Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes
This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 sc...
Saved in:
Published in | Geophysical research letters Vol. 50; no. 21 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.11.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors.
Plain Language Summary
The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively.
Key Points
Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed
Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error
Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively |
---|---|
AbstractList | Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y ). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively. Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation model that is directly trained using correlated variables, and (b) the RF_Li10 scheme, a random forest correction model based on the Li10 scheme (Li et al., 2010, https://doi.org/10.1007/s10546-010-9523-y). A comparison between these two new models and the Li10 scheme against an iterative scheme revealed the hierarchy of maximum relative errors in estimating stability parameters, as well as momentum and heat transfer coefficients. This hierarchy is as follows: the Li10 scheme is the greatest, followed by the RF scheme, with the RF_Li10 scheme exhibiting the least errors. Plain Language Summary The computation module for surface‐layer turbulent fluxes is an essential component of numerical weather prediction models. Based on the Monin‐Obukhov Similarity Theory, many parameterization schemes for surface fluxes have been proposed. With the advancement of artificial intelligence, machine learning methods have been applied in meteorology. This study applies the RF model in machine learning to the parametrization of surface‐layer turbulent fluxes. The RF scheme directly calculates the stability parameter after training, and the RF_Li10 scheme is designed to refine the stability parameter derived from the Li10 scheme, by utilizing the RF algorithm for this correction process. In addition, the two new schemes have also been used to calculate the momentum and heat transfer coefficients. The values calculated from the Li10 scheme, RF scheme, and RF_Li10 scheme are compared with the values calculated from the iterative scheme. Under different surface roughness conditions, the average relative errors of the stability parameter obtained from the Li10 scheme, RF scheme, and RF_Li10 scheme are 3.17%, 3.42%, and 0.17%, respectively; the maximum average relative errors of the stability parameter are 5.67%, 3.52%, and 0.52% respectively. Key Points Two Random Forest models (RF and RF_Li10) for the non‐iterative parametrization of near‐surface turbulent fluxes are proposed Compared to the iterative schemes and existing parameterization schemes, the RF_Li10 scheme exhibits the lowest calculation error Compared to the iterative schemes, the RF scheme and RF_Li10 scheme reduce the computation time by 91.0% and 78.4%, respectively |
Author | Gao, Chloe Yuchao Li, Yubin Gao, Zhiqiu Yu, Yingxin |
Author_xml | – sequence: 1 givenname: Yingxin orcidid: 0009-0007-2679-9729 surname: Yu fullname: Yu, Yingxin organization: Nanjing University of Information Science and Technology – sequence: 2 givenname: Chloe Yuchao orcidid: 0000-0001-5488-6095 surname: Gao fullname: Gao, Chloe Yuchao email: gyc@fudan.edu.cn organization: Fudan University – sequence: 3 givenname: Yubin orcidid: 0000-0003-3965-3845 surname: Li fullname: Li, Yubin organization: Nanjing University of Information Science and Technology – sequence: 4 givenname: Zhiqiu orcidid: 0000-0001-8256-005X surname: Gao fullname: Gao, Zhiqiu organization: Chinese Academy of Sciences |
BookMark | eNp9kctu1DAUhi1UJKaFHQ9giS0Dx5c49hJVzDBSuKgMa8txjiGjTFwcp2VY9RH6jDwJplMkhASrc9F3_nM7JSdjHJGQpwxeMODmJQcu1g2DynDxgCyYkXKpAeoTsgAwxee1ekROp2kHAAIEW5Buex3phRu7uKermHDK9G3scJhoiInmL0jfxfHHze0mY3K5v0L6wSW3x5z67yWOI42BfpxTcB4L1rgDJrqdUzsPOGa6GuZvOD0mD4MbJnxyb8_Ip9Xr7fmbZfN-vTl_1Sy9ZCCXDGXVdt6zrmK8rmUQwhhQJoSAWiiAqiypvPeIvvUMveC6q7tQhUprqZ04I5ujbhfdzl6mfu_SwUbX27tETJ-tS7n3A1rPlW61Cly1UupOO-60xFoY7nxoQ120nh21LlP8Ope72F2c01jGtwIMByG01oXiR8qnOE0Jg_V9vrtLTq4fLAP76zP2z8-Uoud_Ff0e9R_4fY_rfsDDf1m7vmiUUkKKn3_roPU |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2025_107952 |
Cites_doi | 10.1007/s10546-012-9744-3 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 10.1007/s10546-015-0032-x 10.1029/95jc03190 10.1007/BF00123060 10.5281/zenodo.8420339 10.1029/2002JD002779 10.1007/s10546-022-00730-9 10.1029/2009JD012802 10.1023/A:1010933404324 10.5194/gmd-4-677-2011 10.1007/s10546-010-9523-y 10.1007/s10546-014-9948-9 10.1175/1520-0450 10.5194/gmd-7-515-2014 10.1023/a:1001119329423 10.1038/s41586-023-06185-3 10.1007/BF00117978 10.1007/BF00240838 10.1007/s10546-022-00727-4 10.1007/BF00120937 10.1029/2021MS002590 10.1175/1520-0469 10.1007/BF00710895 10.1007/s10546-017-0273-y |
ContentType | Journal Article |
Copyright | 2023 The Authors. 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1029/2023GL105923 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7 10_1029_2023GL105923 GRL66634 |
Genre | article |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China funderid: 42175082 – fundername: The Second Tibetan Plateau Scientific Expedition and Research Program funderid: 2019QZKK0102 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION PHGZM PHGZT 3V. 7TG 7TN 7XB 8FD 8FE 8FG 8FK AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L6V L7M MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c4104-1e45bdcc1d512774f3399069fffe8360050296ccceecbc1ec328d7df5f58848a3 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:05:34 EDT 2025 Fri Jul 25 10:29:40 EDT 2025 Tue Jul 01 01:05:25 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Wed Jan 22 16:17:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4104-1e45bdcc1d512774f3399069fffe8360050296ccceecbc1ec328d7df5f58848a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3965-3845 0000-0001-8256-005X 0009-0007-2679-9729 0000-0001-5488-6095 |
OpenAccessLink | https://doaj.org/article/c268b86f26b448d8a2a84e7392acfbf7 |
PQID | 3092033888 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7 proquest_journals_3092033888 crossref_citationtrail_10_1029_2023GL105923 crossref_primary_10_1029_2023GL105923 wiley_primary_10_1029_2023GL105923_GRL66634 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 November 2023 |
PublicationDateYYYYMMDD | 2023-11-16 |
PublicationDate_xml | – month: 11 year: 2023 text: 16 November 2023 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 1979; 17 1970; 9 2012; 145 1971; 28 1954; 24 1991; 30 2023; 187 1995; 76 2011; 4 1974; 7 1989; 48 2012; 13 2001; 45 1996; 101 2014; 153 1998; 88 1996; 78 2021; 13 2003; 108 2022; 185 2023 2010; 115 2010; 137 2015; 156 2002; 547 1982 1998; 2 2017; 165 2023; 619 2014; 7 1988 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 ECMWF (e_1_2_7_10_1) 1988 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Louis J. F. (e_1_2_7_23_1) 1982 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 Bergstra J. (e_1_2_7_4_1) 2012; 13 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Monin A. (e_1_2_7_26_1) 1954; 24 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Wang S. (e_1_2_7_30_1) 2002 Mockus J. (e_1_2_7_25_1) 1998; 2 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 28 start-page: 181 issue: 2 year: 1971 end-page: 189 article-title: Flux‐profile relationships in the atmospheric surface layer publication-title: Journal of the Atmospheric Sciences – volume: 2 start-page: 117 year: 1998 article-title: The application of Bayesian methods for seeking the extremum publication-title: Towards Global Optimization – volume: 24 start-page: 163 year: 1954 end-page: 187 article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere publication-title: Akad Nauk SSSR Geofiz Inst – volume: 78 start-page: 215 issue: 3 year: 1996 end-page: 246 article-title: Review of some basic characteristics of the atmospheric surface layer publication-title: Boundary‐Layer Meteorology – volume: 145 start-page: 539 issue: 3 year: 2012 end-page: 550 article-title: Comprehensive parametrization of surface‐layer transfer coefficients for use in atmospheric numerical models publication-title: Boundary‐Layer Meteorology – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 619 start-page: 533 issue: 7970 year: 2023 end-page: 538 article-title: Accurate medium‐range global weather forecasting with 3D neural networks publication-title: Nature – volume: 165 start-page: 371 issue: 2 year: 2017 end-page: 384 article-title: An analytical formulation of the Monin‐Obukhov stability parameter in the atmospheric surface layer under unstable conditions publication-title: Boundary‐Layer Meteorology – start-page: 392 year: 1988 – volume: 13 issue: 8 year: 2021 article-title: A universal approach for the non‐iterative parametrization of near‐surface turbulent fluxes in climate and weather prediction models publication-title: Journal of Advances in Modeling Earth Systems – volume: 137 start-page: 153 issue: 1 year: 2010 end-page: 165 article-title: An improved approach for parameterizing surface‐layer turbulent transfer coefficients in numerical models publication-title: Boundary‐Layer Meteorology – volume: 48 start-page: 377 issue: 4 year: 1989 end-page: 387 article-title: On the sensitivity of mesoscale models to surface‐layer parameterization constants publication-title: Boundary‐Layer Meteorology – volume: 156 start-page: 501 issue: 3 year: 2015 end-page: 511 article-title: An update of non‐iterative solutions for surface fluxes under unstable conditions publication-title: Boundary‐Layer Meteorology – volume: 88 start-page: 239 issue: 2 year: 1998 end-page: 254 article-title: An improvement of the Louis scheme for the surface layer in an atmospheric modeling system publication-title: Boundary‐Layer Meteorology – volume: 9 start-page: 857 issue: 6 year: 1970 end-page: 861 article-title: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer publication-title: Journal of Applied Meteorology and Climatology – volume: 7 start-page: 363 issue: 3 year: 1974 end-page: 372 article-title: A review of flux‐profile relationships publication-title: Boundary‐Layer Meteorology – start-page: 59 year: 1982 end-page: 79 – volume: 547 start-page: 550 year: 2002 – volume: 76 start-page: 165 issue: 1 year: 1995 end-page: 179 article-title: Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for flux‐profile studies publication-title: Boundary‐Layer Meteorology – volume: 7 start-page: 515 issue: 2 year: 2014 end-page: 529 article-title: An improved non‐iterative surface layer flux scheme for atmospheric stable stratification conditions publication-title: Geoscientific Model Development – volume: 30 start-page: 327 issue: 3 year: 1991 end-page: 341 article-title: Flux parameterization over land surfaces for atmospheric models publication-title: Journal of Applied Meteorology and Climatology – volume: 115 issue: D1 year: 2010 article-title: Climate simulations with a new air‐sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) publication-title: Journal of Geophysical Research – volume: 4 start-page: 677 issue: 3 year: 2011 end-page: 699 article-title: The joint UK land environment simulator (JULES), model description – Part 1: Energy and water fluxes publication-title: Geoscientific Model Development – year: 2023 – volume: 101 start-page: 1295 issue: C1 year: 1996 end-page: 1308 article-title: Bulk parameterization of air‐sea fluxes for TOGA COARE publication-title: Journal of Geophysical Research – volume: 17 start-page: 187 issue: 2 year: 1979 end-page: 202 article-title: A parametric model of vertical eddy fluxes in the atmosphere publication-title: Boundary‐Layer Meteorology – volume: 187 start-page: 41 issue: 1 year: 2023 end-page: 72 article-title: A package of momentum and heat transfer coefficients for the stable surface layer extended by new coefficients over sea ice publication-title: Boundary‐Layer Meteorology – volume: 153 start-page: 339 issue: 2 year: 2014 end-page: 353 article-title: A semi‐analytical approach for parametrization of the Obukhov stability parameter in the unstable atmospheric surface layer publication-title: Boundary‐Layer Meteorology – volume: 13 issue: 2 year: 2012 article-title: Random search for hyper‐parameter optimization publication-title: Journal of Machine Learning Research – volume: 185 start-page: 199 issue: 2 year: 2022 end-page: 228 article-title: Machine learning for improving surface‐layer‐flux estimates publication-title: Boundary‐Layer Meteorology – volume: 108 issue: D13 year: 2003 article-title: Measurements of turbulent transfer in the near‐surface layer over a rice paddy in China publication-title: Journal of Geophysical Research – ident: e_1_2_7_31_1 doi: 10.1007/s10546-012-9744-3 – ident: e_1_2_7_27_1 doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 – ident: e_1_2_7_20_1 doi: 10.1007/s10546-015-0032-x – ident: e_1_2_7_11_1 doi: 10.1029/95jc03190 – ident: e_1_2_7_13_1 doi: 10.1007/BF00123060 – ident: e_1_2_7_32_1 doi: 10.5281/zenodo.8420339 – ident: e_1_2_7_12_1 doi: 10.1029/2002JD002779 – ident: e_1_2_7_14_1 doi: 10.1007/s10546-022-00730-9 – start-page: 550 volume-title: 15th Symp. on Boundary Layers and Turbulence year: 2002 ident: e_1_2_7_30_1 – ident: e_1_2_7_2_1 doi: 10.1029/2009JD012802 – ident: e_1_2_7_7_1 doi: 10.1023/A:1010933404324 – ident: e_1_2_7_5_1 doi: 10.5194/gmd-4-677-2011 – ident: e_1_2_7_19_1 doi: 10.1007/s10546-010-9523-y – ident: e_1_2_7_28_1 doi: 10.1007/s10546-014-9948-9 – ident: e_1_2_7_3_1 doi: 10.1175/1520-0450 – ident: e_1_2_7_21_1 doi: 10.5194/gmd-7-515-2014 – ident: e_1_2_7_17_1 doi: 10.1023/a:1001119329423 – start-page: 392 volume-title: ECMWF workshop on parameterization of fluxes over land surfaces year: 1988 ident: e_1_2_7_10_1 – ident: e_1_2_7_6_1 doi: 10.1038/s41586-023-06185-3 – ident: e_1_2_7_22_1 doi: 10.1007/BF00117978 – volume: 2 start-page: 117 year: 1998 ident: e_1_2_7_25_1 article-title: The application of Bayesian methods for seeking the extremum publication-title: Towards Global Optimization – ident: e_1_2_7_9_1 doi: 10.1007/BF00240838 – volume: 24 start-page: 163 year: 1954 ident: e_1_2_7_26_1 article-title: Basic laws of turbulent mixing in the surface layer of the atmosphere publication-title: Akad Nauk SSSR Geofiz Inst – ident: e_1_2_7_24_1 doi: 10.1007/s10546-022-00727-4 – ident: e_1_2_7_16_1 doi: 10.1007/BF00120937 – start-page: 59 volume-title: A short history of the PBL parameterization at ECMWF. Workshop on planetary boundary layer parameterization year: 1982 ident: e_1_2_7_23_1 – ident: e_1_2_7_15_1 doi: 10.1029/2021MS002590 – ident: e_1_2_7_8_1 doi: 10.1175/1520-0469 – ident: e_1_2_7_18_1 doi: 10.1007/BF00710895 – ident: e_1_2_7_29_1 doi: 10.1007/s10546-017-0273-y – volume: 13 issue: 2 year: 2012 ident: e_1_2_7_4_1 article-title: Random search for hyper‐parameter optimization publication-title: Journal of Machine Learning Research |
SSID | ssj0003031 |
Score | 2.4321997 |
Snippet | This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a calculation... Abstract This study investigated two random forest (RF) models for the non‐iterative parametrization of surface‐layer turbulent fluxes: (a) the RF scheme, a... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Artificial intelligence Atmosphere Atmospheric boundary layer Decision trees Efficiency Errors Fluxes Heat Heat transfer Heat transfer coefficients Machine learning Momentum Parameter estimation Parameterization Turbulent fluxes Weather forecasting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgV0hcEL-isCAf4IQiEttx7BNi0bYLqqpV6Up7i_zLpSRL0wq48Qg8I0_CjOuW3QN7iyI7smbsmW_imfkIeVVX3EVwBEWQShdCOVNopV3RRC5VNAzv0jDbYiZPz8Wni_oi_3AbclrlziYmQ-17h__I3_JSsxLiKaXeXX4rkDUKb1czhcZtcggmWEHwdXh8Mjub720xGOgtZ54WhWKNzKnvJdMY9fPJFOEF49ecUurdfw1wXoWtye-M75N7GTDS91sNPyC3QveQ3JkkQt6f8JRSON3wiPjF957OTef7rxQJN4c1RaKz5UABl1LAeXTWd39-_f6Y-iiDkaNnBjOz1qtcikn7SD9vVtG4AMOmBsA4XWxA6uiY6Hi5-RGGx-R8fLL4cFpkDoXCiQpbEgZRW-9c5cGzA9SLHBBJKXWMMWD9RlmDLKRz4CuddVVwnCnf-FhHrGBVhj8hB13fhaeEeqG0baSvow3CM6aqED0ASJhaW27NiLzZCbF1ucE48lws23TRzXR7VeQj8no_-nLbWOM_445RH_sx2A47vehXX9p8ulrHpLJKRiYthJteGWaUCA1gP-Oijc2IHO202eYzOrT_dhSsPGn4xoW0k_kUYj0unt38sefkLk7DesVKHpGD9WoTXgBwWduXeXf-BXbP6ms priority: 102 providerName: ProQuest – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYKVSUuqH-ooQH50J7Qqlnb6_UeKSKhVYQQBInbyr-9hF2UTQTc-gg8I0_CjGOicKBSbytrLFnjnZnP9sw3hHwrcm4DBILMS1VlQlmdVaqyWRm4VEEzfEvDbItTeXIpfl8VV-nCDWthlvwQqws3tIzor9HAtekS2QByZGLf79EY4QHjG-QtVtcidz4TZytPDO552TGvEplipUyJ7zD_x_rsFyEpMve_gJvroDVGneF7sp3gIj1c7u8H8sY3H8m7UWzHew9fMYHTdp-Im9y29Fw3rr2m2G6zm1NsczbtKKBSCiiPnrbN49-HX5FFGVwcPdOYlzWfpUJM2gZ6sZgFbT2IjTVAcTpZgM4xLNHhdHHnu8_kcng8OTrJUgeFzIocCQm9KIyzNncQ1wHoBQ54ZCCrEILH6o1BAbqQ1kKktMbm3nKmXOlCEbB-VWm-QzabtvFfCHVCVaaUrgjGC8eYyn1wAB9hamG40T1y8KzE2iZ6cexyMa3jMzer6nWV98j3lfTNklbjFbmfuB8rGSTDjgPt7E-dbKu2TCqjZGDSwGHTKc20Er4E5KdtMKHskf7zbtbJQruaDyo2gPO5UrDyuMP_XEg9Oh_DSY-L3f-S_kq2cByLF3PZJ5vz2cLvAYqZm_34qz4Bv9bpPg priority: 102 providerName: Wiley-Blackwell |
Title | Two Random Forest Models for the Non‐Iterative Parametrization of Surface‐Layer Turbulent Fluxes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105923 https://www.proquest.com/docview/3092033888 https://doaj.org/article/c268b86f26b448d8a2a84e7392acfbf7 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NattAEF7ShEIvJU1T6jYxe0hORUTaXa12j0mInQZjjGuX0IvY35MjFcumya2P0Gfsk2R2JQfn0PbSiyTESAyzo_2-QfOD0EmeUeMBCBLHhUyYMCqRQpqk8JQLr0j4lxayLcb8es5ubvPbrVFfISesbQ_cGu7MEC604J5wDZGEFYoowVwBsK6M1z7WkQPmbYKpbg-GjbmdlSdZIkjBu5T3lMgQ7dPhKNAKQp-BUezZ_4xobtPViDeDffS6I4r4vFXwDdpx1QF6OYyDeB_gKqZumuYtsrMfNZ6qytZ3OAzabFY4DDhbNBj4KAZ-h8d19fvnr8-xfzJsbniiQkbWatmVYOLa4y_rpVfGgdhIAQnHszVYOwASHizW9645RPPB1ezyOulmJySGZaEVoWO5tsZkFhAdKJ6nwERSLr33LtRtpDnYghsDGGm0yZyhRNjC-tyHylWh6Du0W9WVe4-wZULqgtvca8csISJz3gJxhEdzTbXqoU8bI5amaywe5lssyviDm8hy2-Q9dPok_b1tqPEHuYuwHk8yoQ12vAHOUXbOUf7LOXroaLOaZfdtNiVNJUkhMhcCNI8r_FdFyuF0BDEeZR_-h0Yf0avw8lDNmPEjtLtart0x0JqV7qMXhE3gKAbDPto7_zr_NofzxdV4Mu1H734E2Ir3Lw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4im2FPCBnlBEYjuOc0CI1z5oWKGylXoLfnJZknazq9IbP4Ffwo_ilzCTTZb2QG-9RZFtWZ7xzGd7Zj5CnqcJtwEcQeSlyiOhrI5yldsoC1yqoBm-pWG0xVSOD8XHo_Roi_zuc2EwrLK3ia2hdrXFO_KXPM5ZDOcppV4fn0TIGoWvqz2Fxlot9v3ZKRzZmleT9yDfPcaGH2bvxlHHKhBZkWCRPi9S46xNHPg6AD-Bg4-OZR5C8JjREKcxy6W14D2ssYm3nCmXuZAGzOlUmsO418h1Ad1wR6nhaGP5wR2sGfpyESmWyS7QHsbDOwY-KhDMMH7BBbZMARfg7XmQ3Hq54R1yu4On9M1an-6SLV_dIzdGLf3vGXy1AaO2uU_c7LSmB7py9XeK9J7NkiKt2ryhgIIpoEo6ras_P39N2qrNYFLpZ41xYMtFl_hJ60C_rBZBWw_NCg3Qn85WIGN0g3Q4X_3wzQNyeCVr-5BsV3XlHxHqhMpNJl0ajBeOMZX44ACuQtfUcKMH5EW_iKXtypkjq8a8bJ_VWV6eX_IB2du0Pl6X8fhPu7coj00bLL7d_qgX38puL5eWSWWUDEwaONw6pZlWwmeANLUNJmQDsttLs-wsQlP-01-YeSvhSydSjg4KOFlysXP5YM_IzfHsU1EWk-n-Y3ILh8BMyUTuku3lYuWfAGRamqetnlLy9ao3xl_rwyYY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVKBeUPkTKQX2QE_Iwt611-sDQvQnaWgURSGVejP7yyW12zhR6Y1H4Hl4HJ6EGccO7YHeerOs9Wq1s7vfN96Z-Qh5l0TceACCwAmZBbE0KshkZoLUcyG9YniXhtEWI3F8Gn85S842yO82FwbDKtszsT6obWnwH_kHHmYsBH8KHDbfhEWMD3ufLi4DVJDCm9ZWTmO1RE7c9RW4b9XHwSHYeo-x3tH04DhoFAYCE0dYsM_FibbGRBZwD4iQ54DXoci89w6zG8IkZJkwBpDEaBM5w5m0qfWJx_xOqTj0-4BspuAVhR2yuX80Gk_WOADgsNLry-JAslQ0YffQI_5x4P0hUhvGbwFirRtwi-zepMw15vW2yeOGrNLPq9X1hGy44il52K_FgK_hqQ4fNdUzYqdXJZ2owpbnFMU-qwVFkbVZRYETU-CYdFQWf37-GtQ1nOGApWOFUWGLeZMGSktPvy7nXhkHzYYKHAE6XYLFERRpb7b84arn5PReZvcF6RRl4V4SamOZ6VTYxGsXW8Zk5LwF8gqfJppr1SXv20nMTVPcHDU2Znl9yc6y_OaUd8neuvXFqqjHf9rtoz3WbbAUd_2inH_Pm52dGyaklsIzocHVtVIxJWOXAu9Uxmufdslua828OR-q_N9qhpHXFr5zIHl_MgQ_k8c7d3f2ljyCTZEPB6OTV2QLe8C0yUjsks5ivnSvgT8t9JtmoVLy7b73xl-Swiuq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+Random+Forest+Models+for+the+Non%E2%80%90Iterative+Parametrization+of+Surface%E2%80%90Layer+Turbulent+Fluxes&rft.jtitle=Geophysical+research+letters&rft.au=Yingxin+Yu&rft.au=Chloe+Yuchao+Gao&rft.au=Yubin+Li&rft.au=Zhiqiu+Gao&rft.date=2023-11-16&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=50&rft.issue=21&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105923&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c268b86f26b448d8a2a84e7392acfbf7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |