Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes

This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 sc...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 50; no. 21
Main Authors Yu, Yingxin, Gao, Chloe Yuchao, Li, Yubin, Gao, Zhiqiu
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.11.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. Plain Language Summary The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively. Key Points Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively
AbstractList Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors.
This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y ). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively. Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively
This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors.
This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. Plain Language Summary The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively. Key Points Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively
Author Gao, Chloe Yuchao
Li, Yubin
Gao, Zhiqiu
Yu, Yingxin
Author_xml – sequence: 1
  givenname: Yingxin
  orcidid: 0009-0007-2679-9729
  surname: Yu
  fullname: Yu, Yingxin
  organization: Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Chloe Yuchao
  orcidid: 0000-0001-5488-6095
  surname: Gao
  fullname: Gao, Chloe Yuchao
  email: gyc@fudan.edu.cn
  organization: Fudan University
– sequence: 3
  givenname: Yubin
  orcidid: 0000-0003-3965-3845
  surname: Li
  fullname: Li, Yubin
  organization: Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Zhiqiu
  orcidid: 0000-0001-8256-005X
  surname: Gao
  fullname: Gao, Zhiqiu
  organization: Chinese Academy of Sciences
BookMark eNp9kctu1DAUhi1UJKaFHQ9giS0Dx5c49hJVzDBSuKgMa8txjiGjTFwcp2VY9RH6jDwJplMkhASrc9F3_nM7JSdjHJGQpwxeMODmJQcu1g2DynDxgCyYkXKpAeoTsgAwxee1ekROp2kHAAIEW5Buex3phRu7uKermHDK9G3scJhoiInmL0jfxfHHze0mY3K5v0L6wSW3x5z67yWOI42BfpxTcB4L1rgDJrqdUzsPOGa6GuZvOD0mD4MbJnxyb8_Ip9Xr7fmbZfN-vTl_1Sy9ZCCXDGXVdt6zrmK8rmUQwhhQJoSAWiiAqiypvPeIvvUMveC6q7tQhUprqZ04I5ujbhfdzl6mfu_SwUbX27tETJ-tS7n3A1rPlW61Cly1UupOO-60xFoY7nxoQ120nh21LlP8Ope72F2c01jGtwIMByG01oXiR8qnOE0Jg_V9vrtLTq4fLAP76zP2z8-Uoud_Ff0e9R_4fY_rfsDDf1m7vmiUUkKKn3_roPU
CitedBy_id crossref_primary_10_1016_j_atmosres_2025_107952
Cites_doi 10.1007/s10546-012-9744-3
10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
10.1007/s10546-015-0032-x
10.1029/95jc03190
10.1007/BF00123060
10.5281/zenodo.8420339
10.1029/2002JD002779
10.1007/s10546-022-00730-9
10.1029/2009JD012802
10.1023/A:1010933404324
10.5194/gmd-4-677-2011
10.1007/s10546-010-9523-y
10.1007/s10546-014-9948-9
10.1175/1520-0450
10.5194/gmd-7-515-2014
10.1023/a:1001119329423
10.1038/s41586-023-06185-3
10.1007/BF00117978
10.1007/BF00240838
10.1007/s10546-022-00727-4
10.1007/BF00120937
10.1029/2021MS002590
10.1175/1520-0469
10.1007/BF00710895
10.1007/s10546-017-0273-y
ContentType Journal Article
Copyright 2023 The Authors.
2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7TG
7TN
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KL.
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1029/2023GL105923
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Oceanic Abstracts
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7
10_1029_2023GL105923
GRL66634
Genre article
GrantInformation_xml – fundername: The National Natural Science Foundation of China
  funderid: 42175082
– fundername: The Second Tibetan Plateau Scientific Expedition and Research Program
  funderid: 2019QZKK0102
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
PHGZM
PHGZT
3V.
7TG
7TN
7XB
8FD
8FE
8FG
8FK
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L6V
L7M
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c4104-1e45bdcc1d512774f3399069fffe8360050296ccceecbc1ec328d7df5f58848a3
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:05:34 EDT 2025
Fri Jul 25 10:29:40 EDT 2025
Tue Jul 01 01:05:25 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Wed Jan 22 16:17:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4104-1e45bdcc1d512774f3399069fffe8360050296ccceecbc1ec328d7df5f58848a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3965-3845
0000-0001-8256-005X
0009-0007-2679-9729
0000-0001-5488-6095
OpenAccessLink https://doaj.org/article/c268b86f26b448d8a2a84e7392acfbf7
PQID 3092033888
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7
proquest_journals_3092033888
crossref_citationtrail_10_1029_2023GL105923
crossref_primary_10_1029_2023GL105923
wiley_primary_10_1029_2023GL105923_GRL66634
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 November 2023
PublicationDateYYYYMMDD 2023-11-16
PublicationDate_xml – month: 11
  year: 2023
  text: 16 November 2023
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1979; 17
1970; 9
2012; 145
1971; 28
1954; 24
1991; 30
2023; 187
1995; 76
2011; 4
1974; 7
1989; 48
2012; 13
2001; 45
1996; 101
2014; 153
1998; 88
1996; 78
2021; 13
2003; 108
2022; 185
2023
2010; 115
2010; 137
2015; 156
2002; 547
1982
1998; 2
2017; 165
2023; 619
2014; 7
1988
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
ECMWF (e_1_2_7_10_1) 1988
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Louis J. F. (e_1_2_7_23_1) 1982
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
Bergstra J. (e_1_2_7_4_1) 2012; 13
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Monin A. (e_1_2_7_26_1) 1954; 24
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Wang S. (e_1_2_7_30_1) 2002
Mockus J. (e_1_2_7_25_1) 1998; 2
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 28
  start-page: 181
  issue: 2
  year: 1971
  end-page: 189
  article-title: Flux‐profile relationships in the atmospheric surface layer
  publication-title: Journal of the Atmospheric Sciences
– volume: 2
  start-page: 117
  year: 1998
  article-title: The application of Bayesian methods for seeking the extremum
  publication-title: Towards Global Optimization
– volume: 24
  start-page: 163
  year: 1954
  end-page: 187
  article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere
  publication-title: Akad Nauk SSSR Geofiz Inst
– volume: 78
  start-page: 215
  issue: 3
  year: 1996
  end-page: 246
  article-title: Review of some basic characteristics of the atmospheric surface layer
  publication-title: Boundary‐Layer Meteorology
– volume: 145
  start-page: 539
  issue: 3
  year: 2012
  end-page: 550
  article-title: Comprehensive parametrization of surface‐layer transfer coefficients for use in atmospheric numerical models
  publication-title: Boundary‐Layer Meteorology
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 619
  start-page: 533
  issue: 7970
  year: 2023
  end-page: 538
  article-title: Accurate medium‐range global weather forecasting with 3D neural networks
  publication-title: Nature
– volume: 165
  start-page: 371
  issue: 2
  year: 2017
  end-page: 384
  article-title: An analytical formulation of the Monin‐Obukhov stability parameter in the atmospheric surface layer under unstable conditions
  publication-title: Boundary‐Layer Meteorology
– start-page: 392
  year: 1988
– volume: 13
  issue: 8
  year: 2021
  article-title: A universal approach for the non‐iterative parametrization of near‐surface turbulent fluxes in climate and weather prediction models
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 137
  start-page: 153
  issue: 1
  year: 2010
  end-page: 165
  article-title: An improved approach for parameterizing surface‐layer turbulent transfer coefficients in numerical models
  publication-title: Boundary‐Layer Meteorology
– volume: 48
  start-page: 377
  issue: 4
  year: 1989
  end-page: 387
  article-title: On the sensitivity of mesoscale models to surface‐layer parameterization constants
  publication-title: Boundary‐Layer Meteorology
– volume: 156
  start-page: 501
  issue: 3
  year: 2015
  end-page: 511
  article-title: An update of non‐iterative solutions for surface fluxes under unstable conditions
  publication-title: Boundary‐Layer Meteorology
– volume: 88
  start-page: 239
  issue: 2
  year: 1998
  end-page: 254
  article-title: An improvement of the Louis scheme for the surface layer in an atmospheric modeling system
  publication-title: Boundary‐Layer Meteorology
– volume: 9
  start-page: 857
  issue: 6
  year: 1970
  end-page: 861
  article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 7
  start-page: 363
  issue: 3
  year: 1974
  end-page: 372
  article-title: A review of flux‐profile relationships
  publication-title: Boundary‐Layer Meteorology
– start-page: 59
  year: 1982
  end-page: 79
– volume: 547
  start-page: 550
  year: 2002
– volume: 76
  start-page: 165
  issue: 1
  year: 1995
  end-page: 179
  article-title: Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux‐profile studies
  publication-title: Boundary‐Layer Meteorology
– volume: 7
  start-page: 515
  issue: 2
  year: 2014
  end-page: 529
  article-title: An improved non‐iterative surface layer flux scheme for atmospheric stable stratification conditions
  publication-title: Geoscientific Model Development
– volume: 30
  start-page: 327
  issue: 3
  year: 1991
  end-page: 341
  article-title: Flux parameterization over land surfaces for atmospheric models
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 115
  issue: D1
  year: 2010
  article-title: Climate simulations with a new air‐sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)
  publication-title: Journal of Geophysical Research
– volume: 4
  start-page: 677
  issue: 3
  year: 2011
  end-page: 699
  article-title: The joint UK land environment simulator (JULES), model description – Part 1: Energy and water fluxes
  publication-title: Geoscientific Model Development
– year: 2023
– volume: 101
  start-page: 1295
  issue: C1
  year: 1996
  end-page: 1308
  article-title: Bulk parameterization of air‐sea fluxes for TOGA COARE
  publication-title: Journal of Geophysical Research
– volume: 17
  start-page: 187
  issue: 2
  year: 1979
  end-page: 202
  article-title: A parametric model of vertical eddy fluxes in the atmosphere
  publication-title: Boundary‐Layer Meteorology
– volume: 187
  start-page: 41
  issue: 1
  year: 2023
  end-page: 72
  article-title: A package of momentum and heat transfer coefficients for the stable surface layer extended by new coefficients over sea ice
  publication-title: Boundary‐Layer Meteorology
– volume: 153
  start-page: 339
  issue: 2
  year: 2014
  end-page: 353
  article-title: A semi‐analytical approach for parametrization of the Obukhov stability parameter in the unstable atmospheric surface layer
  publication-title: Boundary‐Layer Meteorology
– volume: 13
  issue: 2
  year: 2012
  article-title: Random search for hyper‐parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 185
  start-page: 199
  issue: 2
  year: 2022
  end-page: 228
  article-title: Machine learning for improving surface‐layer‐flux estimates
  publication-title: Boundary‐Layer Meteorology
– volume: 108
  issue: D13
  year: 2003
  article-title: Measurements of turbulent transfer in the near‐surface layer over a rice paddy in China
  publication-title: Journal of Geophysical Research
– ident: e_1_2_7_31_1
  doi: 10.1007/s10546-012-9744-3
– ident: e_1_2_7_27_1
  doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
– ident: e_1_2_7_20_1
  doi: 10.1007/s10546-015-0032-x
– ident: e_1_2_7_11_1
  doi: 10.1029/95jc03190
– ident: e_1_2_7_13_1
  doi: 10.1007/BF00123060
– ident: e_1_2_7_32_1
  doi: 10.5281/zenodo.8420339
– ident: e_1_2_7_12_1
  doi: 10.1029/2002JD002779
– ident: e_1_2_7_14_1
  doi: 10.1007/s10546-022-00730-9
– start-page: 550
  volume-title: 15th Symp. on Boundary Layers and Turbulence
  year: 2002
  ident: e_1_2_7_30_1
– ident: e_1_2_7_2_1
  doi: 10.1029/2009JD012802
– ident: e_1_2_7_7_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_7_5_1
  doi: 10.5194/gmd-4-677-2011
– ident: e_1_2_7_19_1
  doi: 10.1007/s10546-010-9523-y
– ident: e_1_2_7_28_1
  doi: 10.1007/s10546-014-9948-9
– ident: e_1_2_7_3_1
  doi: 10.1175/1520-0450
– ident: e_1_2_7_21_1
  doi: 10.5194/gmd-7-515-2014
– ident: e_1_2_7_17_1
  doi: 10.1023/a:1001119329423
– start-page: 392
  volume-title: ECMWF workshop on parameterization of fluxes over land surfaces
  year: 1988
  ident: e_1_2_7_10_1
– ident: e_1_2_7_6_1
  doi: 10.1038/s41586-023-06185-3
– ident: e_1_2_7_22_1
  doi: 10.1007/BF00117978
– volume: 2
  start-page: 117
  year: 1998
  ident: e_1_2_7_25_1
  article-title: The application of Bayesian methods for seeking the extremum
  publication-title: Towards Global Optimization
– ident: e_1_2_7_9_1
  doi: 10.1007/BF00240838
– volume: 24
  start-page: 163
  year: 1954
  ident: e_1_2_7_26_1
  article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere
  publication-title: Akad Nauk SSSR Geofiz Inst
– ident: e_1_2_7_24_1
  doi: 10.1007/s10546-022-00727-4
– ident: e_1_2_7_16_1
  doi: 10.1007/BF00120937
– start-page: 59
  volume-title: A short history of the PBL parameterization at ECMWF. Workshop on planetary boundary layer parameterization
  year: 1982
  ident: e_1_2_7_23_1
– ident: e_1_2_7_15_1
  doi: 10.1029/2021MS002590
– ident: e_1_2_7_8_1
  doi: 10.1175/1520-0469
– ident: e_1_2_7_18_1
  doi: 10.1007/BF00710895
– ident: e_1_2_7_29_1
  doi: 10.1007/s10546-017-0273-y
– volume: 13
  issue: 2
  year: 2012
  ident: e_1_2_7_4_1
  article-title: Random search for hyper‐parameter optimization
  publication-title: Journal of Machine Learning Research
SSID ssj0003031
Score 2.4321997
Snippet This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation...
Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Atmosphere
Atmospheric boundary layer
Decision trees
Efficiency
Errors
Fluxes
Heat
Heat transfer
Heat transfer coefficients
Machine learning
Momentum
Parameter estimation
Parameterization
Turbulent fluxes
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgV0hcEL-isCAf4IQiEttx7BNi0bYLqqpV6Up7i_zLpSRL0wq48Qg8I0_CjOuW3QN7iyI7smbsmW_imfkIeVVX3EVwBEWQShdCOVNopV3RRC5VNAzv0jDbYiZPz8Wni_oi_3AbclrlziYmQ-17h__I3_JSsxLiKaXeXX4rkDUKb1czhcZtcggmWEHwdXh8Mjub720xGOgtZ54WhWKNzKnvJdMY9fPJFOEF49ecUurdfw1wXoWtye-M75N7GTDS91sNPyC3QveQ3JkkQt6f8JRSON3wiPjF957OTef7rxQJN4c1RaKz5UABl1LAeXTWd39-_f6Y-iiDkaNnBjOz1qtcikn7SD9vVtG4AMOmBsA4XWxA6uiY6Hi5-RGGx-R8fLL4cFpkDoXCiQpbEgZRW-9c5cGzA9SLHBBJKXWMMWD9RlmDLKRz4CuddVVwnCnf-FhHrGBVhj8hB13fhaeEeqG0baSvow3CM6aqED0ASJhaW27NiLzZCbF1ucE48lws23TRzXR7VeQj8no_-nLbWOM_445RH_sx2A47vehXX9p8ulrHpLJKRiYthJteGWaUCA1gP-Oijc2IHO202eYzOrT_dhSsPGn4xoW0k_kUYj0unt38sefkLk7DesVKHpGD9WoTXgBwWduXeXf-BXbP6ms
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYKVSUuqH-ooQH50J7Qqlnb6_UeKSKhVYQQBInbyr-9hF2UTQTc-gg8I0_CjGOicKBSbytrLFnjnZnP9sw3hHwrcm4DBILMS1VlQlmdVaqyWRm4VEEzfEvDbItTeXIpfl8VV-nCDWthlvwQqws3tIzor9HAtekS2QByZGLf79EY4QHjG-QtVtcidz4TZytPDO552TGvEplipUyJ7zD_x_rsFyEpMve_gJvroDVGneF7sp3gIj1c7u8H8sY3H8m7UWzHew9fMYHTdp-Im9y29Fw3rr2m2G6zm1NsczbtKKBSCiiPnrbN49-HX5FFGVwcPdOYlzWfpUJM2gZ6sZgFbT2IjTVAcTpZgM4xLNHhdHHnu8_kcng8OTrJUgeFzIocCQm9KIyzNncQ1wHoBQ54ZCCrEILH6o1BAbqQ1kKktMbm3nKmXOlCEbB-VWm-QzabtvFfCHVCVaaUrgjGC8eYyn1wAB9hamG40T1y8KzE2iZ6cexyMa3jMzer6nWV98j3lfTNklbjFbmfuB8rGSTDjgPt7E-dbKu2TCqjZGDSwGHTKc20Er4E5KdtMKHskf7zbtbJQruaDyo2gPO5UrDyuMP_XEg9Oh_DSY-L3f-S_kq2cByLF3PZJ5vz2cLvAYqZm_34qz4Bv9bpPg
  priority: 102
  providerName: Wiley-Blackwell
Title Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105923
https://www.proquest.com/docview/3092033888
https://doaj.org/article/c268b86f26b448d8a2a84e7392acfbf7
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NattAEF7ShEIvJU1T6jYxe0hORUTaXa12j0mInQZjjGuX0IvY35MjFcumya2P0Gfsk2R2JQfn0PbSiyTESAyzo_2-QfOD0EmeUeMBCBLHhUyYMCqRQpqk8JQLr0j4lxayLcb8es5ubvPbrVFfISesbQ_cGu7MEC604J5wDZGEFYoowVwBsK6M1z7WkQPmbYKpbg-GjbmdlSdZIkjBu5T3lMgQ7dPhKNAKQp-BUezZ_4xobtPViDeDffS6I4r4vFXwDdpx1QF6OYyDeB_gKqZumuYtsrMfNZ6qytZ3OAzabFY4DDhbNBj4KAZ-h8d19fvnr8-xfzJsbniiQkbWatmVYOLa4y_rpVfGgdhIAQnHszVYOwASHizW9645RPPB1ezyOulmJySGZaEVoWO5tsZkFhAdKJ6nwERSLr33LtRtpDnYghsDGGm0yZyhRNjC-tyHylWh6Du0W9WVe4-wZULqgtvca8csISJz3gJxhEdzTbXqoU8bI5amaywe5lssyviDm8hy2-Q9dPok_b1tqPEHuYuwHk8yoQ12vAHOUXbOUf7LOXroaLOaZfdtNiVNJUkhMhcCNI8r_FdFyuF0BDEeZR_-h0Yf0avw8lDNmPEjtLtart0x0JqV7qMXhE3gKAbDPto7_zr_NofzxdV4Mu1H734E2Ir3Lw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4im2FPCBnlBEYjuOc0CI1z5oWKGylXoLfnJZknazq9IbP4Ffwo_ilzCTTZb2QG-9RZFtWZ7xzGd7Zj5CnqcJtwEcQeSlyiOhrI5yldsoC1yqoBm-pWG0xVSOD8XHo_Roi_zuc2EwrLK3ia2hdrXFO_KXPM5ZDOcppV4fn0TIGoWvqz2Fxlot9v3ZKRzZmleT9yDfPcaGH2bvxlHHKhBZkWCRPi9S46xNHPg6AD-Bg4-OZR5C8JjREKcxy6W14D2ssYm3nCmXuZAGzOlUmsO418h1Ad1wR6nhaGP5wR2sGfpyESmWyS7QHsbDOwY-KhDMMH7BBbZMARfg7XmQ3Hq54R1yu4On9M1an-6SLV_dIzdGLf3vGXy1AaO2uU_c7LSmB7py9XeK9J7NkiKt2ryhgIIpoEo6ras_P39N2qrNYFLpZ41xYMtFl_hJ60C_rBZBWw_NCg3Qn85WIGN0g3Q4X_3wzQNyeCVr-5BsV3XlHxHqhMpNJl0ajBeOMZX44ACuQtfUcKMH5EW_iKXtypkjq8a8bJ_VWV6eX_IB2du0Pl6X8fhPu7coj00bLL7d_qgX38puL5eWSWWUDEwaONw6pZlWwmeANLUNJmQDsttLs-wsQlP-01-YeSvhSydSjg4KOFlysXP5YM_IzfHsU1EWk-n-Y3ILh8BMyUTuku3lYuWfAGRamqetnlLy9ao3xl_rwyYY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVKBeUPkTKQX2QE_Iwt611-sDQvQnaWgURSGVejP7yyW12zhR6Y1H4Hl4HJ6EGccO7YHeerOs9Wq1s7vfN96Z-Qh5l0TceACCwAmZBbE0KshkZoLUcyG9YniXhtEWI3F8Gn85S842yO82FwbDKtszsT6obWnwH_kHHmYsBH8KHDbfhEWMD3ufLi4DVJDCm9ZWTmO1RE7c9RW4b9XHwSHYeo-x3tH04DhoFAYCE0dYsM_FibbGRBZwD4iQ54DXoci89w6zG8IkZJkwBpDEaBM5w5m0qfWJx_xOqTj0-4BspuAVhR2yuX80Gk_WOADgsNLry-JAslQ0YffQI_5x4P0hUhvGbwFirRtwi-zepMw15vW2yeOGrNLPq9X1hGy44il52K_FgK_hqQ4fNdUzYqdXJZ2owpbnFMU-qwVFkbVZRYETU-CYdFQWf37-GtQ1nOGApWOFUWGLeZMGSktPvy7nXhkHzYYKHAE6XYLFERRpb7b84arn5PReZvcF6RRl4V4SamOZ6VTYxGsXW8Zk5LwF8gqfJppr1SXv20nMTVPcHDU2Znl9yc6y_OaUd8neuvXFqqjHf9rtoz3WbbAUd_2inH_Pm52dGyaklsIzocHVtVIxJWOXAu9Uxmufdslua828OR-q_N9qhpHXFr5zIHl_MgQ_k8c7d3f2ljyCTZEPB6OTV2QLe8C0yUjsks5ivnSvgT8t9JtmoVLy7b73xl-Swiuq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Random+Forest+Models+for+the+Non%E2%80%90Iterative+Parametrization+of+Surface%E2%80%90Layer+Turbulent+Fluxes&rft.jtitle=Geophysical+research+letters&rft.au=Yingxin+Yu&rft.au=Chloe+Yuchao+Gao&rft.au=Yubin+Li&rft.au=Zhiqiu+Gao&rft.date=2023-11-16&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105923&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon