Uncovering a Functional Motif of Nonlinear Optical Materials by In Situ Electron Density and Wavefunction Studies Under Laser Irradiation
Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantiall...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 21; pp. 11799 - 11803 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.05.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3O5]− unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3O5]−. The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms.
A general strategy of determining nonlinear optical (NLO) functional motif (FM) is proposed by comparative studies of experimental electron density (ED) without and under the laser. In situ ED analysis is firstly adopted for an NLO material with typical LiB3O5 as an example. The work extracts the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. |
---|---|
AbstractList | Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3O5]− unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3O5]−. The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms.
A general strategy of determining nonlinear optical (NLO) functional motif (FM) is proposed by comparative studies of experimental electron density (ED) without and under the laser. In situ ED analysis is firstly adopted for an NLO material with typical LiB3O5 as an example. The work extracts the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB 3 O 5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B 3 O 5 ] − unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B 3 O 5 ] − . The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB O (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B O ] unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B O ] . The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3 O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3 O5 ]- unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3 O5 ]- . The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms.Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3 O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3 O5 ]- unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3 O5 ]- . The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal spectrum techniques applied in studying photon exciting materials are invalid for NLO materials, in which electrons are not excited substantially but only distorted under laser. A general strategy of determining NLO FM is proposed by comparative studies of experimental electron density (ED) without and under the laser. The in situ experimental ED and wavefunction of typical NLO material LiB3O5 (LBO) under dark and 360 and 1064 nm lasers are investigated. Compared with the initial state under dark, the ED of [B3O5]− unit at functional states under laser irradiation exhibits remarkable changes of topological atomic and bond properties, confirming the NLO FM being [B3O5]−. The work extracts for the first time the FM of a NLO material experimentally and highlights the crucial role of in situ ED analysis in studying NLO mechanisms. |
Author | Jiang, Xiao‐Ming Liu, Bin‐Wen He, Chao Lin, Shu‐Juan Guo, Guo‐Cong |
Author_xml | – sequence: 1 givenname: Xiao‐Ming surname: Jiang fullname: Jiang, Xiao‐Ming organization: Chinese Academy of Sciences – sequence: 2 givenname: Shu‐Juan surname: Lin fullname: Lin, Shu‐Juan organization: Chinese Academy of Sciences – sequence: 3 givenname: Chao surname: He fullname: He, Chao organization: Chinese Academy of Sciences – sequence: 4 givenname: Bin‐Wen surname: Liu fullname: Liu, Bin‐Wen organization: Chinese Academy of Sciences – sequence: 5 givenname: Guo‐Cong orcidid: 0000-0002-7450-9702 surname: Guo fullname: Guo, Guo‐Cong email: gcguo@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33749981$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAYhC1URD_gyhFZ4sIlix0nTnKs2i2stLSHtuJovbHfIFdZe7Gdov0J_GscdgtSJcTFtjTPjOSZU3LkvENC3nK24IyVH8FZXJSs5KysWfWCnPC65IVoGnGU35UQRdPW_JicxviQ-bZl8hU5FqKpuq7lJ-TnvdP-EYN13yjQq8npZL2DkX7xyQ7UD_Tau9E6hEBvtsnqWYKUDTBG2u_oytFbmya6HFGn4B29RBdt2lFwhn6FRxwOmfQ2TcZipPfOYKBriPlchQDGwqy_Ji-HnIlvDvcZubta3l18LtY3n1YX5-tCV5xVhTHN0Mm-5gJlYzQIgEZCMyBH3Q-l4VKwHnrTc9NA2WHLUUrIsm77vhXijHzYx26D_z5hTGpjo8ZxBId-iirXKGTdyarO6Ptn6IOfQi5npspKtm1dy0y9O1BTv0GjtsFuIOzUU8cZqPaADj7GgIPSNv3-cgpgR8WZmqdU85Tqz5TZtnhme0r-p6HbG37YEXf_odX59Wr51_sLKbCzQQ |
CitedBy_id | crossref_primary_10_1039_D2TC01351G crossref_primary_10_1002_adom_202202147 crossref_primary_10_1016_j_jallcom_2022_163656 crossref_primary_10_1039_D2QI01469F crossref_primary_10_1021_acs_inorgchem_2c00623 crossref_primary_10_3390_sym14071426 crossref_primary_10_1021_acsami_1c23843 crossref_primary_10_1039_D3MH00389B crossref_primary_10_1002_adom_202302376 crossref_primary_10_1007_s11426_024_2023_2 crossref_primary_10_1021_acs_cgd_2c01223 crossref_primary_10_1021_acs_chemmater_1c02562 crossref_primary_10_1021_jacs_4c14624 crossref_primary_10_1039_D2MH00060A crossref_primary_10_1002_advs_202207630 crossref_primary_10_1039_D2QI00937D crossref_primary_10_1016_j_jallcom_2022_163944 crossref_primary_10_1016_j_jre_2021_07_005 crossref_primary_10_1039_D2DT03683E crossref_primary_10_1039_D1MH01434J crossref_primary_10_1016_j_jallcom_2022_164090 crossref_primary_10_1021_acs_chemmater_1c01982 crossref_primary_10_1002_adfm_202419204 crossref_primary_10_1016_j_cclet_2021_11_089 crossref_primary_10_1021_acs_chemmater_1c03046 crossref_primary_10_1093_nsr_nwac017 |
Cites_doi | 10.1007/430_2011_72 10.1103/PhysRevB.59.369 10.1021/jacs.0c04738 10.1103/PhysRev.136.B864 10.1107/S0108768197007817 10.1103/PhysRev.140.A1133 10.1002/adom.201800156 10.1107/S2052252514014845 10.1063/1.352841 10.1021/acs.accounts.6b00452 10.1021/acsami.0c15812 10.1088/0953-8984/23/39/395501 10.1016/j.ccr.2016.12.013 10.1039/D0CP02755C 10.1002/anie.201711465 10.1103/PhysRevB.57.6925 10.1364/JOSAB.6.000616 10.1002/inf2.12063 10.1063/1.4817662 10.1039/C6CC03184F 10.1107/S0108767300013155 10.1103/PhysRevB.60.13380 10.1080/01442358909353223 10.1107/S0567739478001886 10.1002/ange.201711465 10.1021/acs.chemmater.7b03046 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202102504 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 11803 |
ExternalDocumentID | 33749981 10_1002_anie_202102504 ANIE202102504 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21827813, 21921001 – fundername: National Natural Science Foundation of China grantid: 21827813, 21921001 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-dd7f96b513e67dca3aa76a7fe1ecbf2d1630babdb1d7a29e81e66afe1c8bb833 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 11:19:21 EDT 2025 Fri Jul 25 10:14:18 EDT 2025 Thu Apr 03 06:59:18 EDT 2025 Tue Jul 01 01:17:58 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Wed Jan 22 16:30:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | in situ electron density functional motifs LiB3O5 multipolar refinement nonlinear optical materials |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-dd7f96b513e67dca3aa76a7fe1ecbf2d1630babdb1d7a29e81e66afe1c8bb833 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7450-9702 |
PMID | 33749981 |
PQID | 2524688556 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2503659645 proquest_journals_2524688556 pubmed_primary_33749981 crossref_citationtrail_10_1002_anie_202102504 crossref_primary_10_1002_anie_202102504 wiley_primary_10_1002_anie_202102504_ANIE202102504 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 17, 2021 |
PublicationDateYYYYMMDD | 2021-05-17 |
PublicationDate_xml | – month: 05 year: 2021 text: May 17, 2021 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 145 1978; 34 2020; 142 1965; 140 1989; 6 1989; 8 2016; 52 1994 2005 2020; 12 2017; 29 1999; 60 2017; 335 1964; 136 2014; 1 2018; 6 2020; 2 1993; 73 1997; 53 2018 2018; 57 130 1999; 59 2013; 139 2011; 23 2020; 22 2001; 13 2016; 49 2001; 57 1998; 57 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_4_2 e_1_2_2_24_1 Bader R. F. W. (e_1_2_2_26_1) 1994 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_8_2 e_1_2_2_29_1 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_13_2 Guo G.-C. (e_1_2_2_6_2) 2001; 13 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_15_2 e_1_2_2_16_1 e_1_2_2_14_2 Nikogosyan D. N. (e_1_2_2_28_1) 2005 |
References_xml | – volume: 139 year: 2013 publication-title: J. Chem. Phys. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 73 start-page: 4101 year: 1993 end-page: 4103 publication-title: J. Appl. Phys. – year: 2005 – volume: 145 start-page: 1 year: 2012 end-page: 44 publication-title: Struct. Bonding (Berlin) – volume: 34 start-page: 909 year: 1978 end-page: 921 publication-title: Acta Crystallogr. Sect. A – volume: 60 start-page: 13380 year: 1999 end-page: 13389 publication-title: Phys. Rev. B – volume: 57 130 start-page: 3933 3997 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 start-page: 9200 year: 2017 end-page: 9207 publication-title: Chem. Mater. – volume: 13 start-page: 151 year: 2001 end-page: 155 publication-title: Prog. Chem. – volume: 8 start-page: 65 year: 1989 end-page: 91 publication-title: Int. Rev. Phys. Chem. – volume: 335 start-page: 44 year: 2017 end-page: 57 publication-title: Coord. Chem. Rev. – year: 1994 – volume: 59 start-page: 369 year: 1999 end-page: 372 publication-title: Phys. Rev. B – volume: 136 start-page: B864 year: 1964 end-page: B871 publication-title: Phys. Rev. – volume: 2 start-page: 57 year: 2020 end-page: 91 publication-title: InfoMat – volume: 22 start-page: 19299 year: 2020 end-page: 19306 publication-title: Phys. Chem. Chem. Phys. – volume: 140 start-page: A1133 year: 1965 end-page: A1138 publication-title: Phys. Rev. – volume: 49 start-page: 2774 year: 2016 end-page: 2785 publication-title: Acc. Chem. Res. – volume: 6 start-page: 616 year: 1989 end-page: 621 publication-title: J. Opt. Soc. Am. B – volume: 57 start-page: 76 year: 2001 end-page: 86 publication-title: Acta Crystallogr. Sect. A – volume: 142 start-page: 10641 year: 2020 end-page: 10645 publication-title: J. Am. Chem. Soc. – volume: 23 year: 2011 publication-title: J. Phys. Condens. Matter – volume: 1 start-page: 361 year: 2014 end-page: 379 publication-title: IUCrJ – volume: 52 start-page: 13194 year: 2016 end-page: 13204 publication-title: Chem. Commun. – volume: 12 start-page: 53950 year: 2020 end-page: 53956 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 6925 year: 1998 end-page: 6932 publication-title: Phys. Rev. B – volume: 53 start-page: 870 year: 1997 end-page: 879 publication-title: Acta Crystallogr. Sect. B – ident: e_1_2_2_7_1 – ident: e_1_2_2_1_1 – ident: e_1_2_2_13_2 doi: 10.1007/430_2011_72 – ident: e_1_2_2_17_1 doi: 10.1103/PhysRevB.59.369 – ident: e_1_2_2_2_2 doi: 10.1021/jacs.0c04738 – ident: e_1_2_2_12_1 – ident: e_1_2_2_8_2 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_2_27_1 doi: 10.1107/S0108768197007817 – ident: e_1_2_2_9_2 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_2_2_3_2 doi: 10.1002/adom.201800156 – ident: e_1_2_2_24_1 doi: 10.1107/S2052252514014845 – ident: e_1_2_2_31_2 doi: 10.1063/1.352841 – ident: e_1_2_2_15_2 doi: 10.1021/acs.accounts.6b00452 – ident: e_1_2_2_4_2 doi: 10.1021/acsami.0c15812 – ident: e_1_2_2_19_1 doi: 10.1088/0953-8984/23/39/395501 – ident: e_1_2_2_14_2 doi: 10.1016/j.ccr.2016.12.013 – ident: e_1_2_2_29_1 – ident: e_1_2_2_21_1 doi: 10.1039/D0CP02755C – ident: e_1_2_2_20_1 doi: 10.1002/anie.201711465 – ident: e_1_2_2_30_2 doi: 10.1103/PhysRevB.57.6925 – ident: e_1_2_2_22_1 doi: 10.1364/JOSAB.6.000616 – ident: e_1_2_2_11_1 doi: 10.1002/inf2.12063 – volume: 13 start-page: 151 year: 2001 ident: e_1_2_2_6_2 publication-title: Prog. Chem. – ident: e_1_2_2_32_1 doi: 10.1063/1.4817662 – ident: e_1_2_2_10_1 doi: 10.1039/C6CC03184F – ident: e_1_2_2_25_1 doi: 10.1107/S0108767300013155 – ident: e_1_2_2_18_1 doi: 10.1103/PhysRevB.60.13380 – volume-title: Nonlinear Optical Crystals: A Complete Survey year: 2005 ident: e_1_2_2_28_1 – ident: e_1_2_2_16_1 doi: 10.1080/01442358909353223 – volume-title: Atoms in Molecules: A Quantum Theory (International Series of Monographs on Chemistry) year: 1994 ident: e_1_2_2_26_1 – ident: e_1_2_2_23_1 doi: 10.1107/S0567739478001886 – ident: e_1_2_2_20_2 doi: 10.1002/ange.201711465 – ident: e_1_2_2_5_2 doi: 10.1021/acs.chemmater.7b03046 |
SSID | ssj0028806 |
Score | 2.4979625 |
Snippet | Exploring nonlinear optical (NLO) functional motifs (FM, the structural origin of NLO efficiency) is vital for the rational design of NLO materials. Normal... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11799 |
SubjectTerms | Chemical bonds Comparative studies Electron density Electrons functional motifs in situ electron density Irradiation Lasers LiB3O5 multipolar refinement nonlinear optical materials Nonlinear optics Optical materials Optics Wave functions |
Title | Uncovering a Functional Motif of Nonlinear Optical Materials by In Situ Electron Density and Wavefunction Studies Under Laser Irradiation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202102504 https://www.ncbi.nlm.nih.gov/pubmed/33749981 https://www.proquest.com/docview/2524688556 https://www.proquest.com/docview/2503659645 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgtaJCQOKVd24ntHKuyqy5iFwla0Vs0fklVUbZKs0jtP-BfY8fZwIIQEtwS2U4ceybzjT3-hpDXlkurpNe5D8gtL7ykuWLBWXGU20owJ1y_o7tYiuPT4t1ZefbTKf7EDzEuuEXN6P_XUcFRXx38IA2NJ7CDfxddlrInBI0BWxEVfRz5o1gQznS8iPM8ZqHfsDZO2MF2822r9BvU3EauvemZ3SO46XSKOLnYX3d639z8wuf4P191n9wdcCkcJkF6QG655iG5fbRJB_eIfDttTAz3DKYOEGbBHKZVRFisunMPKw_L9H5s4cNlv0IOC-ySgIO-hnkDn867NUyHxDvwNsbOd9eAjYXP-NX54ZkwxDZCn5MJ3gc728K8bSOLQix_TE5m05Oj43zI45CbInh7ubXSV0KXlDshrUGOKAVK76gz2jMbIOFEo7aaWomscoo6ITAUG6W14vwJ2WlWjXtGIOAdjz6UV8IUSk_QUK0DCkFBhSkVZiTfTGNtBo7zmGrjS53YmVkdx7cexzcjb8b6l4nd44819zZSUQ9aflWzkhVCqbIUGXk1Fod5iZsu2LjVOtYJGKGsRFFm5GmSpvFVnMvgcCqaEdbLxF_6UB8u59Px7vm_NNold-J1DH-gco_sdO3avQioqtMve835DhhiGqg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQL70dKgUFC4pR27SS2c6zaXe3C7iLBVnCL_JQqULbaZpHKP-Bf44mToAUhJDgmthPHHme-GY-_IeSVzYSVwuvUB-SW5l7QVLJgrDia2ZIzx127o7tY8ul5_uZT0UcT4lmYyA8xONxwZbT_a1zg6JA-_skaikewg4GHNkuBjKA3Ma030uefvR8YpFgQz3jAKMtSzEPf8zaO2PFu-1299BvY3MWurfKZ3CG673aMOfl8tG30kfn2C6Pjf33XXXK7g6ZwEmXpHrnh6vtk_7TPCPeAfD-vDUZ8Bm0HCiZBI0ZHIizWzYWHtYdl7IDawLvL1kkOC9VEGQd9DbMaPlw0Wxh3uXfgDMPnm2tQtYWP6qvz3TOhC2-ENi0TzIOq3cBss0EiBSx_SFaT8ep0mnapHFKTB4MvtVb4kuuCZo4La1SmlOBKeEed0Z7ZgApHWmmrqRWKlU5Sx7kKxUZqLbPsEdmr17V7QiBAHq98KC-5yaUeKUO1DkBEccpNIVVC0n4eK9PRnGO2jS9VJGhmFY5vNYxvQl4P9S8jwccfax72YlF1C_2qYgXLuZRFwRPycigO84L7Lqp26y3WCTChKHleJORxFKfhVVkmgs0paUJYKxR_6UN1spyNh6uDf2n0guxPV4t5NZ8t3z4lt_A-RkNQcUj2ms3WPQsgq9HP22X0A7ZKHsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEX3pRAC4OExCnt2k5s51h1d9WF7oKgFb1FfkoVKLsKWaT2H_CvseMkZUEICY6J7cSxZzLf2ONvEHplKDeCO5U6j9zSzHGcCuKdFYupKRixzLY7uvMFOz7L3pzn5z-d4o_8EMOCW9CM9n8dFHxl3ME1aWg4ge39u-Cy5IEQdDtjoyIkbxh_GAikiJfOeL6I0jSkoe9pG0fkYLP9pln6DWtuQtfW9kzvItn3OoacfN5fN2pfX_1C6Pg_n3UP3emAKRxGSbqPbtjqAbp11OeDe4i-n1U6xHt6WwcSpt4exmVEmC-bCwdLB4v4flnDu1W7RA5z2UQJB3UJswo-XjRrmHSZd2AcguebS5CVgU_ym3XdM6ELboQ2KROceENbw6yuA41CKH-ETqeT06PjtEvkkOrMu3upMdwVTOWYWsaNllRKziR3FlutHDEeE46UVEZhwyUprMCWMemLtVBKUPoYbVXLyj5B4AGPk86XF0xnQo2kxkp5GCIZZjoXMkFpP42l7kjOQ66NL2WkZyZlGN9yGN8EvR7qryK9xx9r7vZSUXZq_rUkOcmYEHnOEvRyKPbzEnZdZGWX61DHg4S8YFmeoJ0oTcOrKOXe4xQ4QaSVib_0oTxczCbD1dN_afQC3Xw_npYns8XbZ-h2uB1CITDfRVtNvbZ7HmE16nmrRD8AP9cdcw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+a+Functional+Motif+of+Nonlinear+Optical+Materials+by+In+Situ+Electron+Density+and+Wavefunction+Studies+Under+Laser+Irradiation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jiang%2C+Xiao-Ming&rft.au=Lin%2C+Shu-Juan&rft.au=He%2C+Chao&rft.au=Liu%2C+Bin-Wen&rft.date=2021-05-17&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=21&rft.spage=11799&rft_id=info:doi/10.1002%2Fanie.202102504&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |