Stretchable Electrochemical Sensors for Cell and Tissue Detection

Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation o...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 6; pp. 2757 - 2767
Main Authors Liu, Yan‐Ling, Huang, Wei‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection. Emerging stretchable electrodes open up new opportunities for the real‐time monitoring of biomolecule release from deformed cells, soft tissues, and organisms. In this minireview, we summarize recent advances in the fabrication of stretchable electrochemical sensors and their representative applications in cell, tissue, and in vivo detection.
AbstractList Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.
Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.
Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection. Emerging stretchable electrodes open up new opportunities for the real‐time monitoring of biomolecule release from deformed cells, soft tissues, and organisms. In this minireview, we summarize recent advances in the fabrication of stretchable electrochemical sensors and their representative applications in cell, tissue, and in vivo detection.
Author Huang, Wei‐Hua
Liu, Yan‐Ling
Author_xml – sequence: 1
  givenname: Yan‐Ling
  surname: Liu
  fullname: Liu, Yan‐Ling
  organization: Wuhan University
– sequence: 2
  givenname: Wei‐Hua
  orcidid: 0000-0001-8951-075X
  surname: Huang
  fullname: Huang, Wei‐Hua
  email: whhuang@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32632992$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEURoNU7EO3LmXAjZupecw0mWWpVQuii9Z1SDM3NDKd1GQG6b83pa1CQVzlLs65fDdfH3VqVwNC1wQPCcb0XtUWhhRTjDnPszPUIzklKeOcdeKcMZZykZMu6ofwEXkh8OgCdRkdMVoUtIfG88ZDo1dqWUEyrUA33ukVrK1WVTKHOjgfEuN8MoGqSlRdJgsbQgvJAzQRtq6-ROdGVQGuDu8AvT9OF5Pn9OXtaTYZv6Q6IzhLjQIzIkDLXGBaiIJzw5dMsELQ3BgwJseEaUJMDM1NQUUJpWIiTlpoowwboLv93o13ny2ERq5t0DGVqsG1QdKMEoJFFk8boNsT9MO1vo7pIhUJPKKMROrmQLXLNZRy4-1a-a08fk4Esj2gvQvBg5HaNmp3c-OVrSTBcteB3HUgfzqI2vBEO27-Uyj2wpetYPsPLcevs-mv-w3kGZfm
CitedBy_id crossref_primary_10_1021_acsaelm_2c00269
crossref_primary_10_1002_anie_202111630
crossref_primary_10_1021_acsami_4c15474
crossref_primary_10_1007_s00604_022_05203_x
crossref_primary_10_1021_acs_analchem_2c05613
crossref_primary_10_1021_acs_analchem_3c00974
crossref_primary_10_1021_acs_nanolett_4c04731
crossref_primary_10_1002_ange_202421684
crossref_primary_10_1002_anie_202400511
crossref_primary_10_1007_s42765_023_00321_4
crossref_primary_10_1021_acsami_4c13654
crossref_primary_10_3390_ma16227069
crossref_primary_10_1021_acschembio_1c00267
crossref_primary_10_3390_bios14040172
crossref_primary_10_1002_smll_202302241
crossref_primary_10_1002_ange_202301382
crossref_primary_10_1016_j_bios_2021_113164
crossref_primary_10_1002_anie_202102833
crossref_primary_10_1016_j_apsusc_2023_156702
crossref_primary_10_1002_cjoc_202200520
crossref_primary_10_1002_ange_202109170
crossref_primary_10_1021_acsmaterialslett_2c00646
crossref_primary_10_1039_D2NR05444B
crossref_primary_10_1002_ange_202400511
crossref_primary_10_1016_j_electacta_2021_139809
crossref_primary_10_1002_advs_202003738
crossref_primary_10_1002_ange_202203757
crossref_primary_10_1007_s11426_023_1741_6
crossref_primary_10_1039_D4TA01960A
crossref_primary_10_1016_j_bios_2021_113553
crossref_primary_10_1002_cjoc_202300652
crossref_primary_10_1007_s12274_022_4551_8
crossref_primary_10_1021_acs_analchem_0c03938
crossref_primary_10_1088_1361_6439_ac799d
crossref_primary_10_3389_fbioe_2020_589590
crossref_primary_10_1002_anie_202203757
crossref_primary_10_1021_acs_analchem_1c00336
crossref_primary_10_1039_D3AN01464A
crossref_primary_10_1021_acssensors_3c01135
crossref_primary_10_1002_anie_202109170
crossref_primary_10_1002_anie_202301382
crossref_primary_10_1016_j_talanta_2022_123892
crossref_primary_10_1021_acsanm_3c00761
crossref_primary_10_1021_acs_analchem_3c05178
crossref_primary_10_1016_j_cjac_2021_07_006
crossref_primary_10_1002_adma_202305917
crossref_primary_10_1002_ange_202403241
crossref_primary_10_1021_acs_langmuir_2c03267
crossref_primary_10_1002_adfm_202107160
crossref_primary_10_1002_smll_202306749
crossref_primary_10_1021_acs_analchem_2c03302
crossref_primary_10_12677_AAC_2022_124039
crossref_primary_10_1002_ange_202111630
crossref_primary_10_1021_acs_analchem_2c04477
crossref_primary_10_1021_acs_chemmater_2c02707
crossref_primary_10_1002_smtd_202200142
crossref_primary_10_1021_acssensors_3c00082
crossref_primary_10_1039_D1TC02352G
crossref_primary_10_1063_5_0086717
crossref_primary_10_1002_adfm_202214945
crossref_primary_10_1002_ajim_23362
crossref_primary_10_1021_acs_analchem_1c00621
crossref_primary_10_1021_acs_analchem_0c04015
crossref_primary_10_1016_j_sintl_2021_100110
crossref_primary_10_1002_anie_202421684
crossref_primary_10_1021_acs_analchem_2c01227
crossref_primary_10_1021_acs_analchem_4c03550
crossref_primary_10_3390_jfb15120362
crossref_primary_10_1002_adhm_202401532
crossref_primary_10_1002_anie_202403241
crossref_primary_10_1021_acssensors_4c02421
crossref_primary_10_1021_acs_analchem_3c00331
crossref_primary_10_1016_j_microc_2023_109488
crossref_primary_10_1021_acs_nanolett_1c01692
crossref_primary_10_1021_acsnano_3c08851
crossref_primary_10_1021_acs_analchem_3c02151
crossref_primary_10_1007_s00604_024_06594_9
crossref_primary_10_1039_D1SC04138J
crossref_primary_10_1007_s00216_024_05348_z
crossref_primary_10_1016_j_bios_2024_116463
crossref_primary_10_1002_ange_202102833
crossref_primary_10_1021_acsmaterialslett_1c00687
crossref_primary_10_1002_anse_202400038
crossref_primary_10_1002_cnma_202100035
crossref_primary_10_1016_j_microc_2024_111061
Cites_doi 10.1002/adma.201405807
10.1152/ajpheart.00872.2012
10.1038/natrevmats.2016.63
10.1002/adbi.201800252
10.1016/j.bios.2019.01.060
10.1002/adma.201502947
10.1016/j.bios.2019.111519
10.1021/nn405939w
10.3389/fnins.2016.00564
10.1002/ange.201913953
10.1126/science.1120027
10.1002/adfm.201808247
10.1038/nmeth.3689
10.1038/nature12401
10.1002/smll.201903204
10.1126/science.1193270
10.1172/JCI83083
10.1002/adfm.201101775
10.1016/j.tcb.2011.09.005
10.1039/C9CS00319C
10.1038/nmeth.2210
10.1021/acs.analchem.8b03423
10.1016/j.cell.2017.05.034
10.1016/j.trac.2018.10.017
10.1002/anie.201601276
10.1038/s41570-017-0048
10.1126/science.1206157
10.1038/ncomms4329
10.1021/acs.chemrev.7b00094
10.1021/ar200196h
10.1021/acs.chemrev.8b00573
10.1152/physrev.00042.2007
10.1002/anie.201705215
10.1039/b705552h
10.1172/JCI12467
10.1126/science.1188302
10.1021/acs.analchem.9b02610
10.1002/adma.201500768
10.1126/science.aaa7952
10.1002/anie.201803229
10.1002/adma.201405864
10.1002/jcp.24683
10.1111/joa.12257
10.1089/ars.2008.2390
10.1021/acs.analchem.8b01396
10.1126/science.1182383
10.1002/adma.201902083
10.1038/s41565-018-0226-8
10.1038/s41565-018-0331-8
10.1002/adma.201404446
10.1002/adfm.201504755
10.1016/j.bios.2013.01.008
10.1002/adma.201504366
10.1002/ange.201705215
10.1021/acs.accounts.7b00543
10.1038/srep23442
10.1002/adma.201300794
10.1038/ncomms6747
10.1002/ange.201601276
10.1038/s41598-018-20117-6
10.1373/49.10.1763
10.1038/nnano.2015.115
10.1021/acs.analchem.6b04616
10.1039/c2lc40148g
10.1002/anie.201913953
10.1152/physiol.00036.2016
10.1002/adma.201504244
10.1039/b909900j
10.1016/j.bios.2019.01.051
10.1039/c0cp00398k
10.1002/adma.201603382
10.1021/acs.analchem.0c00274
10.1021/acsnano.7b04898
10.1016/S0735-1097(00)01186-4
10.1038/nrm2594
10.1021/acsnano.8b05019
10.1021/acsami.8b03342
10.1152/ajplung.00124.2001
10.1126/sciadv.1602076
10.1038/nrm3896
10.1016/j.cell.2014.02.013
10.1021/ja401494e
10.1002/ange.201803229
10.1111/j.1365-2982.2007.00912.x
10.1038/s41587-019-0045-y
10.1021/cr068062g
10.1038/nrm2596
10.1152/ajpcell.00270.2001
10.1038/nature10316
10.1021/acs.analchem.8b01088
10.1016/j.bios.2018.07.071
10.1021/acs.analchem.8b04223
10.1039/C8CS00814K
10.1038/ncomms4121
10.1073/pnas.1205923109
10.1038/nmat4327
10.1038/natrevmats.2017.76
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202007754
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 2767
ExternalDocumentID 32632992
10_1002_anie_202007754
ANIE202007754
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042019kf0274
– fundername: Postdoctoral Research Foundation of China
  funderid: 2017M620329; 2018T110790
– fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  funderid: 21721005
– fundername: National Natural Science Foundation of China
  funderid: 21725504; 21675121; 21804101
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4104-faef61e2d580298977f7b3839825ffeff5013c11f1437f928deda38f92c8cfaf3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 00:00:04 EDT 2025
Sun Jul 13 03:53:40 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 01:17:43 EDT 2025
Wed Jan 22 16:31:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords electrochemical sensing
cells
stretchable electrodes
tissues
mechanotransduction
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-faef61e2d580298977f7b3839825ffeff5013c11f1437f928deda38f92c8cfaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8951-075X
PMID 32632992
PQID 2484206231
PQPubID 946352
PageCount 11
ParticipantIDs proquest_miscellaneous_2421108426
proquest_journals_2484206231
pubmed_primary_32632992
crossref_citationtrail_10_1002_anie_202007754
crossref_primary_10_1002_anie_202007754
wiley_primary_10_1002_anie_202007754_ANIE202007754
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 8, 2021
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: February 8, 2021
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2018; 120
2009; 89
2019; 91
2017; 1
2013; 25
2017; 3
2017; 89
2019; 14
2020 2020; 59 132
2008; 108
2020; 16
2015; 349
2015; 227
2001; 108
2012; 12
2011; 475
2017; 117
2009; 11
2018; 8
2014; 5
2018; 3
2009; 10
2007; 132
2017; 32
2020; 92
2014; 15
2020; 49
2011; 21
2003; 49
2019; 29
2019; 119
2014; 8
2012; 22
2007; 19
2011; 333
2015; 14
2019; 3
2013; 44
2010; 327
2010; 328
2010; 39
2013; 500
2019; 37
2013; 304
2015; 10
2016; 10
2017; 170
2017; 29
2018; 109
2016; 126
2020; 32
2017 2017; 56 129
2016; 13
2019 2019; 58 131
2012; 109
2019; 142
2014; 157
2006; 311
2016; 6
2002; 282
2015; 27
2016 2016; 55 128
2016; 1
2017; 11
2019; 48
2015; 230
2010; 330
2018; 90
2013; 135
2001; 37
2018; 51
2018; 12
2016; 28
2012; 45
2018; 10
2016; 26
2019; 131
2012; 9
2018; 13
e_1_2_8_49_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_9_2
e_1_2_8_5_1
e_1_2_8_41_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_30_2
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_101_2
e_1_2_8_72_1
e_1_2_8_29_2
e_1_2_8_25_1
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_110_1
e_1_2_8_6_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_18_2
e_1_2_8_33_3
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_1
e_1_2_8_90_2
e_1_2_8_90_1
e_1_2_8_94_2
e_1_2_8_98_2
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_1
e_1_2_8_102_2
e_1_2_8_71_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_81_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_97_2
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_107_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_8_2
e_1_2_8_88_2
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_2
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_50_2
e_1_2_8_100_2
e_1_2_8_73_1
e_1_2_8_104_1
References_xml – volume: 91
  start-page: 13521
  year: 2019
  end-page: 13527
  publication-title: Anal. Chem.
– volume: 11
  start-page: 9614
  year: 2017
  end-page: 9635
  publication-title: ACS Nano
– volume: 48
  start-page: 2946
  year: 2019
  end-page: 2966
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 9454 9582
  year: 2017 2017
  end-page: 9458 9586
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 109
  start-page: 19910
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 4373
  year: 2016
  end-page: 4395
  publication-title: Adv. Mater.
– volume: 90
  start-page: 13081
  year: 2018
  end-page: 13087
  publication-title: Anal. Chem.
– volume: 21
  start-page: 745
  year: 2011
  end-page: 754
  publication-title: Trends Cell Biol.
– volume: 132
  start-page: 876
  year: 2007
  end-page: 884
  publication-title: Analyst
– volume: 6
  start-page: 23442
  year: 2016
  publication-title: Sci. Rep.
– volume: 92
  start-page: 4647
  year: 2020
  end-page: 4655
  publication-title: Anal. Chem.
– volume: 126
  start-page: 821
  year: 2016
  end-page: 828
  publication-title: J. Clin. Invest.
– volume: 1
  start-page: 16063
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 37
  start-page: 389
  year: 2019
  end-page: 406
  publication-title: Nat. Biotechnol.
– volume: 500
  start-page: 59
  year: 2013
  end-page: 63
  publication-title: Nature
– volume: 90
  start-page: 13498
  year: 2018
  end-page: 13505
  publication-title: Anal. Chem.
– volume: 131
  start-page: 37
  year: 2019
  end-page: 45
  publication-title: Biosens. Bioelectron.
– volume: 170
  start-page: 185
  year: 2017
  end-page: 198
  publication-title: Cell
– volume: 16
  year: 2020
  publication-title: Small
– volume: 117
  start-page: 12764
  year: 2017
  end-page: 12850
  publication-title: Chem. Rev.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 49
  start-page: 1812
  year: 2020
  end-page: 1866
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 3349
  year: 2015
  end-page: 3376
  publication-title: Adv. Mater.
– volume: 282
  start-page: L892
  year: 2002
  end-page: L896
  publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol.
– volume: 328
  start-page: 1662
  year: 2010
  end-page: 1668
  publication-title: Science
– volume: 51
  start-page: 688
  year: 2018
  end-page: 696
  publication-title: Acc. Chem. Res.
– volume: 475
  start-page: 316
  year: 2011
  end-page: 323
  publication-title: Nature
– volume: 8
  start-page: 1689
  year: 2018
  publication-title: Sci. Rep.
– volume: 26
  start-page: 1678
  year: 2016
  end-page: 1698
  publication-title: Adv. Funct. Mater.
– volume: 327
  start-page: 1603
  year: 2010
  end-page: 1607
  publication-title: Science
– volume: 27
  start-page: 3145
  year: 2015
  end-page: 3151
  publication-title: Adv. Mater.
– volume: 14
  start-page: 785
  year: 2015
  end-page: 789
  publication-title: Nat. Mater.
– volume: 19
  start-page: 309
  year: 2007
  end-page: 317
  publication-title: Neurogastroenterol. Motil.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 58 131
  start-page: 3706 3744
  year: 2019 2019
  end-page: 3714 3752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1651
  year: 2009
  end-page: 1667
  publication-title: Antioxid. Redox Signaling
– volume: 108
  start-page: 2585
  year: 2008
  end-page: 2621
  publication-title: Chem. Rev.
– volume: 10
  start-page: 13729
  year: 2018
  end-page: 13740
  publication-title: ACS Appl. Mater. Interfaces
– volume: 89
  start-page: 2032
  year: 2017
  end-page: 2038
  publication-title: Anal. Chem.
– volume: 12
  start-page: 9742
  year: 2018
  end-page: 9749
  publication-title: ACS Nano
– volume: 333
  start-page: 838
  year: 2011
  end-page: 843
  publication-title: Science
– volume: 28
  start-page: 4455
  year: 2016
  end-page: 4461
  publication-title: Adv. Mater.
– volume: 14
  start-page: 156
  year: 2019
  end-page: 160
  publication-title: Nat. Nanotechnol.
– volume: 49
  start-page: 1763
  year: 2003
  end-page: 1773
  publication-title: Clin. Chem.
– volume: 304
  start-page: H1634
  year: 2013
  publication-title: Am. J. Physiol.
– volume: 44
  start-page: 27
  year: 2013
  end-page: 33
  publication-title: Biosens. Bioelectron.
– volume: 135
  start-page: 5320
  year: 2013
  end-page: 5323
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 17076
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 227
  start-page: 746
  year: 2015
  end-page: 756
  publication-title: J. Anat.
– volume: 10
  start-page: 53
  year: 2009
  end-page: 62
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 349
  start-page: 400
  year: 2015
  end-page: 404
  publication-title: Science
– volume: 90
  start-page: 5977
  year: 2018
  end-page: 5981
  publication-title: Anal. Chem.
– volume: 8
  start-page: 1039
  year: 2014
  end-page: 1046
  publication-title: ACS Nano
– volume: 59 132
  start-page: 4075 4104
  year: 2020 2020
  end-page: 4081 4110
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 421
  year: 2012
  end-page: 428
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 533
  year: 2012
  end-page: 543
  publication-title: Acc. Chem. Res.
– volume: 25
  start-page: 2707
  year: 2013
  end-page: 2712
  publication-title: Adv. Mater.
– volume: 12
  start-page: 10048
  year: 2010
  end-page: 10054
  publication-title: Phys. Chem. Chem. Phys.
– volume: 131
  start-page: 257
  year: 2019
  end-page: 266
  publication-title: Biosens. Bioelectron.
– volume: 142
  year: 2019
  publication-title: Biosens. Bioelectron.
– volume: 89
  start-page: 481
  year: 2009
  end-page: 534
  publication-title: Physiol. Rev.
– volume: 5
  start-page: 3329
  year: 2014
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5747
  year: 2014
  publication-title: Nat. Commun.
– volume: 1
  start-page: 0048
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 28
  start-page: 4338
  year: 2016
  end-page: 4372
  publication-title: Adv. Mater.
– volume: 55 128
  start-page: 4537 4613
  year: 2016 2016
  end-page: 4541 4617
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 629
  year: 2015
  end-page: 636
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 143
  year: 2016
  end-page: 146
  publication-title: Nat. Methods
– volume: 39
  start-page: 1036
  year: 2010
  end-page: 1048
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 5461
  year: 2019
  end-page: 5533
  publication-title: Chem. Rev.
– volume: 330
  start-page: 55
  year: 2010
  end-page: 60
  publication-title: Science
– volume: 32
  start-page: 266
  year: 2017
  end-page: 277
  publication-title: Physiology
– volume: 120
  start-page: 160
  year: 2018
  end-page: 167
  publication-title: Biosens. Bioelectron.
– volume: 230
  start-page: 16
  year: 2015
  end-page: 26
  publication-title: J. Cell Physiol.
– volume: 9
  start-page: 1113
  year: 2012
  end-page: 1119
  publication-title: Nat. Methods
– volume: 15
  start-page: 802
  year: 2014
  end-page: 812
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 157
  start-page: 41
  year: 2014
  end-page: 50
  publication-title: Cell
– volume: 27
  start-page: 1480
  year: 2015
  end-page: 1511
  publication-title: Adv. Mater.
– volume: 282
  start-page: C595
  year: 2002
  end-page: C605
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 12
  start-page: 4249
  year: 2012
  end-page: 4256
  publication-title: Lab Chip
– volume: 13
  start-page: 1048
  year: 2018
  end-page: 1056
  publication-title: Nat. Nanotechnol.
– volume: 27
  start-page: 3060
  year: 2015
  end-page: 3065
  publication-title: Adv. Mater.
– volume: 109
  start-page: 247
  year: 2018
  end-page: 259
  publication-title: TRAC-Trend Anal. Chem.
– volume: 311
  start-page: 1570
  year: 2006
  end-page: 1574
  publication-title: Science
– volume: 108
  start-page: 1051
  year: 2001
  end-page: 1059
  publication-title: J. Clin. Invest.
– volume: 5
  start-page: 3121
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  year: 2019
  publication-title: Adv. Biosyst.
– volume: 10
  start-page: 75
  year: 2009
  end-page: 82
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 37
  start-page: 808
  year: 2001
  end-page: 817
  publication-title: J. Am. Coll. Cardiol.
– volume: 90
  start-page: 7158
  year: 2018
  end-page: 7163
  publication-title: Anal. Chem.
– volume: 10
  start-page: 564
  year: 2016
  publication-title: Front. Neurosci.
– ident: e_1_2_8_61_1
  doi: 10.1002/adma.201405807
– ident: e_1_2_8_53_2
  doi: 10.1152/ajpheart.00872.2012
– ident: e_1_2_8_97_2
  doi: 10.1038/natrevmats.2016.63
– ident: e_1_2_8_94_2
  doi: 10.1002/adbi.201800252
– ident: e_1_2_8_54_1
– ident: e_1_2_8_105_1
  doi: 10.1016/j.bios.2019.01.060
– ident: e_1_2_8_76_1
  doi: 10.1002/adma.201502947
– ident: e_1_2_8_83_1
  doi: 10.1016/j.bios.2019.111519
– ident: e_1_2_8_73_1
  doi: 10.1021/nn405939w
– ident: e_1_2_8_86_1
  doi: 10.3389/fnins.2016.00564
– ident: e_1_2_8_90_2
  doi: 10.1002/ange.201913953
– ident: e_1_2_8_28_2
  doi: 10.1126/science.1120027
– ident: e_1_2_8_103_1
  doi: 10.1002/adfm.201808247
– ident: e_1_2_8_24_1
  doi: 10.1038/nmeth.3689
– ident: e_1_2_8_66_1
  doi: 10.1038/nature12401
– ident: e_1_2_8_10_1
– ident: e_1_2_8_95_1
  doi: 10.1002/smll.201903204
– ident: e_1_2_8_14_2
  doi: 10.1126/science.1193270
– ident: e_1_2_8_12_2
  doi: 10.1172/JCI83083
– ident: e_1_2_8_75_1
  doi: 10.1002/adfm.201101775
– ident: e_1_2_8_99_1
– ident: e_1_2_8_6_2
  doi: 10.1016/j.tcb.2011.09.005
– ident: e_1_2_8_45_2
  doi: 10.1039/C9CS00319C
– ident: e_1_2_8_23_1
  doi: 10.1038/nmeth.2210
– ident: e_1_2_8_70_1
  doi: 10.1021/acs.analchem.8b03423
– ident: e_1_2_8_42_1
– ident: e_1_2_8_34_1
– ident: e_1_2_8_15_2
  doi: 10.1016/j.cell.2017.05.034
– ident: e_1_2_8_102_2
  doi: 10.1016/j.trac.2018.10.017
– ident: e_1_2_8_67_1
  doi: 10.1002/anie.201601276
– ident: e_1_2_8_31_2
  doi: 10.1038/s41570-017-0048
– ident: e_1_2_8_51_1
– ident: e_1_2_8_59_1
  doi: 10.1126/science.1206157
– ident: e_1_2_8_110_1
  doi: 10.1038/ncomms4329
– ident: e_1_2_8_4_2
  doi: 10.1021/acs.chemrev.7b00094
– ident: e_1_2_8_30_2
  doi: 10.1021/ar200196h
– ident: e_1_2_8_49_2
  doi: 10.1021/acs.chemrev.8b00573
– ident: e_1_2_8_93_2
  doi: 10.1152/physrev.00042.2007
– ident: e_1_2_8_1_1
– ident: e_1_2_8_81_1
  doi: 10.1002/anie.201705215
– ident: e_1_2_8_101_2
  doi: 10.1039/b705552h
– ident: e_1_2_8_16_1
– ident: e_1_2_8_88_2
  doi: 10.1172/JCI12467
– ident: e_1_2_8_18_2
  doi: 10.1126/science.1188302
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.analchem.9b02610
– ident: e_1_2_8_19_1
– ident: e_1_2_8_78_1
  doi: 10.1002/adma.201500768
– ident: e_1_2_8_38_1
– ident: e_1_2_8_64_1
  doi: 10.1126/science.aaa7952
– ident: e_1_2_8_33_2
  doi: 10.1002/anie.201803229
– ident: e_1_2_8_58_1
  doi: 10.1002/adma.201405864
– ident: e_1_2_8_8_2
  doi: 10.1002/jcp.24683
– ident: e_1_2_8_92_1
– ident: e_1_2_8_7_2
  doi: 10.1111/joa.12257
– ident: e_1_2_8_91_1
  doi: 10.1089/ars.2008.2390
– ident: e_1_2_8_85_1
  doi: 10.1021/acs.analchem.8b01396
– ident: e_1_2_8_39_2
  doi: 10.1126/science.1182383
– ident: e_1_2_8_50_2
  doi: 10.1002/adma.201902083
– ident: e_1_2_8_107_1
  doi: 10.1038/s41565-018-0226-8
– ident: e_1_2_8_108_1
  doi: 10.1038/s41565-018-0331-8
– ident: e_1_2_8_40_2
  doi: 10.1002/adma.201404446
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.201504755
– ident: e_1_2_8_36_2
  doi: 10.1016/j.bios.2013.01.008
– ident: e_1_2_8_13_1
– ident: e_1_2_8_47_2
  doi: 10.1002/adma.201504366
– ident: e_1_2_8_81_2
  doi: 10.1002/ange.201705215
– ident: e_1_2_8_32_2
  doi: 10.1021/acs.accounts.7b00543
– ident: e_1_2_8_37_2
  doi: 10.1038/srep23442
– ident: e_1_2_8_74_1
  doi: 10.1002/adma.201300794
– ident: e_1_2_8_109_1
  doi: 10.1038/ncomms6747
– ident: e_1_2_8_67_2
  doi: 10.1002/ange.201601276
– ident: e_1_2_8_52_2
  doi: 10.1038/s41598-018-20117-6
– ident: e_1_2_8_100_2
  doi: 10.1373/49.10.1763
– ident: e_1_2_8_106_1
  doi: 10.1038/nnano.2015.115
– ident: e_1_2_8_68_1
  doi: 10.1021/acs.analchem.6b04616
– ident: e_1_2_8_84_1
  doi: 10.1039/c2lc40148g
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201913953
– ident: e_1_2_8_9_2
  doi: 10.1152/physiol.00036.2016
– ident: e_1_2_8_43_2
  doi: 10.1002/adma.201504244
– ident: e_1_2_8_2_2
  doi: 10.1039/b909900j
– ident: e_1_2_8_104_1
  doi: 10.1016/j.bios.2019.01.051
– ident: e_1_2_8_35_2
  doi: 10.1039/c0cp00398k
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.201603382
– ident: e_1_2_8_72_1
  doi: 10.1021/acs.analchem.0c00274
– ident: e_1_2_8_44_2
  doi: 10.1021/acsnano.7b04898
– ident: e_1_2_8_55_2
  doi: 10.1016/S0735-1097(00)01186-4
– ident: e_1_2_8_20_2
  doi: 10.1038/nrm2594
– ident: e_1_2_8_69_1
  doi: 10.1021/acsnano.8b05019
– ident: e_1_2_8_80_1
  doi: 10.1021/acsami.8b03342
– ident: e_1_2_8_17_2
  doi: 10.1152/ajplung.00124.2001
– ident: e_1_2_8_77_1
  doi: 10.1126/sciadv.1602076
– ident: e_1_2_8_22_2
  doi: 10.1038/nrm3896
– ident: e_1_2_8_3_2
  doi: 10.1016/j.cell.2014.02.013
– ident: e_1_2_8_96_1
– ident: e_1_2_8_25_1
  doi: 10.1021/ja401494e
– ident: e_1_2_8_33_3
  doi: 10.1002/ange.201803229
– ident: e_1_2_8_89_2
  doi: 10.1111/j.1365-2982.2007.00912.x
– ident: e_1_2_8_48_2
  doi: 10.1038/s41587-019-0045-y
– ident: e_1_2_8_29_2
  doi: 10.1021/cr068062g
– ident: e_1_2_8_5_1
– ident: e_1_2_8_11_2
  doi: 10.1038/nrm2596
– ident: e_1_2_8_27_1
– ident: e_1_2_8_46_1
– ident: e_1_2_8_26_1
  doi: 10.1152/ajpcell.00270.2001
– ident: e_1_2_8_21_2
  doi: 10.1038/nature10316
– ident: e_1_2_8_65_1
  doi: 10.1021/acs.analchem.8b01088
– ident: e_1_2_8_79_1
  doi: 10.1016/j.bios.2018.07.071
– ident: e_1_2_8_82_1
  doi: 10.1021/acs.analchem.8b04223
– ident: e_1_2_8_41_2
  doi: 10.1039/C8CS00814K
– ident: e_1_2_8_60_1
  doi: 10.1038/ncomms4121
– ident: e_1_2_8_56_2
  doi: 10.1073/pnas.1205923109
– ident: e_1_2_8_62_1
  doi: 10.1038/nmat4327
– ident: e_1_2_8_87_1
– ident: e_1_2_8_98_2
  doi: 10.1038/natrevmats.2017.76
SSID ssj0028806
Score 2.590276
SecondaryResourceType review_article
Snippet Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2757
SubjectTerms Biomolecules
Biosensing Techniques
cells
Chemical sensors
electrochemical sensing
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrochemistry
Electrodes
Fabrication
Human Umbilical Vein Endothelial Cells - metabolism
Humans
Mechanotransduction
Mechanotransduction, Cellular
Nanomaterials
Nanostructures - chemistry
Nitric Oxide - analysis
Polymers - chemistry
Sensors
Soft tissues
stretchable electrodes
Tissues
Umbilical Veins - metabolism
Title Stretchable Electrochemical Sensors for Cell and Tissue Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007754
https://www.ncbi.nlm.nih.gov/pubmed/32632992
https://www.proquest.com/docview/2484206231
https://www.proquest.com/docview/2421108426
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734fkSrrCB4Stvs5nmU2qKCHnyAt7DPiyWVNr34653JJtEqIugtIbNkM7OPb7Iz3xByprNISsXw0D2O_DDm2hdMZj44WwrgSCQEx3zn27v46im8eY6eP2XxO36I9ocbzoxqvcYJLuS8_0EaihnY4N8xR-IGizAGbCEqum_5oxgMTpdexLmPVegb1sYB6y83X96VvkHNZeRabT3jDSKaTruIk5feopQ99faFz_E_X7VJ1mtcSi_cQNoiK6bYJqvDphzcDqy_5QxNjKlWdOSK56iabYA-gDM8nc0pIGA6NJMJFYWmj5VN6aUpq3CvYpc8jUePwyu_rr_gqxC8NN8KY-PAMB2lFVF7kthEgkebgVdprbE2AvyogsCCfhObsVQbLXgKVypVVli-RzrFtDAHhHIwBCADLa3kIVdSyoFOAqGUVJmNdeQRv9F_rmpycqyRMckdrTLLUTF5qxiPnLfyr46W40fJbmPOvJ6e85yFacgGgPwCj5y2j0GheFoiCjNdoAz6xiAXe2TfDYP2VRxZ7rOMeYRVxvylD_nF3fWovTv8S6MjssYwmgbjxdMu6ZSzhTkGOFTKk2rIvwMLHQAt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoBLS3m0bqHdSkicDPGun0cUgkKBHEqQuFn7vBA5VeJc-us747VdpRVCgpstz8r2zD6-2Z35BuDYFIlSmtOhe5qEcSpMKLkqQnS2NMKRREpB-c63k3R8H_94SLpoQsqF8fwQ_YYbjYxmvqYBThvSZ39ZQykFGx087lncNuAtlfVuvKqfPYMUx-7pE4yECKkOfcfbOOBn6-3X16X_wOY6dm0Wn8v3oLrP9jEnj6erWp3q3_8wOr7qv3bgXQtN2bnvSx_gja12YWvYVYTbwym4XpCVKduKjXz9HN0SDrA79IfniyVDEMyGdjZjsjJs2piVXdi6ifiq9uH-cjQdjsO2BEOoY3TUQietSyPLTZI3XO1Z5jKFTm2BjqVz1rkEIaSOIocKzlzBc2ONFDle6Vw76cQBbFbzyn4CJtASCA6MckrEQiulBiaLpNZKFy41SQBhZ4BSt_zkVCZjVnpmZV6SYspeMQGc9PK_PDPHk5KHnT3LdoQuSx7nMR8g-IsC-N4_RoXSgYms7HxFMuQeo1wawEffD_pXCSK6LwoeAG-s-cw3lOeTq1F_9_kljb7B1nh6e1PeXE2uv8A2p-AaCh_PD2GzXqzsEaKjWn1t-v8fE-MESA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VGq50AcUQmlxpUqcAhs7zyPah6AtK9SCxC3y89JVFi3ZC7-emTgJLKhCam-JMlacmbH9Tez5BuCbKRKlNKdN9zQJ41SYUHJVhBhsaYQjiZSC8p3PpunJZfz9Krl6kMXv-SH6H240Mpr5mgb4tXFH96ShlIGN8R33JG4v4VWcDnLy69GvnkCKo3f6_CIhQipD39E2DvjRavvVZekJ1lyFrs3aM3kLsuu1P3Ly53BZq0N9-4jQ8X8-6x1stMCUHXtPeg8vbPUB3gy7enCbOAHXC7Ix5Vqxsa-eo1u6AfYbo-H54oYhBGZDO5sxWRl20RiVjWzdnPeqtuByMr4YnoRtAYZQxximhU5al0aWmyRvmNqzzGUKQ9oCw0rnrHMJAkgdRQ71m7mC58YaKXK80rl20omPsFbNK7sDTKAhEBoY5ZSIhVZKDUwWSa2VLlxqkgDCTv-lbtnJqUjGrPS8yrwkxZS9YgI46OWvPS_HXyX3OnOW7fi8KXmcx3yA0C8K4Gv_GBVK2yWysvMlyVBwjHJpANveDfpXCaK5LwoeAG-M-UwfyuPp6bi_2_2XRvvw-nw0KX-eTn98gnVOJ2vo7Hi-B2v1Ymk_IzSq1ZfG--8AFr0DAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+Electrochemical+Sensors+for+Cell+and+Tissue+Detection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yan%E2%80%90Ling&rft.au=Huang%2C+Wei%E2%80%90Hua&rft.date=2021-02-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=6&rft.spage=2757&rft.epage=2767&rft_id=info:doi/10.1002%2Fanie.202007754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon