Construction of Antibacterial N‐Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti‐Infective Wound Therapy
The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacter...
Saved in:
Published in | Macromolecular bioscience Vol. 19; no. 4; pp. e1800453 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.
N‐Halamine polymer nanomaterial‐based wound dressing is designed and has addressed a good wound therapy efficiency in skin tissue–related bacterial infections depending on antibacterial function of NCl bonds. A proposed four‐step mechanism unlocks a detailed antibacterial action and therapy process to the use of the N‐halamine polymer nanomaterials as wound dressings in a biological and chemical surrounding. |
---|---|
AbstractList | The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial
N
‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including
Staphylococcus aureus
and
Escherichia coli
. Particularly, when a biological evaluation is run for wound therapy, the
N
‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the
N
‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the
N
‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials.The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N-halamine polymer nanomaterials based on a strategic copolymerization of 3-allyl-5,5-dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N-halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four-stage mechanism suggests that, with unique antibacterial NCl bonds, the N-halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N-halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials for wound dressing to avoid the abuse of antibiotics and thereby antibiotic resistance. In this work, the authors first report on antibacterial N‐halamine polymer nanomaterials based on a strategic copolymerization of 3‐allyl‐5,5‐dimethylhydantoin (ADMH) and methyl methacrylate (MMA), which exhibits in vitro and in vivo antimicrobial efficacy against pathogenic bacteria including Staphylococcus aureus and Escherichia coli. Particularly, when a biological evaluation is run for wound therapy, the N‐halamine polymer nanomaterials exhibit a powerful antibacterial efficiency and wound healing ability after a series of histological examination of mouse wound. After the evaluation of biological and chemical surroundings, the proposed four‐stage mechanism suggests that, with unique antibacterial NCl bonds, the N‐halamine polymer nanomaterials can disrupt the bacterial membrane, as a result causing intracellular content leaked out and thereby cell death. Based on the synergistic action of antibacterial and wound therapy, the N‐halamine polymer nanomaterials are expected to be promising as wound dressing materials in medical healing and biomaterials. N‐Halamine polymer nanomaterial‐based wound dressing is designed and has addressed a good wound therapy efficiency in skin tissue–related bacterial infections depending on antibacterial function of NCl bonds. A proposed four‐step mechanism unlocks a detailed antibacterial action and therapy process to the use of the N‐halamine polymer nanomaterials as wound dressings in a biological and chemical surrounding. |
Author | Gao, Yangyang Dong, Alideertu Yang, Ying‐Wei Song, Nan Liu, Wenxin Wang, Yan‐Jie |
Author_xml | – sequence: 1 givenname: Yangyang surname: Gao fullname: Gao, Yangyang organization: Engineering Research Center of Dairy Quality and Safety Control Technology – sequence: 2 givenname: Nan surname: Song fullname: Song, Nan organization: Jilin University – sequence: 3 givenname: Wenxin surname: Liu fullname: Liu, Wenxin organization: Engineering Research Center of Dairy Quality and Safety Control Technology – sequence: 4 givenname: Alideertu surname: Dong fullname: Dong, Alideertu email: dongali@imu.edu.cn organization: Engineering Research Center of Dairy Quality and Safety Control Technology – sequence: 5 givenname: Yan‐Jie surname: Wang fullname: Wang, Yan‐Jie email: wyj309j@163.com organization: Dongguan University of Technology – sequence: 6 givenname: Ying‐Wei orcidid: 0000-0001-8839-8161 surname: Yang fullname: Yang, Ying‐Wei email: ywyang@jlu.edu.cn organization: Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30645044$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1uFDEURi0URJKFlhJZoqHZxf87U26WQFZKAkUQ5ejOzLVwNGMP9gxoOx6BigfkSfBmwyJFQlR2cc53r757So588EjIc84WnDHxuofaLQTjBWNKy0fkhBtu5pqX-ujwL5bH5DSlW8b4sijFE3IsmVGaKXVCfq6DT2OcmtEFT4OlKz-6GpoRo4OOXv_6_uMCOuidR_ohdNseI70GH3rYE4muYYC6w517dvCusK8jZOeNS3Ea7sJtiPTcWtc49OPdnBy-8Rbz7K9IP4XJt_TmM0YYtk_JY5vD8dn9OyMf357frC_ml-_fbdary3mjOJNzzQpAZWXBjFgaLQxAqVpeWNSyBG2MUnUrlFW1sEI3RtYZQsW4ZNaoVskZebXPHWL4MmEaq96lBrsu7x6mVAm-LKXhSuqMvnyA3oYp-rxdJQQry9xzzp2RF_fUVPfYVkN0PcRt9afxDCz2QBNDShHtAeGs2p202p20Opw0C-qB0LgRdo2OEVz3b63ca99ch9v_DKmuVmebv-5vdni4Aw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_142 crossref_primary_10_2174_1570193X19666220217114955 crossref_primary_10_3390_pharmaceutics12090901 crossref_primary_10_1016_j_cjche_2021_04_010 crossref_primary_10_1016_j_colcom_2021_100515 crossref_primary_10_3390_nano9040592 crossref_primary_10_1016_j_cej_2021_128888 crossref_primary_10_1016_j_cej_2023_141732 crossref_primary_10_1007_s12598_022_02116_9 crossref_primary_10_1016_j_compositesb_2021_109390 crossref_primary_10_1016_j_eurpolymj_2023_112535 crossref_primary_10_1007_s12598_024_03132_7 crossref_primary_10_1039_D1BM01952J crossref_primary_10_3390_polym13162784 crossref_primary_10_1016_j_jwpe_2025_107250 crossref_primary_10_3390_polym16182579 crossref_primary_10_1007_s12221_021_0448_5 crossref_primary_10_1021_acs_biomac_0c01401 crossref_primary_10_1039_D4SM01214C crossref_primary_10_1166_mex_2023_2362 crossref_primary_10_1002_mabi_202300191 |
Cites_doi | 10.1039/C8TB01519H 10.1002/app.1353 10.1039/C4TB01819B 10.1002/adfm.201304202 10.1002/tcr.201700036 10.1021/acsami.5b05429 10.1021/acsami.5b04216 10.1016/j.carbpol.2016.09.051 10.1016/j.cej.2014.05.114 10.1039/c3ra47147k 10.1021/es9812103 10.1002/j.1551-8833.1931.tb17955.x 10.1016/j.polymer.2008.09.054 10.1021/nn507168x 10.1021/ma020691e 10.1016/j.reactfunctpolym.2008.06.021 10.1016/j.actbio.2017.08.008 10.1016/j.carbpol.2009.03.029 10.1038/nature07039 10.1038/ncomms7575 10.4269/ajtmh.2010.09-0279 10.1002/adma.201801100 10.1021/jp060879q 10.1016/j.biomaterials.2016.10.041 10.1016/j.biomaterials.2014.02.056 10.1021/jp104083h 10.1016/j.eurpolymj.2011.05.017 10.3390/molecules22101582 10.1002/app.28126 10.1016/j.biomaterials.2016.08.031 10.1016/j.biomaterials.2012.05.068 10.1016/j.jconrel.2015.07.013 10.1002/adhm.201200018 10.1088/0957-4484/22/29/295602 10.1007/s10570-008-9205-9 10.1021/acsami.5b11573 10.1021/acsami.7b05622 10.1021/acs.chemrev.6b00687 10.1021/acsami.5b12601 10.1002/app.37731 10.1039/C5TB00973A 10.1039/C6TB03223K 10.1007/s10570-015-0763-3 10.1039/b809137d 10.1021/ct060007s 10.1021/jacs.5b11411 10.1016/j.biomaterials.2013.07.064 10.1016/j.biomaterials.2013.11.072 10.1002/adfm.201706709 10.1021/am402191j 10.1021/bm301980q 10.1016/j.biomaterials.2006.05.023 10.1021/am800157a 10.1007/s10570-015-0851-4 10.1002/app.32832 10.1039/C4CS00332B 10.1039/C4RA14530E 10.1021/ie061583 10.1021/nn501640q |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mabi.201800453 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1616-5195 |
EndPage | n/a |
ExternalDocumentID | 30645044 10_1002_mabi_201800453 MABI201800453 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: State Key Laboratory of Chemical Resource Engineering (CN) funderid: 2018051 – fundername: National Natural Science Foundation of China funderid: 51663019; 51503106; 51473061 – fundername: National Natural Science Foundation of China grantid: 51473061 – fundername: National Natural Science Foundation of China grantid: 51663019 – fundername: State Key Laboratory of Chemical Resource Engineering (CN) grantid: 2018051 – fundername: National Natural Science Foundation of China grantid: 51503106 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4103-508ae4f3806276526aa94d18fe539a56644bd24f4b2f25c63b652e40130f64d43 |
IEDL.DBID | DR2 |
ISSN | 1616-5187 1616-5195 |
IngestDate | Fri Jul 11 16:09:43 EDT 2025 Sun Jul 13 05:16:22 EDT 2025 Wed Feb 19 02:36:37 EST 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 01 04:32:50 EDT 2025 Wed Jan 22 16:31:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | antibacterial dressing bacterial membrane disruption antibacterial N-halamine polymer nanomaterials wound therapy |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4103-508ae4f3806276526aa94d18fe539a56644bd24f4b2f25c63b652e40130f64d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8839-8161 |
PMID | 30645044 |
PQID | 2209951801 |
PQPubID | 2034242 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2179361435 proquest_journals_2209951801 pubmed_primary_30645044 crossref_primary_10_1002_mabi_201800453 crossref_citationtrail_10_1002_mabi_201800453 wiley_primary_10_1002_mabi_201800453_MABI201800453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular bioscience |
PublicationTitleAlternate | Macromol Biosci |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2011; 119 2013; 127 2008; 109 2008; 34 2014; 24 2016; 106 2017; 156 2014; 254 2017; 113 2013; 5 2017; 9 2017; 117 2018; 6 2014; 4 2013; 14 2010; 114 2006; 27 2015; 44 2011; 22 2008; 68 2018; 30 2015; 216 2014; 8 2014; 288 2010; 8 2017; 61 2018; 28 2015; 6 2015; 5 2015; 3 2017; 22 2002; 35 2008; 15 2006; 110 2006; 2 2015; 9 2015; 7 2012; 33 2010; 82 2009; 78 2001; 80 2018; 18 2012; 1 2013; 34 2015; 22 2008; 49 1999; 33 2014; 35 2016; 138 2011; 47 2008; 453 2009; 1 2007; 46 2016; 8 1931; 23 2016; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Kocer H. B. (e_1_2_7_48_1) 2010; 8 Jiang Z. M. (e_1_2_7_23_1) 2014; 288 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 109 start-page: 2756 year: 2008 publication-title: J. Appl. Polym. Sci. – volume: 46 start-page: 1861 year: 2007 publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 3498 year: 2015 publication-title: J. Mater. Chem. B – volume: 117 start-page: 4806 year: 2017 publication-title: Chem. Rev. – volume: 119 start-page: 1646 year: 2011 publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 2464 year: 2010 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 295602 year: 2011 publication-title: Nanotechnology – volume: 5 start-page: 1822 year: 2017 publication-title: J. Mater. Chem. B – volume: 47 start-page: 1654 year: 2011 publication-title: Eur. Polym. J. – volume: 1 start-page: 609 year: 2012 publication-title: Adv. Healthcare Mater. – volume: 453 start-page: 314 year: 2008 publication-title: Nature – volume: 35 start-page: 2336 year: 2014 publication-title: Biomaterials – volume: 4 start-page: 6048 year: 2014 publication-title: RSC Adv.. – volume: 18 start-page: 45 year: 2018 publication-title: Chem. Rec. – volume: 24 start-page: 3933 year: 2014 publication-title: Adv. Funct. Mater. – volume: 82 start-page: 279 year: 2010 publication-title: Am. J. Trop. Med. Hyg. – volume: 2 start-page: 879 year: 2006 publication-title: J. Chem. Theory Comput. – volume: 288 start-page: 528 year: 2014 publication-title: Appl. Surf. Sci. – volume: 15 start-page: 593 year: 2008 publication-title: Cellulose – volume: 113 start-page: 145 year: 2017 publication-title: Biomaterials – volume: 22 start-page: 1582 year: 2017 publication-title: Molecules – volume: 127 start-page: 3192 year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 114 start-page: 17298 year: 2010 publication-title: J. Phys. Chem. C – volume: 5 start-page: 8125 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 216 start-page: 18 year: 2015 publication-title: J. Controlled Release – volume: 9 start-page: 1175 year: 2015 publication-title: ACS Nano – volume: 80 start-page: 2460 year: 2001 publication-title: J. Appl. Polym. Sci. – volume: 78 start-page: 220 year: 2009 publication-title: Carbohydr. Polym. – volume: 30 start-page: 1801100 year: 2018 publication-title: Adv. Mater. – volume: 33 start-page: 2218 year: 1999 publication-title: Environ. Sci. Technol. – volume: 254 start-page: 30 year: 2014 publication-title: Chem. Eng. J. – volume: 138 start-page: 2064 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 144 year: 2017 publication-title: Acta Biomater. – volume: 8 start-page: 6202 year: 2014 publication-title: ACS Nano – volume: 68 start-page: 1448 year: 2008 publication-title: React. Funct. Polym. – volume: 6 start-page: 5198 year: 2018 publication-title: J. Mater. Chem. B – volume: 14 start-page: 585 year: 2013 publication-title: Biomacromolecules – volume: 106 start-page: 250 year: 2016 publication-title: Biomaterials – volume: 28 start-page: 1706709 year: 2018 publication-title: Adv. Funct. Mater. – volume: 22 start-page: 3609 year: 2015 publication-title: Cellulose – volume: 156 start-page: 460 year: 2017 publication-title: Carbohydr. Polym. – volume: 7 start-page: 17255 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 10109 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 110 start-page: 7621 year: 2006 publication-title: J. Phys. Chem. A – volume: 9 start-page: 25738 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 8766 year: 2013 publication-title: Biomaterials – volume: 27 start-page: 4825 year: 2006 publication-title: Biomaterials – volume: 6 start-page: 6575 year: 2015 publication-title: Nat. Commun. – volume: 35 start-page: 5079 year: 2014 publication-title: Biomaterials – volume: 3 start-page: 7203 year: 2015 publication-title: J. Mater. Chem. B – volume: 23 start-page: 1320 year: 1931 publication-title: J. ‐ Am. Water Works Assoc. – volume: 8 start-page: 3516 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 17516 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 1820 year: 2015 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 6666 year: 2015 publication-title: RSC Adv. – volume: 34 start-page: 4016 year: 2008 publication-title: Chem. Commun. – volume: 49 start-page: 5225 year: 2008 publication-title: Polymer – volume: 33 start-page: 6783 year: 2012 publication-title: Biomaterials – volume: 1 start-page: 494 year: 2009 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 749 year: 2016 publication-title: Cellulose – volume: 35 start-page: 8909 year: 2002 publication-title: Macromolecules – ident: e_1_2_7_5_1 doi: 10.1039/C8TB01519H – ident: e_1_2_7_38_1 doi: 10.1002/app.1353 – ident: e_1_2_7_43_1 doi: 10.1039/C4TB01819B – ident: e_1_2_7_56_1 doi: 10.1002/adfm.201304202 – ident: e_1_2_7_7_1 doi: 10.1002/tcr.201700036 – ident: e_1_2_7_54_1 doi: 10.1021/acsami.5b05429 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.5b04216 – ident: e_1_2_7_9_1 doi: 10.1016/j.carbpol.2016.09.051 – ident: e_1_2_7_40_1 doi: 10.1016/j.cej.2014.05.114 – ident: e_1_2_7_30_1 doi: 10.1039/c3ra47147k – ident: e_1_2_7_32_1 doi: 10.1021/es9812103 – ident: e_1_2_7_22_1 doi: 10.1002/j.1551-8833.1931.tb17955.x – ident: e_1_2_7_37_1 doi: 10.1016/j.polymer.2008.09.054 – ident: e_1_2_7_51_1 doi: 10.1021/nn507168x – ident: e_1_2_7_33_1 doi: 10.1021/ma020691e – ident: e_1_2_7_59_1 doi: 10.1016/j.reactfunctpolym.2008.06.021 – ident: e_1_2_7_14_1 doi: 10.1016/j.actbio.2017.08.008 – ident: e_1_2_7_25_1 doi: 10.1016/j.carbpol.2009.03.029 – ident: e_1_2_7_1_1 doi: 10.1038/nature07039 – ident: e_1_2_7_3_1 doi: 10.1038/ncomms7575 – ident: e_1_2_7_17_1 doi: 10.4269/ajtmh.2010.09-0279 – ident: e_1_2_7_11_1 doi: 10.1002/adma.201801100 – ident: e_1_2_7_47_1 doi: 10.1021/jp060879q – ident: e_1_2_7_55_1 doi: 10.1016/j.biomaterials.2016.10.041 – ident: e_1_2_7_52_1 doi: 10.1016/j.biomaterials.2014.02.056 – ident: e_1_2_7_34_1 doi: 10.1021/jp104083h – ident: e_1_2_7_19_1 doi: 10.1016/j.eurpolymj.2011.05.017 – volume: 288 start-page: 528 year: 2014 ident: e_1_2_7_23_1 publication-title: Appl. Surf. Sci. – ident: e_1_2_7_12_1 doi: 10.3390/molecules22101582 – ident: e_1_2_7_26_1 doi: 10.1002/app.28126 – ident: e_1_2_7_41_1 doi: 10.1016/j.biomaterials.2016.08.031 – ident: e_1_2_7_57_1 doi: 10.1016/j.biomaterials.2012.05.068 – ident: e_1_2_7_16_1 doi: 10.1016/j.jconrel.2015.07.013 – ident: e_1_2_7_58_1 doi: 10.1002/adhm.201200018 – ident: e_1_2_7_53_1 doi: 10.1088/0957-4484/22/29/295602 – ident: e_1_2_7_36_1 doi: 10.1007/s10570-008-9205-9 – ident: e_1_2_7_45_1 doi: 10.1021/acsami.5b11573 – ident: e_1_2_7_15_1 doi: 10.1021/acsami.7b05622 – ident: e_1_2_7_35_1 doi: 10.1021/acs.chemrev.6b00687 – ident: e_1_2_7_49_1 doi: 10.1021/acsami.5b12601 – ident: e_1_2_7_27_1 doi: 10.1002/app.37731 – ident: e_1_2_7_39_1 doi: 10.1039/C5TB00973A – ident: e_1_2_7_10_1 doi: 10.1039/C6TB03223K – ident: e_1_2_7_20_1 doi: 10.1007/s10570-015-0763-3 – ident: e_1_2_7_29_1 doi: 10.1039/b809137d – ident: e_1_2_7_46_1 doi: 10.1021/ct060007s – volume: 8 start-page: 2464 year: 2010 ident: e_1_2_7_48_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_7_61_1 doi: 10.1021/jacs.5b11411 – ident: e_1_2_7_44_1 doi: 10.1016/j.biomaterials.2013.07.064 – ident: e_1_2_7_13_1 doi: 10.1016/j.biomaterials.2013.11.072 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201706709 – ident: e_1_2_7_60_1 doi: 10.1021/am402191j – ident: e_1_2_7_31_1 doi: 10.1021/bm301980q – ident: e_1_2_7_50_1 doi: 10.1016/j.biomaterials.2006.05.023 – ident: e_1_2_7_28_1 doi: 10.1021/am800157a – ident: e_1_2_7_8_1 doi: 10.1007/s10570-015-0851-4 – ident: e_1_2_7_21_1 doi: 10.1002/app.32832 – ident: e_1_2_7_2_1 doi: 10.1039/C4CS00332B – ident: e_1_2_7_18_1 doi: 10.1039/C4RA14530E – ident: e_1_2_7_24_1 doi: 10.1021/ie061583 – ident: e_1_2_7_42_1 doi: 10.1021/nn501640q |
SSID | ssj0017892 |
Score | 2.3840587 |
Snippet | The increasing occurrence of bacterial infection at the wound sites is a serious global problem, demanding the rapid development of new antibacterial materials... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1800453 |
SubjectTerms | Abuse antibacterial antibacterial dressing Antibacterial materials Antibiotic resistance Antibiotics Bacteria Bacterial diseases bacterial membrane disruption Biomaterials Biomedical materials Cell death Copolymerization Disruption E coli Medical materials Nanomaterials Nanotechnology N‐halamine polymer nanomaterials Organic chemistry Polymers Polymethyl methacrylate Therapy Wound healing wound therapy |
Title | Construction of Antibacterial N‐Halamine Polymer Nanomaterials Capable of Bacterial Membrane Disruption for Efficient Anti‐Infective Wound Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201800453 https://www.ncbi.nlm.nih.gov/pubmed/30645044 https://www.proquest.com/docview/2209951801 https://www.proquest.com/docview/2179361435 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqXuiF3wJLW2SkSpzSOvbESY7bbast0lYItWpvkZ3Y0qq7G9TdRSonHoETD8iTMBNvAgtCSPSWKJ5kYs-MPyfjbxjbr4TKAJI08mkuIvCViAwoGZUAJcZMp72lzcmjcz28hHfXyfUvu_gDP0T3wY08o4nX5ODGzg9_koZOjR1TalZGqIToPilhi1DRh44_Kk6zpioyohodJXGWtqyNQh6ui6_PSn9AzXXk2kw9p4-YaZUOGSc3B8uFPSg__8bneJ-3eswernAp7wdDesI23OwpezBoy8E9Y9-otGdLNstrz_uzxdgGrmcUPP_-5evQoHmhBvx9PbmbuluOobtGRByMnA9wXrYTR7JHndzITVFdlDkez2-XTfziiKP5SUNtgTNi8xy8-VnIGvvk-BVVguIXgQ5hm12enlwMhtGqqAMOfyxUhIDQOPAqI35knUhtTA5VnHmXqNwguASwlQQPVnqZlFpZbORoFSi8hgrUc7Y5q2fuJePOOC-9qtIsduCEtU6Bdt5IZdPcGOixqB3UolwxnlPhjUkRuJplQb1ddL3dY2-79h8D18dfW-62NlKsfH5eSNqFjFYm4h57013GUaJfMNiR9RLbUDzUhFF77EWwre5RtBZMBKDasrGQf-hQjPpHZ93Zq_8R2mFbeJyHRKRdtolG5PYQYy3s68aPfgDHGyBY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVgOSwXvlkKCxgJiVN2HXviJMdud1ctbCuEuoJbZCe2VNE2aLdFghM_gRM_kF_CTNwEFYSQ4JjEk0yc5_FLMn7D2PNKqAwgSSOf5iICX4nIgJJRCVBizHTaW1qcPJ7o4Tm8fJe02YS0FiboQ3Qf3GhkNPGaBjh9kD78qRq6MHZGuVkZ0RJ1lV2jst4kn3_8plOQitOsqYuMvEZHSZylrW6jkIfb9tvz0m9kc5u7NpPP6U1mW7dDzsn7g_XKHpSff1F0_K_7usVubKgp7wcs3WZX3PIO2x20FeHusm9U3bPVm-W15_3lamaD3DMaTr5_-To0iDB0gb-u558W7oJj9K6RFAec8wFOzXbuyPaosxu7BfqLNsezy4t1E8I4Uml-0qhb4KTYXAdPPgqJYx8df0vFoPg0KCLcY-enJ9PBMNrUdUAExEJFyAmNA68ykkjWidTG5FDFmXeJyg3ySwBbSfBgpZdJqZXFRo5eBIXXUIG6z3aW9dI9YNwZ56VXVZrFDpyw1inQzhupbJobAz0WtU-1KDei51R7Y14EuWZZUG8XXW_32Iuu_Ycg9_HHlvstSIrNsL8sJC1ERpiJuMeedYfxKdFfGOzIeo1tKCRqoqk9thfA1V2KXgcTAei2bCDyFx-Kcf9o1G09_Bejp2x3OB2fFWejyatH7Druz0Ne0j7bQUC5x0i5VvZJM6h-ALpKJHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BIgEX3o_CAkZC4pRdx544ybHbbtUCrVZoV-wtshNbquhjtdsiwYmfwIkfyC9hHDeBghASHJPMJBN7PP6cjL8BeFFxmSEmaeTSnEfoKh5plCIqEUuKmVY54zcnjydqeIKvTpPTn3bxB36I9oObHxl1vPYD_Kxy-z9IQ-faTH1qVuZRibwMV1Dx3Bdv6L9tCaTiNKvLIhOsUVESZ2lD28jF_rb-9rT0G9bchq713DO4CbqxOqScvN9br8xe-ekXQsf_ea1bcGMDTFk3eNJtuGQXd-Bar6kHdxe--tqeDdssWzrWXaymJpA9k-Lk2-cvQ03-RRawo-Xs49yeM4rdS4LEwctZjyZmM7Ne96DVG9s5mUs6_enF-boOYIyANDusuS1oSqyfQzcfhbSxD5a986Wg2HHgQ7gHJ4PD494w2lR1oP6PuYwIEWqLTmaeIFklQmmdYxVnziYy14QuEU0l0KERTiSlkoaErF8GcqewQnkfdhbLhX0IzGrrhJNVmsUWLTfGSlTWaSFNmmuNHYiaTi3KDeW5r7wxKwJZsyh8axdta3fgZSt_Fsg-_ii52_hIsRn0F4Xw25DJy3jcgeftZeol_w-GGnK5JhkfEJUHqR14EHyrfZRfDCYcyWxRe8hfbCjG3YNRe_ToX5SewdWj_qB4M5q8fgzX6XQekpJ2YYf8yT4hvLUyT-sh9R0wniMj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Antibacterial+N%E2%80%90Halamine+Polymer+Nanomaterials+Capable+of+Bacterial+Membrane+Disruption+for+Efficient+Anti%E2%80%90Infective+Wound+Therapy&rft.jtitle=Macromolecular+bioscience&rft.au=Gao%2C+Yangyang&rft.au=Song%2C+Nan&rft.au=Liu%2C+Wenxin&rft.au=Dong%2C+Alideertu&rft.date=2019-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=19&rft.issue=4&rft_id=info:doi/10.1002%2Fmabi.201800453&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon |