Nucleation and Growth Mechanism of Anion‐Derived Solid Electrolyte Interphase in Rechargeable Batteries

Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 15; pp. 8521 - 8525
Main Authors Yan, Chong, Jiang, Li‐Li, Yao, Yu‐Xing, Lu, Yang, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.04.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI. The nucleation and growth behavior of anion‐derived SEI on graphite electrode is revealed, the number of nucleation sites increases progressively, and each nucleus undergoes 2D growth before overlapping with others. Only when the whole electrode surface is completely covered by reduced products, an ion‐conducting but electron‐insulating polycrystalline film forms, which marks the end of SEI growth.
AbstractList Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI. The nucleation and growth behavior of anion‐derived SEI on graphite electrode is revealed, the number of nucleation sites increases progressively, and each nucleus undergoes 2D growth before overlapping with others. Only when the whole electrode surface is completely covered by reduced products, an ion‐conducting but electron‐insulating polycrystalline film forms, which marks the end of SEI growth.
Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion-derived SEI forms on graphite surface at atomic scale. After fitting the cur-rent-time transients with Laviron theory and Avrami formula, we conclude that the formation of anion-derived interface is surface reaction controlled and obeys the two-dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion-derived SEI forms on graphite surface at atomic scale. After fitting the cur-rent-time transients with Laviron theory and Avrami formula, we conclude that the formation of anion-derived interface is surface reaction controlled and obeys the two-dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.
Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant advances have been achieved on the structure and composition of SEI as well as on the possible ion transport mechanism. However, the nucleation and growth mechanism of SEI catches little attention, which requires the establishment of isothermal electrochemical crystallization theory. Herein we explore the virgin territory of electrochemically crystallized SEI. By using potentiostatic method to regulate the decomposition of anions, an anion‐derived SEI forms on graphite surface at atomic scale. After fitting the cur‐rent‐time transients with Laviron theory and Avrami formula, we conclude that the formation of anion‐derived interface is surface reaction controlled and obeys the two‐dimensional (2D) progressive nucleation and growth model. Atomic force microscope (AFM) images emphasize the conclusion, which reveals the mystery of isothermal electrochemical crystallization of SEI.
Author Huang, Jia‐Qi
Jiang, Li‐Li
Lu, Yang
Yao, Yu‐Xing
Zhang, Qiang
Yan, Chong
Author_xml – sequence: 1
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 2
  givenname: Li‐Li
  surname: Jiang
  fullname: Jiang, Li‐Li
  organization: Jilin Institute of Chemical Technology
– sequence: 3
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 4
  givenname: Yang
  surname: Lu
  fullname: Lu, Yang
  organization: Tsinghua University
– sequence: 5
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33496038$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEUhi1URC-wZYkssWGTcHyZ8XgZSiiRSpG4rEcezxniyrGDPUOVHY_AM_IkOKQUqRJiZVvn-35b_k_JUYgBCXnKYM4A-EsTHM458HKQWj4gJ6zibCaUEkdlL4WYqaZix-Q05-vCNw3Uj8ixEFLXIJoT4q4m69GMLgZqQk8vUrwZ1_Qd2nWJzhsaB7oIZfrz-4_XmNw37OnH6F1Plx7tmKLfjUhXYcS0XZuM1AX6YS-nL2g6j_SVGcvMYX5MHg7GZ3xyu56Rz2-Wn87fzi7fX6zOF5czKxnIGYKo6o6BqYBp3ulGagTNGl4boVAZUIMVnbKWK7C9bSoleT3w3gC3mgkUZ-TFIXeb4tcJ89huXLbovQkYp9xy2TAosaAL-vweeh2nFMrrWl6B5kpCIwv17Jaaug327Ta5jUm79s8nFmB-AGyKOScc7hAG7b6ldt9Se9dSEeQ9wbrxdwdjMs7_W9MH7cZ53P3nknZxtVr-dX8BiwqmjA
CitedBy_id crossref_primary_10_1039_D4TA06032F
crossref_primary_10_1002_adma_202108114
crossref_primary_10_1016_j_cej_2024_151540
crossref_primary_10_1002_cey2_354
crossref_primary_10_1002_anie_202206770
crossref_primary_10_1016_j_jpowsour_2021_230299
crossref_primary_10_1016_j_jechem_2024_08_019
crossref_primary_10_1021_acs_nanolett_3c03340
crossref_primary_10_1038_s41467_023_37033_7
crossref_primary_10_1002_anie_202302285
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1021_acsnano_1c07414
crossref_primary_10_1016_j_cej_2023_142422
crossref_primary_10_1016_S1872_5805_22_60573_0
crossref_primary_10_1002_anie_202112112
crossref_primary_10_1016_j_ensm_2024_103326
crossref_primary_10_1016_j_jechem_2022_06_001
crossref_primary_10_1021_acsenergylett_2c02590
crossref_primary_10_1002_anie_202111707
crossref_primary_10_1002_aenm_202405803
crossref_primary_10_1016_j_electacta_2021_139362
crossref_primary_10_1021_acsami_2c15101
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1016_j_actamat_2025_120849
crossref_primary_10_1021_acs_nanolett_3c02784
crossref_primary_10_1016_j_jechem_2024_09_069
crossref_primary_10_1021_acs_jpcc_2c08357
crossref_primary_10_1002_aenm_202300500
crossref_primary_10_1039_D3CC04217K
crossref_primary_10_1039_D5QI00310E
crossref_primary_10_1021_acsenergylett_2c02003
crossref_primary_10_1016_j_cej_2023_141843
crossref_primary_10_1016_j_joule_2022_05_005
crossref_primary_10_1002_advs_202200213
crossref_primary_10_1021_acs_energyfuels_4c02174
crossref_primary_10_1002_adma_202206448
crossref_primary_10_1021_acs_nanolett_3c02037
crossref_primary_10_1016_j_est_2023_107149
crossref_primary_10_1002_anie_202416610
crossref_primary_10_1021_acsenergylett_2c02379
crossref_primary_10_1021_acs_jpclett_4c02525
crossref_primary_10_1039_D3EE02213G
crossref_primary_10_1063_5_0196568
crossref_primary_10_1016_j_cej_2022_137435
crossref_primary_10_1002_ange_202206770
crossref_primary_10_1002_smll_202406193
crossref_primary_10_1039_D2SC06587H
crossref_primary_10_1021_acsami_2c17547
crossref_primary_10_1002_aenm_202302620
crossref_primary_10_1021_acs_chemmater_4c01745
crossref_primary_10_1002_idm2_12178
crossref_primary_10_1016_j_cej_2023_147764
crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1021_acs_jpclett_2c01183
crossref_primary_10_1002_aenm_202302749
crossref_primary_10_1002_anie_202208506
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1021_acsnano_4c00492
crossref_primary_10_3390_coatings14010062
crossref_primary_10_1073_pnas_2314264120
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1016_j_jechem_2021_09_012
crossref_primary_10_1021_jacs_2c13878
crossref_primary_10_1021_acsenergylett_2c01227
crossref_primary_10_1002_aenm_202303726
crossref_primary_10_1002_ange_202316839
crossref_primary_10_1039_D2CC03364J
crossref_primary_10_1016_j_jechem_2022_12_036
crossref_primary_10_3390_coatings12081195
crossref_primary_10_1021_acs_iecr_2c00958
crossref_primary_10_1002_smll_202300534
crossref_primary_10_1002_adfm_202313538
crossref_primary_10_1016_j_mattod_2024_06_001
crossref_primary_10_1016_j_jechem_2021_11_017
crossref_primary_10_1002_aenm_202301396
crossref_primary_10_1002_ange_202302285
crossref_primary_10_1002_ange_202416610
crossref_primary_10_1073_pnas_2313096121
crossref_primary_10_1002_adma_202401711
crossref_primary_10_1002_ange_202111360
crossref_primary_10_1016_j_jechem_2024_01_058
crossref_primary_10_1016_j_joule_2024_05_008
crossref_primary_10_1002_anie_202316839
crossref_primary_10_1002_adsu_202300285
crossref_primary_10_1002_smtd_202300554
crossref_primary_10_1021_acsenergylett_4c01616
crossref_primary_10_1039_D1FD00043H
crossref_primary_10_1002_ange_202208506
crossref_primary_10_1002_anie_202111360
crossref_primary_10_1039_D3TA01411H
crossref_primary_10_1021_acsami_2c09338
crossref_primary_10_1002_ange_202111707
crossref_primary_10_1021_acsami_2c00244
crossref_primary_10_1002_adma_202205421
crossref_primary_10_1002_aenm_202200398
crossref_primary_10_1016_j_jechem_2021_11_033
crossref_primary_10_1002_ange_202112112
crossref_primary_10_1002_adma_202311912
crossref_primary_10_1021_acsaem_1c02725
Cites_doi 10.1038/s41560-019-0464-5
10.1016/S0022-0728(74)80448-1
10.1002/aenm.201802207
10.1016/0013-4686(83)85163-9
10.1149/1.2128859
10.1021/acs.chemrev.8b00422
10.1016/j.jpowsour.2019.04.040
10.1149/1.2425851
10.1016/0022-0248(77)90029-X
10.1016/S0022-0728(74)80449-3
10.1016/0022-0248(89)90644-1
10.1021/ja305366r
10.1063/1.1750380
10.1021/acsenergylett.7b01213
10.1016/S0378-7753(00)00431-6
10.1038/ncomms7362
10.1016/j.jpowsour.2010.09.121
10.1016/j.jechem.2018.11.016
10.1126/science.aab1595
10.1021/jp068691u
10.1149/1.3615828
10.1063/1.1750631
10.1021/ja412807w
10.1021/jacs.9b05029
10.1038/ncomms2513
10.1002/ange.202009738
10.1002/adma.201501559
10.1149/1.1414946
10.1016/S0022-0728(79)80075-3
10.1016/j.jechem.2020.02.052
10.1016/j.jechem.2019.09.034
10.1021/jp303610t
10.1002/inf2.12046
10.1002/adma.201706102
10.1038/s41557-019-0304-z
10.1002/anie.202009738
10.1021/cr500003w
10.1039/C9CS00728H
10.1002/anie.202011482
10.1002/adma.201707629
10.1038/s41560-019-0336-z
10.1002/ange.202011482
10.1063/1.1750872
10.1021/acs.jpclett.5b01727
10.1002/adfm.201909887
10.1039/tf9625802200
10.1016/j.electacta.2010.11.025
10.1021/ac60230a016
10.1016/j.electacta.2017.01.128
10.1126/science.aam6014
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202100494
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8525
ExternalDocumentID 33496038
10_1002_anie_202100494
ANIE202100494
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21825501 and 51702117
– fundername: National Natural Science Foundation of China
  grantid: 21825501 and 51702117
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4104-e0356b10a50192b9849e091826a37e7a07fc3b7cc270cdc857426f2da02c913e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:19:10 EDT 2025
Sun Jul 13 04:38:48 EDT 2025
Wed Feb 19 02:28:38 EST 2025
Tue Jul 01 01:17:55 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Wed Jan 22 16:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords nucleation and growth mechanism
isothermal electrochemical crystallization
two-dimension (2D) growth
solid electrolyte interphase
interfacial chemistry
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-e0356b10a50192b9849e091826a37e7a07fc3b7cc270cdc857426f2da02c913e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 33496038
PQID 2509274084
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2481098409
proquest_journals_2509274084
pubmed_primary_33496038
crossref_primary_10_1002_anie_202100494
crossref_citationtrail_10_1002_anie_202100494
wiley_primary_10_1002_anie_202100494_ANIE202100494
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 6, 2021
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: April 6, 2021
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1979; 126
2015; 6
2019; 4
2013; 4
2000 2017 2019 2020 2019 2018; 89 358 2 37 30
1939; 135
1962; 58
2017 2019 2011; 228 426 196
2001 2019; 4 11
1965; 37
2019; 141
2014; 114
2014; 136
2018; 3
2012; 134
1939 1940 1941; 7 8 9
2020; 30
2018 2020; 118 49
1974 1974 1979; 52 52 101
2011 2015; 56 27
1983 2019; 28 9
2007 2011; 111 14
2021 2021; 60 133
2018; 30
2015 2020 2020; 350 47 49
2012; 116
1963 1989 1977; 110 96 40
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_22_3
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_24_3
e_1_2_2_26_1
e_1_2_2_13_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_30_3
e_1_2_2_17_1
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_3_3
e_1_2_2_5_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_1_2
e_1_2_2_3_1
e_1_2_2_7_6
e_1_2_2_29_3
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_7_4
e_1_2_2_27_1
e_1_2_2_7_5
e_1_2_2_25_2
Li B. (e_1_2_2_7_3) 2019
e_1_2_2_14_1
e_1_2_2_12_2
e_1_2_2_12_1
e_1_2_2_10_1
e_1_2_2_18_1
e_1_2_2_16_1
Johnson W. A. (e_1_2_2_23_1) 1939; 135
References_xml – volume: 4
  start-page: 796
  year: 2019
  end-page: 805
  publication-title: Nat. Energy
– volume: 110 96 40
  start-page: 688 843 29
  year: 1963 1989 1977
  end-page: 698 848 46
  publication-title: J. Electrochem. Soc. J. Cryst. Growth J. Cryst. Growth
– volume: 136
  start-page: 5039
  year: 2014
  end-page: 5046
  publication-title: J. Am. Chem. Soc.
– volume: 118 49
  start-page: 11433 3806
  year: 2018 2020
  end-page: 11456 3833
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 350 47 49
  start-page: 938 217 335
  year: 2015 2020 2020
  end-page: 943 220 338
  publication-title: Science J. Energy Chem. J. Energy Chem.
– volume: 141
  start-page: 9422
  year: 2019
  end-page: 9429
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 269
  year: 2019
  end-page: 280
  publication-title: Nat. Energy
– volume: 52 52 101
  start-page: 395 355 19
  year: 1974 1974 1979
  end-page: 402 393 28
  publication-title: J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem. Interfacial Electrochem. J. Electroanal. Chem.
– volume: 116
  start-page: 26111
  year: 2012
  end-page: 26117
  publication-title: J. Phys. Chem. C
– volume: 58
  start-page: 2200
  year: 1962
  end-page: 2216
  publication-title: Trans. Faraday Soc.
– volume: 4
  start-page: 1481
  year: 2013
  publication-title: Nat. Commun.
– volume: 3
  start-page: 315
  year: 2018
  end-page: 321
  publication-title: ACS Energy Lett.
– volume: 7 8 9
  start-page: 1103 212 177
  year: 1939 1940 1941
  end-page: 1112 224 184
  publication-title: J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 60 133
  start-page: 4090 4136
  year: 2021 2021
  end-page: 4097 4143
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 4653
  year: 2015
  end-page: 4672
  publication-title: J. Phys. Chem. Lett.
– volume: 89 358 2 37 30
  start-page: 206 506 379 29
  year: 2000 2017 2019 2020 2019 2018
  end-page: 218 510 388 34
  publication-title: J. Power Sources Science Reserach InfoMat J. Energy Chem. Adv. Mater.
– volume: 4 11
  start-page: A206 789
  year: 2001 2019
  end-page: A208 796
  publication-title: Electrochem. Solid-State Lett. Nat. Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 111 14
  start-page: 7411 A154
  year: 2007 2011
  end-page: 7421 A156
  publication-title: J. Phys. Chem. C Electrochem. Solid-State Lett.
– volume: 37
  start-page: 1351
  year: 1965
  end-page: 1355
  publication-title: Anal. Chem.
– volume: 56 27
  start-page: 2399 5203
  year: 2011 2015
  end-page: 2403 5209
  publication-title: Electrochim. Acta Adv. Mater.
– volume: 126
  start-page: 2047
  year: 1979
  end-page: 2051
  publication-title: J. Electrochem. Soc.
– volume: 135
  start-page: 416
  year: 1939
  end-page: 442
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– volume: 28 9
  start-page: 879
  year: 1983 2019
  end-page: 889
  publication-title: Electrochim. Acta Adv. Energy Mater.
– volume: 134
  start-page: 15476
  year: 2012
  end-page: 15487
  publication-title: J. Am. Chem. Soc.
– volume: 228 426 196
  start-page: 652 216 5342
  year: 2017 2019 2011
  end-page: 658 222 5348
  publication-title: Electrochim. Acta J. Power Sources J. Power Sources
– volume: 60 133
  start-page: 3402 3444
  year: 2021 2021
  end-page: 3406 3448
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_10_1
  doi: 10.1038/s41560-019-0464-5
– ident: e_1_2_2_22_2
  doi: 10.1016/S0022-0728(74)80448-1
– ident: e_1_2_2_27_2
  doi: 10.1002/aenm.201802207
– ident: e_1_2_2_27_1
  doi: 10.1016/0013-4686(83)85163-9
– ident: e_1_2_2_4_1
  doi: 10.1149/1.2128859
– ident: e_1_2_2_1_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_2_29_2
  doi: 10.1016/j.jpowsour.2019.04.040
– ident: e_1_2_2_30_1
  doi: 10.1149/1.2425851
– ident: e_1_2_2_30_3
  doi: 10.1016/0022-0248(77)90029-X
– ident: e_1_2_2_22_1
  doi: 10.1016/S0022-0728(74)80449-3
– ident: e_1_2_2_30_2
  doi: 10.1016/0022-0248(89)90644-1
– ident: e_1_2_2_9_1
  doi: 10.1021/ja305366r
– volume: 135
  start-page: 416
  year: 1939
  ident: e_1_2_2_23_1
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– ident: e_1_2_2_24_1
  doi: 10.1063/1.1750380
– ident: e_1_2_2_18_1
  doi: 10.1021/acsenergylett.7b01213
– ident: e_1_2_2_7_1
  doi: 10.1016/S0378-7753(00)00431-6
– ident: e_1_2_2_15_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_2_29_3
  doi: 10.1016/j.jpowsour.2010.09.121
– ident: e_1_2_2_7_5
  doi: 10.1016/j.jechem.2018.11.016
– ident: e_1_2_2_3_1
  doi: 10.1126/science.aab1595
– ident: e_1_2_2_12_1
  doi: 10.1021/jp068691u
– ident: e_1_2_2_12_2
  doi: 10.1149/1.3615828
– ident: e_1_2_2_24_2
  doi: 10.1063/1.1750631
– ident: e_1_2_2_16_1
  doi: 10.1021/ja412807w
– ident: e_1_2_2_8_1
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_2_14_1
  doi: 10.1038/ncomms2513
– ident: e_1_2_2_25_2
  doi: 10.1002/ange.202009738
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.201501559
– ident: e_1_2_2_20_1
  doi: 10.1149/1.1414946
– ident: e_1_2_2_22_3
  doi: 10.1016/S0022-0728(79)80075-3
– ident: e_1_2_2_3_3
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_2_3_2
  doi: 10.1016/j.jechem.2019.09.034
– ident: e_1_2_2_13_1
  doi: 10.1021/jp303610t
– ident: e_1_2_2_7_4
  doi: 10.1002/inf2.12046
– ident: e_1_2_2_17_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_2_20_2
  doi: 10.1038/s41557-019-0304-z
– ident: e_1_2_2_25_1
  doi: 10.1002/anie.202009738
– ident: e_1_2_2_5_1
  doi: 10.1021/cr500003w
– ident: e_1_2_2_1_2
  doi: 10.1039/C9CS00728H
– ident: e_1_2_2_19_1
  doi: 10.1002/anie.202011482
– start-page: 4608940
  year: 2019
  ident: e_1_2_2_7_3
  publication-title: Reserach
– ident: e_1_2_2_7_6
  doi: 10.1002/adma.201707629
– ident: e_1_2_2_11_1
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_2_19_2
  doi: 10.1002/ange.202011482
– ident: e_1_2_2_24_3
  doi: 10.1063/1.1750872
– ident: e_1_2_2_6_1
  doi: 10.1021/acs.jpclett.5b01727
– ident: e_1_2_2_2_1
  doi: 10.1002/adfm.201909887
– ident: e_1_2_2_26_1
  doi: 10.1039/tf9625802200
– ident: e_1_2_2_28_1
  doi: 10.1016/j.electacta.2010.11.025
– ident: e_1_2_2_21_1
  doi: 10.1021/ac60230a016
– ident: e_1_2_2_29_1
  doi: 10.1016/j.electacta.2017.01.128
– ident: e_1_2_2_7_2
  doi: 10.1126/science.aam6014
SSID ssj0028806
Score 2.6190941
Snippet Solid electrolyte interphase (SEI) has been widely employed to describe the new phase formed between anode and electrolyte in working batteries. Significant...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8521
SubjectTerms Anions
Atomic force microscopes
Atomic force microscopy
Batteries
Crystallization
Electrochemistry
Electrolytes
Growth models
interfacial chemistry
Interphase
Ion transport
isothermal electrochemical crystallization
Lithium
Nucleation
nucleation and growth mechanism
Rechargeable batteries
solid electrolyte interphase
Solid electrolytes
Surface reactions
Two dimensional models
two-dimension (2D) growth
Title Nucleation and Growth Mechanism of Anion‐Derived Solid Electrolyte Interphase in Rechargeable Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202100494
https://www.ncbi.nlm.nih.gov/pubmed/33496038
https://www.proquest.com/docview/2509274084
https://www.proquest.com/docview/2481098409
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuMwFLUQG9jwHih0RkZCYmVw7TyXFRQKEl2UQWIX2Y4jKkqKaIoEKz6Bb-RLuDduwpTRCInZJbKdOPa1fY7jey4he8YLNAa1ZTEXGfOs8ZmGmZJpWDy0H4QBz3Af8qIXdK-882v_-g8vfqcPUW-44cgo52sc4EqPDz9EQ9EDG_idaJUSJzAJ44EtREX9Wj9KgHE69yIpGUahr1QbuTicLT67Kv0FNWeRa7n0nCwTVVXanTi5PZgU-sA8f9Jz_J-vWiFLU1xK286QVsmczdfIwlEVDm6dDHqofFz2I1V5Sk-Bvxc39MKi6_BgfEdHGW3nkPr28noMZv1oU3o5Gg5S2nGRdoZPhaXujOMNLJ10kNO-LYWaLLpvUaf0CcR9g1yddH4fddk0TgMzHrA5Zrn0A93iyke8qOPIiy3AECAuSoY2VDzMjNShMSLkJjWRD3Q8yESquDAx7sL-IPP5KLdbhEpgWKqlEEaAtahUK2UMPEYKrsOMxw3Cqn5KzFTEHGNpDBMnvywSbMCkbsAG2a_z3zv5jn_mbFbdnkyH8TgBfBgDbecRJO_WydDw-FdF5XY0gTxe1OIx8uQG2XTmUr9Kohw_l1GDiLLTv6hD0u6ddeq77e8U2iGLeF2eLQqaZL54mNifAJsK_ascGu-hEw2u
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6V9lAuhfK7UIqRkDi59dr5Pa7Kli1091BaiVtkO466YslWNIsEpz5Cn5EnYcbeBC2oQirHxHbieGbs-RzPNwCvbZQYSmrLcyErHjkbc4MzJTe4eJg4SRNR0T7keJKMzqL3n-L2NCHFwgR-iG7DjSzDz9dk4LQhvf-bNZRCsBHgyb7nOLkDG5TW26Oqk45BSqJ6hgAjpTjloW95G4XcX22_ui795Wyu-q5-8Tm8B6btdjhz8nlv0Zg9--MPRsf_-q77sLV0Tdkg6NI2rLn6AWwetBnhHsJ0QuTHXpRM1yV7hxC-OWdjR9HD08svbF6xQY2lP6-u36Jmf3Ml-zifTUs2DMl2Zt8bx8Ixx3NcPdm0ZifOczU5iuBigewTsfsjODscnh6M-DJVA7cRAjruhIoT0xc6JpfR5FmUO_REELtolbpUi7SyyqTWylTY0mYxIvKkkqUW0ua0EfsY1ut57Z4CUwiydF-TJ4EKo0ujtbX4GCWFSSuR94C3girsksec0mnMisDALAsawKIbwB686epfBAaPG2vutHIvlpZ8WaCLmCNyFxkWv-qKceDpx4qu3XyBdaKsL3KCyj14EvSle5UiRn6hsh5IL_V_9KEYTI6G3dWz2zR6CZuj0_FxcXw0-fAc7tJ9f9Qo2YH15uvCvUAvqjG73k5-AXpAEck
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8oJuoLggocgtbExKdCr92_jxfuThC5GJSEt03b7YYL5x6BPRJ94iPwGfkkzmxvV09jTPRxt-1utzPTzq_b-Q3AGxtEhpLa8lTIggfOhtzgTMkNLh4mjOJIFLQPeTSK9k-C96fh6U9R_J4fot1wI8uo52sy8Iu82P1BGkoR2IjvZLemOLkPD4JIJKTX_eOWQEqidvr4IqU4paFvaBuF3F1sv7gs_eZrLrqu9dozfAK66bU_cnK-M6vMjv32C6Hj_3zWCizPHVPW85q0Cvdc-RQe7TX54J7BeETUx7UgmS5z9g4BfHXGjhzFDo-vvrBpwXollt7d3PZRr69dzj5NJ-OcDXyqncnXyjF_yPEM1042Ltmxq5maHMVvMU_1icj9OZwMB5_39vk8UQO3AcI57oQKI9MVOiSH0aRJkDr0QxC5aBW7WIu4sMrE1spY2NwmIeLxqJC5FtKmtA27BkvltHQbwBRCLN3V5EeguujcaG0tPkZJYeJCpB3gjZwyO2cxp2Qak8zzL8uMBjBrB7ADb9v6F56_4481txqxZ3M7vsrQQUwRt4sEi1-3xTjw9FtFl246wzpB0hUpAeUOrHt1aV-liI9fqKQDshb6X_qQ9UYHg_Zq818avYKHH_vD7MPB6PAFPKbb9TmjaAuWqsuZ20YXqjIvayv5DkuhEIE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nucleation+and+Growth+Mechanism+of+Anion-Derived+Solid+Electrolyte+Interphase+in+Rechargeable+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yan%2C+Chong&rft.au=Jiang%2C+Li-Li&rft.au=Yao%2C+Yu-Xing&rft.au=Lu%2C+Yang&rft.date=2021-04-06&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=15&rft.spage=8521&rft_id=info:doi/10.1002%2Fanie.202100494&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon