Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis
Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphor...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 50; pp. 18069 - 18074 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
09.12.2019
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N‐hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy‐amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single‐electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions.
Unlocked: Dearomatization of indoles and their derivatives provides efficient synthetic routes for substituted indolines. For this asymmetric dearomatization reaction the indoles function as electrophiles. The combined utilization of a photocatalyst and chiral phosphoric acid (CPA) open to air unlocks the umpolung reactivity of indoles, enabling enantioselective dearomatization of indoles with N‐hydroxycarbamates as nucleophiles. |
---|---|
AbstractList | Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N‐hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy‐amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single‐electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions.
Unlocked: Dearomatization of indoles and their derivatives provides efficient synthetic routes for substituted indolines. For this asymmetric dearomatization reaction the indoles function as electrophiles. The combined utilization of a photocatalyst and chiral phosphoric acid (CPA) open to air unlocks the umpolung reactivity of indoles, enabling enantioselective dearomatization of indoles with N‐hydroxycarbamates as nucleophiles. Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N-hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy-amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single-electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions. Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N ‐hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy‐amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single‐electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions. Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N-hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy-amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single-electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions.Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an asymmetric dearomatization reaction of indole derivatives that function as electrophiles. The combination of a photocatalyst and chiral phosphoric acid open to air unlocks the umpolung reactivity of indoles, enabling their dearomatization with N-hydroxycarbamates as nucleophiles. A variety of fused indolines bearing intriguing oxy-amines were constructed in excellent yields with moderate to high enantioselectivities. Mechanistic studies show that the realization of two sequential single-electron transfer oxidations of the indole derivatives is key, generating the configurationally biased carbocation species while providing the source of stereochemical induction. These results not only provide an efficient synthesis of enantioenriched indoline derivatives, but also offer a novel strategy for further designing asymmetric dearomatization reactions. |
Author | Zhang, Xiao Zhao, Qing‐Ru You, Shu‐Li Cheng, Yuan‐Zheng |
Author_xml | – sequence: 1 givenname: Yuan‐Zheng surname: Cheng fullname: Cheng, Yuan‐Zheng organization: Chinese Academy of Sciences – sequence: 2 givenname: Qing‐Ru surname: Zhao fullname: Zhao, Qing‐Ru organization: ShanghaiTech University – sequence: 3 givenname: Xiao orcidid: 0000-0003-0078-9075 surname: Zhang fullname: Zhang, Xiao email: zhangxiao@sioc.ac.cn organization: Chinese Academy of Sciences – sequence: 4 givenname: Shu‐Li orcidid: 0000-0003-4586-8359 surname: You fullname: You, Shu‐Li email: slyou@sioc.ac.cn organization: ShanghaiTech University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31587423$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rFTEUhoNU7JdblzLgRpC5JpNkPpaX8WovlOqirkOSOaGpM0lNZtpOV_0J_kZ_ibne2woFUUjIIed5T04O7yHac94BQq8IXhCMi_fSWVgUmDSEEMaeoQPCC5LTqqJ7KWaU5lXNyT46jPEy8XWNyxdonxJeV6ygB-jbMs7DAGOwOvsAMvhBjvYube8yb7K163wPKRPsdbq8hpjd2PEiO_t5_-Nk7oK_nbUMSiZVSq2cVD10mZqzLxd-9AE6f5u1cpT9HG08Rs-N7CO83J1H6OvH1Xl7kp9-_rRul6e5ZgSz3NSsa_jmC5p1VAIAUbKkBitV8k5pSmnFCa8Y5aqRkhsAo8tOYcOpIWVJj9Dbbd2r4L9PEEcx2Kih76UDP0VRUEzquml4k9A3T9BLPwWXuktUQQpWpZWo1ztqUgN04irYQYZZPIwxAfUWuAHlTdQWnIZHDGPMmgKXVZUiTFo7_p5v6yc3Jum7_5cmmm1pHXyMAYzQu2pjkLYXBIuNLcTGFuLRFkm2eCJ7eOCvgmbXle1h_gctlmfr1R_tL7kLyiw |
CitedBy_id | crossref_primary_10_3762_bjoc_16_197 crossref_primary_10_1007_s11426_023_1927_3 crossref_primary_10_1002_adsc_202000083 crossref_primary_10_1002_adsc_202400307 crossref_primary_10_1002_adsc_202401198 crossref_primary_10_1039_D2QO01936A crossref_primary_10_1021_acs_orglett_4c00557 crossref_primary_10_1039_D4OB01692K crossref_primary_10_1021_acscatal_0c04696 crossref_primary_10_1039_D4QO00964A crossref_primary_10_1002_ange_202007068 crossref_primary_10_1039_D0RE00329H crossref_primary_10_1021_acs_chemrev_4c00869 crossref_primary_10_1007_s11426_021_1204_5 crossref_primary_10_1021_acs_orglett_0c03759 crossref_primary_10_1039_D2OB02303B crossref_primary_10_1039_C9CS00311H crossref_primary_10_1021_acscatal_2c02164 crossref_primary_10_1039_D2QO00670G crossref_primary_10_1039_D0CC00693A crossref_primary_10_1021_jacs_2c01735 crossref_primary_10_1016_j_cclet_2023_108902 crossref_primary_10_1021_acs_joc_1c01105 crossref_primary_10_1021_jacs_3c07066 crossref_primary_10_1039_D3SC00716B crossref_primary_10_1021_acs_orglett_3c03964 crossref_primary_10_1021_jacs_2c01852 crossref_primary_10_1016_j_cclet_2020_03_070 crossref_primary_10_1021_acscatal_4c01805 crossref_primary_10_1002_slct_202100722 crossref_primary_10_1002_ange_202106046 crossref_primary_10_1021_acs_orglett_4c04215 crossref_primary_10_1002_anie_202000226 crossref_primary_10_1002_anie_202212187 crossref_primary_10_1021_acs_orglett_4c00775 crossref_primary_10_1039_D0QO01322F crossref_primary_10_1021_acs_orglett_3c00966 crossref_primary_10_1039_D0CC05672C crossref_primary_10_1039_D1SC06760E crossref_primary_10_1007_s00044_022_02895_x crossref_primary_10_1021_acscatal_4c06549 crossref_primary_10_1021_acscatal_0c03808 crossref_primary_10_1021_acs_joc_4c02977 crossref_primary_10_1039_D1OB00712B crossref_primary_10_1038_s42004_021_00460_y crossref_primary_10_1021_jacs_4c06780 crossref_primary_10_1039_C8CS00436F crossref_primary_10_1002_anie_202001200 crossref_primary_10_2174_1385272827666230217090408 crossref_primary_10_1016_j_cclet_2020_06_028 crossref_primary_10_1021_acs_orglett_3c03942 crossref_primary_10_1002_ange_202314304 crossref_primary_10_1002_ajoc_202200312 crossref_primary_10_1039_D0CS00530D crossref_primary_10_1021_jacs_3c11653 crossref_primary_10_1021_acscatal_2c05881 crossref_primary_10_1002_adsc_202300503 crossref_primary_10_1002_asia_202000640 crossref_primary_10_1002_ange_202001200 crossref_primary_10_1039_D0QO00276C crossref_primary_10_1021_jacs_2c04759 crossref_primary_10_1016_j_tetlet_2021_153149 crossref_primary_10_1016_j_tet_2020_131765 crossref_primary_10_3390_molecules27020359 crossref_primary_10_1021_acssuschemeng_3c03415 crossref_primary_10_1039_D4QO02430C crossref_primary_10_1002_adsc_202200331 crossref_primary_10_1021_acs_joc_4c01021 crossref_primary_10_1002_cjoc_202200402 crossref_primary_10_1016_j_checat_2023_100812 crossref_primary_10_1055_a_1908_3876 crossref_primary_10_1038_s41467_024_48769_1 crossref_primary_10_1021_acs_orglett_0c00602 crossref_primary_10_1039_D1SC06613G crossref_primary_10_1002_ange_202313687 crossref_primary_10_1021_acs_orglett_2c03691 crossref_primary_10_1039_D4SC00120F crossref_primary_10_1016_j_isci_2022_105669 crossref_primary_10_1002_ange_202000226 crossref_primary_10_1002_anie_202106046 crossref_primary_10_1002_ange_202212187 crossref_primary_10_1021_acs_joc_3c01960 crossref_primary_10_1021_acs_orglett_3c01106 crossref_primary_10_1021_acs_orglett_4c04164 crossref_primary_10_1038_s41467_022_31000_4 crossref_primary_10_1002_chem_202401293 crossref_primary_10_1002_ange_202013215 crossref_primary_10_1002_anie_202007068 crossref_primary_10_1002_ange_202305450 crossref_primary_10_1021_acscatal_4c00637 crossref_primary_10_1002_ange_202013174 crossref_primary_10_1002_anie_202313687 crossref_primary_10_1021_acsomega_1c00515 crossref_primary_10_1002_asia_202200802 crossref_primary_10_1002_ejoc_202401195 crossref_primary_10_1002_chem_202403309 crossref_primary_10_1021_acsomega_4c02848 crossref_primary_10_1039_D0QO01124J crossref_primary_10_1039_D4CS00137K crossref_primary_10_1002_chem_202001373 crossref_primary_10_1016_j_tchem_2022_100007 crossref_primary_10_1039_D2NJ00936F crossref_primary_10_1002_anie_202305450 crossref_primary_10_1021_acs_orglett_0c03897 crossref_primary_10_1039_D1RA06885G crossref_primary_10_1002_anie_202013215 crossref_primary_10_1002_anie_202314304 crossref_primary_10_1039_D4CC03879G crossref_primary_10_1021_acscatal_1c05621 crossref_primary_10_1002_anie_202013174 crossref_primary_10_1021_acs_joc_0c02188 crossref_primary_10_1055_s_0043_1775428 crossref_primary_10_1002_advs_202305101 |
Cites_doi | 10.1039/C5OB02526E 10.3762/bjoc.9.177 10.1002/asia.201800446 10.1016/j.chempr.2016.11.005 10.1002/ange.201405689 10.1002/ange.201800733 10.1002/ange.201005764 10.1021/cr300503r 10.1002/anie.201103151 10.1126/science.1239176 10.1002/anie.201206481 10.1002/ange.201811085 10.1246/bcsj.20150040 10.3390/ijms20081959 10.1039/b316241a 10.1021/ar2000343 10.1039/c1cs15087a 10.1021/acs.chemrev.6b00657 10.1021/jacs.5b00613 10.1021/jacs.7b13616 10.1021/acs.joc.8b01597 10.1007/s11426-018-9399-2 10.1039/C8CS00790J 10.1002/chem.201600885 10.1002/ange.201407518 10.1002/cjoc.201800319 10.1002/anie.201306774 10.1002/anie.201802891 10.1002/ange.201408551 10.1002/anie.201706694 10.1002/anie.201200223 10.1021/cr900211p 10.1002/ange.201508570 10.1002/ange.201410814 10.1002/ange.201811437 10.1055/s-0032-1316853 10.1002/ange.201310905 10.1039/C3CC47921H 10.6023/A17020049 10.1002/ange.201204822 10.1021/cr0505270 10.1002/ange.201812294 10.1002/ange.201802891 10.1021/ja309311z 10.1002/ange.201203553 10.1002/anie.201503042 10.1002/anie.201005764 10.1038/s41929-018-0111-8 10.1002/anie.201000711 10.1002/ange.201006017 10.1039/C6CS00475J 10.1021/ar500167f 10.1021/cr5001496 10.1039/C7OB00413C 10.1002/9783527698479 10.1002/anie.200901843 10.1002/cctc.201200435 10.1021/jacs.8b07394 10.1021/acscatal.7b02279 10.1002/adsc.201300751 10.1021/ja305100g 10.1021/acs.orglett.9b00628 10.1073/pnas.0308177101 10.1021/ja9938074 10.1002/anie.201709766 10.1021/cr030004x 10.1002/ange.201808919 10.1002/chem.201400321 10.1002/anie.201405689 10.1002/anie.201800733 10.1002/anie.201410814 10.1002/chem.201803149 10.1039/C4QO00306C 10.1002/anie.201811085 10.1039/b923063g 10.1002/ange.201206481 10.1039/C6CS00239K 10.1039/C5CS00356C 10.1039/C4CC09268F 10.1002/anie.201808919 10.1002/anie.201203553 10.1021/cr068374j 10.1002/ange.201503042 10.1016/j.tetlet.2015.01.024 10.1002/ange.201000711 10.1002/anie.201006017 10.31635/ccschem.019.20180006 10.1002/anie.201407518 10.1002/ange.201306774 10.1021/acs.chemrev.5b00662 10.1021/acs.chemrev.6b00057 10.1039/b807577h 10.1002/anie.201408551 10.1039/B913880N 10.1021/acs.chemrev.6b00018 10.1002/ange.201706694 10.1002/ange.200901843 10.1002/anie.201811437 10.1002/anie.201508570 10.1002/ange.201200223 10.1038/nature25175 10.1002/anie.201310905 10.1002/ange.201103151 10.1016/j.scib.2018.06.006 10.1039/C8NP00032H 10.1038/nchem.2866 10.1039/C4OB00371C 10.1021/jacs.7b07745 10.1002/anie.201204822 10.1002/anie.201812294 10.1021/acs.joc.6b01449 10.1002/ange.201709766 10.1021/acs.chemrev.6b00684 10.1002/chem.201405376 10.1002/ejic.200900673 10.1039/c4cc09268f 10.1039/c5ob02526e 10.1039/c4qo00306c 10.1039/c6cs00475j 10.1038/NCHEM.2866 10.1055/s-0032-1317575 10.1039/c8np00098k 10.1039/c7ob00413c 10.1039/c6cs00239k 10.1039/c5cs00356c 10.1039/c8np00032h 10.1039/c3cc47921h 10.1039/c8cs00790j 10.1039/c4ob00371c 10.1039/b913880n |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 17B 1KM 1KN AAWJD BLEPL DTL EGQ NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201911144 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2019 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Web of Science CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 18074 |
ExternalDocumentID | 31587423 000492067700001 10_1002_anie_201911144 ANIE201911144 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21821002; 21801248 – fundername: AstraZeneca – fundername: Pharmaron – fundername: Chinese Academy of Sciences grantid: XDB20000000; QYZDY-SSW-SLH012 – fundername: Youth Innovation Promotion Association of CAS grantid: 2019255 – fundername: Shanghai Sailing Program grantid: 18YF1428900 – fundername: MOST grantid: 2016YFA0202900 – fundername: NSFC; National Natural Science Foundation of China (NSFC) grantid: 21821002; 21801248 – fundername: National Natural Science Foundation of China grantid: 21821002 – fundername: National Natural Science Foundation of China grantid: 21801248 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-f84d953773c4d3aeee1ba63f0bb65dbc33375157435b9aa5feefc6db0f53f1663 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 114 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000492067700001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:37:12 EDT 2025 Fri Jul 25 10:36:43 EDT 2025 Wed Feb 19 02:31:17 EST 2025 Fri Aug 29 16:08:32 EDT 2025 Wed Jul 09 18:05:51 EDT 2025 Tue Jul 01 02:26:59 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:36:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | BRONSTED ACID ANION PHASE-TRANSFER ENANTIOSELECTIVE SYNTHESIS OXIDATIVE DEAROMATIZATION dearomatization umpolung PYRROLOINDOLINES indoles asymmetric synthesis photochemistry PHOSPHORIC-ACID CONSTRUCTION RECENT PROGRESS METAL CATALYSIS CYCLIZATION |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c4104-f84d953773c4d3aeee1ba63f0bb65dbc33375157435b9aa5feefc6db0f53f1663 |
Notes | In memory of Professor Dieter Enders ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4586-8359 0000-0003-0078-9075 |
PMID | 31587423 |
PQID | 2321247247 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2321247247 pubmed_primary_31587423 wiley_primary_10_1002_anie_201911144_ANIE201911144 proquest_miscellaneous_2301889959 webofscience_primary_000492067700001CitationCount crossref_citationtrail_10_1002_anie_201911144 webofscience_primary_000492067700001 crossref_primary_10_1002_anie_201911144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 9, 2019 |
PublicationDateYYYYMMDD | 2019-12-09 |
PublicationDate_xml | – month: 12 year: 2019 text: December 9, 2019 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 7 2007; 107 2009 2009; 48 121 2017; 46 2018; 83 2013; 5 2005; 22 2013 2013; 52 125 2013; 9 2017; 117 2018; 47 2014; 20 2017; 75 2012; 134 2019; 62 2015; 137 2019; 20 2018; 1 2019; 21 2012 2012; 51 124 2018 2018; 57 130 2015; 88 2010; 110 2015 2015; 54 127 2013; 113 2013; 355 2016; 116 2000; 122 2016; 81 2014; 50 2014; 12 2016; 45 2018; 36 2004; 101 2015; 2 2015; 56 2018; 140 2015; 51 2010; 39 2013; 45 2019; 1 2011; 40 2019; 36 2009 2008 2014; 47 2018; 63 2010 2010; 49 122 2017 2017; 56 129 2016; 14 2014; 114 2019 2019; 58 131 2017; 139 2018; 24 2016; 1 2016 2016; 55 128 2017; 15 2019; 48 2018; 554 2015; 21 2019 2011; 44 2016 2011 2011; 50 123 2003; 103 2018; 10 2006; 106 2014; 343 2018; 13 2016; 22 e_1_2_7_3_2 e_1_2_7_104_1 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_83_1 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_49_2 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_94_1 e_1_2_7_52_2 e_1_2_7_98_1 e_1_2_7_23_2 e_1_2_7_75_1 e_1_2_7_33_2 e_1_2_7_79_2 e_1_2_7_33_3 e_1_2_7_56_1 e_1_2_7_37_2 e_1_2_7_4_3 e_1_2_7_4_2 e_1_2_7_8_1 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_40_3 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_1 e_1_2_7_29_2 e_1_2_7_29_3 Zheng C. (e_1_2_7_21_2) 2019 e_1_2_7_93_1 e_1_2_7_70_2 e_1_2_7_51_3 e_1_2_7_74_3 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_55_1 e_1_2_7_32_2 e_1_2_7_74_2 e_1_2_7_32_3 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_36_3 e_1_2_7_59_2 e_1_2_7_5_2 e_1_2_7_9_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_1 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_47_3 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_50_2 e_1_2_7_25_3 e_1_2_7_92_1 e_1_2_7_25_2 e_1_2_7_50_3 e_1_2_7_96_3 e_1_2_7_31_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_54_1 e_1_2_7_73_3 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_35_3 e_1_2_7_77_3 e_1_2_7_58_3 e_1_2_7_39_2 e_1_2_7_39_3 e_1_2_7_2_2 e_1_2_7_80_1 e_1_2_7_6_2 e_1_2_7_103_1 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_10_3 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 e_1_2_7_69_3 e_1_2_7_27_3 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_30_3 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_2 Qi, LW (WOS:000423143500013) 2018; 10 Prier, CK (WOS:000321810600018) 2013; 113 Shao, W. (000492067700001.79) 2015; 127 Nelson, H. M. (000492067700001.59) 2014; 126 Pinter, A. (000492067700001.64) 2010; 122 Xie, WQ (WOS:000327410300027) 2013; 52 Gulzar, N (WOS:000349664300030) 2015; 21 Zhao, X. (000492067700001.106) 2015; 127 Cheng, YZ (WOS:000442846800013) 2018; 24 Liu, HK (WOS:000462655400042) 2019; 58 Gentry, EC (WOS:000427203600036) 2018; 140 Romero, NA (WOS:000383410100011) 2016; 116 Terada, M (WOS:000259306700001) 2008 Yang, WB (WOS:000333447200011) 2014; 20 Liao, L. (000492067700001.39) 2014; 126 Teo, YC (WOS:000314238400025) 2013; 5 Liu, Q.-J. (000492067700001.46) 2018; 130 Cheng, YZ (WOS:000439777400002) 2018; 63 Hu, N. (000492067700001.29) 2018; 130 Liu, C (WOS:000368069200053) 2016; 55 Zheng, C (WOS:000510668300006) 2019; 36 Liang, XW (WOS:000382925000002) 2016; 22 Shao, W (WOS:000356390900043) 2015; 54 Mallik, S (WOS:000464247500089) 2019; 21 Zhang, ZH (WOS:000311702000021) 2012; 51 Bodnar, BS (WOS:000291999100006) 2011; 50 Kochanowska-Karamyan, AJ (WOS:000280985800001) 2010; 110 Humphrey, GR (WOS:000238973000012) 2006; 106 Nelson, HM (WOS:000337041600017) 2014; 53 Adam, W (WOS:000185910900007) 2003; 103 Zhang, YC (WOS:000345833100052) 2014; 53 Ding, QP (WOS:000313322900002) 2013; 45 Stegbauer, S. (000492067700001.85) 2018; 130 Ravelli, D (WOS:000383410100007) 2016; 116 Liu, C. (000492067700001.44) 2016; 128 Wang, CF (WOS:000364443200015) 2015; 2 Austin, JF (WOS:000220861500035) 2004; 101 Zhao, XH (WOS:000351204600033) 2015; 54 Akiyama, T (WOS:000251583300010) 2007; 107 Zhuo, C.-X. (000492067700001.114) 2012; 124 Liang, KJ (WOS:000445713000028) 2018; 83 Silvi, M (WOS:000424048900028) 2018; 554 Bandini, M (WOS:000273093700007) 2009; 48 Liu, QJ (WOS:000428350100050) 2018; 57 Zhuo, CX (WOS:000340702000032) 2014; 47 Zhu, YG (WOS:000411267800028) 2017; 56 Zhang, Y.-C. (000492067700001.105) 2014; 126 Memeo, MG (WOS:000393845700019) 2017; 117 Skubi, KL (WOS:000383410100010) 2016; 116 Peng, L. (000492067700001.63) 2019; 131 Palmieri, A (WOS:000461842000004) 2019; 36 Zhang, Z. (000492067700001.102) 2012; 124 Maji, B (WOS:000356467200001) 2015; 88 Frazier, CP (WOS:000356544800095) 2015; 56 Lozano, O. (000492067700001.48) 2011; 123 Hu, NF (WOS:000432710100046) 2018; 57 Rueping, M (WOS:000293858500007) 2011; 40 Chen, Z. (000492067700001.11) 2013; 125 Sunazuka, T (WOS:000085914400047) 2000; 122 Megger, E (WOS:000349325000001) 2015; 51 Marzo, L (WOS:000440135700004) 2018; 57 Tu, HF (WOS:000446621900010) 2018; 1 Wu, WT (WOS:000372255400005) 2016; 45 Xuan, J (WOS:000305990800005) 2012; 51 Reckenthäler, M (WOS:000328149300001) 2013; 355 Liu, H.- K. (000492067700001.42) 2019; 131 Chen, Y (WOS:000456087200007) 2019; 62 Ding, X. (000492067700001.19) 2019; 131 Zi, WW (WOS:000351187200019) 2015; 137 You, S.-L. (000492067700001.100) 2016 Yu, J (WOS:000297483100003) 2011; 44 Romano, C. (000492067700001.74) 2014; 126 Lozano, O (WOS:000294177500026) 2011; 50 Bu, LW (WOS:000443679400021) 2018; 13 Romano, C (WOS:000345833100039) 2014; 53 Chen, JB (WOS:000400868000002) 2017; 15 Festa, AA (WOS:000480621900002) 2019; 48 Pintér, A (WOS:000280180300029) 2010; 49 Shaw, MH (WOS:000381847600002) 2016; 81 Somei, M (WOS:000226783200003) 2005; 22 Bodnar, B. S. (000492067700001.8) 2011; 123 Wei, Q (WOS:000322597100001) 2013; 9 Ding, QP (WOS:000338118400002) 2014; 12 Hanss, D (WOS:000272330800011) 2009 Schultz, DM (WOS:000332309600033) 2014; 343 Zhuo, CX (WOS:000312305400004) 2012; 51 Huang, L (WOS:000787306000008) 2019; 1 Min, C (WOS:000412141600008) 2017; 46 Liao, LH (WOS:000342760700036) 2014; 53 Peng, L (WOS:000455818400029) 2019; 58 Ding, X (WOS:000455818400010) 2019; 58 Chen, ZL (WOS:000314654000026) 2013; 52 Bartoli, G (WOS:000283141300030) 2010; 39 Maji, R (WOS:000425374900001) 2018; 47 Qin, Y (WOS:000405642800023) 2017; 117 Baidya, M (WOS:000311192100023) 2012; 134 Haque, MM (WOS:000467648700157) 2019; 20 Xuan, J. (000492067700001.97) 2012; 124 Good, SN (WOS:000411043900023) 2017; 139 Liang, XW (WOS:000444539000006) 2018; 36 Han, L (WOS:000329175000019) 2014; 50 Roche, SP (WOS:000290662500006) 2011; 50 Zheng, C (WOS:000389801600008) 2016; 1 Sun, WS (WOS:000370878800002) 2016; 14 Wu, WT (WOS:000405655100001) 2017; 75 Leth, LA (WOS:000447354800007) 2018; 140 Narayanam, JMR (WOS:000285390900008) 2011; 40 Xie, W. (000492067700001.95) 2013; 125 Parmar, D (WOS:000342328500008) 2014; 114 Jiang, F (WOS:000412795700064) 2017; 7 Stegbauer, S (WOS:000448049800033) 2018; 57 Bandini, M. (000492067700001.5) 2009; 121 Zhu, SL (WOS:000305863900026) 2012; 134 |
References_xml | – volume: 51 124 start-page: 12662 12834 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 40 start-page: 4539 year: 2011 publication-title: Chem. Soc. Rev. – volume: 39 start-page: 4449 year: 2010 publication-title: Chem. Soc. Rev. – volume: 52 125 start-page: 12924 13162 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 110 start-page: 4489 year: 2010 publication-title: Chem. Rev. – volume: 116 start-page: 10075 year: 2016 publication-title: Chem. Rev. – volume: 46 start-page: 5889 year: 2017 publication-title: Chem. Soc. Rev. – volume: 49 122 start-page: 5004 5124 year: 2010 2010 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 11918 year: 2016 publication-title: Chem. Eur. J. – volume: 5 start-page: 235 year: 2013 publication-title: ChemCatChem – volume: 22 start-page: 73 year: 2005 publication-title: Nat. Prod. Rep. – volume: 51 start-page: 3290 year: 2015 publication-title: Chem. Commun. – volume: 57 130 start-page: 3810 3872 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 18566 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 1559 year: 2013 publication-title: Beilstein J. Org. Chem. – volume: 101 start-page: 5482 year: 2004 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 130 start-page: 14593 14801 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 490 year: 2019 publication-title: Nat. Prod. Rep. – volume: 107 start-page: 5744 year: 2007 publication-title: Chem. Rev. – volume: 51 124 start-page: 11778 11948 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 343 start-page: 985 year: 2014 publication-title: Science – volume: 116 start-page: 9850 year: 2016 publication-title: Chem. Rev. – volume: 45 start-page: 1570 year: 2016 publication-title: Chem. Soc. Rev. – volume: 75 start-page: 419 year: 2017 publication-title: Acta Chim. Sin. – volume: 51 124 start-page: 6828 6934 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 6984 year: 2017 publication-title: ACS Catal. – volume: 1 start-page: 601 year: 2018 publication-title: Nat. Catal. – start-page: 4097 year: 2008 publication-title: Chem. Commun. – volume: 56 start-page: 3353 year: 2015 publication-title: Tetrahedron Lett. – volume: 55 128 start-page: 751 761 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 10471 10639 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 830 year: 2016 publication-title: Chem – volume: 1 start-page: 106 year: 2019 publication-title: CCS Chem. – volume: 554 start-page: 41 year: 2018 publication-title: Nature – start-page: 4850 year: 2009 publication-title: Eur. J. Inorg. Chem. – volume: 24 start-page: 12519 year: 2018 publication-title: Chem. Eur. J. – volume: 54 127 start-page: 4032 4104 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 131 start-page: 4345 4389 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1959 year: 2019 publication-title: Int. J. Mol. Sci. – volume: 52 125 start-page: 2027 2081 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 121 start-page: 9608 9786 year: 2009 2009 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 1 year: 2013 publication-title: Synthesis – volume: 50 123 start-page: 5630 5746 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 114 start-page: 9047 year: 2014 publication-title: Chem. Rev. – volume: 47 start-page: 1142 year: 2018 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 12422 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 2108 year: 2017 publication-title: Chem. Rev. – volume: 137 start-page: 3225 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 3927 year: 2014 publication-title: Chem. Eur. J. – volume: 50 123 start-page: 4068 4154 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 3550 year: 2017 publication-title: Org. Biomol. Chem. – volume: 21 start-page: 2352 year: 2019 publication-title: Org. Lett. – volume: 44 start-page: 1156 year: 2011 publication-title: Acc. Chem. Res. – volume: 134 start-page: 10815 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 6242 6350 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 63 start-page: 809 year: 2018 publication-title: Sci. Bull. – volume: 10 start-page: 58 year: 2018 publication-title: Nat. Chem. – volume: 81 start-page: 6898 year: 2016 publication-title: J. Org. Chem. – volume: 83 start-page: 10948 year: 2018 publication-title: J. Org. Chem. – volume: 103 start-page: 4131 year: 2003 publication-title: Chem. Rev. – volume: 47 start-page: 2558 year: 2014 publication-title: Acc. Chem. Res. – volume: 117 start-page: 9433 year: 2017 publication-title: Chem. Rev. – volume: 140 start-page: 12687 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 8105 8255 year: 2011 2011 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 116 start-page: 10035 year: 2016 publication-title: Chem. Rev. – volume: 48 start-page: 4401 year: 2019 publication-title: Chem. Soc. Rev. – volume: 53 126 start-page: 5600 5706 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2016 – volume: 50 start-page: 1231 year: 2014 publication-title: Chem. Commun. – volume: 2 start-page: 179 year: 2015 publication-title: Org. Chem. Front. – volume: 53 126 start-page: 13854 14074 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 13912 14132 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 88 start-page: 753 year: 2015 publication-title: Bull. Chem. Soc. Jpn. – volume: 12 start-page: 4807 year: 2014 publication-title: Org. Biomol. Chem. – volume: 355 start-page: 2727 year: 2013 publication-title: Adv. Synth. Catal. – volume: 40 start-page: 102 year: 2011 publication-title: Chem. Soc. Rev. – volume: 58 131 start-page: 118 124 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 12206 12374 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 3367 year: 2015 publication-title: Chem. Eur. J. – volume: 58 131 start-page: 216 222 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 10034 10188 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 7684 7794 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 925 year: 2018 publication-title: Chin. J. Chem. – volume: 113 start-page: 5322 year: 2013 publication-title: Chem. Rev. – volume: 122 start-page: 2122 year: 2000 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 2875 year: 2006 publication-title: Chem. Rev. – volume: 14 start-page: 2164 year: 2016 publication-title: Org. Biomol. Chem. – volume: 140 start-page: 3394 year: 2018 publication-title: J. Am. Chem. Soc. – year: 2019 publication-title: Nat. Prod. Rep. – volume: 13 start-page: 2382 year: 2018 publication-title: Chem. Asian J. – volume: 62 start-page: 24 year: 2019 publication-title: Sci. China Chem. – ident: e_1_2_7_17_2 doi: 10.1039/C5OB02526E – ident: e_1_2_7_53_2 doi: 10.3762/bjoc.9.177 – ident: e_1_2_7_46_2 doi: 10.1002/asia.201800446 – ident: e_1_2_7_16_2 doi: 10.1016/j.chempr.2016.11.005 – ident: e_1_2_7_28_3 doi: 10.1002/ange.201405689 – ident: e_1_2_7_36_3 doi: 10.1002/ange.201800733 – ident: e_1_2_7_77_3 doi: 10.1002/ange.201005764 – ident: e_1_2_7_59_2 doi: 10.1021/cr300503r – ident: e_1_2_7_56_1 – ident: e_1_2_7_50_2 doi: 10.1002/anie.201103151 – ident: e_1_2_7_61_2 doi: 10.1126/science.1239176 – ident: e_1_2_7_26_2 doi: 10.1002/anie.201206481 – ident: e_1_2_7_47_3 doi: 10.1002/ange.201811085 – ident: e_1_2_7_78_2 doi: 10.1246/bcsj.20150040 – ident: e_1_2_7_94_1 doi: 10.3390/ijms20081959 – ident: e_1_2_7_2_2 doi: 10.1039/b316241a – ident: e_1_2_7_8_1 – ident: e_1_2_7_86_2 doi: 10.1021/ar2000343 – ident: e_1_2_7_87_2 doi: 10.1039/c1cs15087a – ident: e_1_2_7_90_2 doi: 10.1021/acs.chemrev.6b00657 – ident: e_1_2_7_31_2 doi: 10.1021/jacs.5b00613 – ident: e_1_2_7_54_1 doi: 10.1021/jacs.7b13616 – ident: e_1_2_7_55_1 doi: 10.1021/acs.joc.8b01597 – ident: e_1_2_7_70_2 doi: 10.1007/s11426-018-9399-2 – ident: e_1_2_7_71_2 doi: 10.1039/C8CS00790J – ident: e_1_2_7_43_1 – ident: e_1_2_7_49_2 doi: 10.1002/chem.201600885 – ident: e_1_2_7_29_3 doi: 10.1002/ange.201407518 – ident: e_1_2_7_52_2 doi: 10.1002/cjoc.201800319 – ident: e_1_2_7_51_2 doi: 10.1002/anie.201306774 – ident: e_1_2_7_73_2 doi: 10.1002/anie.201802891 – ident: e_1_2_7_30_3 doi: 10.1002/ange.201408551 – ident: e_1_2_7_35_2 doi: 10.1002/anie.201706694 – ident: e_1_2_7_58_2 doi: 10.1002/anie.201200223 – ident: e_1_2_7_6_2 doi: 10.1021/cr900211p – ident: e_1_2_7_42_2 doi: 10.1002/ange.201508570 – ident: e_1_2_7_32_3 doi: 10.1002/ange.201410814 – ident: e_1_2_7_39_3 doi: 10.1002/ange.201811437 – ident: e_1_2_7_12_2 doi: 10.1055/s-0032-1316853 – ident: e_1_2_7_27_3 doi: 10.1002/ange.201310905 – ident: e_1_2_7_45_2 doi: 10.1039/C3CC47921H – ident: e_1_2_7_18_2 doi: 10.6023/A17020049 – ident: e_1_2_7_11_3 doi: 10.1002/ange.201204822 – ident: e_1_2_7_3_2 doi: 10.1021/cr0505270 – ident: e_1_2_7_40_3 doi: 10.1002/ange.201812294 – ident: e_1_2_7_73_3 doi: 10.1002/ange.201802891 – ident: e_1_2_7_83_1 – ident: e_1_2_7_93_1 doi: 10.1021/ja309311z – ident: e_1_2_7_25_3 doi: 10.1002/ange.201203553 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201503042 – ident: e_1_2_7_77_2 doi: 10.1002/anie.201005764 – ident: e_1_2_7_38_2 doi: 10.1038/s41929-018-0111-8 – ident: e_1_2_7_80_1 – ident: e_1_2_7_96_2 doi: 10.1002/anie.201000711 – ident: e_1_2_7_10_3 doi: 10.1002/ange.201006017 – ident: e_1_2_7_91_2 doi: 10.1039/C6CS00475J – ident: e_1_2_7_14_2 doi: 10.1021/ar500167f – ident: e_1_2_7_88_2 doi: 10.1021/cr5001496 – ident: e_1_2_7_19_2 doi: 10.1039/C7OB00413C – ident: e_1_2_7_9_2 doi: 10.1002/9783527698479 – ident: e_1_2_7_4_2 doi: 10.1002/anie.200901843 – ident: e_1_2_7_81_2 doi: 10.1002/cctc.201200435 – ident: e_1_2_7_103_1 doi: 10.1021/jacs.8b07394 – ident: e_1_2_7_48_1 – ident: e_1_2_7_34_2 doi: 10.1021/acscatal.7b02279 – ident: e_1_2_7_60_2 doi: 10.1002/adsc.201300751 – ident: e_1_2_7_24_2 doi: 10.1021/ja305100g – ident: e_1_2_7_102_2 doi: 10.1021/acs.orglett.9b00628 – ident: e_1_2_7_23_2 doi: 10.1073/pnas.0308177101 – ident: e_1_2_7_44_2 doi: 10.1021/ja9938074 – ident: e_1_2_7_69_2 doi: 10.1002/anie.201709766 – ident: e_1_2_7_76_2 doi: 10.1021/cr030004x – ident: e_1_2_7_74_3 doi: 10.1002/ange.201808919 – ident: e_1_2_7_99_2 doi: 10.1002/chem.201400321 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201405689 – ident: e_1_2_7_36_2 doi: 10.1002/anie.201800733 – ident: e_1_2_7_32_2 doi: 10.1002/anie.201410814 – ident: e_1_2_7_101_2 doi: 10.1002/chem.201803149 – ident: e_1_2_7_62_2 doi: 10.1039/C4QO00306C – ident: e_1_2_7_47_2 doi: 10.1002/anie.201811085 – ident: e_1_2_7_5_2 doi: 10.1039/b923063g – ident: e_1_2_7_26_3 doi: 10.1002/ange.201206481 – ident: e_1_2_7_89_2 doi: 10.1039/C6CS00239K – ident: e_1_2_7_95_1 – ident: e_1_2_7_15_2 doi: 10.1039/C5CS00356C – ident: e_1_2_7_63_2 doi: 10.1039/C4CC09268F – ident: e_1_2_7_74_2 doi: 10.1002/anie.201808919 – ident: e_1_2_7_25_2 doi: 10.1002/anie.201203553 – ident: e_1_2_7_84_2 doi: 10.1021/cr068374j – year: 2019 ident: e_1_2_7_21_2 publication-title: Nat. Prod. Rep. – ident: e_1_2_7_33_3 doi: 10.1002/ange.201503042 – ident: e_1_2_7_98_1 – ident: e_1_2_7_82_2 doi: 10.1016/j.tetlet.2015.01.024 – ident: e_1_2_7_22_1 – ident: e_1_2_7_96_3 doi: 10.1002/ange.201000711 – ident: e_1_2_7_10_2 doi: 10.1002/anie.201006017 – ident: e_1_2_7_41_2 doi: 10.31635/ccschem.019.20180006 – ident: e_1_2_7_1_1 – ident: e_1_2_7_29_2 doi: 10.1002/anie.201407518 – ident: e_1_2_7_51_3 doi: 10.1002/ange.201306774 – ident: e_1_2_7_64_2 doi: 10.1021/acs.chemrev.5b00662 – ident: e_1_2_7_65_2 doi: 10.1021/acs.chemrev.6b00057 – ident: e_1_2_7_85_2 doi: 10.1039/b807577h – ident: e_1_2_7_30_2 doi: 10.1002/anie.201408551 – ident: e_1_2_7_57_2 doi: 10.1039/B913880N – ident: e_1_2_7_67_2 doi: 10.1021/acs.chemrev.6b00018 – ident: e_1_2_7_35_3 doi: 10.1002/ange.201706694 – ident: e_1_2_7_4_3 doi: 10.1002/ange.200901843 – ident: e_1_2_7_39_2 doi: 10.1002/anie.201811437 – ident: e_1_2_7_42_1 doi: 10.1002/anie.201508570 – ident: e_1_2_7_58_3 doi: 10.1002/ange.201200223 – ident: e_1_2_7_75_1 – ident: e_1_2_7_68_2 doi: 10.1038/nature25175 – ident: e_1_2_7_27_2 doi: 10.1002/anie.201310905 – ident: e_1_2_7_50_3 doi: 10.1002/ange.201103151 – ident: e_1_2_7_72_1 – ident: e_1_2_7_20_2 doi: 10.1016/j.scib.2018.06.006 – ident: e_1_2_7_7_2 doi: 10.1039/C8NP00032H – ident: e_1_2_7_37_2 doi: 10.1038/nchem.2866 – ident: e_1_2_7_13_2 doi: 10.1039/C4OB00371C – ident: e_1_2_7_100_2 doi: 10.1021/jacs.7b07745 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201204822 – ident: e_1_2_7_40_2 doi: 10.1002/anie.201812294 – ident: e_1_2_7_66_2 doi: 10.1021/acs.joc.6b01449 – ident: e_1_2_7_69_3 doi: 10.1002/ange.201709766 – ident: e_1_2_7_79_2 doi: 10.1021/acs.chemrev.6b00684 – ident: e_1_2_7_104_1 – ident: e_1_2_7_97_2 doi: 10.1002/chem.201405376 – ident: e_1_2_7_92_1 doi: 10.1002/ejic.200900673 – volume: 53 start-page: 13912 year: 2014 ident: WOS:000345833100052 article-title: Organocatalytic Asymmetric Arylative Dearomatization of 2,3-Disubstituted Indoles Enabled by Tandem Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201408551 – start-page: 4097 year: 2008 ident: WOS:000259306700001 article-title: Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b807577h – volume: 21 start-page: 3367 year: 2015 ident: WOS:000349664300030 article-title: Experimental and Computational Studies on the C-H Amination Mechanism of Tetrahydrocarbazoles via Hydroperoxides publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201405376 – volume: 116 start-page: 9850 year: 2016 ident: WOS:000383410100007 article-title: Carbon-Carbon Bond Forming Reactions via Photogenerated Intermediates publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.5b00662 – volume: 47 start-page: 2558 year: 2014 ident: WOS:000340702000032 article-title: Transition-Metal-Catalyzed Asymmetric Allylic Dearomatization Reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar500167f – volume: 51 start-page: 3290 year: 2015 ident: WOS:000349325000001 article-title: Asymmetric catalysis activated by visible light publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc09268f – volume: 116 start-page: 10035 year: 2016 ident: WOS:000383410100010 article-title: Dual Catalysis Strategies in Photochemical Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00018 – volume: 36 start-page: 925 year: 2018 ident: WOS:000444539000006 article-title: Asymmetric Fluorinative Dearomatization of Tryptophol Derivatives by Chiral Anion Phase-Transfer Catalysis publication-title: CHINESE JOURNAL OF CHEMISTRY doi: 10.1002/cjoc.201800319 – volume: 103 start-page: 4131 year: 2003 ident: WOS:000185910900007 article-title: The nitroso ene reaction: A regioselective and stereoselective allylic nitrogen functionalization of mechanistic delight and synthetic potential publication-title: CHEMICAL REVIEWS doi: 10.1021/cr030004x – volume: 554 start-page: 40 year: 2018 ident: WOS:000424048900028 article-title: Enhancing the potential of enantioselective organocatalysis with light publication-title: NATURE doi: 10.1038/nature25175 – volume: 48 start-page: 9608 year: 2009 ident: WOS:000273093700007 article-title: Catalytic Functionalization of Indoles in a New Dimension publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200901843 – volume: 131 start-page: 222 year: 2019 ident: 000492067700001.63 publication-title: Angew. Chem. – volume: 126 start-page: 10639 year: 2014 ident: 000492067700001.39 publication-title: Angew. Chem. – volume: 101 start-page: 5482 year: 2004 ident: WOS:000220861500035 article-title: Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition-cyclization strategy: Synthesis of (-)-flustramine B publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.0308177101 – volume: 1 start-page: 830 year: 2016 ident: WOS:000389801600008 article-title: Catalytic Asymmetric Dearomatization by Transition-Metal Catalysis: A Method for Transformations of Aromatic Compounds publication-title: CHEM doi: 10.1016/j.chempr.2016.11.005 – volume: 137 start-page: 3225 year: 2015 ident: WOS:000351187200019 article-title: Gold(I)-Catalyzed Dearomative Rautenstrauch Rearrangement: Enantioselective Access to Cyclopenta[b]indoles publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.5b00613 – volume: 127 start-page: 4104 year: 2015 ident: 000492067700001.106 publication-title: Angew. Chem. – volume: 1 start-page: 106 year: 2019 ident: WOS:000787306000008 article-title: Highly Diastereo- and Enantioselective Synthesis of Quinuclidine Derivatives by an Iridium-Catalyzed Intramolecular Allylic Dearomatization Reaction publication-title: CCS CHEMISTRY doi: 10.31635/ccschem.019.20180006 – volume: 14 start-page: 2164 year: 2016 ident: WOS:000370878800002 article-title: Asymmetric dearomatization of phenols publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c5ob02526e – volume: 22 start-page: 11918 year: 2016 ident: WOS:000382925000002 article-title: Dearomatization through Halofunctionalization Reactions publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201600885 – volume: 49 start-page: 5004 year: 2010 ident: WOS:000280180300029 article-title: Autoxidative Carbon-Carbon Bond Formation from Carbon-Hydrogen Bonds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201000711 – volume: 134 start-page: 10815 year: 2012 ident: WOS:000305863900026 article-title: Enantioselective Copper-Catalyzed Construction of Aryl Pyrroloindolines via an Arylation-Cyclization Cascade publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja305100g – start-page: 4850 year: 2009 ident: WOS:000272330800011 article-title: Cyclometalated Iridium(III) Complexes as Photosensitizers for Long-Range Electron Transfer: Occurrence of a Coulomb Barrier publication-title: EUROPEAN JOURNAL OF INORGANIC CHEMISTRY doi: 10.1002/ejic.200900673 – volume: 57 start-page: 10034 year: 2018 ident: WOS:000440135700004 article-title: Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201709766 – volume: 2 start-page: 179 year: 2015 ident: WOS:000364443200015 article-title: Catalytic enantioselective organic transformations via visible light photocatalysis publication-title: ORGANIC CHEMISTRY FRONTIERS doi: 10.1039/c4qo00306c – volume: 52 start-page: 12924 year: 2013 ident: WOS:000327410300027 article-title: Highly Enantioselective Bromocyclization of Tryptamines and Its Application in the Synthesis of (-)-Chimonanthine publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201306774 – volume: 123 start-page: 5746 year: 2011 ident: 000492067700001.8 publication-title: Angew. Chem. – volume: 50 start-page: 5629 year: 2011 ident: WOS:000291999100006 article-title: The Nitrosocarbonyl Hetero-Diels-Alder Reaction as a Useful Tool for Organic Syntheses publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201005764 – volume: 121 start-page: 9786 year: 2009 ident: 000492067700001.5 article-title: Katalytische Funktionalisierung von Indolen in einerneuen Dimension. publication-title: Angew. Chem. – volume: 9 start-page: 1559 year: 2013 ident: WOS:000322597100001 article-title: Organocatalytic asymmetric selenofunctionalization of tryptamine for the synthesis of hexahydropyrrolo[2,3-b]indole derivatives publication-title: BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY doi: 10.3762/bjoc.9.177 – volume: 20 start-page: 3927 year: 2014 ident: WOS:000333447200011 article-title: Highly Diastereoselective and Regioselective Copper-Catalyzed Nitrosoformate Dearomatization Reaction under AerobicOxidation Conditions publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201400321 – volume: 24 start-page: 12519 year: 2018 ident: WOS:000442846800013 article-title: Visible-Light-Promoted Intermolecular Oxidative Dearomatization of β-Naphthols with N-Hydroxycarbamates publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201803149 – volume: 53 start-page: 13854 year: 2014 ident: WOS:000345833100039 article-title: Metal-Free Enantioselective Electrophilic Activation of Allenamides: Stereoselective Dearomatization of Indoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201407518 – volume: 21 start-page: 2352 year: 2019 ident: WOS:000464247500089 article-title: Catalytic Regiodivergent Dearomatization Reaction of Nitrosocarbonyl Intermediates with β-Naphthols publication-title: ORGANIC LETTERS doi: 10.1021/acs.orglett.9b00628 – volume: 88 start-page: 753 year: 2015 ident: WOS:000356467200001 article-title: Use of In Situ Generated Nitrosocarbonyl Compounds in Catalytic Asymmetric α-Hydroxylation and α-Amination Reactions publication-title: BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN doi: 10.1246/bcsj.20150040 – volume: 54 start-page: 4032 year: 2015 ident: WOS:000351204600033 article-title: Asymmetric Dearomatization of Indoles through a Michael/Friedel-Crafts-Type Cascade To Construct Polycyclic Spiroindolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201410814 – volume: 355 start-page: 2727 year: 2013 ident: WOS:000328149300001 article-title: Photoredox Catalysis for Organic Syntheses publication-title: ADVANCED SYNTHESIS & CATALYSIS doi: 10.1002/adsc.201300751 – volume: 140 start-page: 3394 year: 2018 ident: WOS:000427203600036 article-title: Enantioselective Synthesis of Pyrroloindolines via Noncovalent Stabilization of Indole Radical Cations and Applications to the Synthesis of Alkaloid Natural Products publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b13616 – volume: 55 start-page: 751 year: 2016 ident: WOS:000368069200053 article-title: Enantioselective Synthesis of 3a-Amino-Pyrroloindolines by CopperCatalyzed Direct Asymmetric Dearomative Amination of Tryptamines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201508570 – volume: 22 start-page: 73 year: 2005 ident: WOS:000226783200003 article-title: Simple indole alkaloids and those with a non-rearranged monoterpenoid unit publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/b316241a – volume: 122 start-page: 5124 year: 2010 ident: 000492067700001.64 publication-title: Angew. Chem. – volume: 47 start-page: 1142 year: 2018 ident: WOS:000425374900001 article-title: Chiral phosphoric acid catalysis: from numbers to insights publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00475j – volume: 130 start-page: 3872 year: 2018 ident: 000492067700001.46 publication-title: Angew. Chem. – volume: 122 start-page: 2122 year: 2000 ident: WOS:000085914400047 article-title: Total synthesis of (+)-madindoline A and (-)-madindoline B, potent, selective inhibitors of interleukin 6. Determination of the relative and absolute configurations publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 10 start-page: 58 year: 2018 ident: WOS:000423143500013 article-title: Organocatalytic asymmetric arylation of indoles enabled by azo groups publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2866 – volume: 343 start-page: 985 year: 2014 ident: WOS:000332309600033 article-title: Solar Synthesis: Prospects in Visible Light Photocatalysis publication-title: SCIENCE doi: 10.1126/science.1239176 – volume: 106 start-page: 2875 year: 2006 ident: WOS:000238973000012 article-title: Practical methodologies for the synthesis of indoles publication-title: CHEMICAL REVIEWS doi: 10.1021/cr0505270 – volume: 51 start-page: 6828 year: 2012 ident: WOS:000305990800005 article-title: Visible-Light Photoredox Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201200223 – volume: 116 start-page: 10075 year: 2016 ident: WOS:000383410100011 article-title: Organic Photoredox Catalysis publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00057 – volume: 57 start-page: 6242 year: 2018 ident: WOS:000432710100046 article-title: Catalytic Asymmetric Dearomatization by Visible-Light-Activated [2+2] Photocycloaddition publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802891 – volume: 45 start-page: 1 year: 2013 ident: WOS:000313322900002 article-title: Recent Advances in Phenol Dearomatization and Its Application in Complex Syntheses publication-title: SYNTHESIS-STUTTGART doi: 10.1055/s-0032-1317575 – volume: 13 start-page: 2382 year: 2018 ident: WOS:000443679400021 article-title: Organocatalytic Asymmetric Cascade Aerobic Oxidation and Semipinacol Rearrangement Reaction: A Visible Light-Induced Approach to Access Chiral 2,2-Disubstituted Indolin-3-ones publication-title: CHEMISTRY-AN ASIAN JOURNAL doi: 10.1002/asia.201800446 – volume: 36 start-page: 1589 year: 2019 ident: WOS:000510668300006 article-title: Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/c8np00098k – volume: 20 start-page: ARTN 1959 year: 2019 ident: WOS:000467648700157 article-title: Crosstalk between Oxidative Stress and Tauopathy publication-title: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES doi: 10.3390/ijms20081959 – volume: 139 start-page: 12422 year: 2017 ident: WOS:000411043900023 article-title: Highly Functionalized Tricyclic Oxazinanones via Pairwise Oxidative Dearomatization and N-Hydroxycarbamate Dehydrogenation: Molecular Diversity Inspired by Tetrodotoxin publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b07745 – volume: 53 start-page: 5600 year: 2014 ident: WOS:000337041600017 article-title: Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3-Diazenated Pyrroloindolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201310905 – volume: 81 start-page: 6898 year: 2016 ident: WOS:000381847600002 article-title: Photoredox Catalysis in Organic Chemistry publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.6b01449 – volume: 15 start-page: 3550 year: 2017 ident: WOS:000400868000002 article-title: Recent progress in transition-metal-catalyzed enantioselective indole functionalizations publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c7ob00413c – volume: 125 start-page: 2081 year: 2013 ident: 000492067700001.11 publication-title: Angew. Chem. – volume: 46 start-page: 5889 year: 2017 ident: WOS:000412141600008 article-title: Asymmetric Bronsted acid catalysis with chiral carboxylic acids publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c6cs00239k – volume: 56 start-page: 3353 year: 2015 ident: WOS:000356544800095 article-title: Accessing nitrosocarbonyl compounds with temporal and spatial control via the photoredox oxidation of N-substituted hydroxylamines publication-title: TETRAHEDRON LETTERS doi: 10.1016/j.tetlet.2015.01.024 – volume: 45 start-page: 1570 year: 2016 ident: WOS:000372255400005 article-title: Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c5cs00356c – volume: 63 start-page: 809 year: 2018 ident: WOS:000439777400002 article-title: Visible-light-mediated photocatalysis as a new tool for catalytic asymmetric dearomatization (CADA) reactions publication-title: SCIENCE BULLETIN doi: 10.1016/j.scib.2018.06.006 – volume: 114 start-page: 9047 year: 2014 ident: WOS:000342328500008 article-title: Complete Field Guide to Asymmetric BINOL-Phosphate Derived Bronsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Bronsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates publication-title: CHEMICAL REVIEWS doi: 10.1021/cr5001496 – volume: 36 start-page: 490 year: 2019 ident: WOS:000461842000004 article-title: Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds publication-title: NATURAL PRODUCT REPORTS doi: 10.1039/c8np00032h – volume: 130 start-page: 14801 year: 2018 ident: 000492067700001.85 publication-title: Angew. Chem. – volume: 1 start-page: 601 year: 2018 ident: WOS:000446621900010 article-title: Enantioselective dearomative prenylation of indole derivatives publication-title: NATURE CATALYSIS doi: 10.1038/s41929-018-0111-8 – volume: 131 start-page: 124 year: 2019 ident: 000492067700001.19 publication-title: Angew. Chem. – volume: 62 start-page: 24 year: 2019 ident: WOS:000456087200007 article-title: Visible light-driven organic photochemical synthesis in China publication-title: SCIENCE CHINA-CHEMISTRY doi: 10.1007/s11426-018-9399-2 – volume: 51 start-page: 12662 year: 2012 ident: WOS:000312305400004 article-title: Catalytic Asymmetric Dearomatization Reactions publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204822 – volume: 52 start-page: 2027 year: 2013 ident: WOS:000314654000026 article-title: Complex Bioactive Alkaloid-Type Polycycles through Efficient Catalytic Asymmetric Multicomponent Aza-Diels-Alder Reaction of Indoles with Oxetane as Directing Group publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201206481 – volume: 58 start-page: 118 year: 2019 ident: WOS:000455818400010 article-title: Concurrent Asymmetric Reactions Combining Photocatalysis and Enzyme Catalysis: Direct Enantioselective Synthesis of 2,2-Disubstituted Indol-3-ones from 2-Arylindoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201811085 – volume: 44 start-page: 1156 year: 2011 ident: WOS:000297483100003 article-title: Bronsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar2000343 – volume: 140 start-page: 12687 year: 2018 ident: WOS:000447354800007 article-title: Enantioselective Oxidative Coupling of Carboxylic Acids to α-Branched Aldehydes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b07394 – volume: 57 start-page: 14593 year: 2018 ident: WOS:000448049800033 article-title: Enantioselective Lewis Acid Catalyzed ortho Photocycloaddition of Olefins to Phenanthrene-9-carboxaldehydes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201808919 – volume: 50 start-page: 1231 year: 2014 ident: WOS:000329175000019 article-title: Dearomatization of tryptophols via a vanadium-catalyzed asymmetric epoxidation and ring-opening cascade publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc47921h – volume: 126 start-page: 5706 year: 2014 ident: 000492067700001.59 publication-title: Angew. Chem. – volume: 48 start-page: 4401 year: 2019 ident: WOS:000480621900002 article-title: Visible light-mediated chemistry of indoles and related heterocycles publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c8cs00790j – volume: 53 start-page: 10471 year: 2014 ident: WOS:000342760700036 article-title: Highly Enantioselective [3+2] Coupling of Indoles with Quinone Monoimines Promoted by a Chiral Phosphoric Acid publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201405689 – volume: 40 start-page: 4539 year: 2011 ident: WOS:000293858500007 article-title: Chiral Bronsted acids in enantioselective carbonyl activations - activation modes and applications publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c1cs15087a – volume: 130 start-page: 6350 year: 2018 ident: 000492067700001.29 publication-title: Angew. Chem. – volume: 39 start-page: 4449 year: 2010 ident: WOS:000283141300030 article-title: Organocatalytic strategies for the asymmetric functionalization of indoles publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b923063g – volume: 83 start-page: 10948 year: 2018 ident: WOS:000445713000028 article-title: Enantioselective Radical Cyclization of Tryptamines by Visible Light-Excited Nitroxides publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/acs.joc.8b01597 – volume: 126 start-page: 14132 year: 2014 ident: 000492067700001.105 publication-title: Angew. Chem. – volume: 123 start-page: 8255 year: 2011 ident: 000492067700001.48 publication-title: Angew. Chem. – volume: 56 start-page: 12206 year: 2017 ident: WOS:000411267800028 article-title: Enantioselective Tandem Cyclization of Alkyne-Tethered Indoles Using Cooperative Silver(I)/Chiral Phosphoric Acid Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201706694 – volume: 51 start-page: 11778 year: 2012 ident: WOS:000311702000021 article-title: Enantioselective Construction of Pyrroloindolines Catalyzed by Chiral Phosphoric Acids: Total Synthesis of (-)-Debromoflustramine B publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201203553 – volume: 58 start-page: 216 year: 2019 ident: WOS:000455818400029 article-title: Organocatalytic Asymmetric One-Step Desymmetrizing Dearomatization Reaction of Indoles: Development and Bioactivity Evaluation publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201811437 – volume: 126 start-page: 14074 year: 2014 ident: 000492067700001.74 publication-title: Angew. Chem. – volume: 75 start-page: 419 year: 2017 ident: WOS:000405655100001 article-title: Recent Progress on Gold-catalyzed Dearomatization Reactions publication-title: ACTA CHIMICA SINICA doi: 10.6023/A17020049 – volume: 110 start-page: 4489 year: 2010 ident: WOS:000280985800001 article-title: Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety publication-title: CHEMICAL REVIEWS doi: 10.1021/cr900211p – volume: 12 start-page: 4807 year: 2014 ident: WOS:000338118400002 article-title: Recent advances in dearomatization of heteroaromatic compounds publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c4ob00371c – volume: 107 start-page: 5744 year: 2007 ident: WOS:000251583300010 article-title: Stronger bronsted acids publication-title: CHEMICAL REVIEWS doi: 10.1021/cr068374j – volume: 124 start-page: 6934 year: 2012 ident: 000492067700001.97 publication-title: Angew. Chem. – volume: 5 start-page: 235 year: 2013 ident: WOS:000314238400025 article-title: Organic Dye-Photocatalyzed Acylnitroso Ene Reaction publication-title: CHEMCATCHEM doi: 10.1002/cctc.201200435 – volume: 113 start-page: 5322 year: 2013 ident: WOS:000321810600018 article-title: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300503r – volume: 117 start-page: 9433 year: 2017 ident: WOS:000405642800023 article-title: Organocatalysis in Inert C-H Bond Functionalization publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00657 – volume: 131 start-page: 4389 year: 2019 ident: 000492067700001.42 publication-title: Angew. Chem. – volume: 40 start-page: 102 year: 2011 ident: WOS:000285390900008 article-title: Visible light photoredox catalysis: applications in organic synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b913880n – volume: 50 start-page: 8105 year: 2011 ident: WOS:000294177500026 article-title: Organocatalyzed Enantioselective Fluorocyclizations publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201103151 – volume: 54 start-page: 7684 year: 2015 ident: WOS:000356390900043 article-title: Copper-Catalyzed Intermolecular Asymmetric Propargylic Dearomatization of Indoles publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201503042 – volume: 124 start-page: 11948 year: 2012 ident: 000492067700001.102 publication-title: Angew. Chem. – volume: 127 start-page: 7794 year: 2015 ident: 000492067700001.79 publication-title: Angew. Chem. – volume: 7 start-page: 6984 year: 2017 ident: WOS:000412795700064 article-title: Catalyst-Controlled Chemoselective and Enantioselective Reactions of Tryptophols with Isatin-Derived Imines publication-title: ACS CATALYSIS doi: 10.1021/acscatal.7b02279 – volume: 58 start-page: 4345 year: 2019 ident: WOS:000462655400042 article-title: Selectivity Switch in a Rhodium(II) Carbene Triggered Cyclopentannulation: Divergent Access to Three Polycyclic Indolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201812294 – volume: 124 start-page: 12834 year: 2012 ident: 000492067700001.114 publication-title: Angew. Chem. – volume: 125 start-page: 13162 year: 2013 ident: 000492067700001.95 publication-title: Angew. Chem. – volume: 128 start-page: 761 year: 2016 ident: 000492067700001.44 publication-title: Angew. Chem. – volume: 117 start-page: 2108 year: 2017 ident: WOS:000393845700019 article-title: Generation and Trapping of Nitrosocarbonyl Intermediates publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00684 – volume: 134 start-page: 18566 year: 2012 ident: WOS:000311192100023 article-title: Catalytic Enantioselective O-Nitrosocarbonyl Aldol Reaction of β-Dicarbonyl Compounds publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja309311z – volume: 50 start-page: 4068 year: 2011 ident: WOS:000290662500006 article-title: Dearomatization Strategies in the Synthesis of Complex Natural Products publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201006017 – year: 2016 ident: 000492067700001.100 publication-title: Asymmetric Dearomatization Reactions – volume: 57 start-page: 3810 year: 2018 ident: WOS:000428350100050 article-title: Highly Enantioselective [3+2] Annulation of Indoles with Quinones to Access Structurally Diverse Benzofuroindolines publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201800733 |
SSID | ssj0028806 |
Score | 2.6040788 |
SecondaryResourceType | review_article |
Snippet | Dearomatization of indoles provides efficient synthetic routes for substituted indolines. In most cases, indoles serve as nucleophiles. Reported here is an... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18069 |
SubjectTerms | Amines asymmetric synthesis Asymmetry Catalysis Chemistry Chemistry, Multidisciplinary dearomatization Derivatives Electron transfer Heterocyclic compounds Indoles Nucleophiles Phosphoric acid photochemistry Photoredox catalysis Physical Sciences Science & Technology umpolung |
Title | Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201911144 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000492067700001 https://www.ncbi.nlm.nih.gov/pubmed/31587423 https://www.proquest.com/docview/2321247247 https://www.proquest.com/docview/2301889959 |
Volume | 58 |
WOS | 000492067700001 |
WOSCitedRecordID | wos000492067700001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5KLu2lTdOXmwcKBHpyYluWbB-X7YZNIEsIDeRmJFmikK5ddr0hm1N-Qn5jfkk18iPZhNLSgg82GmFLnpE-STPfAOylWaBNqjNfqTDzY23XKTKm3DfSzg1ZKgutcKF4MuHj8_j4gl08iuJv-CH6DTe0DDdeo4ELOT94IA3FCGx0zUJrjZEQFB22EBWd9fxRkVXOJryIUh-z0HesjUF0sFp9dVZ6BjWfzEqrQNbNRIdvQHRtaBxQLvcXtdxXN0_oHf-nkevwuoWpZNDo1Vt4ocsNeDnsssO9g8vBfDmdYjouRb5aa6kQ-TYhnaQy5KhEpihbMnPZ0670nOCOL5nc396NlwV-usKTjilCXTJyAVwFkUty-r2qKyQxvSZD3FlCwpT3cH44-jYc-23iBl_FdnnnmzQuMkaThKq4oEJrHUrBqQmk5KyQilKaWBxlwQuTmRDMaG0UL2RgGDWhxUAfYK2sSv0JSKSY0JyLRGgVcyNFJBJjx6EwVdwEgnngdz8uVy2rOSbX-JE3fMxRjl2Y913owZde_mfD5_Fbya1OD_LWrue5xZ8WECX28mC3L7Zdj8csotTVAmWCME2Rx82Dj43-9K-iIUvxbNyDvccK1Ze7FRsy6ifu2MWD8G_Ehm3Dkcag9iByGvWH5uWDydGof_r8L5U24RXeO-eebAvW6tlCb1uIVssdZ4a_AEwgNDU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL70eggJEqcUqbxI8kx9Wy1S60K4RaiVtkO7YqlU2qbrZiOfET-I38EjzOA7YIgUDKJbGtZJwZ-xvb8w3AbpZHxmYmD7WO85AZ56coRkVolZsb8kyVRqOjeDQX0xP25gPvTxNiLEzLDzEsuKFl-PEaDRwXpPd_sIZiCDaezUJzZew63MC03t6rej8wSCVOPdsAI0pDzEPf8zZGyf5m-8156ReweWVe2oSyfi46uA2ql6I9gnK2t2rUnv58heDxv8S8A7c6pEpGrWrdhWumugfb4z5B3H04Gy3XiwVm5NLktTOYGsFvG9VJaktmFZJFuZILn0Dt0iwJLvqS-bcvX6frEr9d42bHAtEumfgYrpKoNXl3Wjc18ph-ImNcXELOlAdwcjA5Hk_DLndDqJnz8EKbsTLnNE2pZiWVxphYSUFtpJTgpdKU0tRBKYdfuMql5NYYq0WpIsupjR0MeghbVV2Zx0ASzaURQqbSaCaskolMrRuK4kwLG0keQNj_uUJ3xOaYX-Nj0VIyJwV2YTF0YQCvhvrnLaXHb2vu9IpQdKa9LBwEdZgodVcAL4di1_W40yIrU6-wThRnGVK5BfCoVaDhVTTmGW6PB7D7s0YN5d5pQ1L91O-8BBD_TbVxJzgyGTQBJF6l_iBeMZrPJsPdk39p9AK2p8dHh8XhbP72KdzE5_6sT74DW83FyjxziK1Rz71Nfgd0TThQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYAL5U1oASNV4pQ2iR0nOa72oV0eqwpRqbfIdmxVKptU3SxiOfET-I39JfU4D7pFCARSLonHSsaZsT8_5huAvTQLtEl15isVZj7Tdp4iGeW-kXZsyFJZaIUTxQ9zPj1ib4_j4ytR_A0_RL_ghp7h-mt08LPCHPwkDcUIbDyahd7K2E24xXiQol2PPvYEUpG1zia-iFIf09B3tI1BdLBZf3NY-gVrXhuWNpGsG4om2yA6JZoTKKf7q1ruq2_X-B3_R8v7cK_FqWTQGNYDuKHLh3Bn2KWHewSng-V6scB8XIqMrLtUCH2bmE5SGTIrkSrKlpy79Glf9JLgki-ZX3z_MV0X-OkKtzoWiHXJ2EVwFUSuyeFJVVfIYvqVDHFpCRlTHsPRZPxpOPXbzA2-YnZ-55uUFVlMk4QqVlChtQ6l4NQEUvK4kIpSmlggZdFLLDMhYqO1UbyQgYmpCS0IegJbZVXqZ0AiFQvNuUiEVowbKSKRGNsRhaniJhCxB37343LV0ppjdo3PeUPIHOXYhHnfhB686eXPGkKP30rudnaQt469zC0AtYgosZcHr_ti2_S4zyJKXa1QJgjTFIncPHja2E__KhrGKW6Oe7B31aD6cjdlQ0r9xO27eBD-jdiwVRx5DGoPImdRf1AvH8xn4_7u-b9UegW3D0eT_P1s_m4H7uJjd9An24Wt-nylX1i4VsuXziMvAbvrNwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asymmetric+Dearomatization+of+Indole+Derivatives+with+N-Hydroxycarbamates+Enabled+by+Photoredox+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cheng%2C+Yuan-Zheng&rft.au=Zhao%2C+Qing-Ru&rft.au=Zhang%2C+Xiao&rft.au=You%2C+Shu-Li&rft.date=2019-12-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=50&rft.spage=18069&rft_id=info:doi/10.1002%2Fanie.201911144&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |