Flow Electrolyzer Mass Spectrometry with a Gas‐Diffusion Electrode Design

Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐t...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 6; pp. 3277 - 3282
Main Authors Hasa, Bjorn, Jouny, Matthew, Ko, Byung Hee, Xu, Bingjun, Jiao, Feng
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 08.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. A new technique, flow electrolyzer mass spectrometry (FEMS), is developed by incorporating a gas‐diffusion electrode design. It enables the detection of reactive volatile or gaseous species at high operating current densities. The electrochemical carbon monoxide reduction reaction (eCORR) is investigated and the oxygen incorporation mechanism in the acetaldehyde formation determined.
AbstractList Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm-2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm-2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.
Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. A new technique, flow electrolyzer mass spectrometry (FEMS), is developed by incorporating a gas‐diffusion electrode design. It enables the detection of reactive volatile or gaseous species at high operating current densities. The electrochemical carbon monoxide reduction reaction (eCORR) is investigated and the oxygen incorporation mechanism in the acetaldehyde formation determined.
Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm −2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.
Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.
Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.
Author Jouny, Matthew
Jiao, Feng
Ko, Byung Hee
Hasa, Bjorn
Xu, Bingjun
Author_xml – sequence: 1
  givenname: Bjorn
  orcidid: 0000-0001-7526-7840
  surname: Hasa
  fullname: Hasa, Bjorn
  organization: University of Delaware
– sequence: 2
  givenname: Matthew
  orcidid: 0000-0002-5778-1106
  surname: Jouny
  fullname: Jouny, Matthew
  organization: University of Delaware
– sequence: 3
  givenname: Byung Hee
  orcidid: 0000-0002-0934-5182
  surname: Ko
  fullname: Ko, Byung Hee
  organization: University of Delaware
– sequence: 4
  givenname: Bingjun
  surname: Xu
  fullname: Xu, Bingjun
  email: bxu@udel.edu
  organization: University of Delaware
– sequence: 5
  givenname: Feng
  orcidid: 0000-0002-3335-3203
  surname: Jiao
  fullname: Jiao, Feng
  email: jiao@udel.edu
  organization: University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33090694$$D View this record in MEDLINE/PubMed
BookMark eNqFkclOwzAQhi0EogtcOaJIXLikeMt2rLpRUeAAnC0nmYCrLMVOVJUTj8Az8iS4tAWpEuI0Huv7RqP5O-iwrEpA6IzgHsGYXslSQY9iigkLCDtAbeJR4rIgYIf2zRlzg9AjLdQxZm75MMT-MWoxhiPsR7yNbsZ5tXRGOSS1rvLVG2jnVhrjPCy-fwqo9cpZqvrFkc5Ems_3j6HKssaoqtxZKThDMOq5PEFHmcwNnG5rFz2NR4-Da3d2P5kO-jM34QQzF4iXYO75JI2JHyQ-jcI4tQ0OZRx5KcWMZl7KOcWScS-AlGZ280BmNPEhBZ910eVm7kJXrw2YWhTKJJDnsoSqMYJyj_lhxCiz6MUeOq8aXdrtLBVySgjhxFLnW6qJC0jFQqtC6pXYnckCfAMkujJGQyYSVcvaHqHWUuWCYLFOQ6zTED9pWK23p-0m_ylEG2Gpclj9Q4v-3XT0634B0Wib1w
CitedBy_id crossref_primary_10_1021_acs_analchem_1c00116
crossref_primary_10_1039_D2CC06065E
crossref_primary_10_1016_j_apcatb_2021_120958
crossref_primary_10_1038_s41560_022_01092_9
crossref_primary_10_1002_anie_202014711
crossref_primary_10_1021_acsenergylett_1c02659
crossref_primary_10_1039_D2SC01317G
crossref_primary_10_1038_s41467_023_39558_3
crossref_primary_10_1021_acscatal_4c03271
crossref_primary_10_1039_D3EY00079F
crossref_primary_10_1038_s41467_021_22291_0
crossref_primary_10_1149_1945_7111_ad07ac
crossref_primary_10_1016_j_coelec_2023_101248
crossref_primary_10_1021_acs_energyfuels_4c04730
crossref_primary_10_1002_anie_202302789
crossref_primary_10_1002_ange_202312607
crossref_primary_10_1038_s41467_023_40296_9
crossref_primary_10_1021_acscatal_2c04802
crossref_primary_10_1016_j_esci_2023_100143
crossref_primary_10_1021_acs_accounts_1c00674
crossref_primary_10_1002_advs_202416597
crossref_primary_10_1039_D1EE02966E
crossref_primary_10_1002_ange_202014711
crossref_primary_10_1002_anie_202312607
crossref_primary_10_1021_acsami_3c04556
crossref_primary_10_1021_acs_chemrev_1c00690
crossref_primary_10_1016_j_matre_2022_100173
crossref_primary_10_1021_jacs_4c10629
crossref_primary_10_1016_S1872_2067_23_64522_X
crossref_primary_10_1021_acs_energyfuels_2c00271
crossref_primary_10_1039_D2CS00381C
crossref_primary_10_1039_D3DT00921A
crossref_primary_10_1016_j_xcrp_2021_100602
crossref_primary_10_1039_D2CC06503G
crossref_primary_10_1016_j_checat_2022_10_026
crossref_primary_10_1021_acscatal_3c02370
crossref_primary_10_1021_jacs_1c10535
crossref_primary_10_1021_jacs_2c08380
crossref_primary_10_1002_ange_202302789
crossref_primary_10_1021_acs_joc_2c01311
crossref_primary_10_1021_acs_analchem_4c04997
crossref_primary_10_1039_D1EN00977J
crossref_primary_10_1016_j_apcatb_2024_124616
crossref_primary_10_1016_j_esci_2024_100333
crossref_primary_10_1016_j_checat_2022_06_009
crossref_primary_10_1016_j_cogsc_2023_100765
Cites_doi 10.1038/s41929-018-0133-2
10.1021/jacs.9b11817
10.1002/adma.201803111
10.1007/s10800-006-9173-4
10.1002/anie.201508851
10.1002/ange.201508851
10.1021/jacs.8b03986
10.1021/jacs.8b13201
10.1016/j.jpowsour.2015.09.124
10.1021/acsami.7b15418
10.1021/jacs.8b04058
10.1002/anie.201901923
10.1002/ange.201901923
10.1021/jacs.7b08607
10.1021/ja302668n
10.1016/j.cattod.2015.09.029
10.1021/acs.chemrev.8b00705
10.1246/cl.1985.1695
10.1038/s41929-019-0269-8
10.1039/c2ee21234j
10.1039/c1sc00277e
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202013713
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3282
ExternalDocumentID 33090694
10_1002_anie_202013713
ANIE202013713
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CBET-1904966
– fundername: National Science Foundation
  grantid: CBET-1904966
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4103-e15c04561db167c6298bd1db08ab95d2032f5d4420a3457ed2f0027af2c6ede63
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:40:42 EDT 2025
Fri Jul 25 10:46:26 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Tue Jul 01 01:17:50 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
Wed Jan 22 16:31:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords CO reduction
CO2 utilization
operando mass spectrometry
electrocatalysis
Language English
License 2020 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4103-e15c04561db167c6298bd1db08ab95d2032f5d4420a3457ed2f0027af2c6ede63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7526-7840
0000-0002-0934-5182
0000-0002-3335-3203
0000-0002-5778-1106
PMID 33090694
PQID 2484211141
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2453689323
proquest_journals_2484211141
pubmed_primary_33090694
crossref_citationtrail_10_1002_anie_202013713
crossref_primary_10_1002_anie_202013713
wiley_primary_10_1002_anie_202013713_ANIE202013713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 8, 2021
PublicationDateYYYYMMDD 2021-02-08
PublicationDate_xml – month: 02
  year: 2021
  text: February 8, 2021
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2016; 55 128
2011; 2
2018; 140
2012; 134
2019; 2
2020; 142
2018; 1
2006; 36
2019; 119
2018; 30
2016; 301
2019; 141
2018; 10
2012; 5
2016; 262
2019 2019; 58 131
2017; 139
1985; 14
e_1_2_6_10_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_18_1
e_1_2_6_14_2
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 55 128
  start-page: 1450 1472
  year: 2016 2016
  end-page: 1454 1476
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 1215
  year: 2006
  end-page: 1221
  publication-title: J. Appl. Electrochem.
– volume: 14
  start-page: 1695
  year: 1985
  end-page: 1698
  publication-title: Chem. Lett.
– volume: 139
  start-page: 15848
  year: 2017
  end-page: 15857
  publication-title: J. Am. Chem. Soc.
– volume: 301
  start-page: 219
  year: 2016
  end-page: 228
  publication-title: J. Power Sources
– volume: 10
  start-page: 8574
  year: 2018
  end-page: 8584
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 142
  start-page: 2975
  year: 2020
  end-page: 2983
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 7273 7351
  year: 2019 2019
  end-page: 7277 7355
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  publication-title: Chem. Rev.
– volume: 1
  start-page: 748
  year: 2018
  end-page: 755
  publication-title: Nat. Catal.
– volume: 262
  start-page: 90
  year: 2016
  end-page: 94
  publication-title: Catal. Today
– volume: 141
  start-page: 4191
  year: 2019
  end-page: 4193
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9864
  year: 2012
  end-page: 9867
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 9337
  year: 2018
  end-page: 9340
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 7012
  year: 2018
  end-page: 7020
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 423
  year: 2019
  end-page: 430
  publication-title: Nat. Catal.
– volume: 5
  start-page: 7050
  year: 2012
  end-page: 7059
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1902
  year: 2011
  end-page: 1909
  publication-title: Chem. Sci.
– ident: e_1_2_6_11_1
  doi: 10.1038/s41929-018-0133-2
– ident: e_1_2_6_10_1
  doi: 10.1021/jacs.9b11817
– ident: e_1_2_6_4_1
  doi: 10.1002/adma.201803111
– ident: e_1_2_6_16_1
  doi: 10.1007/s10800-006-9173-4
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201508851
– ident: e_1_2_6_14_2
  doi: 10.1002/ange.201508851
– ident: e_1_2_6_12_1
  doi: 10.1021/jacs.8b03986
– ident: e_1_2_6_13_1
  doi: 10.1021/jacs.8b13201
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jpowsour.2015.09.124
– ident: e_1_2_6_18_1
  doi: 10.1021/acsami.7b15418
– ident: e_1_2_6_9_1
  doi: 10.1021/jacs.8b04058
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.201901923
– ident: e_1_2_6_17_2
  doi: 10.1002/ange.201901923
– ident: e_1_2_6_6_1
  doi: 10.1021/jacs.7b08607
– ident: e_1_2_6_19_1
  doi: 10.1021/ja302668n
– ident: e_1_2_6_15_1
  doi: 10.1016/j.cattod.2015.09.029
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.8b00705
– ident: e_1_2_6_1_1
  doi: 10.1246/cl.1985.1695
– ident: e_1_2_6_3_1
  doi: 10.1038/s41929-019-0269-8
– ident: e_1_2_6_5_1
  doi: 10.1039/c2ee21234j
– ident: e_1_2_6_8_1
  doi: 10.1039/c1sc00277e
SSID ssj0028806
Score 2.5433342
Snippet Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3277
SubjectTerms Acetaldehyde
Carbon monoxide
Catalysts
Chemical reactions
Chemical reduction
CO reduction
CO2 utilization
Current density
electrocatalysis
Electrochemistry
Electrodes
Ethanol
Intermediates
Labeling
Mass spectrometry
Mass spectroscopy
operando mass spectrometry
Oxygen
Propanol
Reaction intermediates
Scientific imaging
Spectroscopy
Title Flow Electrolyzer Mass Spectrometry with a Gas‐Diffusion Electrode Design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013713
https://www.ncbi.nlm.nih.gov/pubmed/33090694
https://www.proquest.com/docview/2484211141
https://www.proquest.com/docview/2453689323
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v1SnRBB8ypYmadY-ytycinsQB3srSZOCODbZBdEnf4K_0V9iTrtWp4igj6VJmyYnyXfSc74PoWPpoJBy-wJhJlBEBDoiui4podb6oXUYQWdJYtcd2e6Ky17Q-5TFn_NDlAduMDOy9RomuNLj2gdpKGRgO_-OAWdeJlsLAVuAim5K_ijmjDNPL-KcgAp9wdpIWW2--vyu9A1qziPXbOtprSJVNDqPOLmvTie6mjx_4XP8z1etoZUZLsWnuSGtowU72EBLjUIObhNdtfrDR9zMVXP6T892hK8d8MYgYD8BzgNXCsOpLlb4XI3fXl7P7tJ0CodxRS1j8VkWMLKFuq3mbaNNZkoMJBE-5cT6QQLYzzfal_VEsijUxl3QUOkoMKDCngZGCEYVF0HdGpaCv6tSlkhrrOTbaHEwHNhdhCM_pKlbRJjmXNRlFBkuU7dqgCtOE2k8RIqRiJMZTTmoZfTjnGCZxdBFcdlFHjopyz_kBB0_lqwUAxvPJuo4ZiIUzgf2he-ho_K261r4b6IGdjiFMgGXDtcx94id3CDKV3FOI8gd9hDLhvWXNsSnnYtmebX3l0r7aJlBXA1EjocVtDgZTe2BA0YTfZgZ_zvxrwIF
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfSmrkZA4GRzbcZNj1YWytAcEErcojh0JUbUIWiE48Ql8I1-CJ2mCCkJIcIxiJ47XN5OZ9wAOlINCsTsXKDd-TKWvQ6qrilFmrRdYhxF0liTW6ar2tTy78YtoQsyFyfkhSocbroxsv8YFjg7p40_WUEzBdgYeR9I81K2dQVlvpM9vXJYMUtxNzzzBSAiKOvQFbyPjx5P1J8-lb2BzErtmh09rAXTR7Dzm5O5oNNRHycsXRsd_fdcizI-hKanlc2kJpmx_GWbrhSLcCpy3eoMn0syFc3rPL_aBdBz2JqhhP0TaA1eKoGOXxOQkfnx_fWvcpukI_XFFLWNJI4sZWYXrVvOq3qZjMQaaSI8Jaj0_QfjnGe2paqJ4GGjjLlgQ69A3KMSe-kZKzmIh_ao1PEWTN055oqyxSqzBdH_QtxtAQi9gqdtHuBZCVlUYGqFSt3GgNc4SZSpAi6GIkjFTOQpm9KKcY5lH2EVR2UUVOCzL3-ccHT-W3C5GNhqv1ceIy0A6M9iTXgX2y9uua_HXSdy3gxGW8YVy0I67R6znM6J8lRAsxPThCvBsXH9pQ1TrnjbLq82_VNqD2fZV5yK6OO2eb8EcxzAbDCQPtmF6-DCyOw4nDfVuthI-AB6vBiE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CILG9cNmNssKMNGlPBsd23OSxalpgQDVNQ-ItsmNHQqtaBK0QfeIn8Bv5JfPJDbppQtoeo9iJY59jf8fx-T6Az8pDIe3XBcptqKkMTUxNRzHKnAsi5zGCKZLEzobq6Fx-vQgvnmXxl_wQzYYbekYxX6ODX9n84Ik0FDOwfXzHkTMPZWtXpGIxijck3xsCKe6ts8wvEoKiDH1N28j4wWL9xWXpD6y5CF2LtWewDrpudXnk5Of-bGr2s_lvhI7_81kbsFYBU9ItLWkTltz4Dbzq1Xpwb-FkMJrckn4pmzO6m7trcuaRN0EF-ymSHvhSBLd1iSaH-ubx_iG5zPMZ7sbVtawjSXFi5B2cD_o_eke0kmKgmQyYoC4IMwR_gTWB6mSKx5Gx_oJF2sShRRn2PLRScqaFDDvO8hwDXp3zTDnrlHgPy-PJ2G0BiYOI5X4W4UYI2VFxbIXK_bSBsTjLlG0BrUcizSqecpTLGKUlwzJPsYvSpota8KUpf1UydPy1ZLse2LTy1JuUy0j6IDiQQQv2mtu-a_HHiR67yQzLhEJ5YMf9Iz6UBtG8SghvdSqWLeDFsL7QhrQ7PO43V9v_UukTrH5LBunp8fDkI7zmeMYGT5FHbVieXs_cjgdJU7Nb-MEv-4IE0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+Electrolyzer+Mass+Spectrometry+with+a+Gas%E2%80%90Diffusion+Electrode+Design&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hasa%2C+Bjorn&rft.au=Jouny%2C+Matthew&rft.au=Ko%2C+Byung+Hee&rft.au=Xu%2C+Bingjun&rft.date=2021-02-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=6&rft.spage=3277&rft.epage=3282&rft_id=info:doi/10.1002%2Fanie.202013713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202013713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon