Nucleation and Growth Mechanism of Anion‐Derived Solid Electrolyte Interphase in Rechargeable Batteries
Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 15; pp. 8521 - 8525 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.04.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.
The nucleation and growth behavior of anion‐derived SEI on graphite electrode is revealed, the number of nucleation sites increases progressively, and each nucleus undergoes 2D growth before overlapping with others. Only when the whole electrode surface is completely covered by reduced products, an ion‐conducting but electron‐insulating polycrystalline film forms, which marks the end of SEI growth. |
---|---|
AbstractList | Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.
The nucleation and growth behavior of anion‐derived SEI on graphite electrode is revealed, the number of nucleation sites increases progressively, and each nucleus undergoes 2D growth before overlapping with others. Only when the whole electrode surface is completely covered by reduced products, an ion‐conducting but electron‐insulating polycrystalline film forms, which marks the end of SEI growth. Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion-derived SEI forms on graphite surface at atomic scale. After fitting the cur-rent-time transients with Laviron theory and Avrami formula, we conclude that the formation of anion-derived interface is surface reaction controlled and obeys the two-dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion-derived SEI forms on graphite surface at atomic scale. After fitting the cur-rent-time transients with Laviron theory and Avrami formula, we conclude that the formation of anion-derived interface is surface reaction controlled and obeys the two-dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI. Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI. |
Author | Huang, Jia‐Qi Jiang, Li‐Li Lu, Yang Yao, Yu‐Xing Zhang, Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Chong surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 2 givenname: Li‐Li surname: Jiang fullname: Jiang, Li‐Li organization: Jilin Institute of Chemical Technology – sequence: 3 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 4 givenname: Yang surname: Lu fullname: Lu, Yang organization: Tsinghua University – sequence: 5 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 6 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33496038$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuEzEUhi1URC-wZYkssWGTcHyZ8XgZSiiRSpG4rEcezxniyrGDPUOVHY_AM_IkOKQUqRJiZVvn-35b_k_JUYgBCXnKYM4A-EsTHM458HKQWj4gJ6zibCaUEkdlL4WYqaZix-Q05-vCNw3Uj8ixEFLXIJoT4q4m69GMLgZqQk8vUrwZ1_Qd2nWJzhsaB7oIZfrz-4_XmNw37OnH6F1Plx7tmKLfjUhXYcS0XZuM1AX6YS-nL2g6j_SVGcvMYX5MHg7GZ3xyu56Rz2-Wn87fzi7fX6zOF5czKxnIGYKo6o6BqYBp3ulGagTNGl4boVAZUIMVnbKWK7C9bSoleT3w3gC3mgkUZ-TFIXeb4tcJ89huXLbovQkYp9xy2TAosaAL-vweeh2nFMrrWl6B5kpCIwv17Jaaug327Ta5jUm79s8nFmB-AGyKOScc7hAG7b6ldt9Se9dSEeQ9wbrxdwdjMs7_W9MH7cZ53P3nknZxtVr-dX8BiwqmjA |
CitedBy_id | crossref_primary_10_1039_D4TA06032F crossref_primary_10_1002_adma_202108114 crossref_primary_10_1016_j_cej_2024_151540 crossref_primary_10_1002_cey2_354 crossref_primary_10_1002_anie_202206770 crossref_primary_10_1016_j_jpowsour_2021_230299 crossref_primary_10_1016_j_jechem_2024_08_019 crossref_primary_10_1021_acs_nanolett_3c03340 crossref_primary_10_1038_s41467_023_37033_7 crossref_primary_10_1002_anie_202302285 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1021_acsnano_1c07414 crossref_primary_10_1016_j_cej_2023_142422 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1002_anie_202112112 crossref_primary_10_1016_j_ensm_2024_103326 crossref_primary_10_1016_j_jechem_2022_06_001 crossref_primary_10_1021_acsenergylett_2c02590 crossref_primary_10_1002_anie_202111707 crossref_primary_10_1002_aenm_202405803 crossref_primary_10_1016_j_electacta_2021_139362 crossref_primary_10_1021_acsami_2c15101 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1016_j_actamat_2025_120849 crossref_primary_10_1021_acs_nanolett_3c02784 crossref_primary_10_1016_j_jechem_2024_09_069 crossref_primary_10_1021_acs_jpcc_2c08357 crossref_primary_10_1002_aenm_202300500 crossref_primary_10_1039_D3CC04217K crossref_primary_10_1039_D5QI00310E crossref_primary_10_1021_acsenergylett_2c02003 crossref_primary_10_1016_j_cej_2023_141843 crossref_primary_10_1016_j_joule_2022_05_005 crossref_primary_10_1002_advs_202200213 crossref_primary_10_1021_acs_energyfuels_4c02174 crossref_primary_10_1002_adma_202206448 crossref_primary_10_1021_acs_nanolett_3c02037 crossref_primary_10_1016_j_est_2023_107149 crossref_primary_10_1002_anie_202416610 crossref_primary_10_1021_acsenergylett_2c02379 crossref_primary_10_1021_acs_jpclett_4c02525 crossref_primary_10_1039_D3EE02213G crossref_primary_10_1063_5_0196568 crossref_primary_10_1016_j_cej_2022_137435 crossref_primary_10_1002_ange_202206770 crossref_primary_10_1002_smll_202406193 crossref_primary_10_1039_D2SC06587H crossref_primary_10_1021_acsami_2c17547 crossref_primary_10_1002_aenm_202302620 crossref_primary_10_1021_acs_chemmater_4c01745 crossref_primary_10_1002_idm2_12178 crossref_primary_10_1016_j_cej_2023_147764 crossref_primary_10_26599_CF_2024_9200017 crossref_primary_10_1021_acs_jpclett_2c01183 crossref_primary_10_1002_aenm_202302749 crossref_primary_10_1002_anie_202208506 crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1021_acsnano_4c00492 crossref_primary_10_3390_coatings14010062 crossref_primary_10_1073_pnas_2314264120 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1016_j_jechem_2021_09_012 crossref_primary_10_1021_jacs_2c13878 crossref_primary_10_1021_acsenergylett_2c01227 crossref_primary_10_1002_aenm_202303726 crossref_primary_10_1002_ange_202316839 crossref_primary_10_1039_D2CC03364J crossref_primary_10_1016_j_jechem_2022_12_036 crossref_primary_10_3390_coatings12081195 crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_1002_smll_202300534 crossref_primary_10_1002_adfm_202313538 crossref_primary_10_1016_j_mattod_2024_06_001 crossref_primary_10_1016_j_jechem_2021_11_017 crossref_primary_10_1002_aenm_202301396 crossref_primary_10_1002_ange_202302285 crossref_primary_10_1002_ange_202416610 crossref_primary_10_1073_pnas_2313096121 crossref_primary_10_1002_adma_202401711 crossref_primary_10_1002_ange_202111360 crossref_primary_10_1016_j_jechem_2024_01_058 crossref_primary_10_1016_j_joule_2024_05_008 crossref_primary_10_1002_anie_202316839 crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1002_smtd_202300554 crossref_primary_10_1021_acsenergylett_4c01616 crossref_primary_10_1039_D1FD00043H crossref_primary_10_1002_ange_202208506 crossref_primary_10_1002_anie_202111360 crossref_primary_10_1039_D3TA01411H crossref_primary_10_1021_acsami_2c09338 crossref_primary_10_1002_ange_202111707 crossref_primary_10_1021_acsami_2c00244 crossref_primary_10_1002_adma_202205421 crossref_primary_10_1002_aenm_202200398 crossref_primary_10_1016_j_jechem_2021_11_033 crossref_primary_10_1002_ange_202112112 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1021_acsaem_1c02725 |
Cites_doi | 10.1038/s41560-019-0464-5 10.1016/S0022-0728(74)80448-1 10.1002/aenm.201802207 10.1016/0013-4686(83)85163-9 10.1149/1.2128859 10.1021/acs.chemrev.8b00422 10.1016/j.jpowsour.2019.04.040 10.1149/1.2425851 10.1016/0022-0248(77)90029-X 10.1016/S0022-0728(74)80449-3 10.1016/0022-0248(89)90644-1 10.1021/ja305366r 10.1063/1.1750380 10.1021/acsenergylett.7b01213 10.1016/S0378-7753(00)00431-6 10.1038/ncomms7362 10.1016/j.jpowsour.2010.09.121 10.1016/j.jechem.2018.11.016 10.1126/science.aab1595 10.1021/jp068691u 10.1149/1.3615828 10.1063/1.1750631 10.1021/ja412807w 10.1021/jacs.9b05029 10.1038/ncomms2513 10.1002/ange.202009738 10.1002/adma.201501559 10.1149/1.1414946 10.1016/S0022-0728(79)80075-3 10.1016/j.jechem.2020.02.052 10.1016/j.jechem.2019.09.034 10.1021/jp303610t 10.1002/inf2.12046 10.1002/adma.201706102 10.1038/s41557-019-0304-z 10.1002/anie.202009738 10.1021/cr500003w 10.1039/C9CS00728H 10.1002/anie.202011482 10.1002/adma.201707629 10.1038/s41560-019-0336-z 10.1002/ange.202011482 10.1063/1.1750872 10.1021/acs.jpclett.5b01727 10.1002/adfm.201909887 10.1039/tf9625802200 10.1016/j.electacta.2010.11.025 10.1021/ac60230a016 10.1016/j.electacta.2017.01.128 10.1126/science.aam6014 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202100494 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8525 |
ExternalDocumentID | 33496038 10_1002_anie_202100494 ANIE202100494 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21825501 and 51702117 – fundername: National Natural Science Foundation of China grantid: 21825501 and 51702117 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-e0356b10a50192b9849e091826a37e7a07fc3b7cc270cdc857426f2da02c913e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:19:10 EDT 2025 Sun Jul 13 04:38:48 EDT 2025 Wed Feb 19 02:28:38 EST 2025 Tue Jul 01 01:17:55 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Wed Jan 22 16:31:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | nucleation and growth mechanism isothermal electrochemical crystallization two-dimension (2D) growth solid electrolyte interphase interfacial chemistry |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-e0356b10a50192b9849e091826a37e7a07fc3b7cc270cdc857426f2da02c913e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 33496038 |
PQID | 2509274084 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2481098409 proquest_journals_2509274084 pubmed_primary_33496038 crossref_primary_10_1002_anie_202100494 crossref_citationtrail_10_1002_anie_202100494 wiley_primary_10_1002_anie_202100494_ANIE202100494 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 6, 2021 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: April 6, 2021 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1979; 126 2015; 6 2019; 4 2013; 4 2000 2017 2019 2020 2019 2018; 89 358 2 37 30 1939; 135 1962; 58 2017 2019 2011; 228 426 196 2001 2019; 4 11 1965; 37 2019; 141 2014; 114 2014; 136 2018; 3 2012; 134 1939 1940 1941; 7 8 9 2020; 30 2018 2020; 118 49 1974 1974 1979; 52 52 101 2011 2015; 56 27 1983 2019; 28 9 2007 2011; 111 14 2021 2021; 60 133 2018; 30 2015 2020 2020; 350 47 49 2012; 116 1963 1989 1977; 110 96 40 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_22_3 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_28_2 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_24_3 e_1_2_2_26_1 e_1_2_2_13_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_30_3 e_1_2_2_17_1 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_3_3 e_1_2_2_5_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_1_2 e_1_2_2_3_1 e_1_2_2_7_6 e_1_2_2_29_3 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_7_4 e_1_2_2_27_1 e_1_2_2_7_5 e_1_2_2_25_2 Li B. (e_1_2_2_7_3) 2019 e_1_2_2_14_1 e_1_2_2_12_2 e_1_2_2_12_1 e_1_2_2_10_1 e_1_2_2_18_1 e_1_2_2_16_1 Johnson W. A. (e_1_2_2_23_1) 1939; 135 |
References_xml | – volume: 4 start-page: 796 year: 2019 end-page: 805 publication-title: Nat. Energy – volume: 110 96 40 start-page: 688 843 29 year: 1963 1989 1977 end-page: 698 848 46 publication-title: J. Electrochem. Soc. J. Cryst. Growth J. Cryst. Growth – volume: 136 start-page: 5039 year: 2014 end-page: 5046 publication-title: J. Am. Chem. Soc. – volume: 118 49 start-page: 11433 3806 year: 2018 2020 end-page: 11456 3833 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 350 47 49 start-page: 938 217 335 year: 2015 2020 2020 end-page: 943 220 338 publication-title: Science J. Energy Chem. J. Energy Chem. – volume: 141 start-page: 9422 year: 2019 end-page: 9429 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 269 year: 2019 end-page: 280 publication-title: Nat. Energy – volume: 52 52 101 start-page: 395 355 19 year: 1974 1974 1979 end-page: 402 393 28 publication-title: J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem. – volume: 116 start-page: 26111 year: 2012 end-page: 26117 publication-title: J. Phys. Chem. C – volume: 58 start-page: 2200 year: 1962 end-page: 2216 publication-title: Trans. Faraday Soc. – volume: 4 start-page: 1481 year: 2013 publication-title: Nat. Commun. – volume: 3 start-page: 315 year: 2018 end-page: 321 publication-title: ACS Energy Lett. – volume: 7 8 9 start-page: 1103 212 177 year: 1939 1940 1941 end-page: 1112 224 184 publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 60 133 start-page: 4090 4136 year: 2021 2021 end-page: 4097 4143 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 4653 year: 2015 end-page: 4672 publication-title: J. Phys. Chem. Lett. – volume: 89 358 2 37 30 start-page: 206 506 379 29 year: 2000 2017 2019 2020 2019 2018 end-page: 218 510 388 34 publication-title: J. Power Sources Science Reserach InfoMat J. Energy Chem. Adv. Mater. – volume: 4 11 start-page: A206 789 year: 2001 2019 end-page: A208 796 publication-title: Electrochem. Solid-State Lett. Nat. Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 111 14 start-page: 7411 A154 year: 2007 2011 end-page: 7421 A156 publication-title: J. Phys. Chem. C Electrochem. Solid-State Lett. – volume: 37 start-page: 1351 year: 1965 end-page: 1355 publication-title: Anal. Chem. – volume: 56 27 start-page: 2399 5203 year: 2011 2015 end-page: 2403 5209 publication-title: Electrochim. Acta Adv. Mater. – volume: 126 start-page: 2047 year: 1979 end-page: 2051 publication-title: J. Electrochem. Soc. – volume: 135 start-page: 416 year: 1939 end-page: 442 publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 28 9 start-page: 879 year: 1983 2019 end-page: 889 publication-title: Electrochim. Acta Adv. Energy Mater. – volume: 134 start-page: 15476 year: 2012 end-page: 15487 publication-title: J. Am. Chem. Soc. – volume: 228 426 196 start-page: 652 216 5342 year: 2017 2019 2011 end-page: 658 222 5348 publication-title: Electrochim. Acta J. Power Sources J. Power Sources – volume: 60 133 start-page: 3402 3444 year: 2021 2021 end-page: 3406 3448 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_10_1 doi: 10.1038/s41560-019-0464-5 – ident: e_1_2_2_22_2 doi: 10.1016/S0022-0728(74)80448-1 – ident: e_1_2_2_27_2 doi: 10.1002/aenm.201802207 – ident: e_1_2_2_27_1 doi: 10.1016/0013-4686(83)85163-9 – ident: e_1_2_2_4_1 doi: 10.1149/1.2128859 – ident: e_1_2_2_1_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_2_29_2 doi: 10.1016/j.jpowsour.2019.04.040 – ident: e_1_2_2_30_1 doi: 10.1149/1.2425851 – ident: e_1_2_2_30_3 doi: 10.1016/0022-0248(77)90029-X – ident: e_1_2_2_22_1 doi: 10.1016/S0022-0728(74)80449-3 – ident: e_1_2_2_30_2 doi: 10.1016/0022-0248(89)90644-1 – ident: e_1_2_2_9_1 doi: 10.1021/ja305366r – volume: 135 start-page: 416 year: 1939 ident: e_1_2_2_23_1 publication-title: Trans. Am. Inst. Min. Metall. Eng. – ident: e_1_2_2_24_1 doi: 10.1063/1.1750380 – ident: e_1_2_2_18_1 doi: 10.1021/acsenergylett.7b01213 – ident: e_1_2_2_7_1 doi: 10.1016/S0378-7753(00)00431-6 – ident: e_1_2_2_15_1 doi: 10.1038/ncomms7362 – ident: e_1_2_2_29_3 doi: 10.1016/j.jpowsour.2010.09.121 – ident: e_1_2_2_7_5 doi: 10.1016/j.jechem.2018.11.016 – ident: e_1_2_2_3_1 doi: 10.1126/science.aab1595 – ident: e_1_2_2_12_1 doi: 10.1021/jp068691u – ident: e_1_2_2_12_2 doi: 10.1149/1.3615828 – ident: e_1_2_2_24_2 doi: 10.1063/1.1750631 – ident: e_1_2_2_16_1 doi: 10.1021/ja412807w – ident: e_1_2_2_8_1 doi: 10.1021/jacs.9b05029 – ident: e_1_2_2_14_1 doi: 10.1038/ncomms2513 – ident: e_1_2_2_25_2 doi: 10.1002/ange.202009738 – ident: e_1_2_2_28_2 doi: 10.1002/adma.201501559 – ident: e_1_2_2_20_1 doi: 10.1149/1.1414946 – ident: e_1_2_2_22_3 doi: 10.1016/S0022-0728(79)80075-3 – ident: e_1_2_2_3_3 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_2_3_2 doi: 10.1016/j.jechem.2019.09.034 – ident: e_1_2_2_13_1 doi: 10.1021/jp303610t – ident: e_1_2_2_7_4 doi: 10.1002/inf2.12046 – ident: e_1_2_2_17_1 doi: 10.1002/adma.201706102 – ident: e_1_2_2_20_2 doi: 10.1038/s41557-019-0304-z – ident: e_1_2_2_25_1 doi: 10.1002/anie.202009738 – ident: e_1_2_2_5_1 doi: 10.1021/cr500003w – ident: e_1_2_2_1_2 doi: 10.1039/C9CS00728H – ident: e_1_2_2_19_1 doi: 10.1002/anie.202011482 – start-page: 4608940 year: 2019 ident: e_1_2_2_7_3 publication-title: Reserach – ident: e_1_2_2_7_6 doi: 10.1002/adma.201707629 – ident: e_1_2_2_11_1 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_2_19_2 doi: 10.1002/ange.202011482 – ident: e_1_2_2_24_3 doi: 10.1063/1.1750872 – ident: e_1_2_2_6_1 doi: 10.1021/acs.jpclett.5b01727 – ident: e_1_2_2_2_1 doi: 10.1002/adfm.201909887 – ident: e_1_2_2_26_1 doi: 10.1039/tf9625802200 – ident: e_1_2_2_28_1 doi: 10.1016/j.electacta.2010.11.025 – ident: e_1_2_2_21_1 doi: 10.1021/ac60230a016 – ident: e_1_2_2_29_1 doi: 10.1016/j.electacta.2017.01.128 – ident: e_1_2_2_7_2 doi: 10.1126/science.aam6014 |
SSID | ssj0028806 |
Score | 2.6190941 |
Snippet | Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8521 |
SubjectTerms | Anions Atomic force microscopes Atomic force microscopy Batteries Crystallization Electrochemistry Electrolytes Growth models interfacial chemistry Interphase Ion transport isothermal electrochemical crystallization Lithium Nucleation nucleation and growth mechanism Rechargeable batteries solid electrolyte interphase Solid electrolytes Surface reactions Two dimensional models two-dimension (2D) growth |
Title | Nucleation and Growth Mechanism of Anion‐Derived Solid Electrolyte Interphase in Rechargeable Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100494 https://www.ncbi.nlm.nih.gov/pubmed/33496038 https://www.proquest.com/docview/2509274084 https://www.proquest.com/docview/2481098409 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuMwFLUQG9jwHih0RkZCYmVw7TyXFRQKEl2UQWIX2Y4jKkqKaIoEKz6Bb-RLuDduwpTRCInZJbKdOPa1fY7jey4he8YLNAa1ZTEXGfOs8ZmGmZJpWDy0H4QBz3Af8qIXdK-882v_-g8vfqcPUW-44cgo52sc4EqPDz9EQ9EDG_idaJUSJzAJ44EtREX9Wj9KgHE69yIpGUahr1QbuTicLT67Kv0FNWeRa7n0nCwTVVXanTi5PZgU-sA8f9Jz_J-vWiFLU1xK286QVsmczdfIwlEVDm6dDHqofFz2I1V5Sk-Bvxc39MKi6_BgfEdHGW3nkPr28noMZv1oU3o5Gg5S2nGRdoZPhaXujOMNLJ10kNO-LYWaLLpvUaf0CcR9g1yddH4fddk0TgMzHrA5Zrn0A93iyke8qOPIiy3AECAuSoY2VDzMjNShMSLkJjWRD3Q8yESquDAx7sL-IPP5KLdbhEpgWKqlEEaAtahUK2UMPEYKrsOMxw3Cqn5KzFTEHGNpDBMnvywSbMCkbsAG2a_z3zv5jn_mbFbdnkyH8TgBfBgDbecRJO_WydDw-FdF5XY0gTxe1OIx8uQG2XTmUr9Kohw_l1GDiLLTv6hD0u6ddeq77e8U2iGLeF2eLQqaZL54mNifAJsK_ascGu-hEw2u |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V9lAuhfK7UIqRkDi59dr5Pa7Kli1091BaiVtkO466YslWNIsEpz5Cn5EnYcbeBC2oQirHxHbieGbs-RzPNwCvbZQYSmrLcyErHjkbc4MzJTe4eJg4SRNR0T7keJKMzqL3n-L2NCHFwgR-iG7DjSzDz9dk4LQhvf-bNZRCsBHgyb7nOLkDG5TW26Oqk45BSqJ6hgAjpTjloW95G4XcX22_ui795Wyu-q5-8Tm8B6btdjhz8nlv0Zg9--MPRsf_-q77sLV0Tdkg6NI2rLn6AWwetBnhHsJ0QuTHXpRM1yV7hxC-OWdjR9HD08svbF6xQY2lP6-u36Jmf3Ml-zifTUs2DMl2Zt8bx8Ixx3NcPdm0ZifOczU5iuBigewTsfsjODscnh6M-DJVA7cRAjruhIoT0xc6JpfR5FmUO_REELtolbpUi7SyyqTWylTY0mYxIvKkkqUW0ua0EfsY1ut57Z4CUwiydF-TJ4EKo0ujtbX4GCWFSSuR94C3girsksec0mnMisDALAsawKIbwB686epfBAaPG2vutHIvlpZ8WaCLmCNyFxkWv-qKceDpx4qu3XyBdaKsL3KCyj14EvSle5UiRn6hsh5IL_V_9KEYTI6G3dWz2zR6CZuj0_FxcXw0-fAc7tJ9f9Qo2YH15uvCvUAvqjG73k5-AXpAEck |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8oJuoLggocgtbExKdCr92_jxfuThC5GJSEt03b7YYL5x6BPRJ94iPwGfkkzmxvV09jTPRxt-1utzPTzq_b-Q3AGxtEhpLa8lTIggfOhtzgTMkNLh4mjOJIFLQPeTSK9k-C96fh6U9R_J4fot1wI8uo52sy8Iu82P1BGkoR2IjvZLemOLkPD4JIJKTX_eOWQEqidvr4IqU4paFvaBuF3F1sv7gs_eZrLrqu9dozfAK66bU_cnK-M6vMjv32C6Hj_3zWCizPHVPW85q0Cvdc-RQe7TX54J7BeETUx7UgmS5z9g4BfHXGjhzFDo-vvrBpwXollt7d3PZRr69dzj5NJ-OcDXyqncnXyjF_yPEM1042Ltmxq5maHMVvMU_1icj9OZwMB5_39vk8UQO3AcI57oQKI9MVOiSH0aRJkDr0QxC5aBW7WIu4sMrE1spY2NwmIeLxqJC5FtKmtA27BkvltHQbwBRCLN3V5EeguujcaG0tPkZJYeJCpB3gjZwyO2cxp2Qak8zzL8uMBjBrB7ADb9v6F56_4481txqxZ3M7vsrQQUwRt4sEi1-3xTjw9FtFl246wzpB0hUpAeUOrHt1aV-liI9fqKQDshb6X_qQ9UYHg_Zq818avYKHH_vD7MPB6PAFPKbb9TmjaAuWqsuZ20YXqjIvayv5DkuhEIE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation+and+Growth+Mechanism+of+Anion-Derived+Solid+Electrolyte+Interphase+in+Rechargeable+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Chong&rft.au=Jiang%2C+Li-Li&rft.au=Yao%2C+Yu-Xing&rft.au=Lu%2C+Yang&rft.date=2021-04-06&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8521&rft_id=info:doi/10.1002%2Fanie.202100494&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |