Flow Electrolyzer Mass Spectrometry with a Gas‐Diffusion Electrode Design
Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐t...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 6; pp. 3277 - 3282 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
08.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.
A new technique, flow electrolyzer mass spectrometry (FEMS), is developed by incorporating a gas‐diffusion electrode design. It enables the detection of reactive volatile or gaseous species at high operating current densities. The electrochemical carbon monoxide reduction reaction (eCORR) is investigated and the oxygen incorporation mechanism in the acetaldehyde formation determined. |
---|---|
AbstractList | Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm-2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism.Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm-2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. A new technique, flow electrolyzer mass spectrometry (FEMS), is developed by incorporating a gas‐diffusion electrode design. It enables the detection of reactive volatile or gaseous species at high operating current densities. The electrochemical carbon monoxide reduction reaction (eCORR) is investigated and the oxygen incorporation mechanism in the acetaldehyde formation determined. Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm −2 ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch-type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas-diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm ). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as-formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n-propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical reactions involving gas reactants, conventional operando mass spectrometry struggles in detecting reaction intermediates because the batch‐type electrochemical reactor can only handle a very limited current density due to the low solubility of gas reactant(s). Herein, we developed a new technique, namely flow electrolyzer mass spectrometry (FEMS), by incorporating a gas‐diffusion electrode design, which enables the detection of reactive volatile or gaseous species at high operating current densities (>100 mA cm−2). We investigated the electrochemical carbon monoxide reduction reaction (eCORR) on polycrystalline copper and elucidated the oxygen incorporation mechanism in the acetaldehyde formation. Combining FEMS and isotopic labelling, we showed that the oxygen in the as‐formed acetaldehyde intermediate originates from the reactant CO, while ethanol and n‐propanol contained mainly solvent oxygen. The observation provides direct experimental evidence of an isotopic scrambling mechanism. |
Author | Jouny, Matthew Jiao, Feng Ko, Byung Hee Hasa, Bjorn Xu, Bingjun |
Author_xml | – sequence: 1 givenname: Bjorn orcidid: 0000-0001-7526-7840 surname: Hasa fullname: Hasa, Bjorn organization: University of Delaware – sequence: 2 givenname: Matthew orcidid: 0000-0002-5778-1106 surname: Jouny fullname: Jouny, Matthew organization: University of Delaware – sequence: 3 givenname: Byung Hee orcidid: 0000-0002-0934-5182 surname: Ko fullname: Ko, Byung Hee organization: University of Delaware – sequence: 4 givenname: Bingjun surname: Xu fullname: Xu, Bingjun email: bxu@udel.edu organization: University of Delaware – sequence: 5 givenname: Feng orcidid: 0000-0002-3335-3203 surname: Jiao fullname: Jiao, Feng email: jiao@udel.edu organization: University of Delaware |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33090694$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkclOwzAQhi0EogtcOaJIXLikeMt2rLpRUeAAnC0nmYCrLMVOVJUTj8Az8iS4tAWpEuI0Huv7RqP5O-iwrEpA6IzgHsGYXslSQY9iigkLCDtAbeJR4rIgYIf2zRlzg9AjLdQxZm75MMT-MWoxhiPsR7yNbsZ5tXRGOSS1rvLVG2jnVhrjPCy-fwqo9cpZqvrFkc5Ems_3j6HKssaoqtxZKThDMOq5PEFHmcwNnG5rFz2NR4-Da3d2P5kO-jM34QQzF4iXYO75JI2JHyQ-jcI4tQ0OZRx5KcWMZl7KOcWScS-AlGZ280BmNPEhBZ910eVm7kJXrw2YWhTKJJDnsoSqMYJyj_lhxCiz6MUeOq8aXdrtLBVySgjhxFLnW6qJC0jFQqtC6pXYnckCfAMkujJGQyYSVcvaHqHWUuWCYLFOQ6zTED9pWK23p-0m_ylEG2Gpclj9Q4v-3XT0634B0Wib1w |
CitedBy_id | crossref_primary_10_1021_acs_analchem_1c00116 crossref_primary_10_1039_D2CC06065E crossref_primary_10_1016_j_apcatb_2021_120958 crossref_primary_10_1038_s41560_022_01092_9 crossref_primary_10_1002_anie_202014711 crossref_primary_10_1021_acsenergylett_1c02659 crossref_primary_10_1039_D2SC01317G crossref_primary_10_1038_s41467_023_39558_3 crossref_primary_10_1021_acscatal_4c03271 crossref_primary_10_1039_D3EY00079F crossref_primary_10_1038_s41467_021_22291_0 crossref_primary_10_1149_1945_7111_ad07ac crossref_primary_10_1016_j_coelec_2023_101248 crossref_primary_10_1021_acs_energyfuels_4c04730 crossref_primary_10_1002_anie_202302789 crossref_primary_10_1002_ange_202312607 crossref_primary_10_1038_s41467_023_40296_9 crossref_primary_10_1021_acscatal_2c04802 crossref_primary_10_1016_j_esci_2023_100143 crossref_primary_10_1021_acs_accounts_1c00674 crossref_primary_10_1002_advs_202416597 crossref_primary_10_1039_D1EE02966E crossref_primary_10_1002_ange_202014711 crossref_primary_10_1002_anie_202312607 crossref_primary_10_1021_acsami_3c04556 crossref_primary_10_1021_acs_chemrev_1c00690 crossref_primary_10_1016_j_matre_2022_100173 crossref_primary_10_1021_jacs_4c10629 crossref_primary_10_1016_S1872_2067_23_64522_X crossref_primary_10_1021_acs_energyfuels_2c00271 crossref_primary_10_1039_D2CS00381C crossref_primary_10_1039_D3DT00921A crossref_primary_10_1016_j_xcrp_2021_100602 crossref_primary_10_1039_D2CC06503G crossref_primary_10_1016_j_checat_2022_10_026 crossref_primary_10_1021_acscatal_3c02370 crossref_primary_10_1021_jacs_1c10535 crossref_primary_10_1021_jacs_2c08380 crossref_primary_10_1002_ange_202302789 crossref_primary_10_1021_acs_joc_2c01311 crossref_primary_10_1021_acs_analchem_4c04997 crossref_primary_10_1039_D1EN00977J crossref_primary_10_1016_j_apcatb_2024_124616 crossref_primary_10_1016_j_esci_2024_100333 crossref_primary_10_1016_j_checat_2022_06_009 crossref_primary_10_1016_j_cogsc_2023_100765 |
Cites_doi | 10.1038/s41929-018-0133-2 10.1021/jacs.9b11817 10.1002/adma.201803111 10.1007/s10800-006-9173-4 10.1002/anie.201508851 10.1002/ange.201508851 10.1021/jacs.8b03986 10.1021/jacs.8b13201 10.1016/j.jpowsour.2015.09.124 10.1021/acsami.7b15418 10.1021/jacs.8b04058 10.1002/anie.201901923 10.1002/ange.201901923 10.1021/jacs.7b08607 10.1021/ja302668n 10.1016/j.cattod.2015.09.029 10.1021/acs.chemrev.8b00705 10.1246/cl.1985.1695 10.1038/s41929-019-0269-8 10.1039/c2ee21234j 10.1039/c1sc00277e |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202013713 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3282 |
ExternalDocumentID | 33090694 10_1002_anie_202013713 ANIE202013713 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CBET-1904966 – fundername: National Science Foundation grantid: CBET-1904966 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4103-e15c04561db167c6298bd1db08ab95d2032f5d4420a3457ed2f0027af2c6ede63 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:40:42 EDT 2025 Fri Jul 25 10:46:26 EDT 2025 Wed Feb 19 02:29:05 EST 2025 Tue Jul 01 01:17:50 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 Wed Jan 22 16:31:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | CO reduction CO2 utilization operando mass spectrometry electrocatalysis |
Language | English |
License | 2020 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4103-e15c04561db167c6298bd1db08ab95d2032f5d4420a3457ed2f0027af2c6ede63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7526-7840 0000-0002-0934-5182 0000-0002-3335-3203 0000-0002-5778-1106 |
PMID | 33090694 |
PQID | 2484211141 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2453689323 proquest_journals_2484211141 pubmed_primary_33090694 crossref_citationtrail_10_1002_anie_202013713 crossref_primary_10_1002_anie_202013713 wiley_primary_10_1002_anie_202013713_ANIE202013713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 8, 2021 |
PublicationDateYYYYMMDD | 2021-02-08 |
PublicationDate_xml | – month: 02 year: 2021 text: February 8, 2021 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2016; 55 128 2011; 2 2018; 140 2012; 134 2019; 2 2020; 142 2018; 1 2006; 36 2019; 119 2018; 30 2016; 301 2019; 141 2018; 10 2012; 5 2016; 262 2019 2019; 58 131 2017; 139 1985; 14 e_1_2_6_10_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_18_1 e_1_2_6_14_2 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 55 128 start-page: 1450 1472 year: 2016 2016 end-page: 1454 1476 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 1215 year: 2006 end-page: 1221 publication-title: J. Appl. Electrochem. – volume: 14 start-page: 1695 year: 1985 end-page: 1698 publication-title: Chem. Lett. – volume: 139 start-page: 15848 year: 2017 end-page: 15857 publication-title: J. Am. Chem. Soc. – volume: 301 start-page: 219 year: 2016 end-page: 228 publication-title: J. Power Sources – volume: 10 start-page: 8574 year: 2018 end-page: 8584 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 142 start-page: 2975 year: 2020 end-page: 2983 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 7273 7351 year: 2019 2019 end-page: 7277 7355 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 7610 year: 2019 end-page: 7672 publication-title: Chem. Rev. – volume: 1 start-page: 748 year: 2018 end-page: 755 publication-title: Nat. Catal. – volume: 262 start-page: 90 year: 2016 end-page: 94 publication-title: Catal. Today – volume: 141 start-page: 4191 year: 2019 end-page: 4193 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9864 year: 2012 end-page: 9867 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 9337 year: 2018 end-page: 9340 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 7012 year: 2018 end-page: 7020 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 423 year: 2019 end-page: 430 publication-title: Nat. Catal. – volume: 5 start-page: 7050 year: 2012 end-page: 7059 publication-title: Energy Environ. Sci. – volume: 2 start-page: 1902 year: 2011 end-page: 1909 publication-title: Chem. Sci. – ident: e_1_2_6_11_1 doi: 10.1038/s41929-018-0133-2 – ident: e_1_2_6_10_1 doi: 10.1021/jacs.9b11817 – ident: e_1_2_6_4_1 doi: 10.1002/adma.201803111 – ident: e_1_2_6_16_1 doi: 10.1007/s10800-006-9173-4 – ident: e_1_2_6_14_1 doi: 10.1002/anie.201508851 – ident: e_1_2_6_14_2 doi: 10.1002/ange.201508851 – ident: e_1_2_6_12_1 doi: 10.1021/jacs.8b03986 – ident: e_1_2_6_13_1 doi: 10.1021/jacs.8b13201 – ident: e_1_2_6_7_1 doi: 10.1016/j.jpowsour.2015.09.124 – ident: e_1_2_6_18_1 doi: 10.1021/acsami.7b15418 – ident: e_1_2_6_9_1 doi: 10.1021/jacs.8b04058 – ident: e_1_2_6_17_1 doi: 10.1002/anie.201901923 – ident: e_1_2_6_17_2 doi: 10.1002/ange.201901923 – ident: e_1_2_6_6_1 doi: 10.1021/jacs.7b08607 – ident: e_1_2_6_19_1 doi: 10.1021/ja302668n – ident: e_1_2_6_15_1 doi: 10.1016/j.cattod.2015.09.029 – ident: e_1_2_6_2_1 doi: 10.1021/acs.chemrev.8b00705 – ident: e_1_2_6_1_1 doi: 10.1246/cl.1985.1695 – ident: e_1_2_6_3_1 doi: 10.1038/s41929-019-0269-8 – ident: e_1_2_6_5_1 doi: 10.1039/c2ee21234j – ident: e_1_2_6_8_1 doi: 10.1039/c1sc00277e |
SSID | ssj0028806 |
Score | 2.5433342 |
Snippet | Operando mass spectrometry is a powerful technique to probe reaction intermediates near the surface of catalyst in electrochemical systems. For electrochemical... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3277 |
SubjectTerms | Acetaldehyde Carbon monoxide Catalysts Chemical reactions Chemical reduction CO reduction CO2 utilization Current density electrocatalysis Electrochemistry Electrodes Ethanol Intermediates Labeling Mass spectrometry Mass spectroscopy operando mass spectrometry Oxygen Propanol Reaction intermediates Scientific imaging Spectroscopy |
Title | Flow Electrolyzer Mass Spectrometry with a Gas‐Diffusion Electrode Design |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202013713 https://www.ncbi.nlm.nih.gov/pubmed/33090694 https://www.proquest.com/docview/2484211141 https://www.proquest.com/docview/2453689323 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7ii754v1SnRBB8ypYmadY-ytycinsQB3srSZOCODbZBdEnf4K_0V9iTrtWp4igj6VJmyYnyXfSc74PoWPpoJBy-wJhJlBEBDoiui4podb6oXUYQWdJYtcd2e6Ky17Q-5TFn_NDlAduMDOy9RomuNLj2gdpKGRgO_-OAWdeJlsLAVuAim5K_ijmjDNPL-KcgAp9wdpIWW2--vyu9A1qziPXbOtprSJVNDqPOLmvTie6mjx_4XP8z1etoZUZLsWnuSGtowU72EBLjUIObhNdtfrDR9zMVXP6T892hK8d8MYgYD8BzgNXCsOpLlb4XI3fXl7P7tJ0CodxRS1j8VkWMLKFuq3mbaNNZkoMJBE-5cT6QQLYzzfal_VEsijUxl3QUOkoMKDCngZGCEYVF0HdGpaCv6tSlkhrrOTbaHEwHNhdhCM_pKlbRJjmXNRlFBkuU7dqgCtOE2k8RIqRiJMZTTmoZfTjnGCZxdBFcdlFHjopyz_kBB0_lqwUAxvPJuo4ZiIUzgf2he-ho_K261r4b6IGdjiFMgGXDtcx94id3CDKV3FOI8gd9hDLhvWXNsSnnYtmebX3l0r7aJlBXA1EjocVtDgZTe2BA0YTfZgZ_zvxrwIF |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB0hOMCFfSmrkZA4GRzbcZNj1YWytAcEErcojh0JUbUIWiE48Ql8I1-CJ2mCCkJIcIxiJ47XN5OZ9wAOlINCsTsXKDd-TKWvQ6qrilFmrRdYhxF0liTW6ar2tTy78YtoQsyFyfkhSocbroxsv8YFjg7p40_WUEzBdgYeR9I81K2dQVlvpM9vXJYMUtxNzzzBSAiKOvQFbyPjx5P1J8-lb2BzErtmh09rAXTR7Dzm5O5oNNRHycsXRsd_fdcizI-hKanlc2kJpmx_GWbrhSLcCpy3eoMn0syFc3rPL_aBdBz2JqhhP0TaA1eKoGOXxOQkfnx_fWvcpukI_XFFLWNJI4sZWYXrVvOq3qZjMQaaSI8Jaj0_QfjnGe2paqJ4GGjjLlgQ69A3KMSe-kZKzmIh_ao1PEWTN055oqyxSqzBdH_QtxtAQi9gqdtHuBZCVlUYGqFSt3GgNc4SZSpAi6GIkjFTOQpm9KKcY5lH2EVR2UUVOCzL3-ccHT-W3C5GNhqv1ceIy0A6M9iTXgX2y9uua_HXSdy3gxGW8YVy0I67R6znM6J8lRAsxPThCvBsXH9pQ1TrnjbLq82_VNqD2fZV5yK6OO2eb8EcxzAbDCQPtmF6-DCyOw4nDfVuthI-AB6vBiE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CILG9cNmNssKMNGlPBsd23OSxalpgQDVNQ-ItsmNHQqtaBK0QfeIn8Bv5JfPJDbppQtoeo9iJY59jf8fx-T6Az8pDIe3XBcptqKkMTUxNRzHKnAsi5zGCKZLEzobq6Fx-vQgvnmXxl_wQzYYbekYxX6ODX9n84Ik0FDOwfXzHkTMPZWtXpGIxijck3xsCKe6ts8wvEoKiDH1N28j4wWL9xWXpD6y5CF2LtWewDrpudXnk5Of-bGr2s_lvhI7_81kbsFYBU9ItLWkTltz4Dbzq1Xpwb-FkMJrckn4pmzO6m7trcuaRN0EF-ymSHvhSBLd1iSaH-ubx_iG5zPMZ7sbVtawjSXFi5B2cD_o_eke0kmKgmQyYoC4IMwR_gTWB6mSKx5Gx_oJF2sShRRn2PLRScqaFDDvO8hwDXp3zTDnrlHgPy-PJ2G0BiYOI5X4W4UYI2VFxbIXK_bSBsTjLlG0BrUcizSqecpTLGKUlwzJPsYvSpota8KUpf1UydPy1ZLse2LTy1JuUy0j6IDiQQQv2mtu-a_HHiR67yQzLhEJ5YMf9Iz6UBtG8SghvdSqWLeDFsL7QhrQ7PO43V9v_UukTrH5LBunp8fDkI7zmeMYGT5FHbVieXs_cjgdJU7Nb-MEv-4IE0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+Electrolyzer+Mass+Spectrometry+with+a+Gas%E2%80%90Diffusion+Electrode+Design&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Hasa%2C+Bjorn&rft.au=Jouny%2C+Matthew&rft.au=Ko%2C+Byung+Hee&rft.au=Xu%2C+Bingjun&rft.date=2021-02-08&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=6&rft.spage=3277&rft.epage=3282&rft_id=info:doi/10.1002%2Fanie.202013713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202013713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |