Active Template Synthesis of Protein Heterocatenanes

Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 32; pp. 11097 - 11104
Main Authors Da, Xiao‐Di, Zhang, Wen‐Bin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 05.08.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering. Tie up loose ends: Protein‐heterocatenane formation was achieved using an active template developed by rewiring the connectivity of the SpyTag–SpyCatcher complex. Protein heterocatenanes are more resistant to proteolytic cleavage, thermal unfolding, and freeze–thawing than the individual, component proteins. This genetically encodable method provides a powerful way to integrate multiple proteins in one complex beyond simple fusion.
AbstractList Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering.
Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering. Tie up loose ends: Protein‐heterocatenane formation was achieved using an active template developed by rewiring the connectivity of the SpyTag–SpyCatcher complex. Protein heterocatenanes are more resistant to proteolytic cleavage, thermal unfolding, and freeze–thawing than the individual, component proteins. This genetically encodable method provides a powerful way to integrate multiple proteins in one complex beyond simple fusion.
Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag-SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good-yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw-induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein-topology engineering.Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag-SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good-yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw-induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein-topology engineering.
Author Zhang, Wen‐Bin
Da, Xiao‐Di
Author_xml – sequence: 1
  givenname: Xiao‐Di
  surname: Da
  fullname: Da, Xiao‐Di
  organization: Peking University
– sequence: 2
  givenname: Wen‐Bin
  orcidid: 0000-0002-8746-0792
  surname: Zhang
  fullname: Zhang, Wen‐Bin
  email: wenbin@pku.edu.cn
  organization: Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31218786$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQIMoWh9blzLgxs3UZJLMZJal-IKigroOSeYOpkyTmqRK_95IfYAgrnIh51wuZx9tO-8AoWOCxwTj6lw5C-MKkxazltEtNCK8IiVtGrqdZ0Zp2QhO9tB-jPPMC4HrXbRHSUVEI-oRYhOT7CsUj7BYDipB8bB26RmijYXvi_vgE1hXXEOC4E3-d8pBPEQ7vRoiHH2-B-jp8uJxel3O7q5uppNZaRjBtOSamq6jvelbqg1vRYd111WkEbrnoHXLjSBKCQxtpYVgvOGqq3WLu16DaYAeoLPN3mXwLyuISS5sNDAM-Qi_irKqGCOMMcEzevoLnftVcPm6TNWcszrnytTJJ7XSC-jkMtiFCmv51SMDbAOY4GMM0Etjk0rWuxSUHSTB8iO7_Mguv7NnbfxL-9r8p9BuhDc7wPofWk5uby5-3HeAxJR4
CitedBy_id crossref_primary_10_1002_ange_202005490
crossref_primary_10_1021_jacs_1c06169
crossref_primary_10_1021_acssynbio_9b00407
crossref_primary_10_1002_ange_202314980
crossref_primary_10_1002_cpz1_99
crossref_primary_10_1016_j_giant_2023_100226
crossref_primary_10_1021_acs_biomac_4c00257
crossref_primary_10_1039_D4CS00430B
crossref_primary_10_1007_s00339_023_07258_w
crossref_primary_10_1021_acs_accounts_3c00372
crossref_primary_10_1002_cjoc_202000101
crossref_primary_10_1021_acs_biomac_4c01243
crossref_primary_10_1038_s41557_021_00770_7
crossref_primary_10_1002_anie_202005490
crossref_primary_10_1002_cjoc_202300190
crossref_primary_10_1016_j_cossms_2020_100896
crossref_primary_10_1038_s41467_023_39233_7
crossref_primary_10_1002_bit_27460
crossref_primary_10_1007_s11426_021_1183_x
crossref_primary_10_1002_anie_202006727
crossref_primary_10_1016_j_chempr_2023_03_030
crossref_primary_10_1002_anie_202314980
crossref_primary_10_1039_D1CB00246E
crossref_primary_10_1002_ange_202006727
crossref_primary_10_1021_acssuschemeng_0c00435
crossref_primary_10_1016_j_giant_2020_100011
crossref_primary_10_1016_j_trechm_2021_02_002
crossref_primary_10_1021_acssynbio_2c00216
crossref_primary_10_1016_j_giant_2022_100092
crossref_primary_10_1093_nsr_nwad304
crossref_primary_10_1073_pnas_2407355121
crossref_primary_10_1002_ejoc_202100749
crossref_primary_10_1016_j_supmat_2023_100059
Cites_doi 10.1016/j.jmb.2003.09.035
10.1016/j.pep.2004.08.016
10.1002/anie.201004340
10.1016/j.jmb.2018.10.012
10.1021/jacs.5b04726
10.1021/ar0302282
10.1002/ange.201707623
10.1002/anie.201705194
10.1021/jacs.8b03394
10.1021/ja101121j
10.1002/anie.201511640
10.1021/ol062247s
10.1021/acs.biomac.8b00306
10.1073/pnas.1115485109
10.1016/bs.abr.2015.09.008
10.1039/c0sc00279h
10.1016/S0092-8674(00)81221-0
10.1021/ja0114409
10.1038/nchem.2516
10.1002/chem.201504236
10.1016/j.cbpa.2007.10.002
10.1039/c3cc43219j
10.1038/pj.2017.60
10.1002/ange.201511640
10.1073/pnas.1315776111
10.1002/ange.201004340
10.1002/anie.201707623
10.1002/1521-3757(20011001)113:19<3737::AID-ANGE3737>3.0.CO;2-W
10.1038/s41570-017-0061
10.1126/science.289.5487.2129
10.1021/jacs.7b04830
10.1002/ange.200705859
10.1002/anie.200701678
10.1080/10610278.2015.1122194
10.1002/ange.200800891
10.1021/jacs.8b08250
10.1007/s11426-017-9155-2
10.1016/j.addr.2014.10.005
10.1073/pnas.1615862114
10.1016/j.jmb.2013.10.021
10.1021/jacs.7b05640
10.1039/C7SC02686B
10.1002/anie.200705859
10.1039/b804243h
10.1021/acs.bioconjchem.8b00131
10.1021/acs.accounts.5b00156
10.1016/j.jbiotec.2016.06.012
10.1021/ja0355978
10.1110/ps.062673207
10.1021/acscentsci.7b00104
10.1016/j.str.2012.05.009
10.3390/polym9090454
10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q
10.1002/anie.200800891
10.1002/ange.200701678
10.1016/S0006-3495(96)79640-6
10.1021/ol400992p
10.1021/ja056903f
10.1038/sj.emboj.7600222
10.1002/ange.201705194
10.1007/s10847-015-0511-1
10.1016/j.jmb.2007.02.078
10.1016/j.str.2005.07.021
10.1039/B901974J
10.1039/c1py00088h
10.1016/j.febslet.2006.02.045
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201904943
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 11104
ExternalDocumentID 31218786
10_1002_anie_201904943
ANIE201904943
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21474003; 91427304
– fundername: National Natural Science Foundation of China
  grantid: 21474003
– fundername: National Natural Science Foundation of China
  grantid: 91427304
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4103-5b3cdd3fcf93bc598d0bdd2178bf5ebb95c81aa80e92b884575ad6b90dfbec7e3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:34:04 EDT 2025
Fri Jul 25 10:46:45 EDT 2025
Wed Feb 19 02:30:44 EST 2025
Tue Jul 01 02:26:51 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
Wed Jan 22 16:39:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords protein engineering
SpyStapler
catenane
supramolecular chemistry
topology
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4103-5b3cdd3fcf93bc598d0bdd2178bf5ebb95c81aa80e92b884575ad6b90dfbec7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8746-0792
PMID 31218786
PQID 2265546100
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2244144485
proquest_journals_2265546100
pubmed_primary_31218786
crossref_citationtrail_10_1002_anie_201904943
crossref_primary_10_1002_anie_201904943
wiley_primary_10_1002_anie_201904943_ANIE201904943
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 5, 2019
PublicationDateYYYYMMDD 2019-08-05
PublicationDate_xml – month: 08
  year: 2019
  text: August 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2017; 1
2017; 3
2004; 23
2015; 76
1996; 70
2008 2008; 47 120
2017; 114
2017; 9
2015; 48
2013; 15
2010; 1
2000; 289
2015; 82
2015; 137
2004; 38
2004; 37
2016; 231
1998; 94
2003; 125
2006; 128
2019; 431
2012; 20
2007; 368
2018; 29
2001; 123
2011; 2
2018; 140
2013; 49
2015; 93
2010; 39
2006; 8
2010 2010; 49 122
2018; 61
2017 2017; 56 129
2003; 334
2014; 111
2007; 11
2017; 139
2012; 109
2007; 16
2014; 426
2018; 19
2016 2016; 55 128
2015; 21
2007 2007; 46 119
2010; 132
2006; 580
2017
2018; 50
2016; 28
2001 2001; 40 113
2016; 8
2009; 38
2005; 13
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_2
e_1_2_6_70_2
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_57_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_62_2
e_1_2_6_64_1
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_1
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_49_1
e_1_2_6_22_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_45_2
e_1_2_6_24_3
e_1_2_6_26_1
e_1_2_6_45_3
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_1
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_18_1
e_1_2_6_54_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_58_1
e_1_2_6_61_2
e_1_2_6_63_1
Bruns C. J. (e_1_2_6_25_1) 2017
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_3
e_1_2_6_46_3
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_42_3
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_1
e_1_2_6_46_2
References_xml – volume: 123
  start-page: 11570
  year: 2001
  end-page: 11576
  publication-title: J. Am. Chem. Soc.
– volume: 37
  start-page: 123
  year: 2004
  end-page: 130
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 791
  year: 2016
  end-page: 796
  publication-title: Nat. Chem.
– volume: 140
  start-page: 17474
  year: 2018
  end-page: 17483
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 1909
  year: 2015
  end-page: 1919
  publication-title: Acc. Chem. Res.
– volume: 47 120
  start-page: 3381 3429
  year: 2008 2008
  end-page: 3384 3432
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 383
  year: 2010
  end-page: 386
  publication-title: Chem. Sci.
– volume: 114
  start-page: 3415
  year: 2017
  end-page: 3420
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 40 113
  start-page: 3625 3737
  year: 2001 2001
  end-page: 3627 3739
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 61
  start-page: 3
  year: 2018
  end-page: 16
  publication-title: Sci. China Chem.
– volume: 23
  start-page: 2029
  year: 2004
  end-page: 2038
  publication-title: EMBO J.
– volume: 109
  start-page: 690
  year: 2012
  end-page: 697
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 431
  start-page: 244
  year: 2019
  end-page: 257
  publication-title: J. Mol. Biol.
– volume: 580
  start-page: 1853
  year: 2006
  end-page: 1858
  publication-title: FEBS Lett.
– volume: 82
  start-page: 437
  year: 2015
  end-page: 451
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
– volume: 231
  start-page: 239
  year: 2016
  end-page: 249
  publication-title: J. Biotechnol.
– volume: 93
  start-page: 25
  year: 2015
  end-page: 41
  publication-title: Adv. Drug Delivery Rev.
– volume: 38
  start-page: 108
  year: 2004
  end-page: 115
  publication-title: Protein Expression Purif.
– volume: 19
  start-page: 2700
  year: 2018
  end-page: 2707
  publication-title: Biomacromolecules
– volume: 334
  start-page: 885
  year: 2003
  end-page: 899
  publication-title: J. Mol. Biol.
– volume: 2
  start-page: 1930
  year: 2011
  end-page: 1942
  publication-title: Polym. Chem.
– volume: 29
  start-page: 1622
  year: 2018
  end-page: 1629
  publication-title: Bioconjugate Chem.
– volume: 55 128
  start-page: 3442 3503
  year: 2016 2016
  end-page: 3446 3507
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 50
  start-page: 127
  year: 2018
  end-page: 147
  publication-title: Polym. J.
– volume: 139
  start-page: 10403
  year: 2017
  end-page: 10409
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 7770
  year: 2013
  end-page: 7772
  publication-title: Chem. Commun.
– volume: 139
  start-page: 8455
  year: 2017
  end-page: 8457
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 2684
  year: 2013
  end-page: 2687
  publication-title: Org. Lett.
– volume: 426
  start-page: 309
  year: 2014
  end-page: 317
  publication-title: J. Mol. Biol.
– volume: 8
  start-page: 5133
  year: 2006
  end-page: 5136
  publication-title: Org. Lett.
– volume: 8
  start-page: 6577
  year: 2017
  end-page: 6582
  publication-title: Chem. Sci.
– volume: 94
  start-page: 55
  year: 1998
  end-page: 60
  publication-title: Cell
– volume: 46 119
  start-page: 5709 5811
  year: 2007 2007
  end-page: 5713 5815
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 6049
  year: 2018
  end-page: 6052
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 0061
  year: 2017
  end-page: 0077
  publication-title: Nat. Rev. Chem.
– volume: 11
  start-page: 595
  year: 2007
  end-page: 603
  publication-title: Curr. Opin. Chem. Biol.
– volume: 38
  start-page: 1530
  year: 2009
  end-page: 1541
  publication-title: Chem. Soc. Rev.
– volume: 368
  start-page: 1332
  year: 2007
  end-page: 1344
  publication-title: J. Mol. Biol.
– volume: 13
  start-page: 1661
  year: 2005
  end-page: 1664
  publication-title: Structure
– volume: 16
  start-page: 1249
  year: 2007
  end-page: 1256
  publication-title: Protein Sci.
– volume: 49 122
  start-page: 8421 8599
  year: 2010 2010
  end-page: 8425 8603
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 76
  start-page: 1
  year: 2015
  end-page: 13
  publication-title: Adv. Bot. Res.
– volume: 70
  start-page: 971
  year: 1996
  end-page: 976
  publication-title: Biophys. J.
– volume: 289
  start-page: 2129
  year: 2000
  end-page: 2133
  publication-title: Science
– volume: 28
  start-page: 733
  year: 2016
  end-page: 741
  publication-title: Supramol. Chem.
– volume: 111
  start-page: 1176
  year: 2014
  end-page: 1181
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 125
  start-page: 9280
  year: 2003
  end-page: 9281
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 13985 14173
  year: 2017 2017
  end-page: 13989 14177
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 21
  start-page: 18910
  year: 2015
  end-page: 18914
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 473
  year: 2017
  end-page: 481
  publication-title: ACS Cent. Sci.
– volume: 1
  start-page: 0061
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 9
  start-page: 454
  year: 2017
  end-page: 473
  publication-title: Polymers
– volume: 47 120
  start-page: 4392 4464
  year: 2008 2008
  end-page: 4396 4468
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2017
– volume: 132
  start-page: 6243
  year: 2010
  end-page: 6248
  publication-title: J. Am. Chem. Soc.
– volume: 128
  start-page: 2186
  year: 2006
  end-page: 2187
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7656
  year: 2015
  end-page: 7659
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 16521 16748
  year: 2017 2017
  end-page: 16525 16752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1374
  year: 2012
  end-page: 1383
  publication-title: Structure
– volume: 39
  start-page: 1240
  year: 2010
  end-page: 1251
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_6_10_2
  doi: 10.1016/j.jmb.2003.09.035
– ident: e_1_2_6_62_2
  doi: 10.1016/j.pep.2004.08.016
– ident: e_1_2_6_63_1
  doi: 10.1002/anie.201004340
– ident: e_1_2_6_4_2
  doi: 10.1016/j.jmb.2018.10.012
– ident: e_1_2_6_43_2
  doi: 10.1021/jacs.5b04726
– ident: e_1_2_6_66_2
  doi: 10.1021/ar0302282
– ident: e_1_2_6_68_1
– ident: e_1_2_6_31_1
– ident: e_1_2_6_54_3
  doi: 10.1002/ange.201707623
– ident: e_1_2_6_24_2
  doi: 10.1002/anie.201705194
– ident: e_1_2_6_37_2
  doi: 10.1021/jacs.8b03394
– ident: e_1_2_6_47_2
  doi: 10.1021/ja101121j
– ident: e_1_2_6_23_2
  doi: 10.1002/anie.201511640
– ident: e_1_2_6_34_2
  doi: 10.1021/ol062247s
– ident: e_1_2_6_69_2
  doi: 10.1021/acs.biomac.8b00306
– ident: e_1_2_6_53_1
– ident: e_1_2_6_51_2
  doi: 10.1073/pnas.1115485109
– ident: e_1_2_6_15_2
  doi: 10.1016/bs.abr.2015.09.008
– ident: e_1_2_6_48_2
  doi: 10.1039/c0sc00279h
– ident: e_1_2_6_18_1
  doi: 10.1016/S0092-8674(00)81221-0
– ident: e_1_2_6_28_2
  doi: 10.1021/ja0114409
– ident: e_1_2_6_30_2
  doi: 10.1038/nchem.2516
– ident: e_1_2_6_39_2
  doi: 10.1002/chem.201504236
– ident: e_1_2_6_6_2
  doi: 10.1016/j.cbpa.2007.10.002
– ident: e_1_2_6_12_2
  doi: 10.1039/c3cc43219j
– ident: e_1_2_6_27_2
  doi: 10.1038/pj.2017.60
– ident: e_1_2_6_23_3
  doi: 10.1002/ange.201511640
– ident: e_1_2_6_50_2
  doi: 10.1073/pnas.1315776111
– ident: e_1_2_6_63_2
  doi: 10.1002/ange.201004340
– ident: e_1_2_6_54_2
  doi: 10.1002/anie.201707623
– ident: e_1_2_6_19_2
  doi: 10.1002/1521-3757(20011001)113:19<3737::AID-ANGE3737>3.0.CO;2-W
– ident: e_1_2_6_32_2
  doi: 10.1038/s41570-017-0061
– ident: e_1_2_6_13_2
  doi: 10.1126/science.289.5487.2129
– ident: e_1_2_6_17_1
  doi: 10.1021/jacs.7b04830
– ident: e_1_2_6_45_3
  doi: 10.1002/ange.200705859
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.200701678
– ident: e_1_2_6_40_2
  doi: 10.1080/10610278.2015.1122194
– ident: e_1_2_6_42_3
  doi: 10.1002/ange.200800891
– ident: e_1_2_6_52_2
  doi: 10.1021/jacs.8b08250
– ident: e_1_2_6_5_2
  doi: 10.1007/s11426-017-9155-2
– ident: e_1_2_6_67_1
  doi: 10.1016/j.addr.2014.10.005
– ident: e_1_2_6_3_2
  doi: 10.1073/pnas.1615862114
– ident: e_1_2_6_57_1
  doi: 10.1016/j.jmb.2013.10.021
– ident: e_1_2_6_38_2
  doi: 10.1021/jacs.7b05640
– ident: e_1_2_6_55_2
  doi: 10.1039/C7SC02686B
– ident: e_1_2_6_45_2
  doi: 10.1002/anie.200705859
– ident: e_1_2_6_26_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_59_1
  doi: 10.1038/s41570-017-0061
– ident: e_1_2_6_35_2
  doi: 10.1039/b804243h
– ident: e_1_2_6_56_1
  doi: 10.1021/acs.bioconjchem.8b00131
– ident: e_1_2_6_16_2
  doi: 10.1021/acs.accounts.5b00156
– ident: e_1_2_6_61_2
  doi: 10.1016/j.jbiotec.2016.06.012
– ident: e_1_2_6_65_2
  doi: 10.1021/ja0355978
– ident: e_1_2_6_20_1
  doi: 10.1110/ps.062673207
– ident: e_1_2_6_22_2
  doi: 10.1021/acscentsci.7b00104
– ident: e_1_2_6_60_1
– ident: e_1_2_6_64_1
– ident: e_1_2_6_7_1
– ident: e_1_2_6_14_2
  doi: 10.1016/j.str.2012.05.009
– ident: e_1_2_6_2_2
  doi: 10.3390/polym9090454
– ident: e_1_2_6_19_1
  doi: 10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q
– ident: e_1_2_6_42_2
  doi: 10.1002/anie.200800891
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.200701678
– ident: e_1_2_6_70_2
  doi: 10.1016/S0006-3495(96)79640-6
– ident: e_1_2_6_41_2
  doi: 10.1021/ol400992p
– ident: e_1_2_6_33_2
  doi: 10.1021/ja056903f
– ident: e_1_2_6_11_2
  doi: 10.1038/sj.emboj.7600222
– ident: e_1_2_6_24_3
  doi: 10.1002/ange.201705194
– ident: e_1_2_6_21_1
– ident: e_1_2_6_36_2
  doi: 10.1007/s10847-015-0511-1
– ident: e_1_2_6_8_2
  doi: 10.1016/j.jmb.2007.02.078
– ident: e_1_2_6_9_2
  doi: 10.1016/j.str.2005.07.021
– volume-title: The Nature of the Mechanical Bond: From Molecules to Machines
  year: 2017
  ident: e_1_2_6_25_1
– ident: e_1_2_6_44_2
  doi: 10.1039/B901974J
– ident: e_1_2_6_49_1
– ident: e_1_2_6_29_2
  doi: 10.1039/c1py00088h
– ident: e_1_2_6_58_1
  doi: 10.1016/j.febslet.2006.02.045
SSID ssj0028806
Score 2.4709194
SecondaryResourceType review_article
Snippet Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the...
Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11097
SubjectTerms catenane
Chain entanglement
Denaturation
Entanglement
Freeze-thawing
Protein biosynthesis
Protein engineering
Proteins
Proteolysis
Rewiring
SpyStapler
supramolecular chemistry
Synthesis
Topology
Title Active Template Synthesis of Protein Heterocatenanes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201904943
https://www.ncbi.nlm.nih.gov/pubmed/31218786
https://www.proquest.com/docview/2265546100
https://www.proquest.com/docview/2244144485
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCoKnaNsk3eS4iLJ6EPEB3krTJCBqd3F3D_rrnWm31VVE0FtLJ7SdTCZf2i_fABzwxAuvdM4QGnMmbBwz4yPPVOI6smOFT03F8r1Me3fi4l7ef9rFX-tDtB_caGRU-ZoGeG6Gxx-iobQDm6hZmhROSO6TCFuEiq5b_agEg7PeXsQ5oyr0jWpjlBxPN5-elb5BzWnkWk09Z4uQNw9dM04ej8Yjc1S8fdFz_M9bLcHCBJeG3TqQlmHGlSswd9KUg1sF0a0yY3jrngdPCFDDm9cSwePwYRj2fXhFcg8PZdgjdk2fWFZljkl0De7OTm9PemxScoEVIo44k4YX1nJfeM1NIbWykbEWly3KeOmM0bJQcZ6ryOnEKCUQ7OU2NTqyHoOh4_g6zJb90m1CaIW2BddOOu6FTLwyVKII87xJDUfUFABrXJ4VEz1yKovxlNVKyklGvshaXwRw2NoPaiWOHy13mh7MJiNymCHMJEIemgew315GH9IPEvRIf0w2CA4FLlhlABt1z7e34jGCoY5KA0iq_vvlGbLu5flpe7b1l0bbME_HFdtQ7sDs6GXsdhEBjcxeFeXv_6L8Vw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xcGAvPPZFeG2QkPZkSGI7tY8VAhWWrRAUiVsUx7aEFlJE2wP8emaSJqgghATHJGPFGY_tz87nbwB2eeKFVzpnCI05EzaOmfGRZypxHdmxwqemYvn2096lOLmSDZuQzsLU-hDthhv1jGq8pg5OG9L7z6qhdASbuFmaJE74F1igtN7Vquq8VZBKMDzrA0acM8pD3-g2Rsn-bPnZeekV2JzFrtXkc7QMpql2zTn5vzcZm73i8YWi46e-awWWptA07NaxtApzrvwGiwdNRrjvILrV4BgO3O3dDWLU8OKhRPw4uh6FQx-ekeLDdRn2iGAzJKJVmeM4-gMujw4HBz02zbrAChFHnEnDC2u5L7zmppBa2chYiysXZbx0xmhZqDjPVeR0YpQSiPdymxodWY_x0HH8J8yXw9KtQWiFtgXXTjruhUy8MpSlCId6kxqOwCkA1vg8K6aS5JQZ4yarxZSTjHyRtb4I4E9rf1eLcbxpudk0YTbtlKMMkSZx8tA8gJ32MfqQ_pGgR4YTskF8KHDNKgP4VTd9-yoeIx7qqDSApGrAd-qQdfvHh-3V-kcK_YbF3uDfaXZ63P-7AV_pfkU-lJswP76fuC0ERGOzXYX8E8s6AIE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4Bk4AX9hOWDbZMQuLJNInt1H6sgKoMVCF-SLxFcWxLCEirtX3Y_nrukiasQxMSPCY5K8n5fP6cfP4OYJcnXnilc4bQmDNh45gZH3mmEteVXSt8aiqW7zAdXImf1_L6r138tT5E-8GNRkaVr2mAj63vPIqG0g5somZpUjjhy_BGpJGiuD48bwWkEozOen8R54zK0DeyjVHSWWy_OC09wZqL0LWae_pvIW-euqac3O7Ppma_-POPoONrXusdbMyBadirI-k9LLnyA6wdNPXgPoLoVakxvHT34ztEqOHF7xLR4-RmEo58eEZ6DzdlOCB6zYhoVmWOWfQTXPWPLg8GbF5zgRUijjiThhfWcl94zU0htbKRsRbXLcp46YzRslBxnqvI6cQoJRDt5TY1OrIeo6Hr-CaslKPSfYbQCm0Lrp103AuZeGWoRhEmepMajrApANa4PCvmguRUF-Muq6WUk4x8kbW-CGCvtR_XUhz_tdxuejCbD8lJhjiTGHloHsCP9jL6kP6QoEdGM7JBdChwxSoD2Kp7vr0VjxENdVUaQFL13zPPkPWGx0ft0ZeXNPoOq2eH_ez0eHjyFdbpdMU8lNuwMv01czuIhqbmWxXwD93P_yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Template+Synthesis+of+Protein+Heterocatenanes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Da%2C+Xiao-Di&rft.au=Zhang%2C+Wen-Bin&rft.date=2019-08-05&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=32&rft.spage=11097&rft_id=info:doi/10.1002%2Fanie.201904943&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon