Non‐3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media

Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 1; pp. 139 - 143
Main Authors Xu, Yan‐Tong, Ye, Zi‐Ming, Ye, Jia‐Wen, Cao, Li‐Ming, Huang, Rui‐Kang, Wu, Jun‐Xi, Zhou, Dong‐Dong, Zhang, Xue‐Feng, He, Chun‐Ting, Zhang, Jie‐Peng, Chen, Xiao‐Ming
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.01.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value. Non‐3D for 3D: Introducing non‐3d metal oxide units into a cobalt imidazolate framework results in the drastic enhancement of electrocatalytic performance of the oxygen evolution reaction in neutral media.
AbstractList Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co 4 (MO 4 )(eim) 6 ] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim) 3 (MO 4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm −2 at an overpotential of 210 mV in CO 2 ‐saturated 0.5  m KHCO 3 electrolyte and 2/10/22 mA cm −2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO 2 . Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value. Non‐3D for 3D: Introducing non‐3d metal oxide units into a cobalt imidazolate framework results in the drastic enhancement of electrocatalytic performance of the oxygen evolution reaction in neutral media.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm−2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm−2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co (MO )(eim) ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim) (MO ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm at an overpotential of 210 mV in CO -saturated 0.5 m KHCO electrolyte and 2/10/22 mA cm at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.
Author Cao, Li‐Ming
Huang, Rui‐Kang
Zhou, Dong‐Dong
Zhang, Xue‐Feng
Zhang, Jie‐Peng
Xu, Yan‐Tong
He, Chun‐Ting
Wu, Jun‐Xi
Ye, Jia‐Wen
Chen, Xiao‐Ming
Ye, Zi‐Ming
Author_xml – sequence: 1
  givenname: Yan‐Tong
  surname: Xu
  fullname: Xu, Yan‐Tong
  organization: Sun Yat-Sen University
– sequence: 2
  givenname: Zi‐Ming
  surname: Ye
  fullname: Ye, Zi‐Ming
  organization: Sun Yat-Sen University
– sequence: 3
  givenname: Jia‐Wen
  surname: Ye
  fullname: Ye, Jia‐Wen
  organization: Sun Yat-Sen University
– sequence: 4
  givenname: Li‐Ming
  surname: Cao
  fullname: Cao, Li‐Ming
  organization: Jiangxi Normal University
– sequence: 5
  givenname: Rui‐Kang
  surname: Huang
  fullname: Huang, Rui‐Kang
  organization: Sun Yat-Sen University
– sequence: 6
  givenname: Jun‐Xi
  surname: Wu
  fullname: Wu, Jun‐Xi
  organization: Sun Yat-Sen University
– sequence: 7
  givenname: Dong‐Dong
  surname: Zhou
  fullname: Zhou, Dong‐Dong
  organization: Sun Yat-Sen University
– sequence: 8
  givenname: Xue‐Feng
  surname: Zhang
  fullname: Zhang, Xue‐Feng
  organization: Sun Yat-Sen University
– sequence: 9
  givenname: Chun‐Ting
  surname: He
  fullname: He, Chun‐Ting
  email: hechunt@mail2.sysu.edu.cn
  organization: Jiangxi Normal University
– sequence: 10
  givenname: Jie‐Peng
  orcidid: 0000-0002-2614-2774
  surname: Zhang
  fullname: Zhang, Jie‐Peng
  email: zhangjp7@mail.sysu.edu.cn
  organization: Sun Yat-Sen University
– sequence: 11
  givenname: Xiao‐Ming
  surname: Chen
  fullname: Chen, Xiao‐Ming
  organization: Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30320948$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URH9gyxJZYsMmgx07ibOsRimM1E43sLYc-wa5OHZxHNpBLHgEnpEnwem0IFVCrGzJ3zm-95xjdOCDB4ReUrKihJRvlbewKgkVpKWcP0FHtCppwZqGHeQ7Z6xoREUP0fE0XWVeCFI_Q4eMsJK0XByh79vgf_34yQy-gKQcvghmdirZ4HEYsMLr0CuX8Ga0Rn0L-QXwWVQj3IT4GQ8h4u5Wg3PgE-4c6BSDVtlnl6zGl7e7T-Bx9zW4-c7ReryFOcXlHzBWPUdPB-UmeHF_nqCPZ92H9fvi_PLdZn16XmhOCS8qTmpGTEsYsLYulRkUZQ3XXA2V0Lypia57CtVAje7BmLJuOO3b0hjRMzLU7AS92ftex_BlhinJ0U7L2MpDmCdZ0iVBwRqR0deP0KswR5-ny1TVtLwuRZupV_fU3I9g5HW0o4o7-ZBrBvge0DFMU4RBapvuYs3bWycpkUt9cqlP_qkvy1aPZA_O_xS0e8GNdbD7Dy1Pt5vur_Y35_GuFw
CitedBy_id crossref_primary_10_1007_s11426_024_2433_7
crossref_primary_10_1021_acsnano_0c09617
crossref_primary_10_1002_ange_201813634
crossref_primary_10_1021_acsaem_2c02909
crossref_primary_10_1016_j_ccr_2020_213488
crossref_primary_10_1039_D0CC06453J
crossref_primary_10_1016_j_jechem_2021_12_006
crossref_primary_10_1016_j_electacta_2024_143884
crossref_primary_10_1039_D0NR04418K
crossref_primary_10_1016_j_ijhydene_2024_04_355
crossref_primary_10_1039_D1DT01910D
crossref_primary_10_1021_acsnano_9b08458
crossref_primary_10_1016_j_jssc_2019_120913
crossref_primary_10_1016_j_gee_2020_10_003
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1007_s11426_024_2463_4
crossref_primary_10_1021_acsami_2c04304
crossref_primary_10_1039_D1TA07148C
crossref_primary_10_1007_s40843_020_1390_6
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_3390_jfb13040215
crossref_primary_10_1002_advs_201801920
crossref_primary_10_1039_D2CC06727G
crossref_primary_10_1039_C9NR06084G
crossref_primary_10_1016_j_jallcom_2020_156830
crossref_primary_10_1039_D0DT03524F
crossref_primary_10_1002_asia_201900748
crossref_primary_10_1007_s11426_024_2457_y
crossref_primary_10_1016_j_jcis_2021_09_115
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1002_aesr_202100033
crossref_primary_10_1002_sstr_202200085
crossref_primary_10_1002_anie_202216699
crossref_primary_10_1002_smtd_202200773
crossref_primary_10_1007_s11426_022_1448_8
crossref_primary_10_1002_smll_201906775
crossref_primary_10_1016_j_apcatb_2023_122488
crossref_primary_10_1002_ange_202216699
crossref_primary_10_1016_j_apcatb_2021_120665
crossref_primary_10_1021_acsami_3c10238
crossref_primary_10_1002_cnma_202400089
crossref_primary_10_1002_smll_202003256
crossref_primary_10_1007_s12274_021_3451_7
crossref_primary_10_1016_j_ensm_2021_02_021
crossref_primary_10_1002_adfm_202410816
crossref_primary_10_1002_anie_202004420
crossref_primary_10_1002_adma_202002297
crossref_primary_10_1016_j_mtener_2021_100816
crossref_primary_10_1002_ange_202309341
crossref_primary_10_1016_j_ijhydene_2022_03_270
crossref_primary_10_1016_j_seppur_2023_126160
crossref_primary_10_1016_j_matchemphys_2022_126438
crossref_primary_10_1039_C9TA00380K
crossref_primary_10_1021_acsanm_1c00530
crossref_primary_10_1016_j_ijhydene_2020_02_033
crossref_primary_10_1021_acs_iecr_3c00728
crossref_primary_10_1002_tcr_202000187
crossref_primary_10_1016_j_apcatb_2023_123188
crossref_primary_10_1038_s41467_022_34278_6
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1007_s11426_022_1217_7
crossref_primary_10_1016_j_scib_2019_09_013
crossref_primary_10_1039_D1DT01861B
crossref_primary_10_1007_s10853_025_10715_x
crossref_primary_10_1002_adma_202303719
crossref_primary_10_1021_acsnano_3c05845
crossref_primary_10_1021_acs_inorgchem_0c03359
crossref_primary_10_3390_nano13162318
crossref_primary_10_1039_C9TA09397D
crossref_primary_10_1039_D2QI02436E
crossref_primary_10_1016_j_ijhydene_2022_09_126
crossref_primary_10_1016_j_jallcom_2023_169091
crossref_primary_10_1002_adma_202008023
crossref_primary_10_1002_anie_202216008
crossref_primary_10_1039_C9DT00227H
crossref_primary_10_1016_j_jssc_2022_123101
crossref_primary_10_20517_cs_2024_83
crossref_primary_10_1021_acssuschemeng_0c03376
crossref_primary_10_1039_C9NR09742B
crossref_primary_10_1039_D1TA09357F
crossref_primary_10_1016_j_jmst_2024_02_082
crossref_primary_10_1002_anie_201813634
crossref_primary_10_1016_j_inoche_2022_109224
crossref_primary_10_2139_ssrn_3977364
crossref_primary_10_1016_j_apcatb_2021_120174
crossref_primary_10_1016_j_ccr_2022_214759
crossref_primary_10_1002_ange_202004420
crossref_primary_10_1002_anie_202309341
crossref_primary_10_1002_asia_201900706
crossref_primary_10_1021_acs_inorgchem_1c03216
crossref_primary_10_1021_acs_inorgchem_4c00308
crossref_primary_10_1016_j_inoche_2020_107797
crossref_primary_10_1039_D0TA07793C
crossref_primary_10_1073_pnas_1915319116
crossref_primary_10_1002_smll_202300916
crossref_primary_10_2139_ssrn_4121636
crossref_primary_10_1016_j_jcis_2021_08_151
crossref_primary_10_1021_acssuschemeng_9b04996
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_1016_j_mtnano_2021_100124
crossref_primary_10_1016_j_ijhydene_2022_04_095
crossref_primary_10_1021_acs_chemrev_9b00746
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1016_j_molstruc_2023_136274
crossref_primary_10_1039_D1TA01224J
crossref_primary_10_1039_D0TA04016A
crossref_primary_10_1039_D1TA01524A
crossref_primary_10_1002_smll_202200303
crossref_primary_10_1016_j_cclet_2022_107814
crossref_primary_10_1016_j_apcatb_2021_119894
crossref_primary_10_1039_D1TA02330F
crossref_primary_10_1002_celc_201901037
crossref_primary_10_1039_D1TA03604A
crossref_primary_10_1039_D2QI01885C
crossref_primary_10_1016_j_jechem_2020_05_023
crossref_primary_10_1002_ange_202216008
crossref_primary_10_1016_j_ica_2020_119785
Cites_doi 10.1021/ja106102b
10.1002/anie.201701280
10.1021/ja405997s
10.1016/j.scib.2017.03.027
10.1021/jacs.5b08139
10.1002/ange.201803587
10.1002/anie.201408998
10.1038/ncomms8345
10.1002/ange.201005917
10.1016/j.nanoen.2018.07.062
10.1002/anie.201712549
10.1021/acsami.7b07088
10.1039/C4NR02399D
10.1021/jacs.6b12353
10.1021/ja5103103
10.1038/ncomms14586
10.1016/j.scib.2017.10.019
10.1016/j.jelechem.2006.11.008
10.1002/ange.200806063
10.1021/jz501899j
10.1016/j.apsusc.2016.05.019
10.1002/anie.201511032
10.1002/adma.201305492
10.1021/jacs.6b13100
10.1021/acs.inorgchem.6b01882
10.1002/ange.201701280
10.1021/jacs.7b03507
10.1002/anie.201305119
10.1021/acs.accounts.6b00635
10.1039/C5EE03316K
10.1016/j.nanoen.2017.09.055
10.1038/nnano.2015.48
10.1016/j.joule.2018.02.003
10.1021/jacs.7b00165
10.1021/jacs.5b03727
10.1039/b817735j
10.1002/anie.201005917
10.1002/ange.201801029
10.1021/jacs.6b12529
10.1021/jacs.7b07117
10.1002/anie.201711376
10.1039/C6SC04819F
10.1016/j.ccr.2014.12.009
10.1021/jacs.7b08521
10.1002/ange.201712549
10.1002/adma.201601133
10.1002/anie.200806063
10.1002/anie.201801029
10.1039/C6CS00306K
10.1021/jacs.6b03125
10.1002/ange.201701531
10.1126/science.1162018
10.1038/nchem.2886
10.1021/acsami.6b05375
10.1126/science.aaf1525
10.1002/ange.201610776
10.1039/C4CS00470A
10.1126/science.aad4998
10.1002/adfm.201400083
10.1039/C5CS00940E
10.1002/anie.201701531
10.1039/C5QI00275C
10.1039/C7TA09082J
10.1007/s40843-017-9089-y
10.1002/ange.201711376
10.1021/acs.chemrev.7b00051
10.1038/nenergy.2016.53
10.1021/acsnano.5b00158
10.1002/anie.201610776
10.1002/ange.201511032
10.1021/jacs.8b04546
10.1002/anie.201803587
10.1002/ange.201305119
10.1039/C7EE01917C
10.1002/ange.201408998
10.1021/jacs.5b08396
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201809144
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 143
ExternalDocumentID 30320948
10_1002_anie_201809144
ANIE201809144
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Postdoctoral Program for Innovative Talents
  funderid: BX201600195
– fundername: National Natural Science Foundation of China
  funderid: 21473260; 91622109; 21731007
– fundername: 973 Project
  funderid: 2014CB845602
– fundername: Guangdong Pearl River Talents Program
  funderid: 2017BT01C161
– fundername: National Natural Science Foundation of China
  grantid: 91622109
– fundername: National Natural Science Foundation of China
  grantid: 21731007
– fundername: 973 Project
  grantid: 2014CB845602
– fundername: Guangdong Pearl River Talents Program
  grantid: 2017BT01C161
– fundername: National Natural Science Foundation of China
  grantid: 21473260
– fundername: National Postdoctoral Program for Innovative Talents
  grantid: BX201600195
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4104-540630d903e3962adfa1374c4af58c4760c6b1e5f1dcbedd26741b92dd8b30f63
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:43:26 EDT 2025
Fri Jul 25 10:43:05 EDT 2025
Mon Jul 21 05:58:16 EDT 2025
Tue Jul 01 02:26:35 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Wed Jan 22 16:46:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords imidazolate frameworks
oxygen evolution reaction
cobalt
electrocatalysis
metal-organic frameworks
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-540630d903e3962adfa1374c4af58c4760c6b1e5f1dcbedd26741b92dd8b30f63
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2614-2774
PMID 30320948
PQID 2157946289
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2120188378
proquest_journals_2157946289
pubmed_primary_30320948
crossref_citationtrail_10_1002_anie_201809144
crossref_primary_10_1002_anie_201809144
wiley_primary_10_1002_anie_201809144_ANIE201809144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2, 2019
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: January 2, 2019
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 41
2009 2009; 48 121
2017; 46
2014; 26
2014; 24
2017; 355
2016; 384
2017; 9
2014; 136
2017; 117
2013 2013; 52 125
2018; 6
2014; 5
2018; 2
2015; 137
2018 2018; 57 130
2015; 44
2017; 34
2015 2015; 54 127
2016; 352
2014; 6
2016; 45
2017; 62
2015; 6
2018; 140
2017; 60
2015; 10
2017 2017; 56 129
2008; 321
2015; 9
2007; 607
2017; 139
2016; 55
2017; 50
2016; 1
2016 2016; 55 128
2016; 3
2017; 10
2010; 132
2017
2013; 135
2018; 52
2015; 293–294
2016; 138
2011 2011; 50 123
2016; 28
2009; 38
2016; 8
2016; 9
e_1_2_2_24_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_85_2
e_1_2_2_62_1
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_28_1
e_1_2_2_47_1
e_1_2_2_81_1
e_1_2_2_59_2
e_1_2_2_13_1
e_1_2_2_51_2
e_1_2_2_74_2
e_1_2_2_74_3
e_1_2_2_51_3
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_78_2
e_1_2_2_17_1
e_1_2_2_55_1
e_1_2_2_78_3
e_1_2_2_36_1
e_1_2_2_70_2
Zhang X.-F. (e_1_2_2_60_2) 2017; 34
e_1_2_2_25_1
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_63_2
e_1_2_2_44_2
e_1_2_2_9_3
e_1_2_2_9_2
e_1_2_2_67_2
e_1_2_2_82_2
e_1_2_2_37_1
e_1_2_2_37_2
e_1_2_2_10_1
e_1_2_2_75_2
e_1_2_2_52_3
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_33_1
e_1_2_2_56_1
e_1_2_2_79_2
e_1_2_2_14_2
e_1_2_2_71_2
e_1_2_2_4_2
e_1_2_2_49_2
e_1_2_2_22_1
e_1_2_2_64_2
e_1_2_2_83_2
e_1_2_2_8_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_68_2
e_1_2_2_11_3
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_72_2
e_1_2_2_76_1
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_30_3
e_1_2_2_53_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_3_2
e_1_2_2_46_3
e_1_2_2_23_2
e_1_2_2_7_1
e_1_2_2_61_2
e_1_2_2_65_1
e_1_2_2_42_2
e_1_2_2_84_2
e_1_2_2_27_2
e_1_2_2_69_1
e_1_2_2_46_2
e_1_2_2_61_1
e_1_2_2_80_2
e_1_2_2_12_2
e_1_2_2_58_2
e_1_2_2_39_2
e_1_2_2_73_1
e_1_2_2_31_2
e_1_2_2_54_2
e_1_2_2_16_1
e_1_2_2_35_2
e_1_2_2_77_2
e_1_2_2_50_1
Liao P.-Q. (e_1_2_2_41_2) 2017
References_xml – volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  publication-title: Chem. Soc. Rev.
– volume: 57 130
  start-page: 1888 1906
  year: 2018 2018
  end-page: 1892 1910
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48 121
  start-page: 7502 7638
  year: 2009 2009
  end-page: 7513 7649
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 149
  year: 2017
  end-page: 154
  publication-title: Nat. Chem.
– volume: 2
  start-page: 594
  year: 2018
  end-page: 606
  publication-title: Joule
– volume: 56 129
  start-page: 4858 4936
  year: 2017 2017
  end-page: 4861 4939
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 13521
  year: 2013
  end-page: 13530
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 123
  year: 2016
  end-page: 129
  publication-title: Energy Environ. Sci.
– volume: 293–294
  start-page: 263
  year: 2015
  end-page: 278
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 2964
  year: 2018
  end-page: 2973
  publication-title: J. Mater. Chem. A
– volume: 60
  start-page: 918
  year: 2017
  end-page: 928
  publication-title: Sci. China Mater.
– volume: 139
  start-page: 3336
  year: 2017
  end-page: 3339
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 14586
  year: 2017
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3484
  year: 2017
  end-page: 3488
  publication-title: Chem. Sci.
– volume: 46
  start-page: 4645
  year: 2017
  end-page: 4660
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 16053
  year: 2016
  publication-title: Nat. Energy
– volume: 10
  start-page: 444
  year: 2015
  end-page: 452
  publication-title: Nat. Nanotechnol.
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  publication-title: J. Electroanal. Chem.
– volume: 10
  start-page: 2563
  year: 2017
  end-page: 2569
  publication-title: Energy Environ. Sci.
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  publication-title: Science
– volume: 57 130
  start-page: 9660 9808
  year: 2018 2018
  end-page: 9664 9812
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 132
  start-page: 16501
  year: 2010
  end-page: 16509
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 417
  year: 2017
  end-page: 425
  publication-title: Nano Energy
– volume: 9
  start-page: 26867
  year: 2017
  end-page: 26873
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56 129
  start-page: 1064 1084
  year: 2017 2017
  end-page: 1068 1088
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 3716
  year: 2014
  end-page: 3723
  publication-title: J. Phys. Chem. Lett.
– volume: 57 130
  start-page: 4632 4722
  year: 2018 2018
  end-page: 4636 4726
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 7217
  year: 2015
  end-page: 7223
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 3897 3969
  year: 2015 2015
  end-page: 3901 3973
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 7345
  year: 2015
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 8539 8659
  year: 2017 2017
  end-page: 8543 8663
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 28
  start-page: 8819
  year: 2016
  end-page: 8860
  publication-title: Adv. Mater.
– volume: 139
  start-page: 1778
  year: 2017
  end-page: 1781
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 1052
  year: 2017
  end-page: 1058
  publication-title: Chin. J. Appl. Chem.
– volume: 138
  start-page: 8336
  year: 2016
  end-page: 8339
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 13980
  year: 2015
  end-page: 13988
  publication-title: J. Am. Chem. Soc.
– volume: 355
  start-page: 4998
  year: 2017
  publication-title: Science
– volume: 26
  start-page: 3258
  year: 2014
  end-page: 3262
  publication-title: Adv. Mater.
– volume: 137
  start-page: 12865
  year: 2015
  end-page: 12872
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 11361
  year: 2017
  end-page: 11364
  publication-title: J. Am. Chem. Soc.
– year: 2017
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 16736
  year: 2016
  end-page: 16743
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 915
  year: 2017
  end-page: 923
  publication-title: Acc. Chem. Res.
– volume: 117
  start-page: 10121
  year: 2017
  end-page: 10211
  publication-title: Chem. Rev.
– volume: 52
  start-page: 494
  year: 2018
  end-page: 500
  publication-title: Nano Energy
– volume: 321
  start-page: 1072
  year: 2008
  end-page: 1075
  publication-title: Science
– volume: 52 125
  start-page: 11385 11595
  year: 2013 2013
  end-page: 11387 11598
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 9930
  year: 2014
  end-page: 9934
  publication-title: Nanoscale
– volume: 3
  start-page: 536
  year: 2016
  end-page: 540
  publication-title: Inorg. Chem. Front.
– volume: 62
  start-page: 1510
  year: 2017
  end-page: 1518
  publication-title: Sci. Bull.
– volume: 38
  start-page: 1257
  year: 2009
  end-page: 1283
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 1077
  year: 2017
  end-page: 1080
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 610
  year: 2018
  end-page: 617
  publication-title: J. Am. Chem. Soc.
– volume: 50 123
  start-page: 450 470
  year: 2011 2011
  end-page: 453 473
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 62
  start-page: 626
  year: 2017
  end-page: 632
  publication-title: Sci. Bull.
– volume: 45
  start-page: 3828
  year: 2016
  end-page: 3845
  publication-title: Chem. Soc. Rev.
– volume: 55
  start-page: 11362
  year: 2016
  end-page: 11371
  publication-title: Inorg. Chem.
– volume: 55 128
  start-page: 2488 2534
  year: 2016 2016
  end-page: 2492 2538
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 7748
  year: 2018
  end-page: 7759
  publication-title: J. Am. Chem. Soc.
– volume: 384
  start-page: 10
  year: 2016
  end-page: 17
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 2445
  year: 2015
  end-page: 2453
  publication-title: ACS Nano
– volume: 24
  start-page: 3885
  year: 2014
  end-page: 3896
  publication-title: Adv. Funct. Mater.
– volume: 136
  start-page: 16489
  year: 2014
  end-page: 16492
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 2672 2702
  year: 2018 2018
  end-page: 2676 2706
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 5285
  year: 2017
  end-page: 5288
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_85_2
  doi: 10.1021/ja106102b
– ident: e_1_2_2_61_1
  doi: 10.1002/anie.201701280
– ident: e_1_2_2_71_2
  doi: 10.1021/ja405997s
– ident: e_1_2_2_6_2
  doi: 10.1016/j.scib.2017.03.027
– year: 2017
  ident: e_1_2_2_41_2
  publication-title: Coord. Chem. Rev.
– ident: e_1_2_2_29_2
  doi: 10.1021/jacs.5b08139
– ident: e_1_2_2_62_1
– ident: e_1_2_2_76_1
– ident: e_1_2_2_52_3
  doi: 10.1002/ange.201803587
– ident: e_1_2_2_74_2
  doi: 10.1002/anie.201408998
– ident: e_1_2_2_19_2
  doi: 10.1038/ncomms8345
– ident: e_1_2_2_55_2
  doi: 10.1002/ange.201005917
– ident: e_1_2_2_24_2
  doi: 10.1016/j.nanoen.2018.07.062
– ident: e_1_2_2_28_1
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201712549
– ident: e_1_2_2_72_2
  doi: 10.1021/acsami.7b07088
– ident: e_1_2_2_48_2
  doi: 10.1039/C4NR02399D
– ident: e_1_2_2_33_1
– ident: e_1_2_2_39_2
  doi: 10.1021/jacs.6b12353
– ident: e_1_2_2_17_1
– ident: e_1_2_2_79_2
  doi: 10.1021/ja5103103
– ident: e_1_2_2_4_2
  doi: 10.1038/ncomms14586
– ident: e_1_2_2_20_2
  doi: 10.1016/j.scib.2017.10.019
– ident: e_1_2_2_82_2
  doi: 10.1016/j.jelechem.2006.11.008
– ident: e_1_2_2_46_3
  doi: 10.1002/ange.200806063
– ident: e_1_2_2_47_1
– ident: e_1_2_2_64_2
  doi: 10.1021/jz501899j
– ident: e_1_2_2_70_2
  doi: 10.1016/j.apsusc.2016.05.019
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201511032
– ident: e_1_2_2_77_2
  doi: 10.1002/adma.201305492
– ident: e_1_2_2_15_2
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_2_59_2
  doi: 10.1021/acs.inorgchem.6b01882
– ident: e_1_2_2_61_2
  doi: 10.1002/ange.201701280
– ident: e_1_2_2_65_1
– ident: e_1_2_2_8_2
  doi: 10.1021/jacs.7b03507
– ident: e_1_2_2_78_2
  doi: 10.1002/anie.201305119
– ident: e_1_2_2_18_2
  doi: 10.1021/acs.accounts.6b00635
– ident: e_1_2_2_50_1
– ident: e_1_2_2_56_1
– ident: e_1_2_2_21_2
  doi: 10.1039/C5EE03316K
– ident: e_1_2_2_81_1
– ident: e_1_2_2_49_2
  doi: 10.1016/j.nanoen.2017.09.055
– ident: e_1_2_2_84_2
  doi: 10.1038/nnano.2015.48
– ident: e_1_2_2_34_2
  doi: 10.1016/j.joule.2018.02.003
– ident: e_1_2_2_57_2
  doi: 10.1021/jacs.7b00165
– ident: e_1_2_2_58_2
  doi: 10.1021/jacs.5b03727
– ident: e_1_2_2_45_2
  doi: 10.1039/b817735j
– ident: e_1_2_2_55_1
  doi: 10.1002/anie.201005917
– ident: e_1_2_2_51_3
  doi: 10.1002/ange.201801029
– ident: e_1_2_2_75_2
  doi: 10.1021/jacs.6b12529
– ident: e_1_2_2_12_2
  doi: 10.1021/jacs.7b07117
– volume: 34
  start-page: 1052
  year: 2017
  ident: e_1_2_2_60_2
  publication-title: Chin. J. Appl. Chem.
– ident: e_1_2_2_53_2
  doi: 10.1002/anie.201711376
– ident: e_1_2_2_27_2
  doi: 10.1039/C6SC04819F
– ident: e_1_2_2_44_2
  doi: 10.1016/j.ccr.2014.12.009
– ident: e_1_2_2_67_2
  doi: 10.1021/jacs.7b08521
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201712549
– ident: e_1_2_2_38_1
– ident: e_1_2_2_43_2
  doi: 10.1002/adma.201601133
– ident: e_1_2_2_46_2
  doi: 10.1002/anie.200806063
– ident: e_1_2_2_51_2
  doi: 10.1002/anie.201801029
– ident: e_1_2_2_31_2
  doi: 10.1039/C6CS00306K
– ident: e_1_2_2_40_2
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.201701531
– ident: e_1_2_2_25_1
– ident: e_1_2_2_36_1
  doi: 10.1126/science.1162018
– ident: e_1_2_2_5_2
  doi: 10.1038/nchem.2886
– ident: e_1_2_2_54_2
  doi: 10.1021/acsami.6b05375
– ident: e_1_2_2_26_2
  doi: 10.1126/science.aaf1525
– ident: e_1_2_2_22_1
– ident: e_1_2_2_30_3
  doi: 10.1002/ange.201610776
– ident: e_1_2_2_69_1
– ident: e_1_2_2_83_2
  doi: 10.1039/C4CS00470A
– ident: e_1_2_2_2_2
  doi: 10.1126/science.aad4998
– ident: e_1_2_2_63_2
  doi: 10.1002/adfm.201400083
– ident: e_1_2_2_42_2
  doi: 10.1039/C5CS00940E
– ident: e_1_2_2_7_1
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.201701531
– ident: e_1_2_2_1_1
– ident: e_1_2_2_80_2
  doi: 10.1039/C5QI00275C
– ident: e_1_2_2_35_2
  doi: 10.1039/C7TA09082J
– ident: e_1_2_2_73_1
– ident: e_1_2_2_32_2
  doi: 10.1007/s40843-017-9089-y
– ident: e_1_2_2_53_3
  doi: 10.1002/ange.201711376
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.chemrev.7b00051
– ident: e_1_2_2_16_1
  doi: 10.1038/nenergy.2016.53
– ident: e_1_2_2_68_2
  doi: 10.1021/acsnano.5b00158
– ident: e_1_2_2_30_2
  doi: 10.1002/anie.201610776
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201511032
– ident: e_1_2_2_23_2
  doi: 10.1021/jacs.8b04546
– ident: e_1_2_2_13_1
– ident: e_1_2_2_52_2
  doi: 10.1002/anie.201803587
– ident: e_1_2_2_78_3
  doi: 10.1002/ange.201305119
– ident: e_1_2_2_14_2
  doi: 10.1039/C7EE01917C
– ident: e_1_2_2_74_3
  doi: 10.1002/ange.201408998
– ident: e_1_2_2_10_1
– ident: e_1_2_2_66_2
  doi: 10.1021/jacs.5b08396
SSID ssj0028806
Score 2.6257188
Snippet Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms Buffer solutions
Carbon dioxide
Catalysts
Coated electrodes
Cobalt
Computer applications
Computer simulation
electrocatalysis
Electrocatalysts
Electronic structure
Glassy carbon
Heavy metals
imidazolate frameworks
Metals
metal–organic frameworks
Modulation
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Title Non‐3d Metal Modulation of a Cobalt Imidazolate Framework for Excellent Electrocatalytic Oxygen Evolution in Neutral Media
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201809144
https://www.ncbi.nlm.nih.gov/pubmed/30320948
https://www.proquest.com/docview/2157946289
https://www.proquest.com/docview/2120188378
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYll_bSpu9N06JCoScntiTLq2NYvCSB3UJpIDczehhCWzs03pKEHvoT-hvzSzLjV7MNJdDebCxZ8mjG-jQafcPYO_CpCZnxUWysjZQuk8h4DZFzCjwkDrI2GHOx1PtH6vA4Pb5xir_jhxgdbmQZ7f-aDBzs2e5v0lA6gU2hWVOc8RQRglLAFqGijyN_lEDl7I4XSRlRFvqBtTEWu-vV12elW1BzHbm2U8_8EYOh013EyeedVWN33OUffI7_81Wb7GGPS_lep0iP2b1QPWH3Z0M6uKfsx7Kurn7-kp4vAgJ2vqh9n_mL1yUHPiNikYYffD3xcInr5Sbw-RD4xREZ8_y83SSoGp53qXdaz9EFtsc_nF-gHvP8e28H_KTiy7AiJwynnSR4xo7m-afZftSnboicwgUehVtoGXsTyyCNFuBLSGSmUAHKdOpUpmOnbRLSMvHOBu-FRmRjjfB-amVcavmcbVR1FV4yrp0WMSCyLFEiqQVjYOoDwlibaeVKmLBoGLrC9bzmlF7jS9ExMouCZFqMMp2w92P5047R468ltwdNKHrLPisQIhEnP65TJ-zt-BjHgmQIVahXVIbeQVT9E_ai06CxKUkZ643CJ6LVgzv6UOwtD_LxbutfKr1iD_DatH4jsc02mm-r8BqRVGPftNZyDU5uFqI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigXyn-3FDASiFPaxHGc9YFDtc1ql3aDhFqpt-C_SBUlQTQL3YoDj8Cr8Co8Ak_COH9oQQgJqQeOu_YmXs9M_Hky_j6AJ9JEwsbCeL5QymM8DzxhuPS0ZtLIQMu4LsacpXxyxF4cR8cr8LU7C9PwQ_QJNxcZ9fPaBbhLSO_8ZA11R7BdbdYQlzzG2rrKfbv4iLu2s-fTPTTxU0rHyeFo4rXCAp5muP1wxQA89I3wQxsKTqXJZRDGDIeXR0PNYu5rrgIb5YHRyhpDOa67SlBjhir0cx7ida_AVScj7uj69171jFUUw6E50BSGntO973gifbqzPN7ldfA3cLuMlevFbrwO37ppampc3mzPK7WtL35hkPyv5vEGXG-hN9ltYuUmrNjiFqyNOsW72_ApLYvvn7-Ehsws7knIrDStuBkpcyLJyHGnVGT69sTIixJbLBl3tW0EwT9Jzuv3IEVFkkZdqE6OLfB-5OX5AkOVJB_aUCcnBUnt3OWZiHtZJu_A0aX8-buwWpSF3QDCNae-RPCcowUiJYWQQ2MRqauYM53LAXidr2S6pW53CiKnWUM6TTNnw6y34QCe9f3fNaQlf-y51ble1j68zjJEgU52ALfiA3jcN6Mt3BzKwpZz18ddw6kRDOBe47L9rRAVUV8wbKG14_1lDNluOk36T5v_8qNHsDY5nB1kB9N0_z5cw-9FnSajW7BavZ_bBwgcK_WwDlUCry_bp38A9nd0OQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrQTdQHmVgQJGArFKmziOM16wqGYy6lAmIESl7oJfkSogqWgGOhULPoFP4Vf4Bb6E67zQgBASUhcsEzuJ43tvfOxcnwPwUJpI2FgYzxdKeYzngScMl57WTBoZaBnXyZizlO8dsKeH0eEKfO32wjT8EP2Cm4uM-nvtAvzY5Ds_SUPdDmyXmjXEEY-xNq1y3y4-4qTt5Ml0jBZ-ROkkeTXa81pdAU8znH24XAAe-kb4oQ0Fp9LkMghjhq3Lo6FmMfc1V4GN8sBoZY2hHIddJagxQxX6OQ_xvhdgjXFfOLGI8cuesIpiNDT7mcLQc7L3HU2kT3eW27s8DP6GbZehcj3WTa7At66XmhSXN9vzSm3rs18IJP-nbtyAyy3wJrtNpFyFFVtcg0ujTu_uOnxKy-L75y-hITOLMxIyK00rbUbKnEgycswpFZm-OzLyrMQSSyZdZhtB6E-S0_ovSFGRpNEWqpfGFvg88vx0gYFKkg9toJOjgqR27laZiPtVJm_Awbm8_E1YLcrC3gLCNae-ROicowUiJYWQQ2MRp6uYM53LAXidq2S6JW53-iFvs4ZymmbOhllvwwE87usfN5Qlf6y51Xle1n66TjLEgE50ACfiA3jQF6MtXB_KwpZzV8fdw2kRDGCz8dj-UYiJqC8YltDa7_7Shmw3nSb90e1_ueg-XHwxnmTPpun-HVjH06JeI6NbsFq9n9u7iBorda8OVAKvz9ulfwAJ3nLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%903d+Metal+Modulation+of+a+Cobalt+Imidazolate+Framework+for+Excellent+Electrocatalytic+Oxygen+Evolution+in+Neutral+Media&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Yan%E2%80%90Tong&rft.au=Ye%2C+Zi%E2%80%90Ming&rft.au=Ye%2C+Jia%E2%80%90Wen&rft.au=Cao%2C+Li%E2%80%90Ming&rft.date=2019-01-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=1&rft.spage=139&rft.epage=143&rft_id=info:doi/10.1002%2Fanie.201809144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201809144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon