Simultaneous Modulation of Magnetic and Dielectric Transition via Spin‐Crossover‐Tuned Spin Arrangement and Charge Distribution

Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]− (Tp=hydrotris(pyra...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 28; pp. 8468 - 8472
Main Authors Zheng, Hui, Meng, Yin‐Shan, Zhou, Guang‐Li, Duan, Chun‐Ying, Sato, Osamu, Hayami, Shinya, Luo, Yi, Liu, Tao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 09.07.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]− (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]− units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution. Magnetic interactions: A spin‐crossover‐actuated magnetic and dielectric transition has been observed. The sensitive response to hydrostatic pressure and large dielectric anomaly could be attributed to a cooperative effect and rotation of the negative charged building block.
AbstractList Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII (CN)3 ]- (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin-crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII (CN)3 ]- units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII (CN)3 ]- (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin-crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII (CN)3 ]- units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]− (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]− units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution. Magnetic interactions: A spin‐crossover‐actuated magnetic and dielectric transition has been observed. The sensitive response to hydrostatic pressure and large dielectric anomaly could be attributed to a cooperative effect and rotation of the negative charged building block.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged Fe ions were linked via negative charged [(Tp)Fe (CN) ] (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin-crossover (SCO) on Fe sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the Fe ions and antiferromagnetic interactions between Fe and Fe ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)Fe (CN) ] units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]− (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]− units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged Fe II ions were linked via negative charged [(Tp)Fe III (CN) 3 ] − (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on Fe II sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the Fe II ions and antiferromagnetic interactions between Fe III and Fe II ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)Fe III (CN) 3 ] − units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.
Author Duan, Chun‐Ying
Sato, Osamu
Hayami, Shinya
Zheng, Hui
Meng, Yin‐Shan
Luo, Yi
Zhou, Guang‐Li
Liu, Tao
Author_xml – sequence: 1
  givenname: Hui
  surname: Zheng
  fullname: Zheng, Hui
  organization: Dalian University of Technology
– sequence: 2
  givenname: Yin‐Shan
  surname: Meng
  fullname: Meng, Yin‐Shan
  organization: Dalian University of Technology
– sequence: 3
  givenname: Guang‐Li
  surname: Zhou
  fullname: Zhou, Guang‐Li
  organization: Dalian University of Technology
– sequence: 4
  givenname: Chun‐Ying
  surname: Duan
  fullname: Duan, Chun‐Ying
  organization: Dalian University of Technology
– sequence: 5
  givenname: Osamu
  surname: Sato
  fullname: Sato, Osamu
  organization: Kyushu University
– sequence: 6
  givenname: Shinya
  surname: Hayami
  fullname: Hayami, Shinya
  organization: Kumamoto University
– sequence: 7
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
  organization: Dalian University of Technology
– sequence: 8
  givenname: Tao
  orcidid: 0000-0003-2891-603X
  surname: Liu
  fullname: Liu, Tao
  email: liutao@dlut.edu.cn
  organization: Dalian University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29770545$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1O3DAUhS0EKjBly7KKxIZNBv87WY4G2iJBWTBdW05yMzVK7MFOQOwq9QX6jH2SemaASkgV8sLX8neO7HMO0a7zDhA6JnhKMKZnxlmYUkwKTJXiO-iACEpyphTbTTNnLFeFIPvoMMa7xBcFlh_QPi2VwoKLA_Tr1vZjNxgHfozZtW_GzgzWu8y32bVZOhhsnRnXZOcWOqiHkI6LYFy0G-rBmux2Zd2fn7_nwcfoHyCkeTE6aDYX2Swkegk9uGHjM_9hwhKSXUxe1bh2-Yj2WtNFOHreJ-j754vF_Gt-dfPlcj67ymtOMM9VI7gpBStYwypTCCWAVZRIQUxLecVKkQhZ8LZpFatqqSRjpimYaSUzFIBN0OnWdxX8_Qhx0L2NNXTd9veaYo6VlCylNkEnb9A7PwaXXpcoyYks00rUp2dqrHpo9CrY3oQn_RJvAvgWqNfhBGh1bYdNvkMwttME63WLet2ifm0xyaZvZC_O_xWUW8Gj7eDpHVrPvl1e_NP-BazVsn0
CitedBy_id crossref_primary_10_1039_D3DT03208F
crossref_primary_10_1039_C9CC09238B
crossref_primary_10_1039_D2CE00445C
crossref_primary_10_1007_s10870_022_00967_9
crossref_primary_10_1021_acs_jpca_0c01717
crossref_primary_10_1002_anie_202017249
crossref_primary_10_1515_znb_2022_0097
crossref_primary_10_1039_D0SC02388D
crossref_primary_10_1021_acs_accounts_9b00049
crossref_primary_10_1039_D0TC02174A
crossref_primary_10_1021_acs_inorgchem_4c03245
crossref_primary_10_1021_acs_cgd_2c01462
crossref_primary_10_1039_D0SC04918B
crossref_primary_10_1039_D4DT00435C
crossref_primary_10_1021_acs_jpcb_8b10492
crossref_primary_10_1002_ejic_202000115
crossref_primary_10_1021_acs_inorgchem_2c03364
crossref_primary_10_1039_D2QI01761J
crossref_primary_10_1002_chem_202003654
crossref_primary_10_1002_ange_202017249
crossref_primary_10_1039_D3DT03186A
crossref_primary_10_3390_ijms25169064
crossref_primary_10_1021_acs_inorgchem_0c01917
crossref_primary_10_1039_D4SC05792A
crossref_primary_10_1246_bcsj_20200207
crossref_primary_10_3390_molecules28186633
crossref_primary_10_1002_ange_202208886
crossref_primary_10_1002_chem_202000101
crossref_primary_10_1016_j_ccr_2022_214763
crossref_primary_10_1021_acs_jpclett_8b03298
crossref_primary_10_1002_ange_202208208
crossref_primary_10_1016_j_inoche_2022_109629
crossref_primary_10_1021_jacs_9b08862
crossref_primary_10_1021_acs_inorgchem_1c02404
crossref_primary_10_1002_ange_202005998
crossref_primary_10_1021_acs_inorgchem_1c02922
crossref_primary_10_1021_jacs_4c16750
crossref_primary_10_1039_D4TC05094K
crossref_primary_10_1021_acsami_0c00324
crossref_primary_10_1039_C9TC00594C
crossref_primary_10_1039_D4DT00747F
crossref_primary_10_1007_s11581_025_06210_7
crossref_primary_10_1016_j_poly_2019_114243
crossref_primary_10_1039_D1DT04254H
crossref_primary_10_1016_j_cclet_2021_08_012
crossref_primary_10_1039_D2CC05883A
crossref_primary_10_1002_anie_202208886
crossref_primary_10_1039_D0DT00016G
crossref_primary_10_1016_j_ccr_2020_213424
crossref_primary_10_1039_C9CC03952J
crossref_primary_10_1002_anie_202208208
crossref_primary_10_3389_fchem_2021_692939
crossref_primary_10_1002_ange_202013374
crossref_primary_10_1039_C9DT01450K
crossref_primary_10_1016_j_molstruc_2024_139267
crossref_primary_10_1016_j_inoche_2020_107950
crossref_primary_10_1021_jacs_2c06313
crossref_primary_10_1039_D4QI01064G
crossref_primary_10_1039_D4DT00579A
crossref_primary_10_1002_advs_202104234
crossref_primary_10_1021_acs_inorgchem_8b02835
crossref_primary_10_1002_anie_202005998
crossref_primary_10_1039_C8QI01245H
crossref_primary_10_1039_C9SC05971G
crossref_primary_10_1002_chem_202002544
crossref_primary_10_1002_anie_202013374
crossref_primary_10_1016_j_ccr_2022_214663
crossref_primary_10_1021_acs_inorgchem_3c03531
crossref_primary_10_1039_D1QI00593F
crossref_primary_10_1016_j_ccr_2024_216283
crossref_primary_10_1002_ejic_202100435
crossref_primary_10_1039_D1CS00101A
crossref_primary_10_1021_acs_inorgchem_2c00192
crossref_primary_10_1039_D2DT00058J
crossref_primary_10_1039_D2DT02041F
crossref_primary_10_1021_acs_inorgchem_1c00484
crossref_primary_10_1038_s41467_024_48425_8
Cites_doi 10.1039/c004351f
10.1039/c1cs15046d
10.1002/anie.200503252
10.1021/cr980069d
10.1039/B701085K
10.1021/ja046329s
10.1002/anie.201707401
10.1002/ange.200804529
10.1063/1.2143123
10.1103/PhysRevB.66.212412
10.1063/1.3624600
10.1016/S0010-8545(01)00381-2
10.1016/j.ccr.2011.02.004
10.1002/3527600329
10.1039/c1cs15042a
10.1038/nchem.2547
10.1021/ic062267q
10.1002/ange.200503252
10.1002/anie.200804529
10.1088/0953-8984/16/7/008
10.1002/anie.200502216
10.1021/ja410643s
10.1038/ncomms3826
10.1002/ange.201707401
10.1039/c2cc17835d
10.1038/nphoton.2013.310
10.1038/ncomms6955
10.1002/anie.200604452
10.1039/B306638J
10.1016/j.crci.2006.09.011
10.1002/adma.201606966
10.1126/science.271.5245.49
10.1002/ange.200502216
10.1021/acs.inorgchem.7b01633
10.1038/nchem.1067
10.1002/adma.201703862
10.1039/C1CS15136C
10.1002/9781118519301
10.1021/ja407332y
10.1002/ange.200604452
10.1016/S0010-8545(02)00220-5
10.1002/adma.201501523
10.1016/j.ccr.2005.04.028
10.1002/pssa.200567103
10.1021/ja9055855
10.1063/1.4869864
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201802774
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8472
ExternalDocumentID 29770545
10_1002_anie_201802774
ANIE201802774
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21421005, 91422302, 21322103 and 21429201
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4104-7d54a95383d3ba8575e3b21651af24b3957d5684fdf73bc67633ad83af63a2ee3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:55:32 EDT 2025
Fri Jul 25 10:33:40 EDT 2025
Thu Apr 03 06:58:08 EDT 2025
Thu Apr 24 22:57:41 EDT 2025
Tue Jul 01 02:26:26 EDT 2025
Wed Jan 22 16:45:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Keywords iron
magnetic interactions
multifuntional materials
coordination chemistry
spin-crossover complexes
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-7d54a95383d3ba8575e3b21651af24b3957d5684fdf73bc67633ad83af63a2ee3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2891-603X
PMID 29770545
PQID 2064169696
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2040766343
proquest_journals_2064169696
pubmed_primary_29770545
crossref_citationtrail_10_1002_anie_201802774
crossref_primary_10_1002_anie_201802774
wiley_primary_10_1002_anie_201802774_ANIE201802774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 9, 2018
PublicationDateYYYYMMDD 2018-07-09
PublicationDate_xml – month: 07
  year: 2018
  text: July 9, 2018
  day: 09
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2015; 6
2004; 126
2013; 4
2009 2009; 48 121
2011; 40
2003; 13
2008; 37
2011; 99
2005; 87
2004
2017; 29
2009; 131
2017 2017; 56 129
2003; 236
2011; 3
2013; 8
2007; 10
2011; 255
2006 2006; 45 118
2015; 27
2001
2004; 16
2007 2007; 46 119
2005; 249
2002; 66
2017; 56
1996; 271
2013; 135
2005 2005; 44 117
2018; 30
2014; 140
2000; 100
2012; 48
2013
2006; 203
2001; 219
2016; 8
2007; 46
2012; 41
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_47_1
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_32_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_37_3
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
(e_1_2_2_16_2) 2004
References_xml – volume: 40
  start-page: 4119
  year: 2011
  end-page: 4142
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 2697
  year: 2010
  end-page: 2699
  publication-title: CrystEngComm
– volume: 48 121
  start-page: 1475 1503
  year: 2009 2009
  end-page: 1478 1506
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 30
  start-page: 1703862
  year: 2018
  publication-title: Adv. Mater.
– volume: 46
  start-page: 3236
  year: 2007
  end-page: 3244
  publication-title: Inorg. Chem.
– volume: 219
  start-page: 839
  year: 2001
  end-page: 879
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 644
  year: 2016
  end-page: 656
  publication-title: Nat. Chem.
– start-page: 233
  year: 2004
  end-page: 235
– volume: 37
  start-page: 278
  year: 2008
  end-page: 289
  publication-title: Chem. Soc. Rev.
– volume: 46 119
  start-page: 3238 3302
  year: 2007 2007
  end-page: 3241 3305
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 27
  start-page: 5432
  year: 2015
  end-page: 5441
  publication-title: Adv. Mater.
– year: 2001
– volume: 126
  start-page: 13176
  year: 2004
  end-page: 13177
  publication-title: J. Am. Chem. Soc.
– volume: 255
  start-page: 2068
  year: 2011
  end-page: 2093
  publication-title: Coord. Chem. Rev.
– volume: 29
  start-page: 1606966
  year: 2017
  publication-title: Adv. Mater.
– volume: 87
  start-page: 244103
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 564
  year: 2011
  publication-title: Nat. Chem.
– volume: 48
  start-page: 5653
  year: 2012
  end-page: 5655
  publication-title: Chem. Commun.
– volume: 56
  start-page: 10674
  year: 2017
  end-page: 10680
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 2826
  year: 2013
  publication-title: Nat. Commun.
– volume: 140
  start-page: 144503
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 99
  start-page: 061908
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 3313
  year: 2011
  end-page: 3335
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 19083
  year: 2013
  end-page: 19086
  publication-title: J. Am. Chem. Soc.
– volume: 44 117
  start-page: 6484 6642
  year: 2005 2005
  end-page: 6487 6645
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  start-page: 2069
  year: 2003
  end-page: 2071
  publication-title: J. Mater. Chem.
– volume: 203
  start-page: 2974
  year: 2006
  end-page: 2980
  publication-title: Phys. Status Solidi A
– volume: 56 129
  start-page: 14052 14240
  year: 2017 2017
  end-page: 14056 14244
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 236
  start-page: 121
  year: 2003
  end-page: 141
  publication-title: Coord. Chem. Rev.
– volume: 100
  start-page: 1685
  year: 2000
  end-page: 1716
  publication-title: Chem. Rev.
– volume: 8
  start-page: 65
  year: 2013
  publication-title: Nat. Photonics
– volume: 41
  start-page: 703
  year: 2012
  end-page: 737
  publication-title: Chem. Soc. Rev.
– volume: 249
  start-page: 2661
  year: 2005
  end-page: 2676
  publication-title: Coord. Chem. Rev.
– volume: 135
  start-page: 15880
  year: 2013
  end-page: 15884
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 1087
  year: 2004
  publication-title: J. Phys. Condens. Matter
– volume: 271
  start-page: 49
  year: 1996
  end-page: 51
  publication-title: Science
– volume: 66
  start-page: 212412
  year: 2002
  publication-title: Phys. Rev. B
– volume: 45 118
  start-page: 1625 1655
  year: 2006 2006
  end-page: 1629 1659
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 15049
  year: 2009
  end-page: 15054
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 5955
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 21
  year: 2007
  end-page: 36
  publication-title: C. R. Chim.
– year: 2013
– ident: e_1_2_2_38_1
  doi: 10.1039/c004351f
– ident: e_1_2_2_45_1
  doi: 10.1039/c1cs15046d
– ident: e_1_2_2_32_2
  doi: 10.1002/anie.200503252
– ident: e_1_2_2_3_2
  doi: 10.1021/cr980069d
– ident: e_1_2_2_5_2
  doi: 10.1039/B701085K
– ident: e_1_2_2_10_2
  doi: 10.1021/ja046329s
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.201707401
– ident: e_1_2_2_39_2
  doi: 10.1002/ange.200804529
– ident: e_1_2_2_47_1
  doi: 10.1063/1.2143123
– ident: e_1_2_2_23_1
– ident: e_1_2_2_30_2
  doi: 10.1103/PhysRevB.66.212412
– ident: e_1_2_2_46_1
  doi: 10.1063/1.3624600
– ident: e_1_2_2_29_1
– ident: e_1_2_2_4_2
  doi: 10.1016/S0010-8545(01)00381-2
– ident: e_1_2_2_21_2
  doi: 10.1016/j.ccr.2011.02.004
– ident: e_1_2_2_2_2
  doi: 10.1002/3527600329
– ident: e_1_2_2_19_2
  doi: 10.1039/c1cs15042a
– ident: e_1_2_2_7_2
  doi: 10.1038/nchem.2547
– ident: e_1_2_2_41_1
  doi: 10.1021/ic062267q
– ident: e_1_2_2_32_3
  doi: 10.1002/ange.200503252
– ident: e_1_2_2_39_1
  doi: 10.1002/anie.200804529
– ident: e_1_2_2_43_1
  doi: 10.1088/0953-8984/16/7/008
– ident: e_1_2_2_40_1
  doi: 10.1002/anie.200502216
– ident: e_1_2_2_28_2
  doi: 10.1021/ja410643s
– ident: e_1_2_2_27_2
  doi: 10.1038/ncomms3826
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.201707401
– ident: e_1_2_2_17_2
  doi: 10.1039/c2cc17835d
– ident: e_1_2_2_25_2
  doi: 10.1038/nphoton.2013.310
– ident: e_1_2_2_1_1
– ident: e_1_2_2_42_1
  doi: 10.1038/ncomms6955
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.200604452
– ident: e_1_2_2_31_2
  doi: 10.1039/B306638J
– ident: e_1_2_2_44_1
  doi: 10.1016/j.crci.2006.09.011
– ident: e_1_2_2_35_2
  doi: 10.1002/adma.201606966
– ident: e_1_2_2_9_2
  doi: 10.1126/science.271.5245.49
– ident: e_1_2_2_40_2
  doi: 10.1002/ange.200502216
– ident: e_1_2_2_36_2
  doi: 10.1021/acs.inorgchem.7b01633
– ident: e_1_2_2_24_2
  doi: 10.1038/nchem.1067
– ident: e_1_2_2_22_2
  doi: 10.1002/adma.201703862
– ident: e_1_2_2_20_2
  doi: 10.1039/C1CS15136C
– ident: e_1_2_2_18_2
  doi: 10.1002/9781118519301
– ident: e_1_2_2_26_2
  doi: 10.1021/ja407332y
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.200604452
– ident: e_1_2_2_8_1
– start-page: 233
  volume-title: Topics in Current Chemistry
  year: 2004
  ident: e_1_2_2_16_2
– ident: e_1_2_2_13_1
– ident: e_1_2_2_14_2
  doi: 10.1016/S0010-8545(02)00220-5
– ident: e_1_2_2_6_2
  doi: 10.1002/adma.201501523
– ident: e_1_2_2_15_2
  doi: 10.1016/j.ccr.2005.04.028
– ident: e_1_2_2_34_2
  doi: 10.1002/pssa.200567103
– ident: e_1_2_2_12_2
  doi: 10.1021/ja9055855
– ident: e_1_2_2_33_2
  doi: 10.1063/1.4869864
SSID ssj0028806
Score 2.5411296
Snippet Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8468
SubjectTerms Antiferromagnetism
Charge distribution
coordination chemistry
Dielectric properties
Electrical properties
External stimuli
Heat treatment
Ions
iron
Irradiation
Light irradiation
magnetic interactions
Magnetic properties
multifuntional materials
Radiation
spin-crossover complexes
Title Simultaneous Modulation of Magnetic and Dielectric Transition via Spin‐Crossover‐Tuned Spin Arrangement and Charge Distribution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201802774
https://www.ncbi.nlm.nih.gov/pubmed/29770545
https://www.proquest.com/docview/2064169696
https://www.proquest.com/docview/2040766343
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VXOilPEohPCpXqtRTYNePbPaIFhBUWg4FJG6RHdtoBcoidreHnpD4A_zG_pLO2EnaBSEkerPlRxx7bH-2Z74B-GrLHsqKsWnXKZmiUPjUWBwQ543VuSkt75A18vA0O76Q3y_V5T9W_JEfor1wo5kR1mua4NpM9v6ShpIFNqlm5fQKSYSgpLBFqOhHyx_FUTijeZEQKXmhb1gbO3xvvvj8rvQMas4j17D1HC2BbhodNU6ud2dTs1v-esLn-D9_tQwfalzK9qMgrcA7V63C4qBxB_cRHs5GpHyoKzeeTdhwbGu_X2zs2VBfVWQMyXRl2cEoutbBaNgIg04Y-znS7Ox2VP2-fxxQF5DmKIbPZ7jMhwT89B0ZOtBtZaiHFAGuHFY3aZ1yrcHF0eH54DitPTikpcRzXtqzSuo-rqnCCqPJGagThncz1dWeS0NvhFZlufTW94QpM1zshLa50D4TmjsnPsFCNa7cBjDnc4lSpFTpOtIpq40QmNPnfY1Hul6WQNqMYFHW9ObkZeOmiMTMvKCuLdquTeBbm_82Enu8mHO7EYiinuATTM0QyhK1UAJf2mQcEnpviUOBefC0jIhOigTWoyC1n-KIuxEtqwR4EIdX2lDsn54ctrHNtxTagvcUDqrG_W1YmN7N3A4Cqqn5HCbNH16RG2o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbhMxEB6VciiX8k-3FDASiNO2ie39yYFDlbRKaJMDTaXeFnttVxHVpmoSqnJC4gV4FV6FR-BJmPH-oIAQElIP3LKx17vyzKxn7JnvA3hh8gR1RZuwbSMZolK4UBsUiHXaqFTnhreoGnk4ivvH8s1JdLICX-tamBIfotlwI8vw32sycNqQ3vmJGkol2JSbldIxpKzyKg_s1SVGbbPXgx6K-CXn-3vjbj-siAXCXGL4ESYmkqqDpi6M0Io4Kq3QvB1HbeW41HR0ZaI4lc64ROg8RhsUyqRCuVgobq3AcW_ATaIRJ7j-3tsGsYqjOZQFTUKExHtf40S2-M7y-y6vg785t8u-sl_s9m_Dt3qayhyX99uLud7OP_6CIPlfzeMdWK9cb7Zb2spdWLHFPVjr1ox39-Hz0YTyK1Vhp4sZG05NRW3Gpo4N1WlB9Z5MFYb1JiV7EF76td6nvbEPE8WOzifF909fujTnlByLv8cLXMl8Az76gmo5aEPWj0O5DqcWh5s1vGMP4Pha5uAhrBbTwm4Asy6VaChRlNuWtJFRWgjs6dKOwqg1iQMIa5XJ8grBnYhEzrISe5pnJMqsEWUAr5r-5yV2yR97btUamFXfsBm2xuitE3pSAM-bZhQJHSmVosA-spWg0ypFAI9KzW0exTG0wIAgCoB7_fvLO2S7o8Fec7X5Lzc9g7X-eHiYHQ5GB4_hFv3vM6s7W7A6v1jYJ-g_zvVTb7EM3l23av8AAZ14Lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VIgEX_n8MBRYJxMmtsz-2c-BQJY0aSiJEW6k3s-vdraJWTtQkIDgh8QI8Cq_CK_AkzPgPBYSQkHrgZnvXa2tnxjvjnfk-gKc2T1BXjA07TskQlcKHxqJAnDdWpya3PKJq5NE43j2UL4_U0Rp8bWphKnyI9ocbWUb5vSYDn1m_9RM0lCqwKTUrpV1IWadV7rkP7zFom78Y9lHCzzgf7Bz0dsOaVyDMJUYfYWKV1F20dGGF0URR6YThnVh1tOfS0M6VVXEqvfWJMHmMJii0TYX2sdDcOYHjXoCLMo66RBbRf9MCVnG0hqqeSYiQaO8bmMiIb62-7-oy-Jtvu-oql2vd4Bp8a2apSnE52VwuzGb-8RcAyf9pGq_D1drxZtuVpdyANVfchMu9hu_uFnzen1B2pS7cdDlno6mtic3Y1LORPi6o2pPpwrL-pOIOwtNypS-T3ti7iWb7s0nx_dOXHk05pcbi8cES17GyAR99RpUc9Du2HIcyHY4dDjdvWcduw-G5zMEdWC-mhbsHzPlUopkolbtIOmW1EQJ7-rSrMWZN4gDCRmOyvMZvJxqR06xCnuYZiTJrRRnA87b_rEIu-WPPjUYBs_oLNsfWGH11wk4K4EnbjCKhDaVKFNhHRgm6rFIEcLdS3PZRHAMLDAdUALxUv7-8Q7Y9Hu60Z_f_5abHcOl1f5C9Go73HsAVulymVXc3YH1xtnQP0XlcmEelvTJ4e96a_QMKFHbe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+Modulation+of+Magnetic+and+Dielectric+Transition+via+Spin-Crossover-Tuned+Spin+Arrangement+and+Charge+Distribution&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Hui&rft.au=Meng%2C+Yin-Shan&rft.au=Zhou%2C+Guang-Li&rft.au=Duan%2C+Chun-Ying&rft.date=2018-07-09&rft.eissn=1521-3773&rft.volume=57&rft.issue=28&rft.spage=8468&rft_id=info:doi/10.1002%2Fanie.201802774&rft_id=info%3Apmid%2F29770545&rft.externalDocID=29770545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon