Stretchable Electrochemical Sensors for Cell and Tissue Detection
Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation o...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 6; pp. 2757 - 2767 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.
Emerging stretchable electrodes open up new opportunities for the real‐time monitoring of biomolecule release from deformed cells, soft tissues, and organisms. In this minireview, we summarize recent advances in the fabrication of stretchable electrochemical sensors and their representative applications in cell, tissue, and in vivo detection. |
---|---|
AbstractList | Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection. Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection.Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial-enabled strategies. We then describe representative applications of stretchable sensors in the real-time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection. Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The recent emergence of stretchable sensors allows electrodes to conformally contact to curved surfaces and perfectly comply with the deformation of living cells and tissues. This provides a powerful strategy to monitor biomolecules from mechanically deformed cells, tissues, and organisms in real time, and opens up new opportunities to explore the mechanotransduction process. In this minireview, we first summarize the fabrication of stretchable electrodes with emphasis on the nanomaterial‐enabled strategies. We then describe representative applications of stretchable sensors in the real‐time monitoring of mechanically sensitive cells and tissues. Finally, we present the future possibilities and challenges of stretchable electrochemical sensing in cell, tissue, and in vivo detection. Emerging stretchable electrodes open up new opportunities for the real‐time monitoring of biomolecule release from deformed cells, soft tissues, and organisms. In this minireview, we summarize recent advances in the fabrication of stretchable electrochemical sensors and their representative applications in cell, tissue, and in vivo detection. |
Author | Huang, Wei‐Hua Liu, Yan‐Ling |
Author_xml | – sequence: 1 givenname: Yan‐Ling surname: Liu fullname: Liu, Yan‐Ling organization: Wuhan University – sequence: 2 givenname: Wei‐Hua orcidid: 0000-0001-8951-075X surname: Huang fullname: Huang, Wei‐Hua email: whhuang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32632992$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEURoNU7EO3LmXAjZupecw0mWWpVQuii9Z1SDM3NDKd1GQG6b83pa1CQVzlLs65fDdfH3VqVwNC1wQPCcb0XtUWhhRTjDnPszPUIzklKeOcdeKcMZZykZMu6ofwEXkh8OgCdRkdMVoUtIfG88ZDo1dqWUEyrUA33ukVrK1WVTKHOjgfEuN8MoGqSlRdJgsbQgvJAzQRtq6-ROdGVQGuDu8AvT9OF5Pn9OXtaTYZv6Q6IzhLjQIzIkDLXGBaiIJzw5dMsELQ3BgwJseEaUJMDM1NQUUJpWIiTlpoowwboLv93o13ny2ERq5t0DGVqsG1QdKMEoJFFk8boNsT9MO1vo7pIhUJPKKMROrmQLXLNZRy4-1a-a08fk4Esj2gvQvBg5HaNmp3c-OVrSTBcteB3HUgfzqI2vBEO27-Uyj2wpetYPsPLcevs-mv-w3kGZfm |
CitedBy_id | crossref_primary_10_1021_acsaelm_2c00269 crossref_primary_10_1002_anie_202111630 crossref_primary_10_1021_acsami_4c15474 crossref_primary_10_1007_s00604_022_05203_x crossref_primary_10_1021_acs_analchem_2c05613 crossref_primary_10_1021_acs_analchem_3c00974 crossref_primary_10_1021_acs_nanolett_4c04731 crossref_primary_10_1002_ange_202421684 crossref_primary_10_1002_anie_202400511 crossref_primary_10_1007_s42765_023_00321_4 crossref_primary_10_1021_acsami_4c13654 crossref_primary_10_3390_ma16227069 crossref_primary_10_1021_acschembio_1c00267 crossref_primary_10_3390_bios14040172 crossref_primary_10_1002_smll_202302241 crossref_primary_10_1002_ange_202301382 crossref_primary_10_1016_j_bios_2021_113164 crossref_primary_10_1002_anie_202102833 crossref_primary_10_1016_j_apsusc_2023_156702 crossref_primary_10_1002_cjoc_202200520 crossref_primary_10_1002_ange_202109170 crossref_primary_10_1021_acsmaterialslett_2c00646 crossref_primary_10_1039_D2NR05444B crossref_primary_10_1002_ange_202400511 crossref_primary_10_1016_j_electacta_2021_139809 crossref_primary_10_1002_advs_202003738 crossref_primary_10_1002_ange_202203757 crossref_primary_10_1007_s11426_023_1741_6 crossref_primary_10_1039_D4TA01960A crossref_primary_10_1016_j_bios_2021_113553 crossref_primary_10_1002_cjoc_202300652 crossref_primary_10_1007_s12274_022_4551_8 crossref_primary_10_1021_acs_analchem_0c03938 crossref_primary_10_1088_1361_6439_ac799d crossref_primary_10_3389_fbioe_2020_589590 crossref_primary_10_1002_anie_202203757 crossref_primary_10_1021_acs_analchem_1c00336 crossref_primary_10_1039_D3AN01464A crossref_primary_10_1021_acssensors_3c01135 crossref_primary_10_1002_anie_202109170 crossref_primary_10_1002_anie_202301382 crossref_primary_10_1016_j_talanta_2022_123892 crossref_primary_10_1021_acsanm_3c00761 crossref_primary_10_1021_acs_analchem_3c05178 crossref_primary_10_1016_j_cjac_2021_07_006 crossref_primary_10_1002_adma_202305917 crossref_primary_10_1002_ange_202403241 crossref_primary_10_1021_acs_langmuir_2c03267 crossref_primary_10_1002_adfm_202107160 crossref_primary_10_1002_smll_202306749 crossref_primary_10_1021_acs_analchem_2c03302 crossref_primary_10_12677_AAC_2022_124039 crossref_primary_10_1002_ange_202111630 crossref_primary_10_1021_acs_analchem_2c04477 crossref_primary_10_1021_acs_chemmater_2c02707 crossref_primary_10_1002_smtd_202200142 crossref_primary_10_1021_acssensors_3c00082 crossref_primary_10_1039_D1TC02352G crossref_primary_10_1063_5_0086717 crossref_primary_10_1002_adfm_202214945 crossref_primary_10_1002_ajim_23362 crossref_primary_10_1021_acs_analchem_1c00621 crossref_primary_10_1021_acs_analchem_0c04015 crossref_primary_10_1016_j_sintl_2021_100110 crossref_primary_10_1002_anie_202421684 crossref_primary_10_1021_acs_analchem_2c01227 crossref_primary_10_1021_acs_analchem_4c03550 crossref_primary_10_3390_jfb15120362 crossref_primary_10_1002_adhm_202401532 crossref_primary_10_1002_anie_202403241 crossref_primary_10_1021_acssensors_4c02421 crossref_primary_10_1021_acs_analchem_3c00331 crossref_primary_10_1016_j_microc_2023_109488 crossref_primary_10_1021_acs_nanolett_1c01692 crossref_primary_10_1021_acsnano_3c08851 crossref_primary_10_1021_acs_analchem_3c02151 crossref_primary_10_1007_s00604_024_06594_9 crossref_primary_10_1039_D1SC04138J crossref_primary_10_1007_s00216_024_05348_z crossref_primary_10_1016_j_bios_2024_116463 crossref_primary_10_1002_ange_202102833 crossref_primary_10_1021_acsmaterialslett_1c00687 crossref_primary_10_1002_anse_202400038 crossref_primary_10_1002_cnma_202100035 crossref_primary_10_1016_j_microc_2024_111061 |
Cites_doi | 10.1002/adma.201405807 10.1152/ajpheart.00872.2012 10.1038/natrevmats.2016.63 10.1002/adbi.201800252 10.1016/j.bios.2019.01.060 10.1002/adma.201502947 10.1016/j.bios.2019.111519 10.1021/nn405939w 10.3389/fnins.2016.00564 10.1002/ange.201913953 10.1126/science.1120027 10.1002/adfm.201808247 10.1038/nmeth.3689 10.1038/nature12401 10.1002/smll.201903204 10.1126/science.1193270 10.1172/JCI83083 10.1002/adfm.201101775 10.1016/j.tcb.2011.09.005 10.1039/C9CS00319C 10.1038/nmeth.2210 10.1021/acs.analchem.8b03423 10.1016/j.cell.2017.05.034 10.1016/j.trac.2018.10.017 10.1002/anie.201601276 10.1038/s41570-017-0048 10.1126/science.1206157 10.1038/ncomms4329 10.1021/acs.chemrev.7b00094 10.1021/ar200196h 10.1021/acs.chemrev.8b00573 10.1152/physrev.00042.2007 10.1002/anie.201705215 10.1039/b705552h 10.1172/JCI12467 10.1126/science.1188302 10.1021/acs.analchem.9b02610 10.1002/adma.201500768 10.1126/science.aaa7952 10.1002/anie.201803229 10.1002/adma.201405864 10.1002/jcp.24683 10.1111/joa.12257 10.1089/ars.2008.2390 10.1021/acs.analchem.8b01396 10.1126/science.1182383 10.1002/adma.201902083 10.1038/s41565-018-0226-8 10.1038/s41565-018-0331-8 10.1002/adma.201404446 10.1002/adfm.201504755 10.1016/j.bios.2013.01.008 10.1002/adma.201504366 10.1002/ange.201705215 10.1021/acs.accounts.7b00543 10.1038/srep23442 10.1002/adma.201300794 10.1038/ncomms6747 10.1002/ange.201601276 10.1038/s41598-018-20117-6 10.1373/49.10.1763 10.1038/nnano.2015.115 10.1021/acs.analchem.6b04616 10.1039/c2lc40148g 10.1002/anie.201913953 10.1152/physiol.00036.2016 10.1002/adma.201504244 10.1039/b909900j 10.1016/j.bios.2019.01.051 10.1039/c0cp00398k 10.1002/adma.201603382 10.1021/acs.analchem.0c00274 10.1021/acsnano.7b04898 10.1016/S0735-1097(00)01186-4 10.1038/nrm2594 10.1021/acsnano.8b05019 10.1021/acsami.8b03342 10.1152/ajplung.00124.2001 10.1126/sciadv.1602076 10.1038/nrm3896 10.1016/j.cell.2014.02.013 10.1021/ja401494e 10.1002/ange.201803229 10.1111/j.1365-2982.2007.00912.x 10.1038/s41587-019-0045-y 10.1021/cr068062g 10.1038/nrm2596 10.1152/ajpcell.00270.2001 10.1038/nature10316 10.1021/acs.analchem.8b01088 10.1016/j.bios.2018.07.071 10.1021/acs.analchem.8b04223 10.1039/C8CS00814K 10.1038/ncomms4121 10.1073/pnas.1205923109 10.1038/nmat4327 10.1038/natrevmats.2017.76 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202007754 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 2767 |
ExternalDocumentID | 32632992 10_1002_anie_202007754 ANIE202007754 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: 2042019kf0274 – fundername: Postdoctoral Research Foundation of China funderid: 2017M620329; 2018T110790 – fundername: Innovative Research Group Project of the National Natural Science Foundation of China funderid: 21721005 – fundername: National Natural Science Foundation of China funderid: 21725504; 21675121; 21804101 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-faef61e2d580298977f7b3839825ffeff5013c11f1437f928deda38f92c8cfaf3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 00:00:04 EDT 2025 Sun Jul 13 03:53:40 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 01:17:43 EDT 2025 Wed Jan 22 16:31:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | electrochemical sensing cells stretchable electrodes tissues mechanotransduction |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-faef61e2d580298977f7b3839825ffeff5013c11f1437f928deda38f92c8cfaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-8951-075X |
PMID | 32632992 |
PQID | 2484206231 |
PQPubID | 946352 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2421108426 proquest_journals_2484206231 pubmed_primary_32632992 crossref_citationtrail_10_1002_anie_202007754 crossref_primary_10_1002_anie_202007754 wiley_primary_10_1002_anie_202007754_ANIE202007754 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 8, 2021 |
PublicationDateYYYYMMDD | 2021-02-08 |
PublicationDate_xml | – month: 02 year: 2021 text: February 8, 2021 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2018; 120 2009; 89 2019; 91 2017; 1 2013; 25 2017; 3 2017; 89 2019; 14 2020 2020; 59 132 2008; 108 2020; 16 2015; 349 2015; 227 2001; 108 2012; 12 2011; 475 2017; 117 2009; 11 2018; 8 2014; 5 2018; 3 2009; 10 2007; 132 2017; 32 2020; 92 2014; 15 2020; 49 2011; 21 2003; 49 2019; 29 2019; 119 2014; 8 2012; 22 2007; 19 2011; 333 2015; 14 2019; 3 2013; 44 2010; 327 2010; 328 2010; 39 2013; 500 2019; 37 2013; 304 2015; 10 2016; 10 2017; 170 2017; 29 2018; 109 2016; 126 2020; 32 2017 2017; 56 129 2016; 13 2019 2019; 58 131 2012; 109 2019; 142 2014; 157 2006; 311 2016; 6 2002; 282 2015; 27 2016 2016; 55 128 2016; 1 2017; 11 2019; 48 2015; 230 2010; 330 2018; 90 2013; 135 2001; 37 2018; 51 2018; 12 2016; 28 2012; 45 2018; 10 2016; 26 2019; 131 2012; 9 2018; 13 e_1_2_8_49_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_9_2 e_1_2_8_5_1 e_1_2_8_41_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_30_2 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_101_2 e_1_2_8_72_1 e_1_2_8_29_2 e_1_2_8_25_1 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_110_1 e_1_2_8_6_2 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_18_2 e_1_2_8_33_3 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_1 e_1_2_8_90_2 e_1_2_8_90_1 e_1_2_8_94_2 e_1_2_8_98_2 e_1_2_8_10_1 e_1_2_8_106_1 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_1 e_1_2_8_102_2 e_1_2_8_71_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_81_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_43_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_97_2 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_107_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_8_2 e_1_2_8_88_2 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_2 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_50_2 e_1_2_8_100_2 e_1_2_8_73_1 e_1_2_8_104_1 |
References_xml | – volume: 91 start-page: 13521 year: 2019 end-page: 13527 publication-title: Anal. Chem. – volume: 11 start-page: 9614 year: 2017 end-page: 9635 publication-title: ACS Nano – volume: 48 start-page: 2946 year: 2019 end-page: 2966 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 9454 9582 year: 2017 2017 end-page: 9458 9586 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 109 start-page: 19910 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 4373 year: 2016 end-page: 4395 publication-title: Adv. Mater. – volume: 90 start-page: 13081 year: 2018 end-page: 13087 publication-title: Anal. Chem. – volume: 21 start-page: 745 year: 2011 end-page: 754 publication-title: Trends Cell Biol. – volume: 132 start-page: 876 year: 2007 end-page: 884 publication-title: Analyst – volume: 6 start-page: 23442 year: 2016 publication-title: Sci. Rep. – volume: 92 start-page: 4647 year: 2020 end-page: 4655 publication-title: Anal. Chem. – volume: 126 start-page: 821 year: 2016 end-page: 828 publication-title: J. Clin. Invest. – volume: 1 start-page: 16063 year: 2016 publication-title: Nat. Rev. Mater. – volume: 37 start-page: 389 year: 2019 end-page: 406 publication-title: Nat. Biotechnol. – volume: 500 start-page: 59 year: 2013 end-page: 63 publication-title: Nature – volume: 90 start-page: 13498 year: 2018 end-page: 13505 publication-title: Anal. Chem. – volume: 131 start-page: 37 year: 2019 end-page: 45 publication-title: Biosens. Bioelectron. – volume: 170 start-page: 185 year: 2017 end-page: 198 publication-title: Cell – volume: 16 year: 2020 publication-title: Small – volume: 117 start-page: 12764 year: 2017 end-page: 12850 publication-title: Chem. Rev. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 49 start-page: 1812 year: 2020 end-page: 1866 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 3349 year: 2015 end-page: 3376 publication-title: Adv. Mater. – volume: 282 start-page: L892 year: 2002 end-page: L896 publication-title: Am. J. Physiol. Lung Cell. Mol. Physiol. – volume: 328 start-page: 1662 year: 2010 end-page: 1668 publication-title: Science – volume: 51 start-page: 688 year: 2018 end-page: 696 publication-title: Acc. Chem. Res. – volume: 475 start-page: 316 year: 2011 end-page: 323 publication-title: Nature – volume: 8 start-page: 1689 year: 2018 publication-title: Sci. Rep. – volume: 26 start-page: 1678 year: 2016 end-page: 1698 publication-title: Adv. Funct. Mater. – volume: 327 start-page: 1603 year: 2010 end-page: 1607 publication-title: Science – volume: 27 start-page: 3145 year: 2015 end-page: 3151 publication-title: Adv. Mater. – volume: 14 start-page: 785 year: 2015 end-page: 789 publication-title: Nat. Mater. – volume: 19 start-page: 309 year: 2007 end-page: 317 publication-title: Neurogastroenterol. Motil. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 58 131 start-page: 3706 3744 year: 2019 2019 end-page: 3714 3752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1651 year: 2009 end-page: 1667 publication-title: Antioxid. Redox Signaling – volume: 108 start-page: 2585 year: 2008 end-page: 2621 publication-title: Chem. Rev. – volume: 10 start-page: 13729 year: 2018 end-page: 13740 publication-title: ACS Appl. Mater. Interfaces – volume: 89 start-page: 2032 year: 2017 end-page: 2038 publication-title: Anal. Chem. – volume: 12 start-page: 9742 year: 2018 end-page: 9749 publication-title: ACS Nano – volume: 333 start-page: 838 year: 2011 end-page: 843 publication-title: Science – volume: 28 start-page: 4455 year: 2016 end-page: 4461 publication-title: Adv. Mater. – volume: 14 start-page: 156 year: 2019 end-page: 160 publication-title: Nat. Nanotechnol. – volume: 49 start-page: 1763 year: 2003 end-page: 1773 publication-title: Clin. Chem. – volume: 304 start-page: H1634 year: 2013 publication-title: Am. J. Physiol. – volume: 44 start-page: 27 year: 2013 end-page: 33 publication-title: Biosens. Bioelectron. – volume: 135 start-page: 5320 year: 2013 end-page: 5323 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 17076 year: 2018 publication-title: Nat. Rev. Mater. – volume: 227 start-page: 746 year: 2015 end-page: 756 publication-title: J. Anat. – volume: 10 start-page: 53 year: 2009 end-page: 62 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 349 start-page: 400 year: 2015 end-page: 404 publication-title: Science – volume: 90 start-page: 5977 year: 2018 end-page: 5981 publication-title: Anal. Chem. – volume: 8 start-page: 1039 year: 2014 end-page: 1046 publication-title: ACS Nano – volume: 59 132 start-page: 4075 4104 year: 2020 2020 end-page: 4081 4110 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 421 year: 2012 end-page: 428 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 533 year: 2012 end-page: 543 publication-title: Acc. Chem. Res. – volume: 25 start-page: 2707 year: 2013 end-page: 2712 publication-title: Adv. Mater. – volume: 12 start-page: 10048 year: 2010 end-page: 10054 publication-title: Phys. Chem. Chem. Phys. – volume: 131 start-page: 257 year: 2019 end-page: 266 publication-title: Biosens. Bioelectron. – volume: 142 year: 2019 publication-title: Biosens. Bioelectron. – volume: 89 start-page: 481 year: 2009 end-page: 534 publication-title: Physiol. Rev. – volume: 5 start-page: 3329 year: 2014 publication-title: Nat. Commun. – volume: 5 start-page: 5747 year: 2014 publication-title: Nat. Commun. – volume: 1 start-page: 0048 year: 2017 publication-title: Nat. Rev. Chem. – volume: 28 start-page: 4338 year: 2016 end-page: 4372 publication-title: Adv. Mater. – volume: 55 128 start-page: 4537 4613 year: 2016 2016 end-page: 4541 4617 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 629 year: 2015 end-page: 636 publication-title: Nat. Nanotechnol. – volume: 13 start-page: 143 year: 2016 end-page: 146 publication-title: Nat. Methods – volume: 39 start-page: 1036 year: 2010 end-page: 1048 publication-title: Chem. Soc. Rev. – volume: 119 start-page: 5461 year: 2019 end-page: 5533 publication-title: Chem. Rev. – volume: 330 start-page: 55 year: 2010 end-page: 60 publication-title: Science – volume: 32 start-page: 266 year: 2017 end-page: 277 publication-title: Physiology – volume: 120 start-page: 160 year: 2018 end-page: 167 publication-title: Biosens. Bioelectron. – volume: 230 start-page: 16 year: 2015 end-page: 26 publication-title: J. Cell Physiol. – volume: 9 start-page: 1113 year: 2012 end-page: 1119 publication-title: Nat. Methods – volume: 15 start-page: 802 year: 2014 end-page: 812 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 157 start-page: 41 year: 2014 end-page: 50 publication-title: Cell – volume: 27 start-page: 1480 year: 2015 end-page: 1511 publication-title: Adv. Mater. – volume: 282 start-page: C595 year: 2002 end-page: C605 publication-title: Am. J. Physiol. Cell Physiol. – volume: 12 start-page: 4249 year: 2012 end-page: 4256 publication-title: Lab Chip – volume: 13 start-page: 1048 year: 2018 end-page: 1056 publication-title: Nat. Nanotechnol. – volume: 27 start-page: 3060 year: 2015 end-page: 3065 publication-title: Adv. Mater. – volume: 109 start-page: 247 year: 2018 end-page: 259 publication-title: TRAC-Trend Anal. Chem. – volume: 311 start-page: 1570 year: 2006 end-page: 1574 publication-title: Science – volume: 108 start-page: 1051 year: 2001 end-page: 1059 publication-title: J. Clin. Invest. – volume: 5 start-page: 3121 year: 2014 publication-title: Nat. Commun. – volume: 3 year: 2019 publication-title: Adv. Biosyst. – volume: 10 start-page: 75 year: 2009 end-page: 82 publication-title: Nat. Rev. Mol. Cell Biol. – volume: 37 start-page: 808 year: 2001 end-page: 817 publication-title: J. Am. Coll. Cardiol. – volume: 90 start-page: 7158 year: 2018 end-page: 7163 publication-title: Anal. Chem. – volume: 10 start-page: 564 year: 2016 publication-title: Front. Neurosci. – ident: e_1_2_8_61_1 doi: 10.1002/adma.201405807 – ident: e_1_2_8_53_2 doi: 10.1152/ajpheart.00872.2012 – ident: e_1_2_8_97_2 doi: 10.1038/natrevmats.2016.63 – ident: e_1_2_8_94_2 doi: 10.1002/adbi.201800252 – ident: e_1_2_8_54_1 – ident: e_1_2_8_105_1 doi: 10.1016/j.bios.2019.01.060 – ident: e_1_2_8_76_1 doi: 10.1002/adma.201502947 – ident: e_1_2_8_83_1 doi: 10.1016/j.bios.2019.111519 – ident: e_1_2_8_73_1 doi: 10.1021/nn405939w – ident: e_1_2_8_86_1 doi: 10.3389/fnins.2016.00564 – ident: e_1_2_8_90_2 doi: 10.1002/ange.201913953 – ident: e_1_2_8_28_2 doi: 10.1126/science.1120027 – ident: e_1_2_8_103_1 doi: 10.1002/adfm.201808247 – ident: e_1_2_8_24_1 doi: 10.1038/nmeth.3689 – ident: e_1_2_8_66_1 doi: 10.1038/nature12401 – ident: e_1_2_8_10_1 – ident: e_1_2_8_95_1 doi: 10.1002/smll.201903204 – ident: e_1_2_8_14_2 doi: 10.1126/science.1193270 – ident: e_1_2_8_12_2 doi: 10.1172/JCI83083 – ident: e_1_2_8_75_1 doi: 10.1002/adfm.201101775 – ident: e_1_2_8_99_1 – ident: e_1_2_8_6_2 doi: 10.1016/j.tcb.2011.09.005 – ident: e_1_2_8_45_2 doi: 10.1039/C9CS00319C – ident: e_1_2_8_23_1 doi: 10.1038/nmeth.2210 – ident: e_1_2_8_70_1 doi: 10.1021/acs.analchem.8b03423 – ident: e_1_2_8_42_1 – ident: e_1_2_8_34_1 – ident: e_1_2_8_15_2 doi: 10.1016/j.cell.2017.05.034 – ident: e_1_2_8_102_2 doi: 10.1016/j.trac.2018.10.017 – ident: e_1_2_8_67_1 doi: 10.1002/anie.201601276 – ident: e_1_2_8_31_2 doi: 10.1038/s41570-017-0048 – ident: e_1_2_8_51_1 – ident: e_1_2_8_59_1 doi: 10.1126/science.1206157 – ident: e_1_2_8_110_1 doi: 10.1038/ncomms4329 – ident: e_1_2_8_4_2 doi: 10.1021/acs.chemrev.7b00094 – ident: e_1_2_8_30_2 doi: 10.1021/ar200196h – ident: e_1_2_8_49_2 doi: 10.1021/acs.chemrev.8b00573 – ident: e_1_2_8_93_2 doi: 10.1152/physrev.00042.2007 – ident: e_1_2_8_1_1 – ident: e_1_2_8_81_1 doi: 10.1002/anie.201705215 – ident: e_1_2_8_101_2 doi: 10.1039/b705552h – ident: e_1_2_8_16_1 – ident: e_1_2_8_88_2 doi: 10.1172/JCI12467 – ident: e_1_2_8_18_2 doi: 10.1126/science.1188302 – ident: e_1_2_8_71_1 doi: 10.1021/acs.analchem.9b02610 – ident: e_1_2_8_19_1 – ident: e_1_2_8_78_1 doi: 10.1002/adma.201500768 – ident: e_1_2_8_38_1 – ident: e_1_2_8_64_1 doi: 10.1126/science.aaa7952 – ident: e_1_2_8_33_2 doi: 10.1002/anie.201803229 – ident: e_1_2_8_58_1 doi: 10.1002/adma.201405864 – ident: e_1_2_8_8_2 doi: 10.1002/jcp.24683 – ident: e_1_2_8_92_1 – ident: e_1_2_8_7_2 doi: 10.1111/joa.12257 – ident: e_1_2_8_91_1 doi: 10.1089/ars.2008.2390 – ident: e_1_2_8_85_1 doi: 10.1021/acs.analchem.8b01396 – ident: e_1_2_8_39_2 doi: 10.1126/science.1182383 – ident: e_1_2_8_50_2 doi: 10.1002/adma.201902083 – ident: e_1_2_8_107_1 doi: 10.1038/s41565-018-0226-8 – ident: e_1_2_8_108_1 doi: 10.1038/s41565-018-0331-8 – ident: e_1_2_8_40_2 doi: 10.1002/adma.201404446 – ident: e_1_2_8_57_1 doi: 10.1002/adfm.201504755 – ident: e_1_2_8_36_2 doi: 10.1016/j.bios.2013.01.008 – ident: e_1_2_8_13_1 – ident: e_1_2_8_47_2 doi: 10.1002/adma.201504366 – ident: e_1_2_8_81_2 doi: 10.1002/ange.201705215 – ident: e_1_2_8_32_2 doi: 10.1021/acs.accounts.7b00543 – ident: e_1_2_8_37_2 doi: 10.1038/srep23442 – ident: e_1_2_8_74_1 doi: 10.1002/adma.201300794 – ident: e_1_2_8_109_1 doi: 10.1038/ncomms6747 – ident: e_1_2_8_67_2 doi: 10.1002/ange.201601276 – ident: e_1_2_8_52_2 doi: 10.1038/s41598-018-20117-6 – ident: e_1_2_8_100_2 doi: 10.1373/49.10.1763 – ident: e_1_2_8_106_1 doi: 10.1038/nnano.2015.115 – ident: e_1_2_8_68_1 doi: 10.1021/acs.analchem.6b04616 – ident: e_1_2_8_84_1 doi: 10.1039/c2lc40148g – ident: e_1_2_8_90_1 doi: 10.1002/anie.201913953 – ident: e_1_2_8_9_2 doi: 10.1152/physiol.00036.2016 – ident: e_1_2_8_43_2 doi: 10.1002/adma.201504244 – ident: e_1_2_8_2_2 doi: 10.1039/b909900j – ident: e_1_2_8_104_1 doi: 10.1016/j.bios.2019.01.051 – ident: e_1_2_8_35_2 doi: 10.1039/c0cp00398k – ident: e_1_2_8_63_1 doi: 10.1002/adma.201603382 – ident: e_1_2_8_72_1 doi: 10.1021/acs.analchem.0c00274 – ident: e_1_2_8_44_2 doi: 10.1021/acsnano.7b04898 – ident: e_1_2_8_55_2 doi: 10.1016/S0735-1097(00)01186-4 – ident: e_1_2_8_20_2 doi: 10.1038/nrm2594 – ident: e_1_2_8_69_1 doi: 10.1021/acsnano.8b05019 – ident: e_1_2_8_80_1 doi: 10.1021/acsami.8b03342 – ident: e_1_2_8_17_2 doi: 10.1152/ajplung.00124.2001 – ident: e_1_2_8_77_1 doi: 10.1126/sciadv.1602076 – ident: e_1_2_8_22_2 doi: 10.1038/nrm3896 – ident: e_1_2_8_3_2 doi: 10.1016/j.cell.2014.02.013 – ident: e_1_2_8_96_1 – ident: e_1_2_8_25_1 doi: 10.1021/ja401494e – ident: e_1_2_8_33_3 doi: 10.1002/ange.201803229 – ident: e_1_2_8_89_2 doi: 10.1111/j.1365-2982.2007.00912.x – ident: e_1_2_8_48_2 doi: 10.1038/s41587-019-0045-y – ident: e_1_2_8_29_2 doi: 10.1021/cr068062g – ident: e_1_2_8_5_1 – ident: e_1_2_8_11_2 doi: 10.1038/nrm2596 – ident: e_1_2_8_27_1 – ident: e_1_2_8_46_1 – ident: e_1_2_8_26_1 doi: 10.1152/ajpcell.00270.2001 – ident: e_1_2_8_21_2 doi: 10.1038/nature10316 – ident: e_1_2_8_65_1 doi: 10.1021/acs.analchem.8b01088 – ident: e_1_2_8_79_1 doi: 10.1016/j.bios.2018.07.071 – ident: e_1_2_8_82_1 doi: 10.1021/acs.analchem.8b04223 – ident: e_1_2_8_41_2 doi: 10.1039/C8CS00814K – ident: e_1_2_8_60_1 doi: 10.1038/ncomms4121 – ident: e_1_2_8_56_2 doi: 10.1073/pnas.1205923109 – ident: e_1_2_8_62_1 doi: 10.1038/nmat4327 – ident: e_1_2_8_87_1 – ident: e_1_2_8_98_2 doi: 10.1038/natrevmats.2017.76 |
SSID | ssj0028806 |
Score | 2.590276 |
SecondaryResourceType | review_article |
Snippet | Electrochemical sensing based on conventional rigid electrodes has great restrictions for characterizing biomolecules in deformed cells or soft tissues. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2757 |
SubjectTerms | Biomolecules Biosensing Techniques cells Chemical sensors electrochemical sensing Electrochemical Techniques - instrumentation Electrochemical Techniques - methods Electrochemistry Electrodes Fabrication Human Umbilical Vein Endothelial Cells - metabolism Humans Mechanotransduction Mechanotransduction, Cellular Nanomaterials Nanostructures - chemistry Nitric Oxide - analysis Polymers - chemistry Sensors Soft tissues stretchable electrodes Tissues Umbilical Veins - metabolism |
Title | Stretchable Electrochemical Sensors for Cell and Tissue Detection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007754 https://www.ncbi.nlm.nih.gov/pubmed/32632992 https://www.proquest.com/docview/2484206231 https://www.proquest.com/docview/2421108426 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734fkSrrCB4Stvs5nmU2qKCHnyAt7DPiyWVNr34653JJtEqIugtIbNkM7OPb7Iz3xByprNISsXw0D2O_DDm2hdMZj44WwrgSCQEx3zn27v46im8eY6eP2XxO36I9ocbzoxqvcYJLuS8_0EaihnY4N8xR-IGizAGbCEqum_5oxgMTpdexLmPVegb1sYB6y83X96VvkHNZeRabT3jDSKaTruIk5feopQ99faFz_E_X7VJ1mtcSi_cQNoiK6bYJqvDphzcDqy_5QxNjKlWdOSK56iabYA-gDM8nc0pIGA6NJMJFYWmj5VN6aUpq3CvYpc8jUePwyu_rr_gqxC8NN8KY-PAMB2lFVF7kthEgkebgVdprbE2AvyogsCCfhObsVQbLXgKVypVVli-RzrFtDAHhHIwBCADLa3kIVdSyoFOAqGUVJmNdeQRv9F_rmpycqyRMckdrTLLUTF5qxiPnLfyr46W40fJbmPOvJ6e85yFacgGgPwCj5y2j0GheFoiCjNdoAz6xiAXe2TfDYP2VRxZ7rOMeYRVxvylD_nF3fWovTv8S6MjssYwmgbjxdMu6ZSzhTkGOFTKk2rIvwMLHQAt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VeoBLS3m0bqHdSkicDPGun0cUgkKBHEqQuFn7vBA5VeJc-us747VdpRVCgpstz8r2zD6-2Z35BuDYFIlSmtOhe5qEcSpMKLkqQnS2NMKRREpB-c63k3R8H_94SLpoQsqF8fwQ_YYbjYxmvqYBThvSZ39ZQykFGx087lncNuAtlfVuvKqfPYMUx-7pE4yECKkOfcfbOOBn6-3X16X_wOY6dm0Wn8v3oLrP9jEnj6erWp3q3_8wOr7qv3bgXQtN2bnvSx_gja12YWvYVYTbwym4XpCVKduKjXz9HN0SDrA79IfniyVDEMyGdjZjsjJs2piVXdi6ifiq9uH-cjQdjsO2BEOoY3TUQietSyPLTZI3XO1Z5jKFTm2BjqVz1rkEIaSOIocKzlzBc2ONFDle6Vw76cQBbFbzyn4CJtASCA6MckrEQiulBiaLpNZKFy41SQBhZ4BSt_zkVCZjVnpmZV6SYspeMQGc9PK_PDPHk5KHnT3LdoQuSx7nMR8g-IsC-N4_RoXSgYms7HxFMuQeo1wawEffD_pXCSK6LwoeAG-s-cw3lOeTq1F_9_kljb7B1nh6e1PeXE2uv8A2p-AaCh_PD2GzXqzsEaKjWn1t-v8fE-MESA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VGq50AcUQmlxpUqcAhs7zyPah6AtK9SCxC3y89JVFi3ZC7-emTgJLKhCam-JMlacmbH9Tez5BuCbKRKlNKdN9zQJ41SYUHJVhBhsaYQjiZSC8p3PpunJZfz9Krl6kMXv-SH6H240Mpr5mgb4tXFH96ShlIGN8R33JG4v4VWcDnLy69GvnkCKo3f6_CIhQipD39E2DvjRavvVZekJ1lyFrs3aM3kLsuu1P3Ly53BZq0N9-4jQ8X8-6x1stMCUHXtPeg8vbPUB3gy7enCbOAHXC7Ix5Vqxsa-eo1u6AfYbo-H54oYhBGZDO5sxWRl20RiVjWzdnPeqtuByMr4YnoRtAYZQxximhU5al0aWmyRvmNqzzGUKQ9oCw0rnrHMJAkgdRQ71m7mC58YaKXK80rl20omPsFbNK7sDTKAhEBoY5ZSIhVZKDUwWSa2VLlxqkgDCTv-lbtnJqUjGrPS8yrwkxZS9YgI46OWvPS_HXyX3OnOW7fi8KXmcx3yA0C8K4Gv_GBVK2yWysvMlyVBwjHJpANveDfpXCaK5LwoeAG-M-UwfyuPp6bi_2_2XRvvw-nw0KX-eTn98gnVOJ2vo7Hi-B2v1Ymk_IzSq1ZfG--8AFr0DAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+Electrochemical+Sensors+for+Cell+and+Tissue+Detection&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Yan%E2%80%90Ling&rft.au=Huang%2C+Wei%E2%80%90Hua&rft.date=2021-02-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=6&rft.spage=2757&rft.epage=2767&rft_id=info:doi/10.1002%2Fanie.202007754&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |