Identifying the Key Role of Pyridinic‐N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER

For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose e...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 23; pp. e1800005 - n/a
Main Authors Wang, Xue‐Rui, Liu, Jie‐Yu, Liu, Zi‐Wei, Wang, Wei‐Chao, Luo, Jun, Han, Xiao‐Peng, Du, Xi‐Wen, Qiao, Shi‐Zhang, Yang, Jing
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201800005

Cover

Loading…
Abstract For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts. An innovative strategy based on laser irradiation is developed to selectively regulate relative contents of pyridinic and pyrrolic nitrogen in NiCo2O4/N‐graphene hybrids. Strong chemical bonding forms between nitrogen and cobalt, and pyridinic‐NCo bonds, instead of pyrrolic‐NCo bonds, are identified to predominantly contribute to synergistic catalysis, leading to substantially enhanced oxygen electrocatalytic activities, outperforming a combination of benchmark noble metal catalysts.
AbstractList For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo O NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.
For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2 O4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2 O4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts.
For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts. An innovative strategy based on laser irradiation is developed to selectively regulate relative contents of pyridinic and pyrrolic nitrogen in NiCo2O4/N‐graphene hybrids. Strong chemical bonding forms between nitrogen and cobalt, and pyridinic‐NCo bonds, instead of pyrrolic‐NCo bonds, are identified to predominantly contribute to synergistic catalysis, leading to substantially enhanced oxygen electrocatalytic activities, outperforming a combination of benchmark noble metal catalysts.
For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo2O4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts.
For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g., nitrogen‐doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM–N–C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo 2 O 4 NPs/N‐doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic‐NCo bonding, instead of pyrrolic‐N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG‐270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different Δ E among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn–air battery, NiCo/NLG‐270 exhibits superior charge/discharge performance and long‐term durability compared to the noble metal electrocatalysts.
Author Liu, Zi‐Wei
Luo, Jun
Han, Xiao‐Peng
Wang, Xue‐Rui
Liu, Jie‐Yu
Yang, Jing
Wang, Wei‐Chao
Qiao, Shi‐Zhang
Du, Xi‐Wen
Author_xml – sequence: 1
  givenname: Xue‐Rui
  surname: Wang
  fullname: Wang, Xue‐Rui
  organization: Tianjin University
– sequence: 2
  givenname: Jie‐Yu
  surname: Liu
  fullname: Liu, Jie‐Yu
  organization: Nankai University
– sequence: 3
  givenname: Zi‐Wei
  surname: Liu
  fullname: Liu, Zi‐Wei
  organization: Tianjin University
– sequence: 4
  givenname: Wei‐Chao
  surname: Wang
  fullname: Wang, Wei‐Chao
  email: weichaowang@nankai.edu.cn
  organization: Nankai University
– sequence: 5
  givenname: Jun
  surname: Luo
  fullname: Luo, Jun
  organization: Tianjin University of Technology
– sequence: 6
  givenname: Xiao‐Peng
  surname: Han
  fullname: Han, Xiao‐Peng
  organization: School of Materials Science and Engineering Tianjin University
– sequence: 7
  givenname: Xi‐Wen
  surname: Du
  fullname: Du, Xi‐Wen
  organization: Tianjin University
– sequence: 8
  givenname: Shi‐Zhang
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  organization: The University of Adelaide
– sequence: 9
  givenname: Jing
  orcidid: 0000-0002-3731-368X
  surname: Yang
  fullname: Yang, Jing
  email: yang_jing@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29675934$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompsdvq1aMh8dLLbGEGGOa4rlttbLtm1DNhgKk0M1CBbTO3_gQT_2F_iWy21aSJkZBweZ43fN97APacdwaA1xjNMULlsdSjnJcIc5QPfQZmmJa4IKihe2CGmooWDSN8HxzEeJWJhiH2AuyXDatpU5EZGE-1ccn2k3WXMH038JOZYOsHA30PP0_Bauusur_7eXF_92vp4Tvv9Ba1Dn6ZnAmXNiar4GowKgWvZJLDFG2EvQ-wNTcmRNvlsHXbHq9X7UvwvJdDNK8e3kPw7WT1dfmxOFt_OF0uzgpFMKKF7BBhrCSaE91jk2-jpKprpAipMCtrrgnVdYU570pDJOOoywPVPe86xrGuDsHRLvc6-B8bE5MYbVRmGKQzfhNFiUqeV8E5zejbJ-iV3wSXf5cpUjccVZRl6s0DtelGo8V1sKMMk3hcZAbIDlDBxxhML5RNMlnvUpB2EBiJbV9i25f401fW5k-0x-R_Cs1OuLWDmf5Di8X788Vf9zdu0agy
CitedBy_id crossref_primary_10_1002_cctc_201901601
crossref_primary_10_1016_j_cej_2021_132199
crossref_primary_10_1016_j_ccr_2021_214209
crossref_primary_10_1021_acsaem_2c03959
crossref_primary_10_1002_adfm_202411457
crossref_primary_10_1016_j_ijhydene_2022_08_011
crossref_primary_10_1016_j_jpowsour_2020_229196
crossref_primary_10_1016_j_cej_2020_125487
crossref_primary_10_1002_smll_202306273
crossref_primary_10_1007_s12274_022_5197_2
crossref_primary_10_1002_smll_202306396
crossref_primary_10_1016_j_jcis_2021_03_145
crossref_primary_10_1039_D4QI02269F
crossref_primary_10_1016_j_jcat_2023_115124
crossref_primary_10_1016_j_jcis_2020_02_086
crossref_primary_10_1002_smll_202002998
crossref_primary_10_1021_acscatal_0c05497
crossref_primary_10_1002_adma_202008606
crossref_primary_10_1002_adma_202404393
crossref_primary_10_1007_s12274_020_2977_4
crossref_primary_10_1021_acsnano_1c03465
crossref_primary_10_1016_j_jcis_2023_05_106
crossref_primary_10_1002_adfm_202103558
crossref_primary_10_1039_D2NR03918D
crossref_primary_10_1002_cssc_202301779
crossref_primary_10_1039_D0CC00700E
crossref_primary_10_1002_adfm_202308898
crossref_primary_10_1002_celc_201901106
crossref_primary_10_1002_adsu_202100343
crossref_primary_10_1016_j_cej_2022_138914
crossref_primary_10_1016_j_jcis_2021_12_051
crossref_primary_10_1002_aesr_202000106
crossref_primary_10_1016_j_jcis_2021_09_127
crossref_primary_10_1016_j_cej_2024_148598
crossref_primary_10_1002_aenm_202101619
crossref_primary_10_1016_j_nanoen_2023_109149
crossref_primary_10_1016_j_jpowsour_2021_229570
crossref_primary_10_3390_app10093165
crossref_primary_10_1002_smll_202207413
crossref_primary_10_1016_j_jallcom_2022_168517
crossref_primary_10_1039_C9CY00746F
crossref_primary_10_1021_acssuschemeng_2c01790
crossref_primary_10_1039_D2TA02764J
crossref_primary_10_1002_aenm_201802263
crossref_primary_10_1021_acsestengg_0c00004
crossref_primary_10_1016_j_jcis_2021_11_025
crossref_primary_10_1016_j_nanoen_2020_105010
crossref_primary_10_1016_j_jcis_2021_02_007
crossref_primary_10_1002_adma_202002170
crossref_primary_10_1007_s12274_023_6404_5
crossref_primary_10_1021_acssuschemeng_0c02271
crossref_primary_10_1002_chem_202001282
crossref_primary_10_1002_smll_202100129
crossref_primary_10_1021_acsaem_1c04081
crossref_primary_10_1016_j_mseb_2023_117146
crossref_primary_10_1002_aenm_202202215
crossref_primary_10_1002_adfm_202306333
crossref_primary_10_1002_asia_202300547
crossref_primary_10_1007_s10853_023_08551_y
crossref_primary_10_1016_j_jcis_2022_04_043
crossref_primary_10_1016_j_carbon_2019_06_007
crossref_primary_10_1016_j_jcis_2023_01_065
crossref_primary_10_1016_j_jelechem_2024_118165
crossref_primary_10_26599_NRE_2023_9120092
crossref_primary_10_1002_smll_202002427
crossref_primary_10_1016_j_ceramint_2021_11_123
crossref_primary_10_1016_j_jpowsour_2019_227356
crossref_primary_10_1039_C9TA12255A
crossref_primary_10_1002_smll_202203356
crossref_primary_10_1039_D1EE02764F
crossref_primary_10_3390_molecules28145526
crossref_primary_10_1002_smll_202103747
crossref_primary_10_1039_C8TA06361C
crossref_primary_10_1002_ange_201900240
crossref_primary_10_1016_j_apcatb_2024_124906
crossref_primary_10_1016_j_ensm_2019_05_018
crossref_primary_10_1002_aenm_202202108
crossref_primary_10_1016_j_fuel_2022_123198
crossref_primary_10_1039_D1RA02704B
crossref_primary_10_1039_D0TA05510G
crossref_primary_10_1016_j_jallcom_2021_162604
crossref_primary_10_1002_smll_202411273
crossref_primary_10_1002_chem_202403235
crossref_primary_10_1016_j_jpowsour_2020_227900
crossref_primary_10_1002_ente_201900123
crossref_primary_10_1002_smll_202103613
crossref_primary_10_1039_C9TA08064C
crossref_primary_10_1002_chem_201804610
crossref_primary_10_1002_smll_202402104
crossref_primary_10_1002_smll_201906057
crossref_primary_10_1002_smll_202002518
crossref_primary_10_1002_celc_202101252
crossref_primary_10_1002_batt_201800098
crossref_primary_10_1002_celc_202001138
crossref_primary_10_1039_D1SE01702K
crossref_primary_10_1021_acsami_1c17352
crossref_primary_10_1002_cctc_202301195
crossref_primary_10_1021_acs_nanolett_1c00077
crossref_primary_10_1016_j_carbon_2018_12_055
crossref_primary_10_3390_catal15030219
crossref_primary_10_1039_D4CS00844H
crossref_primary_10_1021_acs_energyfuels_3c01992
crossref_primary_10_1002_cctc_201901875
crossref_primary_10_1002_anie_202308704
crossref_primary_10_1039_C9TA04569D
crossref_primary_10_1038_s41598_023_31854_8
crossref_primary_10_1021_acs_inorgchem_4c01264
crossref_primary_10_1016_j_mtphys_2021_100353
crossref_primary_10_1149_1945_7111_ac2281
crossref_primary_10_1039_D0SE01636E
crossref_primary_10_1039_D4NA00203B
crossref_primary_10_1016_j_apsusc_2021_151247
crossref_primary_10_1039_C9CY01717H
crossref_primary_10_1039_C9NR10785A
crossref_primary_10_1039_D0EN00848F
crossref_primary_10_1016_j_jcis_2021_11_101
crossref_primary_10_1002_slct_202201823
crossref_primary_10_1039_D3CY01719B
crossref_primary_10_1002_adfm_201909035
crossref_primary_10_1016_j_jcis_2023_05_164
crossref_primary_10_1002_elan_201900110
crossref_primary_10_1021_acsanm_9b00683
crossref_primary_10_1007_s10800_024_02234_5
crossref_primary_10_1016_j_jcis_2020_07_055
crossref_primary_10_1039_C9NJ01792E
crossref_primary_10_1002_aenm_202301580
crossref_primary_10_1016_j_jcis_2024_07_055
crossref_primary_10_1039_D2DT01718K
crossref_primary_10_1039_C9CY02183C
crossref_primary_10_1016_j_cej_2023_142030
crossref_primary_10_1016_j_jechem_2020_05_053
crossref_primary_10_1039_D4CY01468E
crossref_primary_10_1039_D0TA10514G
crossref_primary_10_1016_j_jpowsour_2020_229335
crossref_primary_10_1002_anie_202319983
crossref_primary_10_1016_j_jallcom_2024_173710
crossref_primary_10_1021_acssuschemeng_9b05238
crossref_primary_10_1039_D2DT02374A
crossref_primary_10_1016_j_electacta_2018_10_169
crossref_primary_10_1002_smll_202207474
crossref_primary_10_1039_D3NJ00547J
crossref_primary_10_1007_s40843_019_9476_5
crossref_primary_10_1021_acscatal_4c03068
crossref_primary_10_1016_j_jcis_2022_02_009
crossref_primary_10_1016_j_apsusc_2023_157225
crossref_primary_10_1038_s41467_024_46389_3
crossref_primary_10_1016_j_cej_2020_125799
crossref_primary_10_1039_C9CC07275F
crossref_primary_10_1016_j_cej_2023_145524
crossref_primary_10_1039_D3CY00189J
crossref_primary_10_1002_anie_201900240
crossref_primary_10_1039_D1NR03147C
crossref_primary_10_1002_aesr_202000067
crossref_primary_10_1039_D2TA04817E
crossref_primary_10_1016_j_carbon_2018_12_099
crossref_primary_10_1002_aenm_202002592
crossref_primary_10_1016_j_jelechem_2019_113436
crossref_primary_10_1039_D3TA00042G
crossref_primary_10_1007_s12598_024_02676_y
crossref_primary_10_3390_catal14080506
crossref_primary_10_1002_smll_202500341
crossref_primary_10_1016_j_ensm_2019_12_013
crossref_primary_10_1016_j_jcis_2022_03_067
crossref_primary_10_1016_j_cej_2020_127961
crossref_primary_10_1016_j_seppur_2021_119783
crossref_primary_10_1021_acs_jpcc_3c07749
crossref_primary_10_1021_acssuschemeng_9b04164
crossref_primary_10_1002_celc_201901754
crossref_primary_10_1016_j_cej_2021_133210
crossref_primary_10_1021_acsenergylett_4c03562
crossref_primary_10_1016_j_jelechem_2022_117000
crossref_primary_10_1016_j_electacta_2019_06_121
crossref_primary_10_1016_j_jelechem_2023_117663
crossref_primary_10_3389_fchem_2019_00747
crossref_primary_10_1016_j_jpowsour_2020_228594
crossref_primary_10_1002_smsc_202300066
crossref_primary_10_1016_j_jpowsour_2021_230721
crossref_primary_10_1016_j_ijhydene_2025_01_137
crossref_primary_10_1021_acsnano_1c02950
crossref_primary_10_1007_s12274_022_4154_4
crossref_primary_10_1016_j_xcrp_2022_100973
crossref_primary_10_1007_s11664_023_10398_7
crossref_primary_10_1016_j_jallcom_2021_161929
crossref_primary_10_1002_adma_202008784
crossref_primary_10_1016_j_apsusc_2020_147080
crossref_primary_10_1039_C9TA07481C
crossref_primary_10_1002_smll_202304863
crossref_primary_10_1002_eom2_12067
crossref_primary_10_1016_j_chempr_2021_11_008
crossref_primary_10_1021_acs_jpcc_2c07219
crossref_primary_10_1002_adma_201905679
crossref_primary_10_1016_j_apsusc_2019_03_021
crossref_primary_10_1021_acsaem_0c00215
crossref_primary_10_1039_D4NR02845G
crossref_primary_10_1002_ange_201814262
crossref_primary_10_1016_j_jcis_2022_09_014
crossref_primary_10_1016_j_jcis_2024_06_066
crossref_primary_10_1021_acs_jpcc_1c09657
crossref_primary_10_1002_smll_201902090
crossref_primary_10_1002_aenm_202301158
crossref_primary_10_1021_acsami_9b20532
crossref_primary_10_1016_j_jechem_2021_10_013
crossref_primary_10_1149_1945_7111_abf79d
crossref_primary_10_1039_D1CS00590A
crossref_primary_10_1039_D1GC04028F
crossref_primary_10_1039_D1QM00658D
crossref_primary_10_1002_cjoc_202000445
crossref_primary_10_1039_D1TA00885D
crossref_primary_10_1039_D1QI01605A
crossref_primary_10_1016_j_cej_2022_135849
crossref_primary_10_1016_j_jcis_2021_09_045
crossref_primary_10_1103_PhysRevApplied_15_044053
crossref_primary_10_1039_D0NR03495A
crossref_primary_10_1002_adfm_202423476
crossref_primary_10_1002_adma_201808281
crossref_primary_10_1002_adma_201801526
crossref_primary_10_1016_j_cej_2024_151699
crossref_primary_10_1039_C9NR07632H
crossref_primary_10_1016_j_apsusc_2019_01_218
crossref_primary_10_1016_j_cej_2021_132041
crossref_primary_10_1002_advs_202102209
crossref_primary_10_1002_cphc_202400312
crossref_primary_10_1016_j_ijhydene_2024_05_414
crossref_primary_10_1007_s12274_021_3292_4
crossref_primary_10_1002_aenm_202002762
crossref_primary_10_1016_j_apmate_2021_11_009
crossref_primary_10_1016_j_materresbull_2020_110873
crossref_primary_10_1002_celc_201900709
crossref_primary_10_1039_C8QI01240G
crossref_primary_10_1007_s11244_024_01988_8
crossref_primary_10_1016_j_electacta_2019_03_196
crossref_primary_10_1039_D2NR05827H
crossref_primary_10_1002_inf2_12218
crossref_primary_10_1002_anie_202117815
crossref_primary_10_1021_acssuschemeng_9b02473
crossref_primary_10_1016_j_ijhydene_2021_11_146
crossref_primary_10_1002_cey2_472
crossref_primary_10_1016_j_jechem_2021_01_032
crossref_primary_10_1039_D0NR00307G
crossref_primary_10_1007_s12274_023_5939_9
crossref_primary_10_1016_j_jcis_2019_02_044
crossref_primary_10_1002_aenm_201901573
crossref_primary_10_1002_cctc_202402145
crossref_primary_10_1021_acsami_8b18496
crossref_primary_10_1007_s11705_022_2266_8
crossref_primary_10_1021_acsaem_2c02062
crossref_primary_10_1002_ange_202319983
crossref_primary_10_1039_D2CS00698G
crossref_primary_10_1002_admi_201801699
crossref_primary_10_1016_j_carbon_2019_09_001
crossref_primary_10_1016_j_cej_2022_139430
crossref_primary_10_1016_j_cej_2022_138225
crossref_primary_10_1021_acsami_2c19663
crossref_primary_10_1088_1361_6528_ad0301
crossref_primary_10_1021_acs_inorgchem_9b01089
crossref_primary_10_1007_s40843_022_2070_7
crossref_primary_10_1039_D0NR07513B
crossref_primary_10_1016_j_jcis_2022_01_127
crossref_primary_10_1007_s12274_020_3127_8
crossref_primary_10_1039_D0EE02800B
crossref_primary_10_1002_cctc_201901385
crossref_primary_10_1016_j_mtphys_2020_100303
crossref_primary_10_1039_C9TA02894C
crossref_primary_10_1016_j_jpowsour_2019_226919
crossref_primary_10_1002_slct_202201212
crossref_primary_10_1039_D1MA00809A
crossref_primary_10_1002_anie_202400577
crossref_primary_10_1039_C9TA10644H
crossref_primary_10_1039_D3NJ05928F
crossref_primary_10_1007_s41918_023_00181_x
crossref_primary_10_1016_j_cej_2021_133509
crossref_primary_10_1016_j_jcis_2021_07_152
crossref_primary_10_1016_j_ccr_2023_215411
crossref_primary_10_3389_fchem_2024_1381144
crossref_primary_10_1002_adma_201903955
crossref_primary_10_1002_aenm_202200906
crossref_primary_10_1016_j_ijhydene_2021_05_080
crossref_primary_10_1021_acsaem_1c01677
crossref_primary_10_1007_s40843_020_1276_8
crossref_primary_10_1021_acsami_4c12071
crossref_primary_10_1016_j_ijhydene_2021_11_184
crossref_primary_10_1038_s41467_023_43678_1
crossref_primary_10_1016_j_colsurfa_2022_130347
crossref_primary_10_1016_j_ijhydene_2021_08_200
crossref_primary_10_1039_D3TA07609A
crossref_primary_10_1039_D3DT02818F
crossref_primary_10_1039_D2SC04898A
crossref_primary_10_1002_aenm_202101242
crossref_primary_10_1149_1945_7111_abad6f
crossref_primary_10_1021_acs_jpca_0c02449
crossref_primary_10_1002_smll_202403098
crossref_primary_10_1016_j_jechem_2022_03_005
crossref_primary_10_1039_D0CY01546F
crossref_primary_10_1039_D4TA06772J
crossref_primary_10_1007_s11595_023_2817_y
crossref_primary_10_1002_ange_201908760
crossref_primary_10_1016_j_carbon_2021_06_029
crossref_primary_10_1039_C8CC07725H
crossref_primary_10_1016_j_apsusc_2023_158266
crossref_primary_10_1039_D3SE00011G
crossref_primary_10_1021_acs_accounts_3c00177
crossref_primary_10_1039_D1CS00135C
crossref_primary_10_1002_ange_202117815
crossref_primary_10_1039_D2NJ00473A
crossref_primary_10_1088_2053_1591_abf460
crossref_primary_10_1016_j_ijhydene_2021_05_182
crossref_primary_10_1021_acs_langmuir_4c04716
crossref_primary_10_1002_ange_202101562
crossref_primary_10_1021_acsami_0c18684
crossref_primary_10_1002_ange_202308704
crossref_primary_10_1016_j_jechem_2020_05_002
crossref_primary_10_1002_batt_201900052
crossref_primary_10_1016_j_apcatb_2024_124115
crossref_primary_10_1021_acs_energyfuels_4c00988
crossref_primary_10_1039_D4SE01348D
crossref_primary_10_1039_C9TA09873A
crossref_primary_10_3390_nano14231924
crossref_primary_10_1002_advs_201901614
crossref_primary_10_1016_j_cej_2020_124428
crossref_primary_10_1016_j_ccr_2020_213468
crossref_primary_10_1103_PhysRevMaterials_8_095801
crossref_primary_10_1002_smll_201906735
crossref_primary_10_1039_D4CC02081B
crossref_primary_10_1021_acsami_9b04451
crossref_primary_10_1039_D1QI00205H
crossref_primary_10_1002_aenm_202400347
crossref_primary_10_1002_smll_202404085
crossref_primary_10_1002_anie_202101562
crossref_primary_10_1021_acsami_1c01451
crossref_primary_10_1002_cssc_202401552
crossref_primary_10_1016_j_flatc_2023_100554
crossref_primary_10_1039_D3CP04012G
crossref_primary_10_1002_adma_202304713
crossref_primary_10_1021_acsami_0c21859
crossref_primary_10_1016_j_nanoen_2019_104288
crossref_primary_10_1021_acsami_2c08524
crossref_primary_10_1039_D0NR05511E
crossref_primary_10_1039_D0TA10423J
crossref_primary_10_1039_D3EE03059H
crossref_primary_10_1002_adma_202107421
crossref_primary_10_1016_j_ccr_2023_215381
crossref_primary_10_1002_smsc_202100044
crossref_primary_10_1021_acsami_8b16920
crossref_primary_10_1063_5_0017398
crossref_primary_10_1039_D0QI01155J
crossref_primary_10_1002_anie_201814262
crossref_primary_10_1016_j_matt_2020_05_001
crossref_primary_10_1016_j_cej_2021_132915
crossref_primary_10_1007_s12274_022_4371_x
crossref_primary_10_1016_j_inoche_2020_107802
crossref_primary_10_1016_j_jcis_2022_07_180
crossref_primary_10_1038_s41893_024_01300_2
crossref_primary_10_1039_D2NJ04551F
crossref_primary_10_1007_s11051_021_05176_7
crossref_primary_10_1039_D0TA09537K
crossref_primary_10_1088_1361_6528_ac7ed1
crossref_primary_10_1002_anie_201908760
crossref_primary_10_1039_C9TA02256B
crossref_primary_10_1007_s10853_019_04327_5
crossref_primary_10_1002_asia_202100752
crossref_primary_10_1039_C9CY01597C
crossref_primary_10_1021_acs_chemmater_9b02893
crossref_primary_10_1002_aenm_202301918
crossref_primary_10_1002_aenm_201902115
crossref_primary_10_1021_acscatal_9b02274
crossref_primary_10_1002_adma_202502894
crossref_primary_10_1002_admi_202000808
crossref_primary_10_1016_j_clay_2022_106556
crossref_primary_10_1039_C9QM00385A
crossref_primary_10_1039_D1RA08566B
crossref_primary_10_1021_acsami_9b11337
crossref_primary_10_1002_advs_202402916
crossref_primary_10_1016_j_ijhydene_2019_10_211
crossref_primary_10_1002_ange_202400577
crossref_primary_10_3390_catal10111326
crossref_primary_10_1002_smll_202401504
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1021_acs_est_4c00601
crossref_primary_10_1016_j_jcis_2023_12_023
crossref_primary_10_1039_D0TA12414A
crossref_primary_10_1016_j_jcis_2022_12_083
crossref_primary_10_1039_D4NR04236K
crossref_primary_10_1021_acssuschemeng_9b02426
crossref_primary_10_1016_j_ces_2023_119596
crossref_primary_10_1039_C9QI01251F
crossref_primary_10_1016_j_scib_2022_08_022
crossref_primary_10_1002_smll_202411894
crossref_primary_10_1039_D3DT00989K
crossref_primary_10_1002_adma_202302467
crossref_primary_10_1021_acsaem_9b01931
crossref_primary_10_1021_acssuschemeng_8b04919
crossref_primary_10_1007_s10853_020_05671_7
crossref_primary_10_1016_j_jcis_2021_10_144
crossref_primary_10_1016_j_cej_2022_137441
crossref_primary_10_1016_j_jechem_2020_08_066
crossref_primary_10_1002_smtd_201900050
crossref_primary_10_1021_acscatal_0c04415
crossref_primary_10_1021_acs_jpcc_4c03941
crossref_primary_10_1016_j_jcis_2022_11_119
crossref_primary_10_1021_acs_jpcc_9b06669
crossref_primary_10_1088_1361_6528_ab97d5
crossref_primary_10_1016_j_jallcom_2024_175024
crossref_primary_10_1021_acssuschemeng_2c02919
crossref_primary_10_1007_s40843_023_2464_8
crossref_primary_10_1021_acssuschemeng_0c07332
crossref_primary_10_1016_j_cej_2021_130654
crossref_primary_10_1002_celc_202101301
crossref_primary_10_1149_1945_7111_ad45c4
crossref_primary_10_1021_acs_energyfuels_1c00388
crossref_primary_10_1016_j_ijhydene_2021_09_082
crossref_primary_10_1149_2_0581906jes
crossref_primary_10_1021_acsami_1c10671
crossref_primary_10_1021_acsnano_4c06404
crossref_primary_10_1002_cey2_60
crossref_primary_10_1039_C8TA08337A
crossref_primary_10_1021_acsami_0c22336
crossref_primary_10_1016_j_carbon_2019_01_039
crossref_primary_10_1016_j_jelechem_2022_116931
crossref_primary_10_1088_1361_6528_ab7ef9
crossref_primary_10_1021_acs_energyfuels_1c00275
crossref_primary_10_1002_asia_201901571
crossref_primary_10_1002_adsu_202400885
crossref_primary_10_1007_s12274_021_3580_z
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1021_acsestengg_0c00039
crossref_primary_10_1039_D0TA06435A
crossref_primary_10_1021_acssuschemeng_0c08328
crossref_primary_10_1002_admi_202000740
crossref_primary_10_1016_j_carbon_2019_09_025
crossref_primary_10_1039_D3TA00576C
crossref_primary_10_1039_C9TA06446J
crossref_primary_10_1016_j_cej_2022_137111
crossref_primary_10_1016_j_jpowsour_2020_228707
crossref_primary_10_1007_s40843_018_9359_7
crossref_primary_10_1039_C9TA06411G
crossref_primary_10_1039_C8NR07945E
crossref_primary_10_1039_D0TA05117A
crossref_primary_10_1016_j_apsusc_2022_155624
crossref_primary_10_1016_j_apsusc_2022_153446
crossref_primary_10_1002_smll_202411574
crossref_primary_10_1021_acs_langmuir_3c03260
Cites_doi 10.1103/PhysRevB.76.165119
10.1126/science.aad0832
10.1016/j.nanoen.2015.02.025
10.1021/acs.accounts.6b00635
10.1039/C5EE00682A
10.1002/adfm.201302535
10.1002/adma.201604685
10.1039/c3ee42383b
10.1002/adfm.201605717
10.1021/la970776m
10.1016/j.nanoen.2016.12.008
10.1103/PhysRevB.83.245204
10.1002/anie.201511032
10.1038/nenergy.2015.6
10.1021/ja500432h
10.1002/adma.201506197
10.1002/aenm.201601172
10.1021/ja305623m
10.1002/adma.201601406
10.1021/acs.jpcc.6b03096
10.1002/adfm.201601492
10.1021/nn404444r
10.1021/nl501645g
10.1002/aenm.201200013
10.1039/c3ta01515g
10.1021/acsnano.7b00417
10.1002/adfm.201302940
10.1002/aenm.201700193
10.1039/C3EE42696C
10.1002/adma.201701410
10.1002/anie.201702430
10.1002/aenm.201700544
10.1088/0022-3727/47/40/405001
10.1039/C4CS00470A
10.1002/smll.201603903
10.1038/nmat3087
10.1016/j.carbon.2012.01.057
10.1126/science.1208759
10.1038/nmat3191
10.1016/j.jelechem.2006.11.008
10.1038/nchem.1301
10.1021/nl301409h
10.1038/451652a
10.1021/ja902256a
10.1021/acsnano.6b04252
10.1021/ja501293x
10.1039/C4TA01611D
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201800005
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 29675934
10_1002_adma_201800005
ADMA201800005
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  funderid: 14JCYBJC17200
– fundername: National Key Basic Research Program of China
  funderid: 2014CB931703
– fundername: Program for New Century Excellent Talents in University
  funderid: NCET‐13‐0414
– fundername: National Natural Science Foundation of China
  funderid: 51572188; 51271129
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4105-ab046624d84df1ef1e9cac770c44316278d45d73188b2e4a680b6757f8bb681d3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 10:49:39 EDT 2025
Sun Jul 13 04:20:18 EDT 2025
Mon Jul 21 05:52:10 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Tue Jul 01 00:44:41 EDT 2025
Wed Aug 20 07:26:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords pyrrolic nitrogen
hybrid electrocatalysts
pyridinic nitrogen
spinels
graphenes
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4105-ab046624d84df1ef1e9cac770c44316278d45d73188b2e4a680b6757f8bb681d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3731-368X
PMID 29675934
PQID 2047980356
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2028960885
proquest_journals_2047980356
pubmed_primary_29675934
crossref_citationtrail_10_1002_adma_201800005
crossref_primary_10_1002_adma_201800005
wiley_primary_10_1002_adma_201800005_ADMA201800005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2012 2014 2007 2015; 28 4 136 607 44
2012; 50
2017 2017 2017 2017 2017; 27 29 56 31 7
2017; 7
2016 2014; 28 14
2012; 134
2013; 1
2016 2016 2017; 1 55 13
2014; 2
2016 2014 2014 2007; 120 24 47 76
2014 2014 2013 2013; 7 24 6 7
2008 2012 2012 2017; 451 11 2 29
1997; 13
2011; 83
2017 2016 2015; 11 7 13
2012 2011; 12 333
2016 2014; 351 136
2015; 8
2017 2011; 50 10
2016; 26
2009 2016; 131 10
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_21_3
e_1_2_4_21_2
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_2_3
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_4_4
e_1_2_4_5_3
e_1_2_4_7_1
e_1_2_4_4_3
e_1_2_4_5_2
e_1_2_4_6_1
e_1_2_4_5_5
e_1_2_4_9_1
e_1_2_4_4_5
e_1_2_4_5_4
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_14_2
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_16_3
e_1_2_4_17_2
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_17_1
e_1_2_4_17_4
e_1_2_4_19_2
e_1_2_4_16_4
e_1_2_4_17_3
e_1_2_4_18_2
e_1_2_4_19_1
References_xml – volume: 27 29 56 31 7
  start-page: 1605717 1701410 7121 541 1700544
  year: 2017 2017 2017 2017 2017
  publication-title: Adv. Funct. Mater. Adv. Mater. Angew. Chem., Int. Ed. Nano Energy Adv. Energy Mater.
– volume: 131 10
  start-page: 7542 8738
  year: 2009 2016
  publication-title: J. Am. Chem. Soc. ACS Nano
– volume: 134
  start-page: 15849
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 1 55 13
  start-page: 15006 2488 1603903
  year: 2016 2016 2017
  publication-title: Nat. Energy Angew. Chem., Int. Ed. Small
– volume: 8
  start-page: 1799
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 120 24 47 76
  start-page: 14892 610 405001 165119
  year: 2016 2014 2014 2007
  publication-title: J. Phys. Chem. C Adv. Funct. Mater. J. Phys. D: Appl. Phys. Phys. Rev. B
– volume: 12 333
  start-page: 4025 999
  year: 2012 2011
  publication-title: Nano Lett. Science
– volume: 13
  start-page: 6267
  year: 1997
  publication-title: Langmuir
– volume: 2
  start-page: 12475
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 351 136
  start-page: 361 4394
  year: 2016 2014
  publication-title: Science J. Am. Chem. Soc.
– volume: 11 7 13
  start-page: 2275 1601172 387
  year: 2017 2016 2015
  publication-title: ACS Nano Adv. Energy Mater. Nano Energy
– volume: 28 4 136 607 44
  start-page: 3777 418 7805 83 2060
  year: 2016 2012 2014 2007 2015
  publication-title: Adv. Mater. Nat. Chem. J. Am. Chem. Soc. J. Electroanal. Chem. Chem. Soc. Rev.
– volume: 50 10
  start-page: 915 780
  year: 2017 2011
  publication-title: Acc. Chem. Res. Nat. Mater.
– volume: 1
  start-page: 3865
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 28 14
  start-page: 6845 5509
  year: 2016 2014
  publication-title: Adv. Mater. Nano Lett.
– volume: 50
  start-page: 2337
  year: 2012
  publication-title: Carbon
– volume: 451 11 2 29
  start-page: 652 19 816 1604685
  year: 2008 2012 2012 2017
  publication-title: Nature Nat. Mater. Adv. Energy Mater. Adv. Mater.
– volume: 83
  start-page: 245204
  year: 2011
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1700193
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 26
  start-page: 5708
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7 24 6 7
  start-page: 609 2072 3693 10190
  year: 2014 2014 2013 2013
  publication-title: Energy Environ. Sci. Adv. Funct. Mater. Energy Environ. Sci. ACS Nano
– ident: e_1_2_4_16_4
  doi: 10.1103/PhysRevB.76.165119
– ident: e_1_2_4_18_1
  doi: 10.1126/science.aad0832
– ident: e_1_2_4_21_3
  doi: 10.1016/j.nanoen.2015.02.025
– ident: e_1_2_4_7_1
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_4_9_1
  doi: 10.1039/C5EE00682A
– ident: e_1_2_4_16_2
  doi: 10.1002/adfm.201302535
– ident: e_1_2_4_1_4
  doi: 10.1002/adma.201604685
– ident: e_1_2_4_17_3
  doi: 10.1039/c3ee42383b
– ident: e_1_2_4_5_1
  doi: 10.1002/adfm.201605717
– ident: e_1_2_4_11_1
  doi: 10.1021/la970776m
– ident: e_1_2_4_5_4
  doi: 10.1016/j.nanoen.2016.12.008
– ident: e_1_2_4_20_1
  doi: 10.1103/PhysRevB.83.245204
– ident: e_1_2_4_2_2
  doi: 10.1002/anie.201511032
– ident: e_1_2_4_2_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_4_18_2
  doi: 10.1021/ja500432h
– ident: e_1_2_4_4_1
  doi: 10.1002/adma.201506197
– ident: e_1_2_4_21_2
  doi: 10.1002/aenm.201601172
– ident: e_1_2_4_6_1
  doi: 10.1021/ja305623m
– ident: e_1_2_4_14_1
  doi: 10.1002/adma.201601406
– ident: e_1_2_4_16_1
  doi: 10.1021/acs.jpcc.6b03096
– ident: e_1_2_4_10_1
  doi: 10.1002/adfm.201601492
– ident: e_1_2_4_17_4
  doi: 10.1021/nn404444r
– ident: e_1_2_4_14_2
  doi: 10.1021/nl501645g
– ident: e_1_2_4_1_3
  doi: 10.1002/aenm.201200013
– ident: e_1_2_4_12_1
  doi: 10.1039/c3ta01515g
– ident: e_1_2_4_21_1
  doi: 10.1021/acsnano.7b00417
– ident: e_1_2_4_17_2
  doi: 10.1002/adfm.201302940
– ident: e_1_2_4_8_1
  doi: 10.1002/aenm.201700193
– ident: e_1_2_4_17_1
  doi: 10.1039/C3EE42696C
– ident: e_1_2_4_5_2
  doi: 10.1002/adma.201701410
– ident: e_1_2_4_5_3
  doi: 10.1002/anie.201702430
– ident: e_1_2_4_5_5
  doi: 10.1002/aenm.201700544
– ident: e_1_2_4_16_3
  doi: 10.1088/0022-3727/47/40/405001
– ident: e_1_2_4_4_5
  doi: 10.1039/C4CS00470A
– ident: e_1_2_4_2_3
  doi: 10.1002/smll.201603903
– ident: e_1_2_4_7_2
  doi: 10.1038/nmat3087
– ident: e_1_2_4_13_1
  doi: 10.1016/j.carbon.2012.01.057
– ident: e_1_2_4_19_2
  doi: 10.1126/science.1208759
– ident: e_1_2_4_1_2
  doi: 10.1038/nmat3191
– ident: e_1_2_4_4_4
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_4_4_2
  doi: 10.1038/nchem.1301
– ident: e_1_2_4_19_1
  doi: 10.1021/nl301409h
– ident: e_1_2_4_1_1
  doi: 10.1038/451652a
– ident: e_1_2_4_3_1
  doi: 10.1021/ja902256a
– ident: e_1_2_4_3_2
  doi: 10.1021/acsnano.6b04252
– ident: e_1_2_4_4_3
  doi: 10.1021/ja501293x
– ident: e_1_2_4_15_1
  doi: 10.1039/C4TA01611D
SSID ssj0009606
Score 2.6937928
Snippet For many regenerative electrochemical energy‐conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom‐doped (e.g.,...
For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g.,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800005
SubjectTerms Batteries
Bonding
Carbonaceous materials
Catalysis
Catalysts
Density functional theory
Dopants
Electrocatalysis
Electrocatalysts
graphenes
hybrid electrocatalysts
Hybrid systems
Materials science
Metal air batteries
Nitrogen
Noble metals
Oxygen evolution reactions
Oxygen reduction reactions
pyridinic nitrogen
pyrrolic nitrogen
spinels
Synergistic effect
Zinc-oxygen batteries
Title Identifying the Key Role of Pyridinic‐N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201800005
https://www.ncbi.nlm.nih.gov/pubmed/29675934
https://www.proquest.com/docview/2047980356
https://www.proquest.com/docview/2028960885
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTvTQAi3tAq1cqVJPYUPsxM5xBYtQK6BKQeIWeRxHQtCkgt3DcuIRkHhDnoQZezewVAiplXJw5LHjv7E_OzOfGfsqQdocHESAi2EklRCRSRVgyNVQm1jU3m9t_yDbO5bfT9KTR178gR-iO3AjzfDzNSm4gcv-A2moqTxv0JamKZe8zMlgi1BR8cAfRfDck-2JNMozqWesjXHSn08-vyr9BTXnkatfenbfMjMrdLA4Odscj2DTXj3hc_yfWi2xN1NcygdhIC2zV65ZYa8fsRW-Y7-DU693jOKIG_kPN-FFe-54W_Ofk4vTipws765vDu6ub7dbTjcWk-hpw39NyMXQc0LzYbh4x58bER0KR9jMC-fNQwAzOyyK_uGweM-Od4dH23vR9LaGyJKpaGQAt9pZIistq3rL4ZNbY5WKrSR3-0TpSqaVwjlEQ-KkyXQMuFtRtQbIEDWLVbbQtI37yLjTIrNW1cZWCTECgkmF1TqVqk7BCd1j0ay3SjulMqcbNc7LQMKclNSMZdeMPfatk_8TSDyeldyYdX45VeZLjJUq17FIsx770kWjGtK_FdO4dkwyuHPNcMrGLD6EQdN9KsmxnrmQPZb4rn-hDOVgZ3_Qva39S6J1tkjhYNK2wRZGF2P3CcHTCD57BbkHpxMQ6A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgAOvB8LBYxUiVO6aWzHznHVbrXQ7halrdRbZDuOVFESVHYPy6k_Aan_sL-kHnuTskWoEkg5JPHY8WvGY2fmG4B1ppnJtNWRdothxASlkeJCuztb6UrFtPJ-a-NJOjpin495a02IvjABH6I7cEPO8PIaGRwPpPvXqKGq9MBBmxJlLr8DdzGsNwYx2M6vEaRQQfdwe5RHWcpki9sYJ_3l_Mvr0h_K5rLu6hefnUeg22oHm5OvG7Op3jA_byA6_le7HsPDhWpKBmEuPYEVWz-FB78BFj6Db8Gv1_tGEac6kl07J3lzaklTkS_zs5MS_Swvz39NLs8vthqCQYuR9KQmB3P0MvSw0GQYYu_4oyNERCFOcya59RYi2hW2n-f9_WH-HI52hodbo2gRsCEyaC0aKe1222nCSsnKatO6KzPKCBEbhh73iZAl46VwYkTqxDKVyli7DYuopNapU5zpC1itm9q-AmIlTY0RlTJlgqCAWnFqpORMVFxbKnsQtcNVmAWaOQbVOC0CDnNSYDcWXTf24GNH_z3gePyVcq0d_WLBzz9cKhOZjClPe_ChS3aciL9XVG2bGdK4zWvqpLYr4mWYNd2nksy1M6OsB4kf-1vqUAy2x4Pu6fW_ZHoP90aH471i79Nk9w3cx_fBwm0NVqdnM_vW6VJT_c5zyxWtbhUC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BKyE4QPlfWsBISJzSTWM7do6rdleF0m0VqNRbZDu2VFGSquwellMfAYk37JPUY--mXRBCAimHJB47_hv7szPzGeAt08wU2upE-8kwYYLSRHGh_Z112qmUuuC3tj_Od4_Yh2N-fMOLP_JDdBtuqBlhvEYFP6td_5o0VNWBN2hL4pDLb8Mqy73GICwqrwmkEJ8Htj3KkyJnckHbmGb95fjL09JvWHMZuoa5Z_QA1CLX0eTky-Z0ojfN918IHf-nWGtwfw5MySD2pIdwyzaP4N4NusLH8DV69QbPKOKBI9mzM1K2p5a0jhzOzk9q9LK8vPgxvrz4ud0SPLIYRU8a8mmGPoaBFJoM48k7YeMI-VCIx82ktME-RPvEDsqyfzAsn8DRaPh5ezeZH9eQGLQVTZT2a-08Y7Vktduy_iqMMkKkhqG_fSZkzXgt_CAidWaZymWq_XJFOKl17mEzfQorTdvY50CspLkxwilTZ0gJqBWnRkrOhOPaUtmDZNFalZlzmeORGqdVZGHOKqzGqqvGHrzr5M8ii8cfJTcWjV_NtfmbD2WikCnleQ_edMFeD_HnimpsO0UZv3TFHuiTeBY7TfeprPDlLCjrQRaa_i95qAY7-4Pu6cW_RHoNdw53RtXH9-O9dbiLr6N52wasTM6n9qUHUhP9KujKFXRJE7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+the+Key+Role+of+Pyridinic-N-Co+Bonding+in+Synergistic+Electrocatalysis+for+Reversible+ORR%2FOER&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Xue-Rui&rft.au=Liu%2C+Jie-Yu&rft.au=Liu%2C+Zi-Wei&rft.au=Wang%2C+Wei-Chao&rft.date=2018-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=30&rft.issue=23&rft.spage=e1800005&rft_id=info:doi/10.1002%2Fadma.201800005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon