Construction of Antibacterial N‐Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti‐Infective Wound Therapy

The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacter...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular bioscience Vol. 19; no. 4; pp. e1800453 - n/a
Main Authors Gao, Yangyang, Song, Nan, Liu, Wenxin, Dong, Alideertu, Wang, Yan‐Jie, Yang, Ying‐Wei
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. N‐Halamine polymer nanomaterial‐based wound dressing is designed and has addressed a good wound therapy efficiency in skin tissue–related bacterial infections depending on antibacterial function of NCl bonds. A proposed four‐step mechanism unlocks a detailed antibacterial action and therapy process to the use of the N‐halamine polymer nanomaterials as wound dressings in a biological and chemical surrounding.
AbstractList The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N ‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli . Particularly, when a biological evaluation is run for wound therapy, the N ‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N ‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N ‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. N‐Halamine polymer nanomaterial‐based wound dressing is designed and has addressed a good wound therapy efficiency in skin tissue–related bacterial infections depending on antibacterial function of NCl bonds. A proposed four‐step mechanism unlocks a detailed antibacterial action and therapy process to the use of the N‐halamine polymer nanomaterials as wound dressings in a biological and chemical surrounding.
Author Gao, Yangyang
Dong, Alideertu
Yang, Ying‐Wei
Song, Nan
Liu, Wenxin
Wang, Yan‐Jie
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Gao
  fullname: Gao, Yangyang
  organization: Engineering Research Center of Dairy Quality and Safety Control Technology
– sequence: 2
  givenname: Nan
  surname: Song
  fullname: Song, Nan
  organization: Jilin University
– sequence: 3
  givenname: Wenxin
  surname: Liu
  fullname: Liu, Wenxin
  organization: Engineering Research Center of Dairy Quality and Safety Control Technology
– sequence: 4
  givenname: Alideertu
  surname: Dong
  fullname: Dong, Alideertu
  email: dongali@imu.edu.cn
  organization: Engineering Research Center of Dairy Quality and Safety Control Technology
– sequence: 5
  givenname: Yan‐Jie
  surname: Wang
  fullname: Wang, Yan‐Jie
  email: wyj309j@163.com
  organization: Dongguan University of Technology
– sequence: 6
  givenname: Ying‐Wei
  orcidid: 0000-0001-8839-8161
  surname: Yang
  fullname: Yang, Ying‐Wei
  email: ywyang@jlu.edu.cn
  organization: Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30645044$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1uFDEURi0URJKFlhJZoqHZxf87U26WQFZKAkUQ5ejOzLVwNGMP9gxoOx6BigfkSfBmwyJFQlR2cc53r757So588EjIc84WnDHxuofaLQTjBWNKy0fkhBtu5pqX-ujwL5bH5DSlW8b4sijFE3IsmVGaKXVCfq6DT2OcmtEFT4OlKz-6GpoRo4OOXv_6_uMCOuidR_ohdNseI70GH3rYE4muYYC6w517dvCusK8jZOeNS3Ea7sJtiPTcWtc49OPdnBy-8Rbz7K9IP4XJt_TmM0YYtk_JY5vD8dn9OyMf357frC_ml-_fbdary3mjOJNzzQpAZWXBjFgaLQxAqVpeWNSyBG2MUnUrlFW1sEI3RtYZQsW4ZNaoVskZebXPHWL4MmEaq96lBrsu7x6mVAm-LKXhSuqMvnyA3oYp-rxdJQQry9xzzp2RF_fUVPfYVkN0PcRt9afxDCz2QBNDShHtAeGs2p202p20Opw0C-qB0LgRdo2OEVz3b63ca99ch9v_DKmuVmebv-5vdni4Aw
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_142
crossref_primary_10_2174_1570193X19666220217114955
crossref_primary_10_3390_pharmaceutics12090901
crossref_primary_10_1016_j_cjche_2021_04_010
crossref_primary_10_1016_j_colcom_2021_100515
crossref_primary_10_3390_nano9040592
crossref_primary_10_1016_j_cej_2021_128888
crossref_primary_10_1016_j_cej_2023_141732
crossref_primary_10_1007_s12598_022_02116_9
crossref_primary_10_1016_j_compositesb_2021_109390
crossref_primary_10_1016_j_eurpolymj_2023_112535
crossref_primary_10_1007_s12598_024_03132_7
crossref_primary_10_1039_D1BM01952J
crossref_primary_10_3390_polym13162784
crossref_primary_10_1016_j_jwpe_2025_107250
crossref_primary_10_3390_polym16182579
crossref_primary_10_1007_s12221_021_0448_5
crossref_primary_10_1021_acs_biomac_0c01401
crossref_primary_10_1039_D4SM01214C
crossref_primary_10_1166_mex_2023_2362
crossref_primary_10_1002_mabi_202300191
Cites_doi 10.1039/C8TB01519H
10.1002/app.1353
10.1039/C4TB01819B
10.1002/adfm.201304202
10.1002/tcr.201700036
10.1021/acsami.5b05429
10.1021/acsami.5b04216
10.1016/j.carbpol.2016.09.051
10.1016/j.cej.2014.05.114
10.1039/c3ra47147k
10.1021/es9812103
10.1002/j.1551-8833.1931.tb17955.x
10.1016/j.polymer.2008.09.054
10.1021/nn507168x
10.1021/ma020691e
10.1016/j.reactfunctpolym.2008.06.021
10.1016/j.actbio.2017.08.008
10.1016/j.carbpol.2009.03.029
10.1038/nature07039
10.1038/ncomms7575
10.4269/ajtmh.2010.09-0279
10.1002/adma.201801100
10.1021/jp060879q
10.1016/j.biomaterials.2016.10.041
10.1016/j.biomaterials.2014.02.056
10.1021/jp104083h
10.1016/j.eurpolymj.2011.05.017
10.3390/molecules22101582
10.1002/app.28126
10.1016/j.biomaterials.2016.08.031
10.1016/j.biomaterials.2012.05.068
10.1016/j.jconrel.2015.07.013
10.1002/adhm.201200018
10.1088/0957-4484/22/29/295602
10.1007/s10570-008-9205-9
10.1021/acsami.5b11573
10.1021/acsami.7b05622
10.1021/acs.chemrev.6b00687
10.1021/acsami.5b12601
10.1002/app.37731
10.1039/C5TB00973A
10.1039/C6TB03223K
10.1007/s10570-015-0763-3
10.1039/b809137d
10.1021/ct060007s
10.1021/jacs.5b11411
10.1016/j.biomaterials.2013.07.064
10.1016/j.biomaterials.2013.11.072
10.1002/adfm.201706709
10.1021/am402191j
10.1021/bm301980q
10.1016/j.biomaterials.2006.05.023
10.1021/am800157a
10.1007/s10570-015-0851-4
10.1002/app.32832
10.1039/C4CS00332B
10.1039/C4RA14530E
10.1021/ie061583
10.1021/nn501640q
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mabi.201800453
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Engineering Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1616-5195
EndPage n/a
ExternalDocumentID 30645044
10_1002_mabi_201800453
MABI201800453
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Chemical Resource Engineering (CN)
  funderid: 2018051
– fundername: National Natural Science Foundation of China
  funderid: 51663019; 51503106; 51473061
– fundername: National Natural Science Foundation of China
  grantid: 51473061
– fundername: National Natural Science Foundation of China
  grantid: 51663019
– fundername: State Key Laboratory of Chemical Resource Engineering (CN)
  grantid: 2018051
– fundername: National Natural Science Foundation of China
  grantid: 51503106
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4103-508ae4f3806276526aa94d18fe539a56644bd24f4b2f25c63b652e40130f64d43
IEDL.DBID DR2
ISSN 1616-5187
1616-5195
IngestDate Fri Jul 11 16:09:43 EDT 2025
Sun Jul 13 05:16:22 EDT 2025
Wed Feb 19 02:36:37 EST 2025
Thu Apr 24 23:09:54 EDT 2025
Tue Jul 01 04:32:50 EDT 2025
Wed Jan 22 16:31:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords antibacterial dressing
bacterial membrane disruption
antibacterial
N-halamine polymer nanomaterials
wound therapy
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4103-508ae4f3806276526aa94d18fe539a56644bd24f4b2f25c63b652e40130f64d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8839-8161
PMID 30645044
PQID 2209951801
PQPubID 2034242
PageCount 12
ParticipantIDs proquest_miscellaneous_2179361435
proquest_journals_2209951801
pubmed_primary_30645044
crossref_primary_10_1002_mabi_201800453
crossref_citationtrail_10_1002_mabi_201800453
wiley_primary_10_1002_mabi_201800453_MABI201800453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular bioscience
PublicationTitleAlternate Macromol Biosci
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 119
2013; 127
2008; 109
2008; 34
2014; 24
2016; 106
2017; 156
2014; 254
2017; 113
2013; 5
2017; 9
2017; 117
2018; 6
2014; 4
2013; 14
2010; 114
2006; 27
2015; 44
2011; 22
2008; 68
2018; 30
2015; 216
2014; 8
2014; 288
2010; 8
2017; 61
2018; 28
2015; 6
2015; 5
2015; 3
2017; 22
2002; 35
2008; 15
2006; 110
2006; 2
2015; 9
2015; 7
2012; 33
2010; 82
2009; 78
2001; 80
2018; 18
2012; 1
2013; 34
2015; 22
2008; 49
1999; 33
2014; 35
2016; 138
2011; 47
2008; 453
2009; 1
2007; 46
2016; 8
1931; 23
2016; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Kocer H. B. (e_1_2_7_48_1) 2010; 8
Jiang Z. M. (e_1_2_7_23_1) 2014; 288
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 109
  start-page: 2756
  year: 2008
  publication-title: J. Appl. Polym. Sci.
– volume: 46
  start-page: 1861
  year: 2007
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 3498
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 117
  start-page: 4806
  year: 2017
  publication-title: Chem. Rev.
– volume: 119
  start-page: 1646
  year: 2011
  publication-title: J. Appl. Polym. Sci.
– volume: 8
  start-page: 2464
  year: 2010
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 295602
  year: 2011
  publication-title: Nanotechnology
– volume: 5
  start-page: 1822
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 47
  start-page: 1654
  year: 2011
  publication-title: Eur. Polym. J.
– volume: 1
  start-page: 609
  year: 2012
  publication-title: Adv. Healthcare Mater.
– volume: 453
  start-page: 314
  year: 2008
  publication-title: Nature
– volume: 35
  start-page: 2336
  year: 2014
  publication-title: Biomaterials
– volume: 4
  start-page: 6048
  year: 2014
  publication-title: RSC Adv..
– volume: 18
  start-page: 45
  year: 2018
  publication-title: Chem. Rec.
– volume: 24
  start-page: 3933
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 82
  start-page: 279
  year: 2010
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 2
  start-page: 879
  year: 2006
  publication-title: J. Chem. Theory Comput.
– volume: 288
  start-page: 528
  year: 2014
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 593
  year: 2008
  publication-title: Cellulose
– volume: 113
  start-page: 145
  year: 2017
  publication-title: Biomaterials
– volume: 22
  start-page: 1582
  year: 2017
  publication-title: Molecules
– volume: 127
  start-page: 3192
  year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 114
  start-page: 17298
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 8125
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 216
  start-page: 18
  year: 2015
  publication-title: J. Controlled Release
– volume: 9
  start-page: 1175
  year: 2015
  publication-title: ACS Nano
– volume: 80
  start-page: 2460
  year: 2001
  publication-title: J. Appl. Polym. Sci.
– volume: 78
  start-page: 220
  year: 2009
  publication-title: Carbohydr. Polym.
– volume: 30
  start-page: 1801100
  year: 2018
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2218
  year: 1999
  publication-title: Environ. Sci. Technol.
– volume: 254
  start-page: 30
  year: 2014
  publication-title: Chem. Eng. J.
– volume: 138
  start-page: 2064
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 144
  year: 2017
  publication-title: Acta Biomater.
– volume: 8
  start-page: 6202
  year: 2014
  publication-title: ACS Nano
– volume: 68
  start-page: 1448
  year: 2008
  publication-title: React. Funct. Polym.
– volume: 6
  start-page: 5198
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 14
  start-page: 585
  year: 2013
  publication-title: Biomacromolecules
– volume: 106
  start-page: 250
  year: 2016
  publication-title: Biomaterials
– volume: 28
  start-page: 1706709
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 3609
  year: 2015
  publication-title: Cellulose
– volume: 156
  start-page: 460
  year: 2017
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 17255
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 10109
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 110
  start-page: 7621
  year: 2006
  publication-title: J. Phys. Chem. A
– volume: 9
  start-page: 25738
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 8766
  year: 2013
  publication-title: Biomaterials
– volume: 27
  start-page: 4825
  year: 2006
  publication-title: Biomaterials
– volume: 6
  start-page: 6575
  year: 2015
  publication-title: Nat. Commun.
– volume: 35
  start-page: 5079
  year: 2014
  publication-title: Biomaterials
– volume: 3
  start-page: 7203
  year: 2015
  publication-title: J. Mater. Chem. B
– volume: 23
  start-page: 1320
  year: 1931
  publication-title: J. ‐ Am. Water Works Assoc.
– volume: 8
  start-page: 3516
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 17516
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 1820
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 6666
  year: 2015
  publication-title: RSC Adv.
– volume: 34
  start-page: 4016
  year: 2008
  publication-title: Chem. Commun.
– volume: 49
  start-page: 5225
  year: 2008
  publication-title: Polymer
– volume: 33
  start-page: 6783
  year: 2012
  publication-title: Biomaterials
– volume: 1
  start-page: 494
  year: 2009
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 749
  year: 2016
  publication-title: Cellulose
– volume: 35
  start-page: 8909
  year: 2002
  publication-title: Macromolecules
– ident: e_1_2_7_5_1
  doi: 10.1039/C8TB01519H
– ident: e_1_2_7_38_1
  doi: 10.1002/app.1353
– ident: e_1_2_7_43_1
  doi: 10.1039/C4TB01819B
– ident: e_1_2_7_56_1
  doi: 10.1002/adfm.201304202
– ident: e_1_2_7_7_1
  doi: 10.1002/tcr.201700036
– ident: e_1_2_7_54_1
  doi: 10.1021/acsami.5b05429
– ident: e_1_2_7_6_1
  doi: 10.1021/acsami.5b04216
– ident: e_1_2_7_9_1
  doi: 10.1016/j.carbpol.2016.09.051
– ident: e_1_2_7_40_1
  doi: 10.1016/j.cej.2014.05.114
– ident: e_1_2_7_30_1
  doi: 10.1039/c3ra47147k
– ident: e_1_2_7_32_1
  doi: 10.1021/es9812103
– ident: e_1_2_7_22_1
  doi: 10.1002/j.1551-8833.1931.tb17955.x
– ident: e_1_2_7_37_1
  doi: 10.1016/j.polymer.2008.09.054
– ident: e_1_2_7_51_1
  doi: 10.1021/nn507168x
– ident: e_1_2_7_33_1
  doi: 10.1021/ma020691e
– ident: e_1_2_7_59_1
  doi: 10.1016/j.reactfunctpolym.2008.06.021
– ident: e_1_2_7_14_1
  doi: 10.1016/j.actbio.2017.08.008
– ident: e_1_2_7_25_1
  doi: 10.1016/j.carbpol.2009.03.029
– ident: e_1_2_7_1_1
  doi: 10.1038/nature07039
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms7575
– ident: e_1_2_7_17_1
  doi: 10.4269/ajtmh.2010.09-0279
– ident: e_1_2_7_11_1
  doi: 10.1002/adma.201801100
– ident: e_1_2_7_47_1
  doi: 10.1021/jp060879q
– ident: e_1_2_7_55_1
  doi: 10.1016/j.biomaterials.2016.10.041
– ident: e_1_2_7_52_1
  doi: 10.1016/j.biomaterials.2014.02.056
– ident: e_1_2_7_34_1
  doi: 10.1021/jp104083h
– ident: e_1_2_7_19_1
  doi: 10.1016/j.eurpolymj.2011.05.017
– volume: 288
  start-page: 528
  year: 2014
  ident: e_1_2_7_23_1
  publication-title: Appl. Surf. Sci.
– ident: e_1_2_7_12_1
  doi: 10.3390/molecules22101582
– ident: e_1_2_7_26_1
  doi: 10.1002/app.28126
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biomaterials.2016.08.031
– ident: e_1_2_7_57_1
  doi: 10.1016/j.biomaterials.2012.05.068
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jconrel.2015.07.013
– ident: e_1_2_7_58_1
  doi: 10.1002/adhm.201200018
– ident: e_1_2_7_53_1
  doi: 10.1088/0957-4484/22/29/295602
– ident: e_1_2_7_36_1
  doi: 10.1007/s10570-008-9205-9
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.5b11573
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.7b05622
– ident: e_1_2_7_35_1
  doi: 10.1021/acs.chemrev.6b00687
– ident: e_1_2_7_49_1
  doi: 10.1021/acsami.5b12601
– ident: e_1_2_7_27_1
  doi: 10.1002/app.37731
– ident: e_1_2_7_39_1
  doi: 10.1039/C5TB00973A
– ident: e_1_2_7_10_1
  doi: 10.1039/C6TB03223K
– ident: e_1_2_7_20_1
  doi: 10.1007/s10570-015-0763-3
– ident: e_1_2_7_29_1
  doi: 10.1039/b809137d
– ident: e_1_2_7_46_1
  doi: 10.1021/ct060007s
– volume: 8
  start-page: 2464
  year: 2010
  ident: e_1_2_7_48_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_7_61_1
  doi: 10.1021/jacs.5b11411
– ident: e_1_2_7_44_1
  doi: 10.1016/j.biomaterials.2013.07.064
– ident: e_1_2_7_13_1
  doi: 10.1016/j.biomaterials.2013.11.072
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201706709
– ident: e_1_2_7_60_1
  doi: 10.1021/am402191j
– ident: e_1_2_7_31_1
  doi: 10.1021/bm301980q
– ident: e_1_2_7_50_1
  doi: 10.1016/j.biomaterials.2006.05.023
– ident: e_1_2_7_28_1
  doi: 10.1021/am800157a
– ident: e_1_2_7_8_1
  doi: 10.1007/s10570-015-0851-4
– ident: e_1_2_7_21_1
  doi: 10.1002/app.32832
– ident: e_1_2_7_2_1
  doi: 10.1039/C4CS00332B
– ident: e_1_2_7_18_1
  doi: 10.1039/C4RA14530E
– ident: e_1_2_7_24_1
  doi: 10.1021/ie061583
– ident: e_1_2_7_42_1
  doi: 10.1021/nn501640q
SSID ssj0017892
Score 2.3840587
Snippet The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1800453
SubjectTerms Abuse
antibacterial
antibacterial dressing
Antibacterial materials
Antibiotic resistance
Antibiotics
Bacteria
Bacterial diseases
bacterial membrane disruption
Biomaterials
Biomedical materials
Cell death
Copolymerization
Disruption
E coli
Medical materials
Nanomaterials
Nanotechnology
N‐halamine polymer nanomaterials
Organic chemistry
Polymers
Polymethyl methacrylate
Therapy
Wound healing
wound therapy
Title Construction of Antibacterial N‐Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti‐Infective Wound Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201800453
https://www.ncbi.nlm.nih.gov/pubmed/30645044
https://www.proquest.com/docview/2209951801
https://www.proquest.com/docview/2179361435
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXuiF3wJLW2SkSpzSOvbESY7bbast0lYItWpvkZ3Y0qq7G9TdRSonHoETD8iTMBNvAgtCSPSWKJ5kYs-MPyfjbxjbr4TKAJI08mkuIvCViAwoGZUAJcZMp72lzcmjcz28hHfXyfUvu_gDP0T3wY08o4nX5ODGzg9_koZOjR1TalZGqIToPilhi1DRh44_Kk6zpioyohodJXGWtqyNQh6ui6_PSn9AzXXk2kw9p4-YaZUOGSc3B8uFPSg__8bneJ-3eswernAp7wdDesI23OwpezBoy8E9Y9-otGdLNstrz_uzxdgGrmcUPP_-5evQoHmhBvx9PbmbuluOobtGRByMnA9wXrYTR7JHndzITVFdlDkez2-XTfziiKP5SUNtgTNi8xy8-VnIGvvk-BVVguIXgQ5hm12enlwMhtGqqAMOfyxUhIDQOPAqI35knUhtTA5VnHmXqNwguASwlQQPVnqZlFpZbORoFSi8hgrUc7Y5q2fuJePOOC-9qtIsduCEtU6Bdt5IZdPcGOixqB3UolwxnlPhjUkRuJplQb1ddL3dY2-79h8D18dfW-62NlKsfH5eSNqFjFYm4h57013GUaJfMNiR9RLbUDzUhFF77EWwre5RtBZMBKDasrGQf-hQjPpHZ93Zq_8R2mFbeJyHRKRdtolG5PYQYy3s68aPfgDHGyBY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVgOSwXvlkKCxgJiVN2HXviJMdud1ctbCuEuoJbZCe2VNE2aLdFghM_gRM_kF_CTNwEFYSQ4JjEk0yc5_FLMn7D2PNKqAwgSSOf5iICX4nIgJJRCVBizHTaW1qcPJ7o4Tm8fJe02YS0FiboQ3Qf3GhkNPGaBjh9kD78qRq6MHZGuVkZ0RJ1lV2jst4kn3_8plOQitOsqYuMvEZHSZylrW6jkIfb9tvz0m9kc5u7NpPP6U1mW7dDzsn7g_XKHpSff1F0_K_7usVubKgp7wcs3WZX3PIO2x20FeHusm9U3bPVm-W15_3lamaD3DMaTr5_-To0iDB0gb-u558W7oJj9K6RFAec8wFOzXbuyPaosxu7BfqLNsezy4t1E8I4Uml-0qhb4KTYXAdPPgqJYx8df0vFoPg0KCLcY-enJ9PBMNrUdUAExEJFyAmNA68ykkjWidTG5FDFmXeJyg3ySwBbSfBgpZdJqZXFRo5eBIXXUIG6z3aW9dI9YNwZ56VXVZrFDpyw1inQzhupbJobAz0WtU-1KDei51R7Y14EuWZZUG8XXW_32Iuu_Ycg9_HHlvstSIrNsL8sJC1ERpiJuMeedYfxKdFfGOzIeo1tKCRqoqk9thfA1V2KXgcTAei2bCDyFx-Kcf9o1G09_Bejp2x3OB2fFWejyatH7Druz0Ne0j7bQUC5x0i5VvZJM6h-ALpKJHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIgEX3o_CAkZC4pRdx544ybHbbtUCrVZoV-wtshNbquhjtdsiwYmfwIkfyC9hHDeBghASHJPMJBN7PP6cjL8BeFFxmSEmaeTSnEfoKh5plCIqEUuKmVY54zcnjydqeIKvTpPTn3bxB36I9oObHxl1vPYD_Kxy-z9IQ-faTH1qVuZRibwMV1Dx3Bdv6L9tCaTiNKvLIhOsUVESZ2lD28jF_rb-9rT0G9bchq713DO4CbqxOqScvN9br8xe-ekXQsf_ea1bcGMDTFk3eNJtuGQXd-Bar6kHdxe--tqeDdssWzrWXaymJpA9k-Lk2-cvQ03-RRawo-Xs49yeM4rdS4LEwctZjyZmM7Ne96DVG9s5mUs6_enF-boOYIyANDusuS1oSqyfQzcfhbSxD5a986Wg2HHgQ7gHJ4PD494w2lR1oP6PuYwIEWqLTmaeIFklQmmdYxVnziYy14QuEU0l0KERTiSlkoaErF8GcqewQnkfdhbLhX0IzGrrhJNVmsUWLTfGSlTWaSFNmmuNHYiaTi3KDeW5r7wxKwJZsyh8axdta3fgZSt_Fsg-_ii52_hIsRn0F4Xw25DJy3jcgeftZeol_w-GGnK5JhkfEJUHqR14EHyrfZRfDCYcyWxRe8hfbCjG3YNRe_ToX5SewdWj_qB4M5q8fgzX6XQekpJ2YYf8yT4hvLUyT-sh9R0wniMj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Antibacterial+N%E2%80%90Halamine+Polymer+Nanomaterials+Capable+of+Bacterial+Membrane+Disruption+for+Efficient+Anti%E2%80%90Infective+Wound+Therapy&rft.jtitle=Macromolecular+bioscience&rft.au=Gao%2C+Yangyang&rft.au=Song%2C+Nan&rft.au=Liu%2C+Wenxin&rft.au=Dong%2C+Alideertu&rft.date=2019-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=19&rft.issue=4&rft_id=info:doi/10.1002%2Fmabi.201800453&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon