Identifying the Key Role of Pyridinic‐N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER
For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose e...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 23; pp. e1800005 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201800005 |
Cover
Loading…
Abstract | For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts.
An innovative strategy based on laser irradiation is developed to selectively regulate relative contents of pyridinic and pyrrolic nitrogen in NiCo2O4/N‐graphene hybrids. Strong chemical bonding forms between nitrogen and cobalt, and pyridinic‐NCo bonds, instead of pyrrolic‐NCo bonds, are identified to predominantly contribute to synergistic catalysis, leading to substantially enhanced oxygen electrocatalytic activities, outperforming a combination of benchmark noble metal catalysts. |
---|---|
AbstractList | For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo
O
NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts. For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2 O4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2 O4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts. For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts. An innovative strategy based on laser irradiation is developed to selectively regulate relative contents of pyridinic and pyrrolic nitrogen in NiCo2O4/N‐graphene hybrids. Strong chemical bonding forms between nitrogen and cobalt, and pyridinic‐NCo bonds, instead of pyrrolic‐NCo bonds, are identified to predominantly contribute to synergistic catalysis, leading to substantially enhanced oxygen electrocatalytic activities, outperforming a combination of benchmark noble metal catalysts. For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts. For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo 2 O 4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different Δ E among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts. |
Author | Liu, Zi‐Wei Luo, Jun Han, Xiao‐Peng Wang, Xue‐Rui Liu, Jie‐Yu Yang, Jing Wang, Wei‐Chao Qiao, Shi‐Zhang Du, Xi‐Wen |
Author_xml | – sequence: 1 givenname: Xue‐Rui surname: Wang fullname: Wang, Xue‐Rui organization: Tianjin University – sequence: 2 givenname: Jie‐Yu surname: Liu fullname: Liu, Jie‐Yu organization: Nankai University – sequence: 3 givenname: Zi‐Wei surname: Liu fullname: Liu, Zi‐Wei organization: Tianjin University – sequence: 4 givenname: Wei‐Chao surname: Wang fullname: Wang, Wei‐Chao email: weichaowang@nankai.edu.cn organization: Nankai University – sequence: 5 givenname: Jun surname: Luo fullname: Luo, Jun organization: Tianjin University of Technology – sequence: 6 givenname: Xiao‐Peng surname: Han fullname: Han, Xiao‐Peng organization: School of Materials Science and Engineering Tianjin University – sequence: 7 givenname: Xi‐Wen surname: Du fullname: Du, Xi‐Wen organization: Tianjin University – sequence: 8 givenname: Shi‐Zhang surname: Qiao fullname: Qiao, Shi‐Zhang organization: The University of Adelaide – sequence: 9 givenname: Jing orcidid: 0000-0002-3731-368X surname: Yang fullname: Yang, Jing email: yang_jing@tju.edu.cn organization: Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29675934$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompsdvq1aMh8dLLbGEGGOa4rlttbLtm1DNhgKk0M1CBbTO3_gQT_2F_iWy21aSJkZBweZ43fN97APacdwaA1xjNMULlsdSjnJcIc5QPfQZmmJa4IKihe2CGmooWDSN8HxzEeJWJhiH2AuyXDatpU5EZGE-1ccn2k3WXMH038JOZYOsHA30PP0_Bauusur_7eXF_92vp4Tvv9Ba1Dn6ZnAmXNiar4GowKgWvZJLDFG2EvQ-wNTcmRNvlsHXbHq9X7UvwvJdDNK8e3kPw7WT1dfmxOFt_OF0uzgpFMKKF7BBhrCSaE91jk2-jpKprpAipMCtrrgnVdYU570pDJOOoywPVPe86xrGuDsHRLvc6-B8bE5MYbVRmGKQzfhNFiUqeV8E5zejbJ-iV3wSXf5cpUjccVZRl6s0DtelGo8V1sKMMk3hcZAbIDlDBxxhML5RNMlnvUpB2EBiJbV9i25f401fW5k-0x-R_Cs1OuLWDmf5Di8X788Vf9zdu0agy |
CitedBy_id | crossref_primary_10_1002_cctc_201901601 crossref_primary_10_1016_j_cej_2021_132199 crossref_primary_10_1016_j_ccr_2021_214209 crossref_primary_10_1021_acsaem_2c03959 crossref_primary_10_1002_adfm_202411457 crossref_primary_10_1016_j_ijhydene_2022_08_011 crossref_primary_10_1016_j_jpowsour_2020_229196 crossref_primary_10_1016_j_cej_2020_125487 crossref_primary_10_1002_smll_202306273 crossref_primary_10_1007_s12274_022_5197_2 crossref_primary_10_1002_smll_202306396 crossref_primary_10_1016_j_jcis_2021_03_145 crossref_primary_10_1039_D4QI02269F crossref_primary_10_1016_j_jcat_2023_115124 crossref_primary_10_1016_j_jcis_2020_02_086 crossref_primary_10_1002_smll_202002998 crossref_primary_10_1021_acscatal_0c05497 crossref_primary_10_1002_adma_202008606 crossref_primary_10_1002_adma_202404393 crossref_primary_10_1007_s12274_020_2977_4 crossref_primary_10_1021_acsnano_1c03465 crossref_primary_10_1016_j_jcis_2023_05_106 crossref_primary_10_1002_adfm_202103558 crossref_primary_10_1039_D2NR03918D crossref_primary_10_1002_cssc_202301779 crossref_primary_10_1039_D0CC00700E crossref_primary_10_1002_adfm_202308898 crossref_primary_10_1002_celc_201901106 crossref_primary_10_1002_adsu_202100343 crossref_primary_10_1016_j_cej_2022_138914 crossref_primary_10_1016_j_jcis_2021_12_051 crossref_primary_10_1002_aesr_202000106 crossref_primary_10_1016_j_jcis_2021_09_127 crossref_primary_10_1016_j_cej_2024_148598 crossref_primary_10_1002_aenm_202101619 crossref_primary_10_1016_j_nanoen_2023_109149 crossref_primary_10_1016_j_jpowsour_2021_229570 crossref_primary_10_3390_app10093165 crossref_primary_10_1002_smll_202207413 crossref_primary_10_1016_j_jallcom_2022_168517 crossref_primary_10_1039_C9CY00746F crossref_primary_10_1021_acssuschemeng_2c01790 crossref_primary_10_1039_D2TA02764J crossref_primary_10_1002_aenm_201802263 crossref_primary_10_1021_acsestengg_0c00004 crossref_primary_10_1016_j_jcis_2021_11_025 crossref_primary_10_1016_j_nanoen_2020_105010 crossref_primary_10_1016_j_jcis_2021_02_007 crossref_primary_10_1002_adma_202002170 crossref_primary_10_1007_s12274_023_6404_5 crossref_primary_10_1021_acssuschemeng_0c02271 crossref_primary_10_1002_chem_202001282 crossref_primary_10_1002_smll_202100129 crossref_primary_10_1021_acsaem_1c04081 crossref_primary_10_1016_j_mseb_2023_117146 crossref_primary_10_1002_aenm_202202215 crossref_primary_10_1002_adfm_202306333 crossref_primary_10_1002_asia_202300547 crossref_primary_10_1007_s10853_023_08551_y crossref_primary_10_1016_j_jcis_2022_04_043 crossref_primary_10_1016_j_carbon_2019_06_007 crossref_primary_10_1016_j_jcis_2023_01_065 crossref_primary_10_1016_j_jelechem_2024_118165 crossref_primary_10_26599_NRE_2023_9120092 crossref_primary_10_1002_smll_202002427 crossref_primary_10_1016_j_ceramint_2021_11_123 crossref_primary_10_1016_j_jpowsour_2019_227356 crossref_primary_10_1039_C9TA12255A crossref_primary_10_1002_smll_202203356 crossref_primary_10_1039_D1EE02764F crossref_primary_10_3390_molecules28145526 crossref_primary_10_1002_smll_202103747 crossref_primary_10_1039_C8TA06361C crossref_primary_10_1002_ange_201900240 crossref_primary_10_1016_j_apcatb_2024_124906 crossref_primary_10_1016_j_ensm_2019_05_018 crossref_primary_10_1002_aenm_202202108 crossref_primary_10_1016_j_fuel_2022_123198 crossref_primary_10_1039_D1RA02704B crossref_primary_10_1039_D0TA05510G crossref_primary_10_1016_j_jallcom_2021_162604 crossref_primary_10_1002_smll_202411273 crossref_primary_10_1002_chem_202403235 crossref_primary_10_1016_j_jpowsour_2020_227900 crossref_primary_10_1002_ente_201900123 crossref_primary_10_1002_smll_202103613 crossref_primary_10_1039_C9TA08064C crossref_primary_10_1002_chem_201804610 crossref_primary_10_1002_smll_202402104 crossref_primary_10_1002_smll_201906057 crossref_primary_10_1002_smll_202002518 crossref_primary_10_1002_celc_202101252 crossref_primary_10_1002_batt_201800098 crossref_primary_10_1002_celc_202001138 crossref_primary_10_1039_D1SE01702K crossref_primary_10_1021_acsami_1c17352 crossref_primary_10_1002_cctc_202301195 crossref_primary_10_1021_acs_nanolett_1c00077 crossref_primary_10_1016_j_carbon_2018_12_055 crossref_primary_10_3390_catal15030219 crossref_primary_10_1039_D4CS00844H crossref_primary_10_1021_acs_energyfuels_3c01992 crossref_primary_10_1002_cctc_201901875 crossref_primary_10_1002_anie_202308704 crossref_primary_10_1039_C9TA04569D crossref_primary_10_1038_s41598_023_31854_8 crossref_primary_10_1021_acs_inorgchem_4c01264 crossref_primary_10_1016_j_mtphys_2021_100353 crossref_primary_10_1149_1945_7111_ac2281 crossref_primary_10_1039_D0SE01636E crossref_primary_10_1039_D4NA00203B crossref_primary_10_1016_j_apsusc_2021_151247 crossref_primary_10_1039_C9CY01717H crossref_primary_10_1039_C9NR10785A crossref_primary_10_1039_D0EN00848F crossref_primary_10_1016_j_jcis_2021_11_101 crossref_primary_10_1002_slct_202201823 crossref_primary_10_1039_D3CY01719B crossref_primary_10_1002_adfm_201909035 crossref_primary_10_1016_j_jcis_2023_05_164 crossref_primary_10_1002_elan_201900110 crossref_primary_10_1021_acsanm_9b00683 crossref_primary_10_1007_s10800_024_02234_5 crossref_primary_10_1016_j_jcis_2020_07_055 crossref_primary_10_1039_C9NJ01792E crossref_primary_10_1002_aenm_202301580 crossref_primary_10_1016_j_jcis_2024_07_055 crossref_primary_10_1039_D2DT01718K crossref_primary_10_1039_C9CY02183C crossref_primary_10_1016_j_cej_2023_142030 crossref_primary_10_1016_j_jechem_2020_05_053 crossref_primary_10_1039_D4CY01468E crossref_primary_10_1039_D0TA10514G crossref_primary_10_1016_j_jpowsour_2020_229335 crossref_primary_10_1002_anie_202319983 crossref_primary_10_1016_j_jallcom_2024_173710 crossref_primary_10_1021_acssuschemeng_9b05238 crossref_primary_10_1039_D2DT02374A crossref_primary_10_1016_j_electacta_2018_10_169 crossref_primary_10_1002_smll_202207474 crossref_primary_10_1039_D3NJ00547J crossref_primary_10_1007_s40843_019_9476_5 crossref_primary_10_1021_acscatal_4c03068 crossref_primary_10_1016_j_jcis_2022_02_009 crossref_primary_10_1016_j_apsusc_2023_157225 crossref_primary_10_1038_s41467_024_46389_3 crossref_primary_10_1016_j_cej_2020_125799 crossref_primary_10_1039_C9CC07275F crossref_primary_10_1016_j_cej_2023_145524 crossref_primary_10_1039_D3CY00189J crossref_primary_10_1002_anie_201900240 crossref_primary_10_1039_D1NR03147C crossref_primary_10_1002_aesr_202000067 crossref_primary_10_1039_D2TA04817E crossref_primary_10_1016_j_carbon_2018_12_099 crossref_primary_10_1002_aenm_202002592 crossref_primary_10_1016_j_jelechem_2019_113436 crossref_primary_10_1039_D3TA00042G crossref_primary_10_1007_s12598_024_02676_y crossref_primary_10_3390_catal14080506 crossref_primary_10_1002_smll_202500341 crossref_primary_10_1016_j_ensm_2019_12_013 crossref_primary_10_1016_j_jcis_2022_03_067 crossref_primary_10_1016_j_cej_2020_127961 crossref_primary_10_1016_j_seppur_2021_119783 crossref_primary_10_1021_acs_jpcc_3c07749 crossref_primary_10_1021_acssuschemeng_9b04164 crossref_primary_10_1002_celc_201901754 crossref_primary_10_1016_j_cej_2021_133210 crossref_primary_10_1021_acsenergylett_4c03562 crossref_primary_10_1016_j_jelechem_2022_117000 crossref_primary_10_1016_j_electacta_2019_06_121 crossref_primary_10_1016_j_jelechem_2023_117663 crossref_primary_10_3389_fchem_2019_00747 crossref_primary_10_1016_j_jpowsour_2020_228594 crossref_primary_10_1002_smsc_202300066 crossref_primary_10_1016_j_jpowsour_2021_230721 crossref_primary_10_1016_j_ijhydene_2025_01_137 crossref_primary_10_1021_acsnano_1c02950 crossref_primary_10_1007_s12274_022_4154_4 crossref_primary_10_1016_j_xcrp_2022_100973 crossref_primary_10_1007_s11664_023_10398_7 crossref_primary_10_1016_j_jallcom_2021_161929 crossref_primary_10_1002_adma_202008784 crossref_primary_10_1016_j_apsusc_2020_147080 crossref_primary_10_1039_C9TA07481C crossref_primary_10_1002_smll_202304863 crossref_primary_10_1002_eom2_12067 crossref_primary_10_1016_j_chempr_2021_11_008 crossref_primary_10_1021_acs_jpcc_2c07219 crossref_primary_10_1002_adma_201905679 crossref_primary_10_1016_j_apsusc_2019_03_021 crossref_primary_10_1021_acsaem_0c00215 crossref_primary_10_1039_D4NR02845G crossref_primary_10_1002_ange_201814262 crossref_primary_10_1016_j_jcis_2022_09_014 crossref_primary_10_1016_j_jcis_2024_06_066 crossref_primary_10_1021_acs_jpcc_1c09657 crossref_primary_10_1002_smll_201902090 crossref_primary_10_1002_aenm_202301158 crossref_primary_10_1021_acsami_9b20532 crossref_primary_10_1016_j_jechem_2021_10_013 crossref_primary_10_1149_1945_7111_abf79d crossref_primary_10_1039_D1CS00590A crossref_primary_10_1039_D1GC04028F crossref_primary_10_1039_D1QM00658D crossref_primary_10_1002_cjoc_202000445 crossref_primary_10_1039_D1TA00885D crossref_primary_10_1039_D1QI01605A crossref_primary_10_1016_j_cej_2022_135849 crossref_primary_10_1016_j_jcis_2021_09_045 crossref_primary_10_1103_PhysRevApplied_15_044053 crossref_primary_10_1039_D0NR03495A crossref_primary_10_1002_adfm_202423476 crossref_primary_10_1002_adma_201808281 crossref_primary_10_1002_adma_201801526 crossref_primary_10_1016_j_cej_2024_151699 crossref_primary_10_1039_C9NR07632H crossref_primary_10_1016_j_apsusc_2019_01_218 crossref_primary_10_1016_j_cej_2021_132041 crossref_primary_10_1002_advs_202102209 crossref_primary_10_1002_cphc_202400312 crossref_primary_10_1016_j_ijhydene_2024_05_414 crossref_primary_10_1007_s12274_021_3292_4 crossref_primary_10_1002_aenm_202002762 crossref_primary_10_1016_j_apmate_2021_11_009 crossref_primary_10_1016_j_materresbull_2020_110873 crossref_primary_10_1002_celc_201900709 crossref_primary_10_1039_C8QI01240G crossref_primary_10_1007_s11244_024_01988_8 crossref_primary_10_1016_j_electacta_2019_03_196 crossref_primary_10_1039_D2NR05827H crossref_primary_10_1002_inf2_12218 crossref_primary_10_1002_anie_202117815 crossref_primary_10_1021_acssuschemeng_9b02473 crossref_primary_10_1016_j_ijhydene_2021_11_146 crossref_primary_10_1002_cey2_472 crossref_primary_10_1016_j_jechem_2021_01_032 crossref_primary_10_1039_D0NR00307G crossref_primary_10_1007_s12274_023_5939_9 crossref_primary_10_1016_j_jcis_2019_02_044 crossref_primary_10_1002_aenm_201901573 crossref_primary_10_1002_cctc_202402145 crossref_primary_10_1021_acsami_8b18496 crossref_primary_10_1007_s11705_022_2266_8 crossref_primary_10_1021_acsaem_2c02062 crossref_primary_10_1002_ange_202319983 crossref_primary_10_1039_D2CS00698G crossref_primary_10_1002_admi_201801699 crossref_primary_10_1016_j_carbon_2019_09_001 crossref_primary_10_1016_j_cej_2022_139430 crossref_primary_10_1016_j_cej_2022_138225 crossref_primary_10_1021_acsami_2c19663 crossref_primary_10_1088_1361_6528_ad0301 crossref_primary_10_1021_acs_inorgchem_9b01089 crossref_primary_10_1007_s40843_022_2070_7 crossref_primary_10_1039_D0NR07513B crossref_primary_10_1016_j_jcis_2022_01_127 crossref_primary_10_1007_s12274_020_3127_8 crossref_primary_10_1039_D0EE02800B crossref_primary_10_1002_cctc_201901385 crossref_primary_10_1016_j_mtphys_2020_100303 crossref_primary_10_1039_C9TA02894C crossref_primary_10_1016_j_jpowsour_2019_226919 crossref_primary_10_1002_slct_202201212 crossref_primary_10_1039_D1MA00809A crossref_primary_10_1002_anie_202400577 crossref_primary_10_1039_C9TA10644H crossref_primary_10_1039_D3NJ05928F crossref_primary_10_1007_s41918_023_00181_x crossref_primary_10_1016_j_cej_2021_133509 crossref_primary_10_1016_j_jcis_2021_07_152 crossref_primary_10_1016_j_ccr_2023_215411 crossref_primary_10_3389_fchem_2024_1381144 crossref_primary_10_1002_adma_201903955 crossref_primary_10_1002_aenm_202200906 crossref_primary_10_1016_j_ijhydene_2021_05_080 crossref_primary_10_1021_acsaem_1c01677 crossref_primary_10_1007_s40843_020_1276_8 crossref_primary_10_1021_acsami_4c12071 crossref_primary_10_1016_j_ijhydene_2021_11_184 crossref_primary_10_1038_s41467_023_43678_1 crossref_primary_10_1016_j_colsurfa_2022_130347 crossref_primary_10_1016_j_ijhydene_2021_08_200 crossref_primary_10_1039_D3TA07609A crossref_primary_10_1039_D3DT02818F crossref_primary_10_1039_D2SC04898A crossref_primary_10_1002_aenm_202101242 crossref_primary_10_1149_1945_7111_abad6f crossref_primary_10_1021_acs_jpca_0c02449 crossref_primary_10_1002_smll_202403098 crossref_primary_10_1016_j_jechem_2022_03_005 crossref_primary_10_1039_D0CY01546F crossref_primary_10_1039_D4TA06772J crossref_primary_10_1007_s11595_023_2817_y crossref_primary_10_1002_ange_201908760 crossref_primary_10_1016_j_carbon_2021_06_029 crossref_primary_10_1039_C8CC07725H crossref_primary_10_1016_j_apsusc_2023_158266 crossref_primary_10_1039_D3SE00011G crossref_primary_10_1021_acs_accounts_3c00177 crossref_primary_10_1039_D1CS00135C crossref_primary_10_1002_ange_202117815 crossref_primary_10_1039_D2NJ00473A crossref_primary_10_1088_2053_1591_abf460 crossref_primary_10_1016_j_ijhydene_2021_05_182 crossref_primary_10_1021_acs_langmuir_4c04716 crossref_primary_10_1002_ange_202101562 crossref_primary_10_1021_acsami_0c18684 crossref_primary_10_1002_ange_202308704 crossref_primary_10_1016_j_jechem_2020_05_002 crossref_primary_10_1002_batt_201900052 crossref_primary_10_1016_j_apcatb_2024_124115 crossref_primary_10_1021_acs_energyfuels_4c00988 crossref_primary_10_1039_D4SE01348D crossref_primary_10_1039_C9TA09873A crossref_primary_10_3390_nano14231924 crossref_primary_10_1002_advs_201901614 crossref_primary_10_1016_j_cej_2020_124428 crossref_primary_10_1016_j_ccr_2020_213468 crossref_primary_10_1103_PhysRevMaterials_8_095801 crossref_primary_10_1002_smll_201906735 crossref_primary_10_1039_D4CC02081B crossref_primary_10_1021_acsami_9b04451 crossref_primary_10_1039_D1QI00205H crossref_primary_10_1002_aenm_202400347 crossref_primary_10_1002_smll_202404085 crossref_primary_10_1002_anie_202101562 crossref_primary_10_1021_acsami_1c01451 crossref_primary_10_1002_cssc_202401552 crossref_primary_10_1016_j_flatc_2023_100554 crossref_primary_10_1039_D3CP04012G crossref_primary_10_1002_adma_202304713 crossref_primary_10_1021_acsami_0c21859 crossref_primary_10_1016_j_nanoen_2019_104288 crossref_primary_10_1021_acsami_2c08524 crossref_primary_10_1039_D0NR05511E crossref_primary_10_1039_D0TA10423J crossref_primary_10_1039_D3EE03059H crossref_primary_10_1002_adma_202107421 crossref_primary_10_1016_j_ccr_2023_215381 crossref_primary_10_1002_smsc_202100044 crossref_primary_10_1021_acsami_8b16920 crossref_primary_10_1063_5_0017398 crossref_primary_10_1039_D0QI01155J crossref_primary_10_1002_anie_201814262 crossref_primary_10_1016_j_matt_2020_05_001 crossref_primary_10_1016_j_cej_2021_132915 crossref_primary_10_1007_s12274_022_4371_x crossref_primary_10_1016_j_inoche_2020_107802 crossref_primary_10_1016_j_jcis_2022_07_180 crossref_primary_10_1038_s41893_024_01300_2 crossref_primary_10_1039_D2NJ04551F crossref_primary_10_1007_s11051_021_05176_7 crossref_primary_10_1039_D0TA09537K crossref_primary_10_1088_1361_6528_ac7ed1 crossref_primary_10_1002_anie_201908760 crossref_primary_10_1039_C9TA02256B crossref_primary_10_1007_s10853_019_04327_5 crossref_primary_10_1002_asia_202100752 crossref_primary_10_1039_C9CY01597C crossref_primary_10_1021_acs_chemmater_9b02893 crossref_primary_10_1002_aenm_202301918 crossref_primary_10_1002_aenm_201902115 crossref_primary_10_1021_acscatal_9b02274 crossref_primary_10_1002_adma_202502894 crossref_primary_10_1002_admi_202000808 crossref_primary_10_1016_j_clay_2022_106556 crossref_primary_10_1039_C9QM00385A crossref_primary_10_1039_D1RA08566B crossref_primary_10_1021_acsami_9b11337 crossref_primary_10_1002_advs_202402916 crossref_primary_10_1016_j_ijhydene_2019_10_211 crossref_primary_10_1002_ange_202400577 crossref_primary_10_3390_catal10111326 crossref_primary_10_1002_smll_202401504 crossref_primary_10_1039_D0EE03635H crossref_primary_10_1021_acs_est_4c00601 crossref_primary_10_1016_j_jcis_2023_12_023 crossref_primary_10_1039_D0TA12414A crossref_primary_10_1016_j_jcis_2022_12_083 crossref_primary_10_1039_D4NR04236K crossref_primary_10_1021_acssuschemeng_9b02426 crossref_primary_10_1016_j_ces_2023_119596 crossref_primary_10_1039_C9QI01251F crossref_primary_10_1016_j_scib_2022_08_022 crossref_primary_10_1002_smll_202411894 crossref_primary_10_1039_D3DT00989K crossref_primary_10_1002_adma_202302467 crossref_primary_10_1021_acsaem_9b01931 crossref_primary_10_1021_acssuschemeng_8b04919 crossref_primary_10_1007_s10853_020_05671_7 crossref_primary_10_1016_j_jcis_2021_10_144 crossref_primary_10_1016_j_cej_2022_137441 crossref_primary_10_1016_j_jechem_2020_08_066 crossref_primary_10_1002_smtd_201900050 crossref_primary_10_1021_acscatal_0c04415 crossref_primary_10_1021_acs_jpcc_4c03941 crossref_primary_10_1016_j_jcis_2022_11_119 crossref_primary_10_1021_acs_jpcc_9b06669 crossref_primary_10_1088_1361_6528_ab97d5 crossref_primary_10_1016_j_jallcom_2024_175024 crossref_primary_10_1021_acssuschemeng_2c02919 crossref_primary_10_1007_s40843_023_2464_8 crossref_primary_10_1021_acssuschemeng_0c07332 crossref_primary_10_1016_j_cej_2021_130654 crossref_primary_10_1002_celc_202101301 crossref_primary_10_1149_1945_7111_ad45c4 crossref_primary_10_1021_acs_energyfuels_1c00388 crossref_primary_10_1016_j_ijhydene_2021_09_082 crossref_primary_10_1149_2_0581906jes crossref_primary_10_1021_acsami_1c10671 crossref_primary_10_1021_acsnano_4c06404 crossref_primary_10_1002_cey2_60 crossref_primary_10_1039_C8TA08337A crossref_primary_10_1021_acsami_0c22336 crossref_primary_10_1016_j_carbon_2019_01_039 crossref_primary_10_1016_j_jelechem_2022_116931 crossref_primary_10_1088_1361_6528_ab7ef9 crossref_primary_10_1021_acs_energyfuels_1c00275 crossref_primary_10_1002_asia_201901571 crossref_primary_10_1002_adsu_202400885 crossref_primary_10_1007_s12274_021_3580_z crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1021_acsestengg_0c00039 crossref_primary_10_1039_D0TA06435A crossref_primary_10_1021_acssuschemeng_0c08328 crossref_primary_10_1002_admi_202000740 crossref_primary_10_1016_j_carbon_2019_09_025 crossref_primary_10_1039_D3TA00576C crossref_primary_10_1039_C9TA06446J crossref_primary_10_1016_j_cej_2022_137111 crossref_primary_10_1016_j_jpowsour_2020_228707 crossref_primary_10_1007_s40843_018_9359_7 crossref_primary_10_1039_C9TA06411G crossref_primary_10_1039_C8NR07945E crossref_primary_10_1039_D0TA05117A crossref_primary_10_1016_j_apsusc_2022_155624 crossref_primary_10_1016_j_apsusc_2022_153446 crossref_primary_10_1002_smll_202411574 crossref_primary_10_1021_acs_langmuir_3c03260 |
Cites_doi | 10.1103/PhysRevB.76.165119 10.1126/science.aad0832 10.1016/j.nanoen.2015.02.025 10.1021/acs.accounts.6b00635 10.1039/C5EE00682A 10.1002/adfm.201302535 10.1002/adma.201604685 10.1039/c3ee42383b 10.1002/adfm.201605717 10.1021/la970776m 10.1016/j.nanoen.2016.12.008 10.1103/PhysRevB.83.245204 10.1002/anie.201511032 10.1038/nenergy.2015.6 10.1021/ja500432h 10.1002/adma.201506197 10.1002/aenm.201601172 10.1021/ja305623m 10.1002/adma.201601406 10.1021/acs.jpcc.6b03096 10.1002/adfm.201601492 10.1021/nn404444r 10.1021/nl501645g 10.1002/aenm.201200013 10.1039/c3ta01515g 10.1021/acsnano.7b00417 10.1002/adfm.201302940 10.1002/aenm.201700193 10.1039/C3EE42696C 10.1002/adma.201701410 10.1002/anie.201702430 10.1002/aenm.201700544 10.1088/0022-3727/47/40/405001 10.1039/C4CS00470A 10.1002/smll.201603903 10.1038/nmat3087 10.1016/j.carbon.2012.01.057 10.1126/science.1208759 10.1038/nmat3191 10.1016/j.jelechem.2006.11.008 10.1038/nchem.1301 10.1021/nl301409h 10.1038/451652a 10.1021/ja902256a 10.1021/acsnano.6b04252 10.1021/ja501293x 10.1039/C4TA01611D |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201800005 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 29675934 10_1002_adma_201800005 ADMA201800005 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City funderid: 14JCYBJC17200 – fundername: National Key Basic Research Program of China funderid: 2014CB931703 – fundername: Program for New Century Excellent Talents in University funderid: NCET‐13‐0414 – fundername: National Natural Science Foundation of China funderid: 51572188; 51271129 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4105-ab046624d84df1ef1e9cac770c44316278d45d73188b2e4a680b6757f8bb681d3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:49:39 EDT 2025 Sun Jul 13 04:20:18 EDT 2025 Mon Jul 21 05:52:10 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Tue Jul 01 00:44:41 EDT 2025 Wed Aug 20 07:26:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | pyrrolic nitrogen hybrid electrocatalysts pyridinic nitrogen spinels graphenes |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4105-ab046624d84df1ef1e9cac770c44316278d45d73188b2e4a680b6757f8bb681d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3731-368X |
PMID | 29675934 |
PQID | 2047980356 |
PQPubID | 2045203 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2028960885 proquest_journals_2047980356 pubmed_primary_29675934 crossref_citationtrail_10_1002_adma_201800005 crossref_primary_10_1002_adma_201800005 wiley_primary_10_1002_adma_201800005_ADMA201800005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2012 2014 2007 2015; 28 4 136 607 44 2012; 50 2017 2017 2017 2017 2017; 27 29 56 31 7 2017; 7 2016 2014; 28 14 2012; 134 2013; 1 2016 2016 2017; 1 55 13 2014; 2 2016 2014 2014 2007; 120 24 47 76 2014 2014 2013 2013; 7 24 6 7 2008 2012 2012 2017; 451 11 2 29 1997; 13 2011; 83 2017 2016 2015; 11 7 13 2012 2011; 12 333 2016 2014; 351 136 2015; 8 2017 2011; 50 10 2016; 26 2009 2016; 131 10 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_21_3 e_1_2_4_21_2 e_1_2_4_1_1 e_1_2_4_1_3 e_1_2_4_2_2 e_1_2_4_3_1 e_1_2_4_1_2 e_1_2_4_2_1 e_1_2_4_4_2 e_1_2_4_5_1 e_1_2_4_1_4 e_1_2_4_2_3 e_1_2_4_3_2 e_1_2_4_4_1 e_1_2_4_4_4 e_1_2_4_5_3 e_1_2_4_7_1 e_1_2_4_4_3 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_5_5 e_1_2_4_9_1 e_1_2_4_4_5 e_1_2_4_5_4 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_12_1 e_1_2_4_13_1 e_1_2_4_14_1 e_1_2_4_14_2 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_16_3 e_1_2_4_17_2 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_17_1 e_1_2_4_17_4 e_1_2_4_19_2 e_1_2_4_16_4 e_1_2_4_17_3 e_1_2_4_18_2 e_1_2_4_19_1 |
References_xml | – volume: 27 29 56 31 7 start-page: 1605717 1701410 7121 541 1700544 year: 2017 2017 2017 2017 2017 publication-title: Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. Nano Energy Adv. Energy Mater. – volume: 131 10 start-page: 7542 8738 year: 2009 2016 publication-title: J. Am. Chem. Soc. ACS Nano – volume: 134 start-page: 15849 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 1 55 13 start-page: 15006 2488 1603903 year: 2016 2016 2017 publication-title: Nat. Energy Angew. Chem., Int. Ed. Small – volume: 8 start-page: 1799 year: 2015 publication-title: Energy Environ. Sci. – volume: 120 24 47 76 start-page: 14892 610 405001 165119 year: 2016 2014 2014 2007 publication-title: J. Phys. Chem. C Adv. Funct. Mater. J. Phys. D: Appl. Phys. Phys. Rev. B – volume: 12 333 start-page: 4025 999 year: 2012 2011 publication-title: Nano Lett. Science – volume: 13 start-page: 6267 year: 1997 publication-title: Langmuir – volume: 2 start-page: 12475 year: 2014 publication-title: J. Mater. Chem. A – volume: 351 136 start-page: 361 4394 year: 2016 2014 publication-title: Science J. Am. Chem. Soc. – volume: 11 7 13 start-page: 2275 1601172 387 year: 2017 2016 2015 publication-title: ACS Nano Adv. Energy Mater. Nano Energy – volume: 28 4 136 607 44 start-page: 3777 418 7805 83 2060 year: 2016 2012 2014 2007 2015 publication-title: Adv. Mater. Nat. Chem. J. Am. Chem. Soc. J. Electroanal. Chem. Chem. Soc. Rev. – volume: 50 10 start-page: 915 780 year: 2017 2011 publication-title: Acc. Chem. Res. Nat. Mater. – volume: 1 start-page: 3865 year: 2013 publication-title: J. Mater. Chem. A – volume: 28 14 start-page: 6845 5509 year: 2016 2014 publication-title: Adv. Mater. Nano Lett. – volume: 50 start-page: 2337 year: 2012 publication-title: Carbon – volume: 451 11 2 29 start-page: 652 19 816 1604685 year: 2008 2012 2012 2017 publication-title: Nature Nat. Mater. Adv. Energy Mater. Adv. Mater. – volume: 83 start-page: 245204 year: 2011 publication-title: Phys. Rev. B – volume: 7 start-page: 1700193 year: 2017 publication-title: Adv. Energy Mater. – volume: 26 start-page: 5708 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 24 6 7 start-page: 609 2072 3693 10190 year: 2014 2014 2013 2013 publication-title: Energy Environ. Sci. Adv. Funct. Mater. Energy Environ. Sci. ACS Nano – ident: e_1_2_4_16_4 doi: 10.1103/PhysRevB.76.165119 – ident: e_1_2_4_18_1 doi: 10.1126/science.aad0832 – ident: e_1_2_4_21_3 doi: 10.1016/j.nanoen.2015.02.025 – ident: e_1_2_4_7_1 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_4_9_1 doi: 10.1039/C5EE00682A – ident: e_1_2_4_16_2 doi: 10.1002/adfm.201302535 – ident: e_1_2_4_1_4 doi: 10.1002/adma.201604685 – ident: e_1_2_4_17_3 doi: 10.1039/c3ee42383b – ident: e_1_2_4_5_1 doi: 10.1002/adfm.201605717 – ident: e_1_2_4_11_1 doi: 10.1021/la970776m – ident: e_1_2_4_5_4 doi: 10.1016/j.nanoen.2016.12.008 – ident: e_1_2_4_20_1 doi: 10.1103/PhysRevB.83.245204 – ident: e_1_2_4_2_2 doi: 10.1002/anie.201511032 – ident: e_1_2_4_2_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_4_18_2 doi: 10.1021/ja500432h – ident: e_1_2_4_4_1 doi: 10.1002/adma.201506197 – ident: e_1_2_4_21_2 doi: 10.1002/aenm.201601172 – ident: e_1_2_4_6_1 doi: 10.1021/ja305623m – ident: e_1_2_4_14_1 doi: 10.1002/adma.201601406 – ident: e_1_2_4_16_1 doi: 10.1021/acs.jpcc.6b03096 – ident: e_1_2_4_10_1 doi: 10.1002/adfm.201601492 – ident: e_1_2_4_17_4 doi: 10.1021/nn404444r – ident: e_1_2_4_14_2 doi: 10.1021/nl501645g – ident: e_1_2_4_1_3 doi: 10.1002/aenm.201200013 – ident: e_1_2_4_12_1 doi: 10.1039/c3ta01515g – ident: e_1_2_4_21_1 doi: 10.1021/acsnano.7b00417 – ident: e_1_2_4_17_2 doi: 10.1002/adfm.201302940 – ident: e_1_2_4_8_1 doi: 10.1002/aenm.201700193 – ident: e_1_2_4_17_1 doi: 10.1039/C3EE42696C – ident: e_1_2_4_5_2 doi: 10.1002/adma.201701410 – ident: e_1_2_4_5_3 doi: 10.1002/anie.201702430 – ident: e_1_2_4_5_5 doi: 10.1002/aenm.201700544 – ident: e_1_2_4_16_3 doi: 10.1088/0022-3727/47/40/405001 – ident: e_1_2_4_4_5 doi: 10.1039/C4CS00470A – ident: e_1_2_4_2_3 doi: 10.1002/smll.201603903 – ident: e_1_2_4_7_2 doi: 10.1038/nmat3087 – ident: e_1_2_4_13_1 doi: 10.1016/j.carbon.2012.01.057 – ident: e_1_2_4_19_2 doi: 10.1126/science.1208759 – ident: e_1_2_4_1_2 doi: 10.1038/nmat3191 – ident: e_1_2_4_4_4 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_4_4_2 doi: 10.1038/nchem.1301 – ident: e_1_2_4_19_1 doi: 10.1021/nl301409h – ident: e_1_2_4_1_1 doi: 10.1038/451652a – ident: e_1_2_4_3_1 doi: 10.1021/ja902256a – ident: e_1_2_4_3_2 doi: 10.1021/acsnano.6b04252 – ident: e_1_2_4_4_3 doi: 10.1021/ja501293x – ident: e_1_2_4_15_1 doi: 10.1039/C4TA01611D |
SSID | ssj0009606 |
Score | 2.6937928 |
Snippet | For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g.,... For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g.,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800005 |
SubjectTerms | Batteries Bonding Carbonaceous materials Catalysis Catalysts Density functional theory Dopants Electrocatalysis Electrocatalysts graphenes hybrid electrocatalysts Hybrid systems Materials science Metal air batteries Nitrogen Noble metals Oxygen evolution reactions Oxygen reduction reactions pyridinic nitrogen pyrrolic nitrogen spinels Synergistic effect Zinc-oxygen batteries |
Title | Identifying the Key Role of Pyridinic‐N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800005 https://www.ncbi.nlm.nih.gov/pubmed/29675934 https://www.proquest.com/docview/2047980356 https://www.proquest.com/docview/2028960885 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvTQAi3tAq1cqVJPYUPsxM5xBYtQK6BKQeIWeRxHQtCkgt3DcuIRkHhDnoQZezewVAiplXJw5LHjv7E_OzOfGfsqQdocHESAi2EklRCRSRVgyNVQm1jU3m9t_yDbO5bfT9KTR178gR-iO3AjzfDzNSm4gcv-A2moqTxv0JamKZe8zMlgi1BR8cAfRfDck-2JNMozqWesjXHSn08-vyr9BTXnkatfenbfMjMrdLA4Odscj2DTXj3hc_yfWi2xN1NcygdhIC2zV65ZYa8fsRW-Y7-DU693jOKIG_kPN-FFe-54W_Ofk4vTipws765vDu6ub7dbTjcWk-hpw39NyMXQc0LzYbh4x58bER0KR9jMC-fNQwAzOyyK_uGweM-Od4dH23vR9LaGyJKpaGQAt9pZIistq3rL4ZNbY5WKrSR3-0TpSqaVwjlEQ-KkyXQMuFtRtQbIEDWLVbbQtI37yLjTIrNW1cZWCTECgkmF1TqVqk7BCd1j0ay3SjulMqcbNc7LQMKclNSMZdeMPfatk_8TSDyeldyYdX45VeZLjJUq17FIsx770kWjGtK_FdO4dkwyuHPNcMrGLD6EQdN9KsmxnrmQPZb4rn-hDOVgZ3_Qva39S6J1tkjhYNK2wRZGF2P3CcHTCD57BbkHpxMQ6A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgAOvB8LBYxUiVO6aWzHznHVbrXQ7halrdRbZDuOVFESVHYPy6k_Aan_sL-kHnuTskWoEkg5JPHY8WvGY2fmG4B1ppnJtNWRdothxASlkeJCuztb6UrFtPJ-a-NJOjpin495a02IvjABH6I7cEPO8PIaGRwPpPvXqKGq9MBBmxJlLr8DdzGsNwYx2M6vEaRQQfdwe5RHWcpki9sYJ_3l_Mvr0h_K5rLu6hefnUeg22oHm5OvG7Op3jA_byA6_le7HsPDhWpKBmEuPYEVWz-FB78BFj6Db8Gv1_tGEac6kl07J3lzaklTkS_zs5MS_Swvz39NLs8vthqCQYuR9KQmB3P0MvSw0GQYYu_4oyNERCFOcya59RYi2hW2n-f9_WH-HI52hodbo2gRsCEyaC0aKe1222nCSsnKatO6KzPKCBEbhh73iZAl46VwYkTqxDKVyli7DYuopNapU5zpC1itm9q-AmIlTY0RlTJlgqCAWnFqpORMVFxbKnsQtcNVmAWaOQbVOC0CDnNSYDcWXTf24GNH_z3gePyVcq0d_WLBzz9cKhOZjClPe_ChS3aciL9XVG2bGdK4zWvqpLYr4mWYNd2nksy1M6OsB4kf-1vqUAy2x4Pu6fW_ZHoP90aH471i79Nk9w3cx_fBwm0NVqdnM_vW6VJT_c5zyxWtbhUC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKyE4QPlfWsBISJzSTWM7do6rdleF0m0VqNRbZDu2VFGSquwellMfAYk37JPUY--mXRBCAimHJB47_hv7szPzGeAt08wU2upE-8kwYYLSRHGh_Z112qmUuuC3tj_Od4_Yh2N-fMOLP_JDdBtuqBlhvEYFP6td_5o0VNWBN2hL4pDLb8Mqy73GICwqrwmkEJ8Htj3KkyJnckHbmGb95fjL09JvWHMZuoa5Z_QA1CLX0eTky-Z0ojfN918IHf-nWGtwfw5MySD2pIdwyzaP4N4NusLH8DV69QbPKOKBI9mzM1K2p5a0jhzOzk9q9LK8vPgxvrz4ud0SPLIYRU8a8mmGPoaBFJoM48k7YeMI-VCIx82ktME-RPvEDsqyfzAsn8DRaPh5ezeZH9eQGLQVTZT2a-08Y7Vktduy_iqMMkKkhqG_fSZkzXgt_CAidWaZymWq_XJFOKl17mEzfQorTdvY50CspLkxwilTZ0gJqBWnRkrOhOPaUtmDZNFalZlzmeORGqdVZGHOKqzGqqvGHrzr5M8ii8cfJTcWjV_NtfmbD2WikCnleQ_edMFeD_HnimpsO0UZv3TFHuiTeBY7TfeprPDlLCjrQRaa_i95qAY7-4Pu6cW_RHoNdw53RtXH9-O9dbiLr6N52wasTM6n9qUHUhP9KujKFXRJE7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Key+Role+of+Pyridinic-N-Co+Bonding+in+Synergistic+Electrocatalysis+for+Reversible+ORR%2FOER&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xue-Rui&rft.au=Liu%2C+Jie-Yu&rft.au=Liu%2C+Zi-Wei&rft.au=Wang%2C+Wei-Chao&rft.date=2018-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1800005&rft_id=info:doi/10.1002%2Fadma.201800005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |