Active Template Synthesis of Protein Heterocatenanes
Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 32; pp. 11097 - 11104 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
05.08.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering.
Tie up loose ends: Protein‐heterocatenane formation was achieved using an active template developed by rewiring the connectivity of the SpyTag–SpyCatcher complex. Protein heterocatenanes are more resistant to proteolytic cleavage, thermal unfolding, and freeze–thawing than the individual, component proteins. This genetically encodable method provides a powerful way to integrate multiple proteins in one complex beyond simple fusion. |
---|---|
AbstractList | Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering. Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag–SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good‐yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw‐induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein‐topology engineering. Tie up loose ends: Protein‐heterocatenane formation was achieved using an active template developed by rewiring the connectivity of the SpyTag–SpyCatcher complex. Protein heterocatenanes are more resistant to proteolytic cleavage, thermal unfolding, and freeze–thawing than the individual, component proteins. This genetically encodable method provides a powerful way to integrate multiple proteins in one complex beyond simple fusion. Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag-SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good-yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw-induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein-topology engineering.Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the SpyTag-SpyCatcher complex to induce rationally designed chain entanglement, we developed a biologically enabled active template for the concise, modular, and programmable synthesis of protein heterocatenanes both in vitro and in vivo. It is a general and good-yielding reaction for forming heterocatenanes with precisely controlled ring sizes and broad structural diversity. More importantly, such heterocatenation not only provides an efficient means of bioconjugation for integrating multiple native functions, but also enhances the stability of the component proteins against proteolytic digestion, thermal unfolding, and freeze/thaw-induced mechanical denaturation, thus opening up a versatile path in the nascent field of protein-topology engineering. |
Author | Zhang, Wen‐Bin Da, Xiao‐Di |
Author_xml | – sequence: 1 givenname: Xiao‐Di surname: Da fullname: Da, Xiao‐Di organization: Peking University – sequence: 2 givenname: Wen‐Bin orcidid: 0000-0002-8746-0792 surname: Zhang fullname: Zhang, Wen‐Bin email: wenbin@pku.edu.cn organization: Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31218786$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkMtKAzEUQIMoWh9blzLgxs3UZJLMZJal-IKigroOSeYOpkyTmqRK_95IfYAgrnIh51wuZx9tO-8AoWOCxwTj6lw5C-MKkxazltEtNCK8IiVtGrqdZ0Zp2QhO9tB-jPPMC4HrXbRHSUVEI-oRYhOT7CsUj7BYDipB8bB26RmijYXvi_vgE1hXXEOC4E3-d8pBPEQ7vRoiHH2-B-jp8uJxel3O7q5uppNZaRjBtOSamq6jvelbqg1vRYd111WkEbrnoHXLjSBKCQxtpYVgvOGqq3WLu16DaYAeoLPN3mXwLyuISS5sNDAM-Qi_irKqGCOMMcEzevoLnftVcPm6TNWcszrnytTJJ7XSC-jkMtiFCmv51SMDbAOY4GMM0Etjk0rWuxSUHSTB8iO7_Mguv7NnbfxL-9r8p9BuhDc7wPofWk5uby5-3HeAxJR4 |
CitedBy_id | crossref_primary_10_1002_ange_202005490 crossref_primary_10_1021_jacs_1c06169 crossref_primary_10_1021_acssynbio_9b00407 crossref_primary_10_1002_ange_202314980 crossref_primary_10_1002_cpz1_99 crossref_primary_10_1016_j_giant_2023_100226 crossref_primary_10_1021_acs_biomac_4c00257 crossref_primary_10_1039_D4CS00430B crossref_primary_10_1007_s00339_023_07258_w crossref_primary_10_1021_acs_accounts_3c00372 crossref_primary_10_1002_cjoc_202000101 crossref_primary_10_1021_acs_biomac_4c01243 crossref_primary_10_1038_s41557_021_00770_7 crossref_primary_10_1002_anie_202005490 crossref_primary_10_1002_cjoc_202300190 crossref_primary_10_1016_j_cossms_2020_100896 crossref_primary_10_1038_s41467_023_39233_7 crossref_primary_10_1002_bit_27460 crossref_primary_10_1007_s11426_021_1183_x crossref_primary_10_1002_anie_202006727 crossref_primary_10_1016_j_chempr_2023_03_030 crossref_primary_10_1002_anie_202314980 crossref_primary_10_1039_D1CB00246E crossref_primary_10_1002_ange_202006727 crossref_primary_10_1021_acssuschemeng_0c00435 crossref_primary_10_1016_j_giant_2020_100011 crossref_primary_10_1016_j_trechm_2021_02_002 crossref_primary_10_1021_acssynbio_2c00216 crossref_primary_10_1016_j_giant_2022_100092 crossref_primary_10_1093_nsr_nwad304 crossref_primary_10_1073_pnas_2407355121 crossref_primary_10_1002_ejoc_202100749 crossref_primary_10_1016_j_supmat_2023_100059 |
Cites_doi | 10.1016/j.jmb.2003.09.035 10.1016/j.pep.2004.08.016 10.1002/anie.201004340 10.1016/j.jmb.2018.10.012 10.1021/jacs.5b04726 10.1021/ar0302282 10.1002/ange.201707623 10.1002/anie.201705194 10.1021/jacs.8b03394 10.1021/ja101121j 10.1002/anie.201511640 10.1021/ol062247s 10.1021/acs.biomac.8b00306 10.1073/pnas.1115485109 10.1016/bs.abr.2015.09.008 10.1039/c0sc00279h 10.1016/S0092-8674(00)81221-0 10.1021/ja0114409 10.1038/nchem.2516 10.1002/chem.201504236 10.1016/j.cbpa.2007.10.002 10.1039/c3cc43219j 10.1038/pj.2017.60 10.1002/ange.201511640 10.1073/pnas.1315776111 10.1002/ange.201004340 10.1002/anie.201707623 10.1002/1521-3757(20011001)113:19<3737::AID-ANGE3737>3.0.CO;2-W 10.1038/s41570-017-0061 10.1126/science.289.5487.2129 10.1021/jacs.7b04830 10.1002/ange.200705859 10.1002/anie.200701678 10.1080/10610278.2015.1122194 10.1002/ange.200800891 10.1021/jacs.8b08250 10.1007/s11426-017-9155-2 10.1016/j.addr.2014.10.005 10.1073/pnas.1615862114 10.1016/j.jmb.2013.10.021 10.1021/jacs.7b05640 10.1039/C7SC02686B 10.1002/anie.200705859 10.1039/b804243h 10.1021/acs.bioconjchem.8b00131 10.1021/acs.accounts.5b00156 10.1016/j.jbiotec.2016.06.012 10.1021/ja0355978 10.1110/ps.062673207 10.1021/acscentsci.7b00104 10.1016/j.str.2012.05.009 10.3390/polym9090454 10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q 10.1002/anie.200800891 10.1002/ange.200701678 10.1016/S0006-3495(96)79640-6 10.1021/ol400992p 10.1021/ja056903f 10.1038/sj.emboj.7600222 10.1002/ange.201705194 10.1007/s10847-015-0511-1 10.1016/j.jmb.2007.02.078 10.1016/j.str.2005.07.021 10.1039/B901974J 10.1039/c1py00088h 10.1016/j.febslet.2006.02.045 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201904943 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 11104 |
ExternalDocumentID | 31218786 10_1002_anie_201904943 ANIE201904943 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21474003; 91427304 – fundername: National Natural Science Foundation of China grantid: 21474003 – fundername: National Natural Science Foundation of China grantid: 91427304 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4103-5b3cdd3fcf93bc598d0bdd2178bf5ebb95c81aa80e92b884575ad6b90dfbec7e3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:34:04 EDT 2025 Fri Jul 25 10:46:45 EDT 2025 Wed Feb 19 02:30:44 EST 2025 Tue Jul 01 02:26:51 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 Wed Jan 22 16:39:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | protein engineering SpyStapler catenane supramolecular chemistry topology |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4103-5b3cdd3fcf93bc598d0bdd2178bf5ebb95c81aa80e92b884575ad6b90dfbec7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8746-0792 |
PMID | 31218786 |
PQID | 2265546100 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2244144485 proquest_journals_2265546100 pubmed_primary_31218786 crossref_citationtrail_10_1002_anie_201904943 crossref_primary_10_1002_anie_201904943 wiley_primary_10_1002_anie_201904943_ANIE201904943 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 5, 2019 |
PublicationDateYYYYMMDD | 2019-08-05 |
PublicationDate_xml | – month: 08 year: 2019 text: August 5, 2019 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2017; 1 2017; 3 2004; 23 2015; 76 1996; 70 2008 2008; 47 120 2017; 114 2017; 9 2015; 48 2013; 15 2010; 1 2000; 289 2015; 82 2015; 137 2004; 38 2004; 37 2016; 231 1998; 94 2003; 125 2006; 128 2019; 431 2012; 20 2007; 368 2018; 29 2001; 123 2011; 2 2018; 140 2013; 49 2015; 93 2010; 39 2006; 8 2010 2010; 49 122 2018; 61 2017 2017; 56 129 2003; 334 2014; 111 2007; 11 2017; 139 2012; 109 2007; 16 2014; 426 2018; 19 2016 2016; 55 128 2015; 21 2007 2007; 46 119 2010; 132 2006; 580 2017 2018; 50 2016; 28 2001 2001; 40 113 2016; 8 2009; 38 2005; 13 e_1_2_6_51_2 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_70_2 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_62_2 e_1_2_6_64_1 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_49_1 e_1_2_6_22_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_45_2 e_1_2_6_24_3 e_1_2_6_26_1 e_1_2_6_45_3 e_1_2_6_68_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_1 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_18_1 e_1_2_6_54_3 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_58_1 e_1_2_6_61_2 e_1_2_6_63_1 Bruns C. J. (e_1_2_6_25_1) 2017 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_21_1 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_3 e_1_2_6_46_3 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_42_3 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_46_2 |
References_xml | – volume: 123 start-page: 11570 year: 2001 end-page: 11576 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 123 year: 2004 end-page: 130 publication-title: Acc. Chem. Res. – volume: 8 start-page: 791 year: 2016 end-page: 796 publication-title: Nat. Chem. – volume: 140 start-page: 17474 year: 2018 end-page: 17483 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 1909 year: 2015 end-page: 1919 publication-title: Acc. Chem. Res. – volume: 47 120 start-page: 3381 3429 year: 2008 2008 end-page: 3384 3432 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 383 year: 2010 end-page: 386 publication-title: Chem. Sci. – volume: 114 start-page: 3415 year: 2017 end-page: 3420 publication-title: Proc. Natl. Acad. Sci. USA – volume: 40 113 start-page: 3625 3737 year: 2001 2001 end-page: 3627 3739 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 61 start-page: 3 year: 2018 end-page: 16 publication-title: Sci. China Chem. – volume: 23 start-page: 2029 year: 2004 end-page: 2038 publication-title: EMBO J. – volume: 109 start-page: 690 year: 2012 end-page: 697 publication-title: Proc. Natl. Acad. Sci. USA – volume: 431 start-page: 244 year: 2019 end-page: 257 publication-title: J. Mol. Biol. – volume: 580 start-page: 1853 year: 2006 end-page: 1858 publication-title: FEBS Lett. – volume: 82 start-page: 437 year: 2015 end-page: 451 publication-title: J. Inclusion Phenom. Macrocyclic Chem. – volume: 231 start-page: 239 year: 2016 end-page: 249 publication-title: J. Biotechnol. – volume: 93 start-page: 25 year: 2015 end-page: 41 publication-title: Adv. Drug Delivery Rev. – volume: 38 start-page: 108 year: 2004 end-page: 115 publication-title: Protein Expression Purif. – volume: 19 start-page: 2700 year: 2018 end-page: 2707 publication-title: Biomacromolecules – volume: 334 start-page: 885 year: 2003 end-page: 899 publication-title: J. Mol. Biol. – volume: 2 start-page: 1930 year: 2011 end-page: 1942 publication-title: Polym. Chem. – volume: 29 start-page: 1622 year: 2018 end-page: 1629 publication-title: Bioconjugate Chem. – volume: 55 128 start-page: 3442 3503 year: 2016 2016 end-page: 3446 3507 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 50 start-page: 127 year: 2018 end-page: 147 publication-title: Polym. J. – volume: 139 start-page: 10403 year: 2017 end-page: 10409 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 7770 year: 2013 end-page: 7772 publication-title: Chem. Commun. – volume: 139 start-page: 8455 year: 2017 end-page: 8457 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 2684 year: 2013 end-page: 2687 publication-title: Org. Lett. – volume: 426 start-page: 309 year: 2014 end-page: 317 publication-title: J. Mol. Biol. – volume: 8 start-page: 5133 year: 2006 end-page: 5136 publication-title: Org. Lett. – volume: 8 start-page: 6577 year: 2017 end-page: 6582 publication-title: Chem. Sci. – volume: 94 start-page: 55 year: 1998 end-page: 60 publication-title: Cell – volume: 46 119 start-page: 5709 5811 year: 2007 2007 end-page: 5713 5815 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 6049 year: 2018 end-page: 6052 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 0061 year: 2017 end-page: 0077 publication-title: Nat. Rev. Chem. – volume: 11 start-page: 595 year: 2007 end-page: 603 publication-title: Curr. Opin. Chem. Biol. – volume: 38 start-page: 1530 year: 2009 end-page: 1541 publication-title: Chem. Soc. Rev. – volume: 368 start-page: 1332 year: 2007 end-page: 1344 publication-title: J. Mol. Biol. – volume: 13 start-page: 1661 year: 2005 end-page: 1664 publication-title: Structure – volume: 16 start-page: 1249 year: 2007 end-page: 1256 publication-title: Protein Sci. – volume: 49 122 start-page: 8421 8599 year: 2010 2010 end-page: 8425 8603 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 76 start-page: 1 year: 2015 end-page: 13 publication-title: Adv. Bot. Res. – volume: 70 start-page: 971 year: 1996 end-page: 976 publication-title: Biophys. J. – volume: 289 start-page: 2129 year: 2000 end-page: 2133 publication-title: Science – volume: 28 start-page: 733 year: 2016 end-page: 741 publication-title: Supramol. Chem. – volume: 111 start-page: 1176 year: 2014 end-page: 1181 publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 start-page: 9280 year: 2003 end-page: 9281 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 13985 14173 year: 2017 2017 end-page: 13989 14177 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 21 start-page: 18910 year: 2015 end-page: 18914 publication-title: Chem. Eur. J. – volume: 3 start-page: 473 year: 2017 end-page: 481 publication-title: ACS Cent. Sci. – volume: 1 start-page: 0061 year: 2017 publication-title: Nat. Rev. Chem. – volume: 9 start-page: 454 year: 2017 end-page: 473 publication-title: Polymers – volume: 47 120 start-page: 4392 4464 year: 2008 2008 end-page: 4396 4468 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2017 – volume: 132 start-page: 6243 year: 2010 end-page: 6248 publication-title: J. Am. Chem. Soc. – volume: 128 start-page: 2186 year: 2006 end-page: 2187 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7656 year: 2015 end-page: 7659 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 16521 16748 year: 2017 2017 end-page: 16525 16752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1374 year: 2012 end-page: 1383 publication-title: Structure – volume: 39 start-page: 1240 year: 2010 end-page: 1251 publication-title: Chem. Soc. Rev. – ident: e_1_2_6_10_2 doi: 10.1016/j.jmb.2003.09.035 – ident: e_1_2_6_62_2 doi: 10.1016/j.pep.2004.08.016 – ident: e_1_2_6_63_1 doi: 10.1002/anie.201004340 – ident: e_1_2_6_4_2 doi: 10.1016/j.jmb.2018.10.012 – ident: e_1_2_6_43_2 doi: 10.1021/jacs.5b04726 – ident: e_1_2_6_66_2 doi: 10.1021/ar0302282 – ident: e_1_2_6_68_1 – ident: e_1_2_6_31_1 – ident: e_1_2_6_54_3 doi: 10.1002/ange.201707623 – ident: e_1_2_6_24_2 doi: 10.1002/anie.201705194 – ident: e_1_2_6_37_2 doi: 10.1021/jacs.8b03394 – ident: e_1_2_6_47_2 doi: 10.1021/ja101121j – ident: e_1_2_6_23_2 doi: 10.1002/anie.201511640 – ident: e_1_2_6_34_2 doi: 10.1021/ol062247s – ident: e_1_2_6_69_2 doi: 10.1021/acs.biomac.8b00306 – ident: e_1_2_6_53_1 – ident: e_1_2_6_51_2 doi: 10.1073/pnas.1115485109 – ident: e_1_2_6_15_2 doi: 10.1016/bs.abr.2015.09.008 – ident: e_1_2_6_48_2 doi: 10.1039/c0sc00279h – ident: e_1_2_6_18_1 doi: 10.1016/S0092-8674(00)81221-0 – ident: e_1_2_6_28_2 doi: 10.1021/ja0114409 – ident: e_1_2_6_30_2 doi: 10.1038/nchem.2516 – ident: e_1_2_6_39_2 doi: 10.1002/chem.201504236 – ident: e_1_2_6_6_2 doi: 10.1016/j.cbpa.2007.10.002 – ident: e_1_2_6_12_2 doi: 10.1039/c3cc43219j – ident: e_1_2_6_27_2 doi: 10.1038/pj.2017.60 – ident: e_1_2_6_23_3 doi: 10.1002/ange.201511640 – ident: e_1_2_6_50_2 doi: 10.1073/pnas.1315776111 – ident: e_1_2_6_63_2 doi: 10.1002/ange.201004340 – ident: e_1_2_6_54_2 doi: 10.1002/anie.201707623 – ident: e_1_2_6_19_2 doi: 10.1002/1521-3757(20011001)113:19<3737::AID-ANGE3737>3.0.CO;2-W – ident: e_1_2_6_32_2 doi: 10.1038/s41570-017-0061 – ident: e_1_2_6_13_2 doi: 10.1126/science.289.5487.2129 – ident: e_1_2_6_17_1 doi: 10.1021/jacs.7b04830 – ident: e_1_2_6_45_3 doi: 10.1002/ange.200705859 – ident: e_1_2_6_46_2 doi: 10.1002/anie.200701678 – ident: e_1_2_6_40_2 doi: 10.1080/10610278.2015.1122194 – ident: e_1_2_6_42_3 doi: 10.1002/ange.200800891 – ident: e_1_2_6_52_2 doi: 10.1021/jacs.8b08250 – ident: e_1_2_6_5_2 doi: 10.1007/s11426-017-9155-2 – ident: e_1_2_6_67_1 doi: 10.1016/j.addr.2014.10.005 – ident: e_1_2_6_3_2 doi: 10.1073/pnas.1615862114 – ident: e_1_2_6_57_1 doi: 10.1016/j.jmb.2013.10.021 – ident: e_1_2_6_38_2 doi: 10.1021/jacs.7b05640 – ident: e_1_2_6_55_2 doi: 10.1039/C7SC02686B – ident: e_1_2_6_45_2 doi: 10.1002/anie.200705859 – ident: e_1_2_6_26_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_59_1 doi: 10.1038/s41570-017-0061 – ident: e_1_2_6_35_2 doi: 10.1039/b804243h – ident: e_1_2_6_56_1 doi: 10.1021/acs.bioconjchem.8b00131 – ident: e_1_2_6_16_2 doi: 10.1021/acs.accounts.5b00156 – ident: e_1_2_6_61_2 doi: 10.1016/j.jbiotec.2016.06.012 – ident: e_1_2_6_65_2 doi: 10.1021/ja0355978 – ident: e_1_2_6_20_1 doi: 10.1110/ps.062673207 – ident: e_1_2_6_22_2 doi: 10.1021/acscentsci.7b00104 – ident: e_1_2_6_60_1 – ident: e_1_2_6_64_1 – ident: e_1_2_6_7_1 – ident: e_1_2_6_14_2 doi: 10.1016/j.str.2012.05.009 – ident: e_1_2_6_2_2 doi: 10.3390/polym9090454 – ident: e_1_2_6_19_1 doi: 10.1002/1521-3773(20011001)40:19<3625::AID-ANIE3625>3.0.CO;2-Q – ident: e_1_2_6_42_2 doi: 10.1002/anie.200800891 – ident: e_1_2_6_46_3 doi: 10.1002/ange.200701678 – ident: e_1_2_6_70_2 doi: 10.1016/S0006-3495(96)79640-6 – ident: e_1_2_6_41_2 doi: 10.1021/ol400992p – ident: e_1_2_6_33_2 doi: 10.1021/ja056903f – ident: e_1_2_6_11_2 doi: 10.1038/sj.emboj.7600222 – ident: e_1_2_6_24_3 doi: 10.1002/ange.201705194 – ident: e_1_2_6_21_1 – ident: e_1_2_6_36_2 doi: 10.1007/s10847-015-0511-1 – ident: e_1_2_6_8_2 doi: 10.1016/j.jmb.2007.02.078 – ident: e_1_2_6_9_2 doi: 10.1016/j.str.2005.07.021 – volume-title: The Nature of the Mechanical Bond: From Molecules to Machines year: 2017 ident: e_1_2_6_25_1 – ident: e_1_2_6_44_2 doi: 10.1039/B901974J – ident: e_1_2_6_49_1 – ident: e_1_2_6_29_2 doi: 10.1039/c1py00088h – ident: e_1_2_6_58_1 doi: 10.1016/j.febslet.2006.02.045 |
SSID | ssj0028806 |
Score | 2.4709194 |
SecondaryResourceType | review_article |
Snippet | Covalent‐bond‐forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the... Covalent-bond-forming protein domains can be versatile tools for creating unconventional protein topologies. In this study, through rewiring the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11097 |
SubjectTerms | catenane Chain entanglement Denaturation Entanglement Freeze-thawing Protein biosynthesis Protein engineering Proteins Proteolysis Rewiring SpyStapler supramolecular chemistry Synthesis Topology |
Title | Active Template Synthesis of Protein Heterocatenanes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201904943 https://www.ncbi.nlm.nih.gov/pubmed/31218786 https://www.proquest.com/docview/2265546100 https://www.proquest.com/docview/2244144485 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Ei158P-qLCoKnaNsk3eS4iLJ6EPEB3krTJCBqd3F3D_rrnWm31VVE0FtLJ7SdTCZf2i_fABzwxAuvdM4QGnMmbBwz4yPPVOI6smOFT03F8r1Me3fi4l7ef9rFX-tDtB_caGRU-ZoGeG6Gxx-iobQDm6hZmhROSO6TCFuEiq5b_agEg7PeXsQ5oyr0jWpjlBxPN5-elb5BzWnkWk09Z4uQNw9dM04ej8Yjc1S8fdFz_M9bLcHCBJeG3TqQlmHGlSswd9KUg1sF0a0yY3jrngdPCFDDm9cSwePwYRj2fXhFcg8PZdgjdk2fWFZljkl0De7OTm9PemxScoEVIo44k4YX1nJfeM1NIbWykbEWly3KeOmM0bJQcZ6ryOnEKCUQ7OU2NTqyHoOh4_g6zJb90m1CaIW2BddOOu6FTLwyVKII87xJDUfUFABrXJ4VEz1yKovxlNVKyklGvshaXwRw2NoPaiWOHy13mh7MJiNymCHMJEIemgew315GH9IPEvRIf0w2CA4FLlhlABt1z7e34jGCoY5KA0iq_vvlGbLu5flpe7b1l0bbME_HFdtQ7sDs6GXsdhEBjcxeFeXv_6L8Vw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xcGAvPPZFeG2QkPZkSGI7tY8VAhWWrRAUiVsUx7aEFlJE2wP8emaSJqgghATHJGPFGY_tz87nbwB2eeKFVzpnCI05EzaOmfGRZypxHdmxwqemYvn2096lOLmSDZuQzsLU-hDthhv1jGq8pg5OG9L7z6qhdASbuFmaJE74F1igtN7Vquq8VZBKMDzrA0acM8pD3-g2Rsn-bPnZeekV2JzFrtXkc7QMpql2zTn5vzcZm73i8YWi46e-awWWptA07NaxtApzrvwGiwdNRrjvILrV4BgO3O3dDWLU8OKhRPw4uh6FQx-ekeLDdRn2iGAzJKJVmeM4-gMujw4HBz02zbrAChFHnEnDC2u5L7zmppBa2chYiysXZbx0xmhZqDjPVeR0YpQSiPdymxodWY_x0HH8J8yXw9KtQWiFtgXXTjruhUy8MpSlCId6kxqOwCkA1vg8K6aS5JQZ4yarxZSTjHyRtb4I4E9rf1eLcbxpudk0YTbtlKMMkSZx8tA8gJ32MfqQ_pGgR4YTskF8KHDNKgP4VTd9-yoeIx7qqDSApGrAd-qQdfvHh-3V-kcK_YbF3uDfaXZ63P-7AV_pfkU-lJswP76fuC0ERGOzXYX8E8s6AIE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4Bk4AX9hOWDbZMQuLJNInt1H6sgKoMVCF-SLxFcWxLCEirtX3Y_nrukiasQxMSPCY5K8n5fP6cfP4OYJcnXnilc4bQmDNh45gZH3mmEteVXSt8aiqW7zAdXImf1_L6r138tT5E-8GNRkaVr2mAj63vPIqG0g5somZpUjjhy_BGpJGiuD48bwWkEozOen8R54zK0DeyjVHSWWy_OC09wZqL0LWae_pvIW-euqac3O7Ppma_-POPoONrXusdbMyBadirI-k9LLnyA6wdNPXgPoLoVakxvHT34ztEqOHF7xLR4-RmEo58eEZ6DzdlOCB6zYhoVmWOWfQTXPWPLg8GbF5zgRUijjiThhfWcl94zU0htbKRsRbXLcp46YzRslBxnqvI6cQoJRDt5TY1OrIeo6Hr-CaslKPSfYbQCm0Lrp103AuZeGWoRhEmepMajrApANa4PCvmguRUF-Muq6WUk4x8kbW-CGCvtR_XUhz_tdxuejCbD8lJhjiTGHloHsCP9jL6kP6QoEdGM7JBdChwxSoD2Kp7vr0VjxENdVUaQFL13zPPkPWGx0ft0ZeXNPoOq2eH_ez0eHjyFdbpdMU8lNuwMv01czuIhqbmWxXwD93P_yo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Template+Synthesis+of+Protein+Heterocatenanes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Da%2C+Xiao-Di&rft.au=Zhang%2C+Wen-Bin&rft.date=2019-08-05&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=58&rft.issue=32&rft.spage=11097&rft_id=info:doi/10.1002%2Fanie.201904943&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |