Non‐3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 1; pp. 139 - 143 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.01.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value.
Non‐3D for 3D: Introducing non‐3d metal oxide units into a cobalt imidazolate framework results in the drastic enhancement of electrocatalytic performance of the oxygen evolution reaction in neutral media. |
---|---|
AbstractList | Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co
4
(MO
4
)(eim)
6
] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)
3
(MO
4
) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm
−2
at an overpotential of 210 mV in CO
2
‐saturated 0.5
m
KHCO
3
electrolyte and 2/10/22 mA cm
−2
at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO
2
. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value. Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value. Non‐3D for 3D: Introducing non‐3d metal oxide units into a cobalt imidazolate framework results in the drastic enhancement of electrocatalytic performance of the oxygen evolution reaction in neutral media. Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value. Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value. Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co (MO )(eim) ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim) (MO ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm at an overpotential of 210 mV in CO -saturated 0.5 m KHCO electrolyte and 2/10/22 mA cm at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value. |
Author | Cao, Li‐Ming Huang, Rui‐Kang Zhou, Dong‐Dong Zhang, Xue‐Feng Zhang, Jie‐Peng Xu, Yan‐Tong He, Chun‐Ting Wu, Jun‐Xi Ye, Jia‐Wen Chen, Xiao‐Ming Ye, Zi‐Ming |
Author_xml | – sequence: 1 givenname: Yan‐Tong surname: Xu fullname: Xu, Yan‐Tong organization: Sun Yat-Sen University – sequence: 2 givenname: Zi‐Ming surname: Ye fullname: Ye, Zi‐Ming organization: Sun Yat-Sen University – sequence: 3 givenname: Jia‐Wen surname: Ye fullname: Ye, Jia‐Wen organization: Sun Yat-Sen University – sequence: 4 givenname: Li‐Ming surname: Cao fullname: Cao, Li‐Ming organization: Jiangxi Normal University – sequence: 5 givenname: Rui‐Kang surname: Huang fullname: Huang, Rui‐Kang organization: Sun Yat-Sen University – sequence: 6 givenname: Jun‐Xi surname: Wu fullname: Wu, Jun‐Xi organization: Sun Yat-Sen University – sequence: 7 givenname: Dong‐Dong surname: Zhou fullname: Zhou, Dong‐Dong organization: Sun Yat-Sen University – sequence: 8 givenname: Xue‐Feng surname: Zhang fullname: Zhang, Xue‐Feng organization: Sun Yat-Sen University – sequence: 9 givenname: Chun‐Ting surname: He fullname: He, Chun‐Ting email: hechunt@mail2.sysu.edu.cn organization: Jiangxi Normal University – sequence: 10 givenname: Jie‐Peng orcidid: 0000-0002-2614-2774 surname: Zhang fullname: Zhang, Jie‐Peng email: zhangjp7@mail.sysu.edu.cn organization: Sun Yat-Sen University – sequence: 11 givenname: Xiao‐Ming surname: Chen fullname: Chen, Xiao‐Ming organization: Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30320948$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URH9gyxJZYsMmgx07ibOsRimM1E43sLYc-wa5OHZxHNpBLHgEnpEnwem0IFVCrGzJ3zm-95xjdOCDB4ReUrKihJRvlbewKgkVpKWcP0FHtCppwZqGHeQ7Z6xoREUP0fE0XWVeCFI_Q4eMsJK0XByh79vgf_34yQy-gKQcvghmdirZ4HEYsMLr0CuX8Ga0Rn0L-QXwWVQj3IT4GQ8h4u5Wg3PgE-4c6BSDVtlnl6zGl7e7T-Bx9zW4-c7ReryFOcXlHzBWPUdPB-UmeHF_nqCPZ92H9fvi_PLdZn16XmhOCS8qTmpGTEsYsLYulRkUZQ3XXA2V0Lypia57CtVAje7BmLJuOO3b0hjRMzLU7AS92ftex_BlhinJ0U7L2MpDmCdZ0iVBwRqR0deP0KswR5-ny1TVtLwuRZupV_fU3I9g5HW0o4o7-ZBrBvge0DFMU4RBapvuYs3bWycpkUt9cqlP_qkvy1aPZA_O_xS0e8GNdbD7Dy1Pt5vur_Y35_GuFw |
CitedBy_id | crossref_primary_10_1007_s11426_024_2433_7 crossref_primary_10_1021_acsnano_0c09617 crossref_primary_10_1002_ange_201813634 crossref_primary_10_1021_acsaem_2c02909 crossref_primary_10_1016_j_ccr_2020_213488 crossref_primary_10_1039_D0CC06453J crossref_primary_10_1016_j_jechem_2021_12_006 crossref_primary_10_1016_j_electacta_2024_143884 crossref_primary_10_1039_D0NR04418K crossref_primary_10_1016_j_ijhydene_2024_04_355 crossref_primary_10_1039_D1DT01910D crossref_primary_10_1021_acsnano_9b08458 crossref_primary_10_1016_j_jssc_2019_120913 crossref_primary_10_1016_j_gee_2020_10_003 crossref_primary_10_1039_C9NR10109H crossref_primary_10_1007_s11426_024_2463_4 crossref_primary_10_1021_acsami_2c04304 crossref_primary_10_1039_D1TA07148C crossref_primary_10_1007_s40843_020_1390_6 crossref_primary_10_1039_C9CS00880B crossref_primary_10_3390_jfb13040215 crossref_primary_10_1002_advs_201801920 crossref_primary_10_1039_D2CC06727G crossref_primary_10_1039_C9NR06084G crossref_primary_10_1016_j_jallcom_2020_156830 crossref_primary_10_1039_D0DT03524F crossref_primary_10_1002_asia_201900748 crossref_primary_10_1007_s11426_024_2457_y crossref_primary_10_1016_j_jcis_2021_09_115 crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1002_aesr_202100033 crossref_primary_10_1002_sstr_202200085 crossref_primary_10_1002_anie_202216699 crossref_primary_10_1002_smtd_202200773 crossref_primary_10_1007_s11426_022_1448_8 crossref_primary_10_1002_smll_201906775 crossref_primary_10_1016_j_apcatb_2023_122488 crossref_primary_10_1002_ange_202216699 crossref_primary_10_1016_j_apcatb_2021_120665 crossref_primary_10_1021_acsami_3c10238 crossref_primary_10_1002_cnma_202400089 crossref_primary_10_1002_smll_202003256 crossref_primary_10_1007_s12274_021_3451_7 crossref_primary_10_1016_j_ensm_2021_02_021 crossref_primary_10_1002_adfm_202410816 crossref_primary_10_1002_anie_202004420 crossref_primary_10_1002_adma_202002297 crossref_primary_10_1016_j_mtener_2021_100816 crossref_primary_10_1002_ange_202309341 crossref_primary_10_1016_j_ijhydene_2022_03_270 crossref_primary_10_1016_j_seppur_2023_126160 crossref_primary_10_1016_j_matchemphys_2022_126438 crossref_primary_10_1039_C9TA00380K crossref_primary_10_1021_acsanm_1c00530 crossref_primary_10_1016_j_ijhydene_2020_02_033 crossref_primary_10_1021_acs_iecr_3c00728 crossref_primary_10_1002_tcr_202000187 crossref_primary_10_1016_j_apcatb_2023_123188 crossref_primary_10_1038_s41467_022_34278_6 crossref_primary_10_1002_smll_202306085 crossref_primary_10_1007_s11426_022_1217_7 crossref_primary_10_1016_j_scib_2019_09_013 crossref_primary_10_1039_D1DT01861B crossref_primary_10_1007_s10853_025_10715_x crossref_primary_10_1002_adma_202303719 crossref_primary_10_1021_acsnano_3c05845 crossref_primary_10_1021_acs_inorgchem_0c03359 crossref_primary_10_3390_nano13162318 crossref_primary_10_1039_C9TA09397D crossref_primary_10_1039_D2QI02436E crossref_primary_10_1016_j_ijhydene_2022_09_126 crossref_primary_10_1016_j_jallcom_2023_169091 crossref_primary_10_1002_adma_202008023 crossref_primary_10_1002_anie_202216008 crossref_primary_10_1039_C9DT00227H crossref_primary_10_1016_j_jssc_2022_123101 crossref_primary_10_20517_cs_2024_83 crossref_primary_10_1021_acssuschemeng_0c03376 crossref_primary_10_1039_C9NR09742B crossref_primary_10_1039_D1TA09357F crossref_primary_10_1016_j_jmst_2024_02_082 crossref_primary_10_1002_anie_201813634 crossref_primary_10_1016_j_inoche_2022_109224 crossref_primary_10_2139_ssrn_3977364 crossref_primary_10_1016_j_apcatb_2021_120174 crossref_primary_10_1016_j_ccr_2022_214759 crossref_primary_10_1002_ange_202004420 crossref_primary_10_1002_anie_202309341 crossref_primary_10_1002_asia_201900706 crossref_primary_10_1021_acs_inorgchem_1c03216 crossref_primary_10_1021_acs_inorgchem_4c00308 crossref_primary_10_1016_j_inoche_2020_107797 crossref_primary_10_1039_D0TA07793C crossref_primary_10_1073_pnas_1915319116 crossref_primary_10_1002_smll_202300916 crossref_primary_10_2139_ssrn_4121636 crossref_primary_10_1016_j_jcis_2021_08_151 crossref_primary_10_1021_acssuschemeng_9b04996 crossref_primary_10_1039_D1DT00302J crossref_primary_10_1016_j_mtnano_2021_100124 crossref_primary_10_1016_j_ijhydene_2022_04_095 crossref_primary_10_1021_acs_chemrev_9b00746 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1016_j_molstruc_2023_136274 crossref_primary_10_1039_D1TA01224J crossref_primary_10_1039_D0TA04016A crossref_primary_10_1039_D1TA01524A crossref_primary_10_1002_smll_202200303 crossref_primary_10_1016_j_cclet_2022_107814 crossref_primary_10_1016_j_apcatb_2021_119894 crossref_primary_10_1039_D1TA02330F crossref_primary_10_1002_celc_201901037 crossref_primary_10_1039_D1TA03604A crossref_primary_10_1039_D2QI01885C crossref_primary_10_1016_j_jechem_2020_05_023 crossref_primary_10_1002_ange_202216008 crossref_primary_10_1016_j_ica_2020_119785 |
Cites_doi | 10.1021/ja106102b 10.1002/anie.201701280 10.1021/ja405997s 10.1016/j.scib.2017.03.027 10.1021/jacs.5b08139 10.1002/ange.201803587 10.1002/anie.201408998 10.1038/ncomms8345 10.1002/ange.201005917 10.1016/j.nanoen.2018.07.062 10.1002/anie.201712549 10.1021/acsami.7b07088 10.1039/C4NR02399D 10.1021/jacs.6b12353 10.1021/ja5103103 10.1038/ncomms14586 10.1016/j.scib.2017.10.019 10.1016/j.jelechem.2006.11.008 10.1002/ange.200806063 10.1021/jz501899j 10.1016/j.apsusc.2016.05.019 10.1002/anie.201511032 10.1002/adma.201305492 10.1021/jacs.6b13100 10.1021/acs.inorgchem.6b01882 10.1002/ange.201701280 10.1021/jacs.7b03507 10.1002/anie.201305119 10.1021/acs.accounts.6b00635 10.1039/C5EE03316K 10.1016/j.nanoen.2017.09.055 10.1038/nnano.2015.48 10.1016/j.joule.2018.02.003 10.1021/jacs.7b00165 10.1021/jacs.5b03727 10.1039/b817735j 10.1002/anie.201005917 10.1002/ange.201801029 10.1021/jacs.6b12529 10.1021/jacs.7b07117 10.1002/anie.201711376 10.1039/C6SC04819F 10.1016/j.ccr.2014.12.009 10.1021/jacs.7b08521 10.1002/ange.201712549 10.1002/adma.201601133 10.1002/anie.200806063 10.1002/anie.201801029 10.1039/C6CS00306K 10.1021/jacs.6b03125 10.1002/ange.201701531 10.1126/science.1162018 10.1038/nchem.2886 10.1021/acsami.6b05375 10.1126/science.aaf1525 10.1002/ange.201610776 10.1039/C4CS00470A 10.1126/science.aad4998 10.1002/adfm.201400083 10.1039/C5CS00940E 10.1002/anie.201701531 10.1039/C5QI00275C 10.1039/C7TA09082J 10.1007/s40843-017-9089-y 10.1002/ange.201711376 10.1021/acs.chemrev.7b00051 10.1038/nenergy.2016.53 10.1021/acsnano.5b00158 10.1002/anie.201610776 10.1002/ange.201511032 10.1021/jacs.8b04546 10.1002/anie.201803587 10.1002/ange.201305119 10.1039/C7EE01917C 10.1002/ange.201408998 10.1021/jacs.5b08396 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201809144 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 143 |
ExternalDocumentID | 30320948 10_1002_anie_201809144 ANIE201809144 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Postdoctoral Program for Innovative Talents funderid: BX201600195 – fundername: National Natural Science Foundation of China funderid: 21473260; 91622109; 21731007 – fundername: 973 Project funderid: 2014CB845602 – fundername: Guangdong Pearl River Talents Program funderid: 2017BT01C161 – fundername: National Natural Science Foundation of China grantid: 91622109 – fundername: National Natural Science Foundation of China grantid: 21731007 – fundername: 973 Project grantid: 2014CB845602 – fundername: Guangdong Pearl River Talents Program grantid: 2017BT01C161 – fundername: National Natural Science Foundation of China grantid: 21473260 – fundername: National Postdoctoral Program for Innovative Talents grantid: BX201600195 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4104-540630d903e3962adfa1374c4af58c4760c6b1e5f1dcbedd26741b92dd8b30f63 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:43:26 EDT 2025 Fri Jul 25 10:43:05 EDT 2025 Mon Jul 21 05:58:16 EDT 2025 Tue Jul 01 02:26:35 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:46:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | imidazolate frameworks oxygen evolution reaction cobalt electrocatalysis metal-organic frameworks |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-540630d903e3962adfa1374c4af58c4760c6b1e5f1dcbedd26741b92dd8b30f63 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2614-2774 |
PMID | 30320948 |
PQID | 2157946289 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2120188378 proquest_journals_2157946289 pubmed_primary_30320948 crossref_citationtrail_10_1002_anie_201809144 crossref_primary_10_1002_anie_201809144 wiley_primary_10_1002_anie_201809144_ANIE201809144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2, 2019 |
PublicationDateYYYYMMDD | 2019-01-02 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2, 2019 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 41 2009 2009; 48 121 2017; 46 2014; 26 2014; 24 2017; 355 2016; 384 2017; 9 2014; 136 2017; 117 2013 2013; 52 125 2018; 6 2014; 5 2018; 2 2015; 137 2018 2018; 57 130 2015; 44 2017; 34 2015 2015; 54 127 2016; 352 2014; 6 2016; 45 2017; 62 2015; 6 2018; 140 2017; 60 2015; 10 2017 2017; 56 129 2008; 321 2015; 9 2007; 607 2017; 139 2016; 55 2017; 50 2016; 1 2016 2016; 55 128 2016; 3 2017; 10 2010; 132 2017 2013; 135 2018; 52 2015; 293–294 2016; 138 2011 2011; 50 123 2016; 28 2009; 38 2016; 8 2016; 9 e_1_2_2_24_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_85_2 e_1_2_2_62_1 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_28_1 e_1_2_2_47_1 e_1_2_2_81_1 e_1_2_2_59_2 e_1_2_2_13_1 e_1_2_2_51_2 e_1_2_2_74_2 e_1_2_2_74_3 e_1_2_2_51_3 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_78_2 e_1_2_2_17_1 e_1_2_2_55_1 e_1_2_2_78_3 e_1_2_2_36_1 e_1_2_2_70_2 Zhang X.-F. (e_1_2_2_60_2) 2017; 34 e_1_2_2_25_1 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_63_2 e_1_2_2_44_2 e_1_2_2_9_3 e_1_2_2_9_2 e_1_2_2_67_2 e_1_2_2_82_2 e_1_2_2_37_1 e_1_2_2_37_2 e_1_2_2_10_1 e_1_2_2_75_2 e_1_2_2_52_3 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_33_1 e_1_2_2_56_1 e_1_2_2_79_2 e_1_2_2_14_2 e_1_2_2_71_2 e_1_2_2_4_2 e_1_2_2_49_2 e_1_2_2_22_1 e_1_2_2_64_2 e_1_2_2_83_2 e_1_2_2_8_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_68_2 e_1_2_2_11_3 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_72_2 e_1_2_2_76_1 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_30_3 e_1_2_2_53_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_3_2 e_1_2_2_46_3 e_1_2_2_23_2 e_1_2_2_7_1 e_1_2_2_61_2 e_1_2_2_65_1 e_1_2_2_42_2 e_1_2_2_84_2 e_1_2_2_27_2 e_1_2_2_69_1 e_1_2_2_46_2 e_1_2_2_61_1 e_1_2_2_80_2 e_1_2_2_12_2 e_1_2_2_58_2 e_1_2_2_39_2 e_1_2_2_73_1 e_1_2_2_31_2 e_1_2_2_54_2 e_1_2_2_16_1 e_1_2_2_35_2 e_1_2_2_77_2 e_1_2_2_50_1 Liao P.-Q. (e_1_2_2_41_2) 2017 |
References_xml | – volume: 44 start-page: 2060 year: 2015 end-page: 2086 publication-title: Chem. Soc. Rev. – volume: 57 130 start-page: 1888 1906 year: 2018 2018 end-page: 1892 1910 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 121 start-page: 7502 7638 year: 2009 2009 end-page: 7513 7649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 149 year: 2017 end-page: 154 publication-title: Nat. Chem. – volume: 2 start-page: 594 year: 2018 end-page: 606 publication-title: Joule – volume: 56 129 start-page: 4858 4936 year: 2017 2017 end-page: 4861 4939 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 13521 year: 2013 end-page: 13530 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 123 year: 2016 end-page: 129 publication-title: Energy Environ. Sci. – volume: 293–294 start-page: 263 year: 2015 end-page: 278 publication-title: Coord. Chem. Rev. – volume: 6 start-page: 2964 year: 2018 end-page: 2973 publication-title: J. Mater. Chem. A – volume: 60 start-page: 918 year: 2017 end-page: 928 publication-title: Sci. China Mater. – volume: 139 start-page: 3336 year: 2017 end-page: 3339 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 14586 year: 2017 publication-title: Nat. Commun. – volume: 8 start-page: 3484 year: 2017 end-page: 3488 publication-title: Chem. Sci. – volume: 46 start-page: 4645 year: 2017 end-page: 4660 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 16053 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 444 year: 2015 end-page: 452 publication-title: Nat. Nanotechnol. – volume: 607 start-page: 83 year: 2007 end-page: 89 publication-title: J. Electroanal. Chem. – volume: 10 start-page: 2563 year: 2017 end-page: 2569 publication-title: Energy Environ. Sci. – volume: 352 start-page: 333 year: 2016 end-page: 337 publication-title: Science – volume: 57 130 start-page: 9660 9808 year: 2018 2018 end-page: 9664 9812 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 16501 year: 2010 end-page: 16509 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8320 year: 2017 end-page: 8328 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 417 year: 2017 end-page: 425 publication-title: Nano Energy – volume: 9 start-page: 26867 year: 2017 end-page: 26873 publication-title: ACS Appl. Mater. Interfaces – volume: 56 129 start-page: 1064 1084 year: 2017 2017 end-page: 1068 1088 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 3716 year: 2014 end-page: 3723 publication-title: J. Phys. Chem. Lett. – volume: 57 130 start-page: 4632 4722 year: 2018 2018 end-page: 4636 4726 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 7217 year: 2015 end-page: 7223 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 3897 3969 year: 2015 2015 end-page: 3901 3973 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 7345 year: 2015 publication-title: Nat. Commun. – volume: 56 129 start-page: 8539 8659 year: 2017 2017 end-page: 8543 8663 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 8819 year: 2016 end-page: 8860 publication-title: Adv. Mater. – volume: 139 start-page: 1778 year: 2017 end-page: 1781 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 1052 year: 2017 end-page: 1058 publication-title: Chin. J. Appl. Chem. – volume: 138 start-page: 8336 year: 2016 end-page: 8339 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 13980 year: 2015 end-page: 13988 publication-title: J. Am. Chem. Soc. – volume: 355 start-page: 4998 year: 2017 publication-title: Science – volume: 26 start-page: 3258 year: 2014 end-page: 3262 publication-title: Adv. Mater. – volume: 137 start-page: 12865 year: 2015 end-page: 12872 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 11361 year: 2017 end-page: 11364 publication-title: J. Am. Chem. Soc. – year: 2017 publication-title: Coord. Chem. Rev. – volume: 8 start-page: 16736 year: 2016 end-page: 16743 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 915 year: 2017 end-page: 923 publication-title: Acc. Chem. Res. – volume: 117 start-page: 10121 year: 2017 end-page: 10211 publication-title: Chem. Rev. – volume: 52 start-page: 494 year: 2018 end-page: 500 publication-title: Nano Energy – volume: 321 start-page: 1072 year: 2008 end-page: 1075 publication-title: Science – volume: 52 125 start-page: 11385 11595 year: 2013 2013 end-page: 11387 11598 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 9930 year: 2014 end-page: 9934 publication-title: Nanoscale – volume: 3 start-page: 536 year: 2016 end-page: 540 publication-title: Inorg. Chem. Front. – volume: 62 start-page: 1510 year: 2017 end-page: 1518 publication-title: Sci. Bull. – volume: 38 start-page: 1257 year: 2009 end-page: 1283 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 1077 year: 2017 end-page: 1080 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 610 year: 2018 end-page: 617 publication-title: J. Am. Chem. Soc. – volume: 50 123 start-page: 450 470 year: 2011 2011 end-page: 453 473 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 62 start-page: 626 year: 2017 end-page: 632 publication-title: Sci. Bull. – volume: 45 start-page: 3828 year: 2016 end-page: 3845 publication-title: Chem. Soc. Rev. – volume: 55 start-page: 11362 year: 2016 end-page: 11371 publication-title: Inorg. Chem. – volume: 55 128 start-page: 2488 2534 year: 2016 2016 end-page: 2492 2538 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 7748 year: 2018 end-page: 7759 publication-title: J. Am. Chem. Soc. – volume: 384 start-page: 10 year: 2016 end-page: 17 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 2445 year: 2015 end-page: 2453 publication-title: ACS Nano – volume: 24 start-page: 3885 year: 2014 end-page: 3896 publication-title: Adv. Funct. Mater. – volume: 136 start-page: 16489 year: 2014 end-page: 16492 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 2672 2702 year: 2018 2018 end-page: 2676 2706 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 5285 year: 2017 end-page: 5288 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_85_2 doi: 10.1021/ja106102b – ident: e_1_2_2_61_1 doi: 10.1002/anie.201701280 – ident: e_1_2_2_71_2 doi: 10.1021/ja405997s – ident: e_1_2_2_6_2 doi: 10.1016/j.scib.2017.03.027 – year: 2017 ident: e_1_2_2_41_2 publication-title: Coord. Chem. Rev. – ident: e_1_2_2_29_2 doi: 10.1021/jacs.5b08139 – ident: e_1_2_2_62_1 – ident: e_1_2_2_76_1 – ident: e_1_2_2_52_3 doi: 10.1002/ange.201803587 – ident: e_1_2_2_74_2 doi: 10.1002/anie.201408998 – ident: e_1_2_2_19_2 doi: 10.1038/ncomms8345 – ident: e_1_2_2_55_2 doi: 10.1002/ange.201005917 – ident: e_1_2_2_24_2 doi: 10.1016/j.nanoen.2018.07.062 – ident: e_1_2_2_28_1 – ident: e_1_2_2_11_2 doi: 10.1002/anie.201712549 – ident: e_1_2_2_72_2 doi: 10.1021/acsami.7b07088 – ident: e_1_2_2_48_2 doi: 10.1039/C4NR02399D – ident: e_1_2_2_33_1 – ident: e_1_2_2_39_2 doi: 10.1021/jacs.6b12353 – ident: e_1_2_2_17_1 – ident: e_1_2_2_79_2 doi: 10.1021/ja5103103 – ident: e_1_2_2_4_2 doi: 10.1038/ncomms14586 – ident: e_1_2_2_20_2 doi: 10.1016/j.scib.2017.10.019 – ident: e_1_2_2_82_2 doi: 10.1016/j.jelechem.2006.11.008 – ident: e_1_2_2_46_3 doi: 10.1002/ange.200806063 – ident: e_1_2_2_47_1 – ident: e_1_2_2_64_2 doi: 10.1021/jz501899j – ident: e_1_2_2_70_2 doi: 10.1016/j.apsusc.2016.05.019 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201511032 – ident: e_1_2_2_77_2 doi: 10.1002/adma.201305492 – ident: e_1_2_2_15_2 doi: 10.1021/jacs.6b13100 – ident: e_1_2_2_59_2 doi: 10.1021/acs.inorgchem.6b01882 – ident: e_1_2_2_61_2 doi: 10.1002/ange.201701280 – ident: e_1_2_2_65_1 – ident: e_1_2_2_8_2 doi: 10.1021/jacs.7b03507 – ident: e_1_2_2_78_2 doi: 10.1002/anie.201305119 – ident: e_1_2_2_18_2 doi: 10.1021/acs.accounts.6b00635 – ident: e_1_2_2_50_1 – ident: e_1_2_2_56_1 – ident: e_1_2_2_21_2 doi: 10.1039/C5EE03316K – ident: e_1_2_2_81_1 – ident: e_1_2_2_49_2 doi: 10.1016/j.nanoen.2017.09.055 – ident: e_1_2_2_84_2 doi: 10.1038/nnano.2015.48 – ident: e_1_2_2_34_2 doi: 10.1016/j.joule.2018.02.003 – ident: e_1_2_2_57_2 doi: 10.1021/jacs.7b00165 – ident: e_1_2_2_58_2 doi: 10.1021/jacs.5b03727 – ident: e_1_2_2_45_2 doi: 10.1039/b817735j – ident: e_1_2_2_55_1 doi: 10.1002/anie.201005917 – ident: e_1_2_2_51_3 doi: 10.1002/ange.201801029 – ident: e_1_2_2_75_2 doi: 10.1021/jacs.6b12529 – ident: e_1_2_2_12_2 doi: 10.1021/jacs.7b07117 – volume: 34 start-page: 1052 year: 2017 ident: e_1_2_2_60_2 publication-title: Chin. J. Appl. Chem. – ident: e_1_2_2_53_2 doi: 10.1002/anie.201711376 – ident: e_1_2_2_27_2 doi: 10.1039/C6SC04819F – ident: e_1_2_2_44_2 doi: 10.1016/j.ccr.2014.12.009 – ident: e_1_2_2_67_2 doi: 10.1021/jacs.7b08521 – ident: e_1_2_2_11_3 doi: 10.1002/ange.201712549 – ident: e_1_2_2_38_1 – ident: e_1_2_2_43_2 doi: 10.1002/adma.201601133 – ident: e_1_2_2_46_2 doi: 10.1002/anie.200806063 – ident: e_1_2_2_51_2 doi: 10.1002/anie.201801029 – ident: e_1_2_2_31_2 doi: 10.1039/C6CS00306K – ident: e_1_2_2_40_2 doi: 10.1021/jacs.6b03125 – ident: e_1_2_2_9_3 doi: 10.1002/ange.201701531 – ident: e_1_2_2_25_1 – ident: e_1_2_2_36_1 doi: 10.1126/science.1162018 – ident: e_1_2_2_5_2 doi: 10.1038/nchem.2886 – ident: e_1_2_2_54_2 doi: 10.1021/acsami.6b05375 – ident: e_1_2_2_26_2 doi: 10.1126/science.aaf1525 – ident: e_1_2_2_22_1 – ident: e_1_2_2_30_3 doi: 10.1002/ange.201610776 – ident: e_1_2_2_69_1 – ident: e_1_2_2_83_2 doi: 10.1039/C4CS00470A – ident: e_1_2_2_2_2 doi: 10.1126/science.aad4998 – ident: e_1_2_2_63_2 doi: 10.1002/adfm.201400083 – ident: e_1_2_2_42_2 doi: 10.1039/C5CS00940E – ident: e_1_2_2_7_1 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201701531 – ident: e_1_2_2_1_1 – ident: e_1_2_2_80_2 doi: 10.1039/C5QI00275C – ident: e_1_2_2_35_2 doi: 10.1039/C7TA09082J – ident: e_1_2_2_73_1 – ident: e_1_2_2_32_2 doi: 10.1007/s40843-017-9089-y – ident: e_1_2_2_53_3 doi: 10.1002/ange.201711376 – ident: e_1_2_2_3_2 doi: 10.1021/acs.chemrev.7b00051 – ident: e_1_2_2_16_1 doi: 10.1038/nenergy.2016.53 – ident: e_1_2_2_68_2 doi: 10.1021/acsnano.5b00158 – ident: e_1_2_2_30_2 doi: 10.1002/anie.201610776 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201511032 – ident: e_1_2_2_23_2 doi: 10.1021/jacs.8b04546 – ident: e_1_2_2_13_1 – ident: e_1_2_2_52_2 doi: 10.1002/anie.201803587 – ident: e_1_2_2_78_3 doi: 10.1002/ange.201305119 – ident: e_1_2_2_14_2 doi: 10.1039/C7EE01917C – ident: e_1_2_2_74_3 doi: 10.1002/ange.201408998 – ident: e_1_2_2_10_1 – ident: e_1_2_2_66_2 doi: 10.1021/jacs.5b08396 |
SSID | ssj0028806 |
Score | 2.6257188 |
Snippet | Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | Buffer solutions Carbon dioxide Catalysts Coated electrodes Cobalt Computer applications Computer simulation electrocatalysis Electrocatalysts Electronic structure Glassy carbon Heavy metals imidazolate frameworks Metals metal–organic frameworks Modulation Oxygen oxygen evolution reaction Oxygen evolution reactions |
Title | Non‐3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201809144 https://www.ncbi.nlm.nih.gov/pubmed/30320948 https://www.proquest.com/docview/2157946289 https://www.proquest.com/docview/2120188378 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSpu9N06JCoScntiTLq2NYvCSB3UJpIDczehhCWzs03pKEHvoT-hvzSzLjV7MNJdDebCxZ8mjG-jQafcPYO_CpCZnxUWysjZQuk8h4DZFzCjwkDrI2GHOx1PtH6vA4Pb5xir_jhxgdbmQZ7f-aDBzs2e5v0lA6gU2hWVOc8RQRglLAFqGijyN_lEDl7I4XSRlRFvqBtTEWu-vV12elW1BzHbm2U8_8EYOh013EyeedVWN33OUffI7_81Wb7GGPS_lep0iP2b1QPWH3Z0M6uKfsx7Kurn7-kp4vAgJ2vqh9n_mL1yUHPiNikYYffD3xcInr5Sbw-RD4xREZ8_y83SSoGp53qXdaz9EFtsc_nF-gHvP8e28H_KTiy7AiJwynnSR4xo7m-afZftSnboicwgUehVtoGXsTyyCNFuBLSGSmUAHKdOpUpmOnbRLSMvHOBu-FRmRjjfB-amVcavmcbVR1FV4yrp0WMSCyLFEiqQVjYOoDwlibaeVKmLBoGLrC9bzmlF7jS9ExMouCZFqMMp2w92P5047R468ltwdNKHrLPisQIhEnP65TJ-zt-BjHgmQIVahXVIbeQVT9E_ai06CxKUkZ643CJ6LVgzv6UOwtD_LxbutfKr1iD_DatH4jsc02mm-r8BqRVGPftNZyDU5uFqI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXyn-3FDASiFPaxHGc9YFDtc1ql3aDhFqpt-C_SBUlQTQL3YoDj8Cr8Co8Ak_COH9oQQgJqQeOu_YmXs9M_Hky_j6AJ9JEwsbCeL5QymM8DzxhuPS0ZtLIQMu4LsacpXxyxF4cR8cr8LU7C9PwQ_QJNxcZ9fPaBbhLSO_8ZA11R7BdbdYQlzzG2rrKfbv4iLu2s-fTPTTxU0rHyeFo4rXCAp5muP1wxQA89I3wQxsKTqXJZRDGDIeXR0PNYu5rrgIb5YHRyhpDOa67SlBjhir0cx7ida_AVScj7uj69171jFUUw6E50BSGntO973gifbqzPN7ldfA3cLuMlevFbrwO37ppampc3mzPK7WtL35hkPyv5vEGXG-hN9ltYuUmrNjiFqyNOsW72_ApLYvvn7-Ehsws7knIrDStuBkpcyLJyHGnVGT69sTIixJbLBl3tW0EwT9Jzuv3IEVFkkZdqE6OLfB-5OX5AkOVJB_aUCcnBUnt3OWZiHtZJu_A0aX8-buwWpSF3QDCNae-RPCcowUiJYWQQ2MRqauYM53LAXidr2S6pW53CiKnWUM6TTNnw6y34QCe9f3fNaQlf-y51ble1j68zjJEgU52ALfiA3jcN6Mt3BzKwpZz18ddw6kRDOBe47L9rRAVUV8wbKG14_1lDNluOk36T5v_8qNHsDY5nB1kB9N0_z5cw-9FnSajW7BavZ_bBwgcK_WwDlUCry_bp38A9nd0OQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrQTdQHmVgQJGArFKmziOM16wqGYy6lAmIESl7oJfkSogqWgGOhULPoFP4Vf4Bb6E67zQgBASUhcsEzuJ43tvfOxcnwPwUJpI2FgYzxdKeYzngScMl57WTBoZaBnXyZizlO8dsKeH0eEKfO32wjT8EP2Cm4uM-nvtAvzY5Ds_SUPdDmyXmjXEEY-xNq1y3y4-4qTt5Ml0jBZ-ROkkeTXa81pdAU8znH24XAAe-kb4oQ0Fp9LkMghjhq3Lo6FmMfc1V4GN8sBoZY2hHIddJagxQxX6OQ_xvhdgjXFfOLGI8cuesIpiNDT7mcLQc7L3HU2kT3eW27s8DP6GbZehcj3WTa7At66XmhSXN9vzSm3rs18IJP-nbtyAyy3wJrtNpFyFFVtcg0ujTu_uOnxKy-L75y-hITOLMxIyK00rbUbKnEgycswpFZm-OzLyrMQSSyZdZhtB6E-S0_ovSFGRpNEWqpfGFvg88vx0gYFKkg9toJOjgqR27laZiPtVJm_Awbm8_E1YLcrC3gLCNae-ROicowUiJYWQQ2MRp6uYM53LAXidq2S6JW53-iFvs4ZymmbOhllvwwE87usfN5Qlf6y51Xle1n66TjLEgE50ACfiA3jQF6MtXB_KwpZzV8fdw2kRDGCz8dj-UYiJqC8YltDa7_7Shmw3nSb90e1_ueg-XHwxnmTPpun-HVjH06JeI6NbsFq9n9u7iBorda8OVAKvz9ulfwAJ3nLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%903d+Metal+Modulation+of+a+Cobalt+Imidazolate+Framework+for+Excellent+Electrocatalytic+Oxygen+Evolution+in+Neutral+Media&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Yan%E2%80%90Tong&rft.au=Ye%2C+Zi%E2%80%90Ming&rft.au=Ye%2C+Jia%E2%80%90Wen&rft.au=Cao%2C+Li%E2%80%90Ming&rft.date=2019-01-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=1&rft.spage=139&rft.epage=143&rft_id=info:doi/10.1002%2Fanie.201809144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201809144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |