759jHcv0MrfAI_yDC1Uy_2URywB117IrBtxOHse4A8nIjtGFLH9THkxEHw9fONsJfiUysOz2ZzwRFCe2at6CaUhRhPp93lzc_r96RRKb-uOevOeZ7HiegSeUrXn8LRzvbXD7vpInhD6thzNLWFLtBVvpCld1Yq65H0ZWGaykwqWWJWFg2jEaXWxivfZL6k0YsvlEVNVqvWz2Cl7Vr_AsSI8rCMVB2VyhQuQ-VzJCVbWq0Vok3gXS-8-jwyOupIY1Y112c91GcCG71s60VfvagVjXoDFlIm8Ga4TRXFSyfY-m5Oz1BxaQBPv6sEnsc2MbxKS96sK1UCKkj2L2Woxx_3xsPZy39JtA6rdFxFB6INWCGp-VdkG83s69D-fwESWAT8 |
link.rule.ids | 315,782,786,1377,27931,27932,46301,46725 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB715wAcKFCgoQWMhNRTWsd2Nslxoa220F1VtJW4RbbjLVVXSQW7hyIOPALPyJMwY29SFg5I9BgndhyPJzNjf_4G4DVPtBRWJHFeaAxQlEpjjZYvpn3ExKqxSh0dTh6OeoMz9e5j2qIJ6SxM4IfoFtxIM_z_mhScFqR3b1hDdeWJgxKicynSZVhFnReE6tv7cMMgRQ66p9uTaVz0VN7yNnKxu1h_0S795Wwu-q7e-BysgWm7HTAnlzuzqdmxX_9gdLzVdz2A-3PXlPXDXHoIS65-BPd-Iyxch2_om5qJYyPNjglEV58zXVfsZPrZ8zycs_2QVce2aeTYsYf7uYqZa3ZYs5OL6YxRktCWtpY1Y2yC9SeT5vrn9x9v0Khie0110VzRUo9lARX5Ccsfw9nB_unbQTzP3xBbAo_GJpOZtoXLeO6s4cI4jSYzU1WhxgXPdZJnFbEjcimVE65KXI4BjMuE0RIdVymfwErd1G4DWA_bMMSq2suFymyihUs12tncSCm0NhFst9IrrwJNRxkImUVJ41l24xnBVivccq6uX0qBga9nhuQRvOpu40DR7omuXTPDZ7C7GMPjHyuCp2FSdK-SnM7rchGB8KL9Rx_K_t6w3109-59KL-HO4HR4VB4djt5vwl0sLwKeaAtWUILuObpKU_PCK8MvaEEJGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKlXl0Dc0LW1dCYlTWMd2XsflsQJaVqsCErfIdryAukpW7e6Bqgd-Ar-RX8LY3gSWHirBMU7sOB5P5ht7_A3AGo0kZ5pFYZZLdFCEiEOJli-0-4iRFkMRG3s4-aCf7B6L_ZP45M4pfs8P0S64Wc1w_2ur4ONy2LklDZWl4w2KLJtLHi_AU5HgZLWw6MctgZTF545tj8dhnoisoW2krDNff94s_YM156Grsz29lyCbXvuQk58b04na0H_uETo-5rNewYsZMCVdP5NewxNTvYGlO3SFb-EvIlM1MqQvycCG0FWnRFYlOZz8ciwPp2TH59TRTRI5MnDBfqYk6oLsVeTwfDIlNkVoQ1pL6iE2QbqjUX1xfXm1iSYV26vL83psF3o08TGRZ1j-Do57O0dbu-Ese0OobehoqFKeSp2blGZGK8qUkWgwU1HmYpjTTEZZWlpuRMq5MMyUkcnQfTEpU5IjbOV8GRarujLvgSTYhrKcqknGRKojyUws0cpminMmpQpgvRFeMfYkHYWnY2aFHc-iHc8AVhvZFjNl_V0wdHsdLyQN4Gt7GwfK7p3IytRTfAa7ix48_q8CWPFzon0Vp_a0LmUBMCfZ__Sh6G4fdNurDw-p9AWeDbZ7xfe9_reP8ByLcx9MtAqLKEDzCXHSRH12qnADJGsHvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Na+Plating+and+Stripping+Electrochemistry+Promoted+by+In+Situ+Construction+of+an+Alloy%E2%80%90Based+Sodiophilic+Interphase&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tang%2C+Shuai&rft.au=Yi%E2%80%90Yang+Zhang&rft.au=Xia%E2%80%90Guang+Zhang&rft.au=Jun%E2%80%90Tao+Li&rft.date=2019-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=16&rft_id=info:doi/10.1002%2Fadma.201807495&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |