Ferromagnetism and Half‐Metallicity in Atomically Thin Holey Nitrogenated Graphene Based Systems

Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 18; no. 17; pp. 2336 - 2346
Main Authors Choudhuri, Indrani, Pathak, Biswarup
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.09.2017
Subjects
Online AccessGet full text
ISSN1439-4235
1439-7641
1439-7641
DOI10.1002/cphc.201700633

Cover

Loading…
Abstract Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices. Holey doped graphene: By using density functional theoretical (DFT) calculations, C‐doped holey nitrogenated graphene based systems were studied for possible spintronic devices. Ferromagnetism is observed in all C‐doped systems and strong half‐metallicity is observed after achieving a particular C‐doping concentration (16.67 %) in C2N. The presence of half‐metallicity can be explained by the unsaturation on the doped C atom.
AbstractList Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices. Holey doped graphene: By using density functional theoretical (DFT) calculations, C‐doped holey nitrogenated graphene based systems were studied for possible spintronic devices. Ferromagnetism is observed in all C‐doped systems and strong half‐metallicity is observed after achieving a particular C‐doping concentration (16.67 %) in C2N. The presence of half‐metallicity can be explained by the unsaturation on the doped C atom.
Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half-metallicity with a Curie temperature of approximately 297K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100% spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices.
Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices.
Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C 2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C 2 N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices.
Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2 N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices.Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2 N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices.
Author Pathak, Biswarup
Choudhuri, Indrani
Author_xml – sequence: 1
  givenname: Indrani
  surname: Choudhuri
  fullname: Choudhuri, Indrani
  organization: Indian Institute of Technology (IIT) Indore
– sequence: 2
  givenname: Biswarup
  orcidid: 0000-0002-9972-9947
  surname: Pathak
  fullname: Pathak, Biswarup
  email: biswarup@iiti.ac.in
  organization: Indian Institute of Technology (IIT) Indore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28665014$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhGtxIVL0vHHrr3HEtEGqaVIlLPleGcbV7t2sB1Ve-Mn8Bv5JbhKClIlVF_GM3re0eh9j8mBDx4JeUthTgHYqd2s7ZwBlQAN5y_IERW8nclG0IP9XzBeH5LjlO4AQIGkr8ghU01TAxVHZHWOMYbR3HrMLo2V8V21NEP_--evK8xmGJx1eaqcr85yGJ0tk6m6WZd-GQacqi8ux3CL3mTsqotoNmv0WH00qbTfppRxTK_Jy94MCd_s6wn5fv7pZrGcXV5ffF6cXc6soMBnwrYr2UppUWLHAA0qIRmlnWmpUGAZq5EJU8tCNYqvemBNSyVX0vRK1sBPyIfd3k0MP7aYsh5dsjgMxmPYJk1bWnNRl1fQ90_Qu7CNvlxXKF4rJShjhXq3p7arETu9iW40cdKP7hVA7AAbQ0oRe13MMtkFn6Nxg6agH0LSDyHpvyEV2fyJ7HHzfwXtTnDviufP0Hrxdbn4p_0DYpajyA
CitedBy_id crossref_primary_10_1016_j_matchemphys_2021_124282
crossref_primary_10_1016_j_jmmm_2019_165745
crossref_primary_10_1007_s10853_022_07133_8
crossref_primary_10_1088_2053_1583_aca7d4
crossref_primary_10_1088_1361_6463_aa81b8
crossref_primary_10_1063_1_5120525
crossref_primary_10_1021_acs_jpcc_7b12428
crossref_primary_10_1039_C9CP02936B
crossref_primary_10_1088_1361_648X_ab5ca4
crossref_primary_10_1021_acs_chemmater_9b02243
crossref_primary_10_1002_cphc_202400143
crossref_primary_10_1016_j_carbon_2019_10_038
crossref_primary_10_3390_cryst8010024
Cites_doi 10.1088/0953-8984/26/10/103202
10.1088/0953-8984/21/8/084204
10.1038/srep04014
10.1103/PhysRevB.50.17953
10.1021/nl070593c
10.1103/PhysRevB.78.134106
10.4324/9780203212554
10.1063/1.472933
10.1088/0953-8984/25/50/505502
10.1063/1.2821112
10.1039/C5CP03794H
10.1063/1.447334
10.1088/0953-8984/9/4/002
10.1038/nature17151
10.1039/C6TC03030K
10.1103/PhysRevLett.102.096601
10.1021/ja710407t
10.1002/adfm.201401149
10.1021/ja308576g
10.1038/nphys3242
10.1063/1.1564060
10.1063/1.448799
10.1063/1.478522
10.1016/j.carbon.2016.04.059
10.1039/c3nr04743a
10.1103/PhysRevB.59.1758
10.1002/ange.200705710
10.1039/C6NR03282F
10.1103/PhysRevB.90.245420
10.1021/ja908475v
10.1002/anie.200601815
10.1038/nphys551
10.1021/cm303751n
10.1039/C6TC04163A
10.1038/srep35768
10.1103/PhysRevB.37.785
10.1021/cr00005a013
10.1038/srep04374
10.1021/acs.jpcc.5b09037
10.1021/nl9020733
10.1021/acs.chemmater.5b01734
10.1021/acs.jpclett.6b00096
10.1039/C5TA05700K
10.1021/ja106134s
10.1021/nl1031919
10.1039/C6TA03245A
10.1016/j.carbon.2016.08.088
10.1063/1.470829
10.1038/srep21832
10.1021/nl2009058
10.1103/PhysRevLett.58.1861
10.1038/srep19407
10.1021/nn3005262
10.1088/0022-3727/49/29/295301
10.1021/nn9003428
10.1021/nn103548r
10.1103/PhysRevB.82.054415
10.1021/acs.jpclett.6b01807
10.1039/C6TC03438A
10.1002/anie.200705710
10.1016/j.commatsci.2005.04.010
10.1038/nature05180
10.1002/adma.200901285
10.1103/PhysRevLett.97.216803
10.1021/acssensors.6b00031
10.1038/nphys2766
10.1038/srep06059
10.1063/1.4937269
10.1002/adma.200802627
10.1103/PhysRevLett.108.197207
10.1093/oso/9780198506348.001.0001
10.1039/c3tc30371c
10.1002/ange.200601815
10.1039/C5CP05538E
10.1103/PhysRevB.46.6671
10.1039/c3tc31213e
10.1038/ncomms7486
10.1039/C6CP03210A
10.1021/jp711483t
10.1016/j.diamond.2006.01.013
10.1038/nmat2317
10.1063/1.3143611
10.1021/nl404627h
10.1002/jcc.20575
10.1038/ncomms3010
10.1021/acs.jpcc.6b01622
10.1021/ja412317s
10.1007/978-0-387-71481-3_2
10.1021/ja204990j
10.1021/jp710637c
10.1021/cs502002u
10.1039/c1cs15047b
10.1039/C5TC02911B
10.1021/nn102492g
10.1063/1.464913
10.1021/acs.jpcc.5b07359
10.1002/adma.200903403
10.1039/C6NR08810D
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.13.5188
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/cphc.201700633
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 2346
ExternalDocumentID 28665014
10_1002_cphc_201700633
CPHC201700633
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
4ZD
50Y
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
P4E
PQQKQ
QRW
R.K
RNS
ROL
RWI
RX1
SUPJJ
SV3
UPT
V2E
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
WYJ
XPP
XV2
Y6R
YZZ
ZZTAW
~S-
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4103-4c9b7977ce7ed20eae847211da91480c225e24a57b79683bf026917387af87503
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Fri Jul 11 11:43:24 EDT 2025
Fri Jul 25 12:12:58 EDT 2025
Wed Feb 19 02:40:14 EST 2025
Thu Apr 24 22:54:43 EDT 2025
Tue Jul 01 03:17:17 EDT 2025
Wed Jan 22 17:00:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords half-metallicity
spintronics
holey nitrogenated graphene
metal-free conditions
C-doping
pyrazine/pyridine linkers
C2N
Language English
License 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4103-4c9b7977ce7ed20eae847211da91480c225e24a57b79683bf026917387af87503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9972-9947
PMID 28665014
PQID 1935884122
PQPubID 986334
PageCount 11
ParticipantIDs proquest_miscellaneous_1915345555
proquest_journals_1935884122
pubmed_primary_28665014
crossref_citationtrail_10_1002_cphc_201700633
crossref_primary_10_1002_cphc_201700633
wiley_primary_10_1002_cphc_201700633_CPHC201700633
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 6, 2017
PublicationDateYYYYMMDD 2017-09-06
PublicationDate_xml – month: 09
  year: 2017
  text: September 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate Chemphyschem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2013; 25
2003; 118
2013; 1
2016; 109
1988; 37
2006; 36
2014; 26
2011; 11
2008; 78
2014; 24
2016; 105
2008 2008; 47 120
2015; 107
1996; 104
1997; 9
2017; 9
2014; 136
2013; 9
1996; 77
1996; 105
2007; 28
2010; 22
2014; 4
2012; 134
2001
2009; 94
1999; 59
2014; 14
1991; 91
2007; 7
1992; 46
2007; 3
2008; 112
2016; 49
2014; 6
2006; 444
1987; 58
2015; 6
2015; 17
2006; 97
2015; 5
2014; 90
2009; 21
1984; 81
2015; 3
2015; 11
2011; 40
2006; 15
1997
2007; 91
2007
2005
1985; 82
2016; 18
2011; 5
2016; 120
2012; 108
2011; 133
2010; 82
2016; 4
2016; 6
2016; 7
2015; 27
1976; 13
2016; 1
1993; 98
2007 2007; 46 119
2016; 531
2010; 132
1999; 110
2009; 9
2009; 102
2009; 8
2015; 119
2009; 3
2012; 6
1994; 50
2016; 8
2008; 130
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_41_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_1_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
Kittel C. (e_1_2_6_81_1) 2005
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_61_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
Schweiger A. (e_1_2_6_60_1) 2001
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 7
  start-page: 4165
  year: 2016
  end-page: 4170
  publication-title: J. Phys. Chem. Lett.
– volume: 110
  start-page: 6158
  year: 1999
  end-page: 6170
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 505502
  year: 2013
  publication-title: J. Phys. Condens. Matter
– year: 2005
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  publication-title: Nat. Mater.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 531
  start-page: 489
  year: 2016
  end-page: 492
  publication-title: Nature
– volume: 4
  start-page: 11530
  year: 2016
  end-page: 11539
  publication-title: J. Mater. Chem. C
– volume: 105
  start-page: 9982
  year: 1996
  end-page: 9985
  publication-title: J. Chem. Phys.
– volume: 1
  start-page: 3655
  year: 2013
  end-page: 3660
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 5985
  year: 2014
  end-page: 5992
  publication-title: Adv. Funct. Mater.
– volume: 105
  start-page: 463
  year: 2016
  end-page: 473
  publication-title: Carbon
– volume: 7
  start-page: 1750
  year: 2016
  end-page: 1755
  publication-title: J. Phys. Chem. Lett.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  publication-title: J. Chem. Phys.
– volume: 94
  start-page: 223111
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 104
  start-page: 1040
  year: 1996
  end-page: 1046
  publication-title: J. Chem. Phys.
– volume: 134
  start-page: 19326
  year: 2012
  end-page: 19329
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1952
  year: 2009
  end-page: 1958
  publication-title: ACS Nano
– volume: 6
  start-page: 1970
  year: 2012
  end-page: 1978
  publication-title: ACS Nano
– volume: 5
  start-page: 2601
  year: 2011
  end-page: 2610
  publication-title: ACS Nano
– volume: 11
  start-page: 307
  year: 2015
  end-page: 315
  publication-title: Nat. Phys.
– volume: 108
  start-page: 197207
  year: 2012
  publication-title: Phyc. Rev. Lett.
– volume: 18
  start-page: 22678
  year: 2016
  end-page: 22686
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 2211
  year: 2007
  end-page: 2213
  publication-title: Nano Lett.
– year: 2007
– volume: 8
  start-page: 14117
  year: 2016
  end-page: 14126
  publication-title: Nanoscale
– volume: 6
  start-page: 6486
  year: 2015
  publication-title: Nat. Commun.
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 19407
  year: 2015
  publication-title: Sci. Rep.
– volume: 4
  start-page: 6059
  year: 2014
  publication-title: Sci. Rep.
– volume: 4
  start-page: 4374
  year: 2014
  publication-title: Sci. Rep.
– volume: 4
  start-page: 04014
  year: 2013
  publication-title: Sci. Rep.
– volume: 109
  start-page: 764
  year: 2016
  end-page: 770
  publication-title: Carbon
– volume: 47 120
  start-page: 3450 3499
  year: 2008 2008
  end-page: 3453 3502
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 78
  start-page: 134106
  year: 2008
  publication-title: Phys. Rev. B
– volume: 136
  start-page: 5664
  year: 2014
  end-page: 5669
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3144
  year: 2016
  end-page: 3150
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 2916
  year: 2011
  end-page: 2922
  publication-title: ACS Nano
– volume: 6
  start-page: 35768
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 21832
  year: 2016
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2577
  year: 2014
  end-page: 2581
  publication-title: Nanoscale
– volume: 22
  start-page: 1004
  year: 2010
  end-page: 1007
  publication-title: Adv. Mater.
– volume: 21
  start-page: 4726
  year: 2009
  end-page: 4730
  publication-title: Adv. Mater.
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 15113
  year: 2011
  end-page: 15119
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2472
  year: 2011
  end-page: 2477
  publication-title: Nano Lett.
– volume: 28
  start-page: 899
  year: 2007
  end-page: 908
  publication-title: Comput. Chem.
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 4
  start-page: 9069
  year: 2016
  end-page: 9077
  publication-title: J. Mater. Chem. C
– volume: 49
  start-page: 295301
  year: 2016
  publication-title: J. Phys. D
– volume: 17
  start-page: 22136
  year: 2015
  end-page: 22143
  publication-title: Phys. Chem. Chem. Phys.
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  publication-title: Comput. Mater. Sci.
– volume: 3
  start-page: 21351
  year: 2015
  end-page: 21356
  publication-title: Mater. Chem. A
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 096601
  year: 2009
  publication-title: Phys. Rev. Lett.
– year: 2001
– volume: 21
  start-page: 1609
  year: 2009
  end-page: 1612
  publication-title: Adv. Mater.
– volume: 46 119
  start-page: 668 680
  year: 2007 2007
  end-page: 699 713
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 91
  start-page: 893
  year: 1991
  end-page: 928
  publication-title: Chem. Rev.
– volume: 5
  start-page: 941
  year: 2015
  end-page: 947
  publication-title: ACS Catal.
– volume: 132
  start-page: 1699
  year: 2010
  end-page: 1705
  publication-title: J. Am. Chem. Soc.
– volume: 97
  start-page: 216803
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 24827
  year: 2015
  end-page: 24836
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 2010
  year: 2013
  publication-title: Nat. Commun.
– volume: 132
  start-page: 13592
  year: 2010
  end-page: 13593
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 1542
  year: 2013
  end-page: 1548
  publication-title: Chem. Mater.
– volume: 27
  start-page: 4860
  year: 2015
  end-page: 4864
  publication-title: Chem. Mater.
– volume: 82
  start-page: 270
  year: 1985
  end-page: 283
  publication-title: J. Chem. Phys.
– year: 1997
– volume: 1
  start-page: 6265
  year: 2013
  end-page: 6270
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 8253
  year: 2016
  end-page: 8262
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 3867
  year: 2009
  end-page: 3870
  publication-title: Nano Lett.
– volume: 14
  start-page: 1853
  year: 2014
  end-page: 1858
  publication-title: Nano Lett.
– volume: 3
  start-page: 153
  year: 2007
  end-page: 159
  publication-title: Nature Phys.
– volume: 9
  start-page: 767
  year: 1997
  publication-title: J. Phys. Condens. Matter
– volume: 82
  start-page: 054415
  year: 2010
  publication-title: Phys. Rev. B
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 26348
  year: 2015
  end-page: 26354
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 451
  year: 2016
  end-page: 459
  publication-title: ACS Sens.
– volume: 40
  start-page: 3336
  year: 2011
  end-page: 3355
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 1333
  year: 2008
  end-page: 1335
  publication-title: J. Phys. Chem. B
– volume: 90
  start-page: 245420
  year: 2014
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 103202
  year: 2014
  publication-title: J. Phys. Condens. Matter
– volume: 3
  start-page: 12230
  year: 2015
  end-page: 12235
  publication-title: J. Mater. Chem. C
– volume: 112
  start-page: 5447
  year: 2008
  end-page: 5453
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 801
  year: 2013
  end-page: 805
  publication-title: Nat. Phys.
– volume: 120
  start-page: 7052
  year: 2016
  end-page: 7060
  publication-title: J. Phys. Chem. C
– volume: 130
  start-page: 4224
  year: 2008
  end-page: 4225
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 12756
  year: 2016
  end-page: 12767
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2428
  year: 2017
  end-page: 2435
  publication-title: Nanoscale
– volume: 21
  start-page: 084204
  year: 2009
  publication-title: J. Phys. Condens. Matter
– volume: 107
  start-page: 231904
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 444
  start-page: 347
  year: 2006
  end-page: 349
  publication-title: Nature
– volume: 4
  start-page: 04374
  year: 2014
  publication-title: Sci. Rep.
– volume: 15
  start-page: 1593
  year: 2006
  end-page: 1600
  publication-title: Diamond Relat. Mater.
– volume: 91
  start-page: 243116
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 151
  year: 2011
  end-page: 155
  publication-title: Nano Lett.
– volume: 46
  start-page: 6671
  year: 1992
  end-page: 6687
  publication-title: Phys. Rev. B
– volume: 58
  start-page: 1861
  year: 1987
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_6_62_1
– ident: e_1_2_6_101_1
  doi: 10.1088/0953-8984/26/10/103202
– ident: e_1_2_6_58_1
  doi: 10.1088/0953-8984/21/8/084204
– ident: e_1_2_6_7_1
  doi: 10.1038/srep04014
– ident: e_1_2_6_50_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_6_70_1
  doi: 10.1021/nl070593c
– ident: e_1_2_6_84_1
  doi: 10.1103/PhysRevB.78.134106
– ident: e_1_2_6_95_1
  doi: 10.4324/9780203212554
– ident: e_1_2_6_53_1
  doi: 10.1063/1.472933
– ident: e_1_2_6_73_1
  doi: 10.1088/0953-8984/25/50/505502
– ident: e_1_2_6_71_1
  doi: 10.1063/1.2821112
– ident: e_1_2_6_97_1
  doi: 10.1039/C5CP03794H
– ident: e_1_2_6_59_1
  doi: 10.1063/1.447334
– ident: e_1_2_6_49_1
  doi: 10.1088/0953-8984/9/4/002
– ident: e_1_2_6_22_1
  doi: 10.1038/nature17151
– ident: e_1_2_6_16_1
  doi: 10.1039/C6TC03030K
– ident: e_1_2_6_24_1
  doi: 10.1103/PhysRevLett.102.096601
– ident: e_1_2_6_23_1
  doi: 10.1021/ja710407t
– ident: e_1_2_6_90_1
  doi: 10.1002/adfm.201401149
– ident: e_1_2_6_86_1
  doi: 10.1021/ja308576g
– ident: e_1_2_6_1_1
  doi: 10.1038/nphys3242
– ident: e_1_2_6_52_1
  doi: 10.1063/1.1564060
– ident: e_1_2_6_66_1
  doi: 10.1063/1.448799
– ident: e_1_2_6_54_1
  doi: 10.1063/1.478522
– ident: e_1_2_6_61_1
– ident: e_1_2_6_41_1
  doi: 10.1016/j.carbon.2016.04.059
– ident: e_1_2_6_9_1
  doi: 10.1039/c3nr04743a
– ident: e_1_2_6_46_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_11_2
  doi: 10.1002/ange.200705710
– ident: e_1_2_6_15_1
  doi: 10.1039/C6NR03282F
– ident: e_1_2_6_32_1
  doi: 10.1103/PhysRevB.90.245420
– ident: e_1_2_6_28_1
  doi: 10.1021/ja908475v
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.200601815
– ident: e_1_2_6_20_1
  doi: 10.1038/nphys551
– ident: e_1_2_6_12_1
  doi: 10.1021/cm303751n
– ident: e_1_2_6_43_1
  doi: 10.1039/C6TC04163A
– ident: e_1_2_6_99_1
  doi: 10.1038/srep35768
– ident: e_1_2_6_65_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_6_55_1
  doi: 10.1021/cr00005a013
– ident: e_1_2_6_8_1
  doi: 10.1038/srep04374
– volume-title: Introduction to Solid State Physics
  year: 2005
  ident: e_1_2_6_81_1
– ident: e_1_2_6_80_1
  doi: 10.1021/acs.jpcc.5b09037
– ident: e_1_2_6_35_1
  doi: 10.1038/srep04374
– ident: e_1_2_6_27_1
  doi: 10.1021/nl9020733
– ident: e_1_2_6_40_1
  doi: 10.1021/acs.chemmater.5b01734
– ident: e_1_2_6_42_1
  doi: 10.1021/acs.jpclett.6b00096
– ident: e_1_2_6_39_1
  doi: 10.1039/C5TA05700K
– ident: e_1_2_6_91_1
  doi: 10.1021/ja106134s
– ident: e_1_2_6_5_1
  doi: 10.1021/nl1031919
– ident: e_1_2_6_19_1
  doi: 10.1039/C6TA03245A
– ident: e_1_2_6_45_1
  doi: 10.1016/j.carbon.2016.08.088
– ident: e_1_2_6_64_1
  doi: 10.1063/1.470829
– ident: e_1_2_6_100_1
  doi: 10.1038/srep21832
– ident: e_1_2_6_88_1
  doi: 10.1021/nl2009058
– ident: e_1_2_6_85_1
  doi: 10.1103/PhysRevLett.58.1861
– ident: e_1_2_6_74_1
  doi: 10.1038/srep19407
– ident: e_1_2_6_79_1
  doi: 10.1021/nn3005262
– ident: e_1_2_6_36_1
  doi: 10.1088/0022-3727/49/29/295301
– ident: e_1_2_6_26_1
  doi: 10.1021/nn9003428
– ident: e_1_2_6_89_1
  doi: 10.1021/nn103548r
– ident: e_1_2_6_102_1
  doi: 10.1103/PhysRevB.82.054415
– ident: e_1_2_6_68_1
  doi: 10.1021/acs.jpclett.6b01807
– ident: e_1_2_6_17_1
  doi: 10.1039/C6TC03438A
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.200705710
– ident: e_1_2_6_56_1
  doi: 10.1016/j.commatsci.2005.04.010
– ident: e_1_2_6_14_1
  doi: 10.1038/nature05180
– ident: e_1_2_6_92_1
  doi: 10.1002/adma.200901285
– ident: e_1_2_6_13_1
  doi: 10.1103/PhysRevLett.97.216803
– ident: e_1_2_6_77_1
  doi: 10.1021/acssensors.6b00031
– ident: e_1_2_6_2_1
  doi: 10.1038/nphys2766
– ident: e_1_2_6_34_1
  doi: 10.1038/srep06059
– ident: e_1_2_6_87_1
  doi: 10.1063/1.4937269
– ident: e_1_2_6_94_1
  doi: 10.1002/adma.200802627
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevLett.108.197207
– volume-title: Principles of Pulse Electron Paramagnetic Resonance
  year: 2001
  ident: e_1_2_6_60_1
  doi: 10.1093/oso/9780198506348.001.0001
– ident: e_1_2_6_69_1
  doi: 10.1039/c3tc30371c
– ident: e_1_2_6_21_2
  doi: 10.1002/ange.200601815
– ident: e_1_2_6_67_1
  doi: 10.1039/C5CP05538E
– ident: e_1_2_6_48_1
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_6_37_1
  doi: 10.1039/c3tc31213e
– ident: e_1_2_6_38_1
  doi: 10.1038/ncomms7486
– ident: e_1_2_6_44_1
  doi: 10.1039/C6CP03210A
– ident: e_1_2_6_82_1
  doi: 10.1021/jp711483t
– ident: e_1_2_6_10_1
  doi: 10.1016/j.diamond.2006.01.013
– ident: e_1_2_6_93_1
  doi: 10.1038/nmat2317
– ident: e_1_2_6_72_1
  doi: 10.1063/1.3143611
– ident: e_1_2_6_3_1
  doi: 10.1021/nl404627h
– ident: e_1_2_6_57_1
  doi: 10.1002/jcc.20575
– ident: e_1_2_6_31_1
  doi: 10.1038/ncomms3010
– ident: e_1_2_6_18_1
  doi: 10.1021/acs.jpcc.6b01622
– ident: e_1_2_6_96_1
  doi: 10.1021/ja412317s
– ident: e_1_2_6_78_1
  doi: 10.1007/978-0-387-71481-3_2
– ident: e_1_2_6_75_1
  doi: 10.1021/ja204990j
– ident: e_1_2_6_25_1
  doi: 10.1021/jp710637c
– ident: e_1_2_6_29_1
  doi: 10.1021/cs502002u
– ident: e_1_2_6_6_1
  doi: 10.1039/c1cs15047b
– ident: e_1_2_6_98_1
  doi: 10.1039/C5TC02911B
– ident: e_1_2_6_4_1
  doi: 10.1021/nn102492g
– ident: e_1_2_6_63_1
  doi: 10.1063/1.464913
– ident: e_1_2_6_76_1
  doi: 10.1021/acs.jpcc.5b07359
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.200903403
– ident: e_1_2_6_83_1
  doi: 10.1039/C6NR08810D
– ident: e_1_2_6_47_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_51_1
  doi: 10.1103/PhysRevB.13.5188
SSID ssj0008071
Score 2.2852707
Snippet Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT)...
Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT)...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2336
SubjectTerms C-doping
C2N
Carbon nitrides
Curie temperature
Devices
Electrons
Ferromagnetism
Graphene
half-metallicity
holey nitrogenated graphene
Mechanical properties
metal-free conditions
Metallicity
pyrazine/pyridine linkers
spintronics
Title Ferromagnetism and Half‐Metallicity in Atomically Thin Holey Nitrogenated Graphene Based Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201700633
https://www.ncbi.nlm.nih.gov/pubmed/28665014
https://www.proquest.com/docview/1935884122
https://www.proquest.com/docview/1915345555
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4hLuXS0kKp-akWqRIng7Pe2M4xjUitSiBUFYmbtd4dtxHBRolzgBOPwDPyJJ3xX5pWqFLxyZbH8npnd-Ybz-43AJ_8MENLgYfraTKBCpVxowx9VyP7J2kDjHg38tl5EF-qr1f9q9928df8EN0PN54Zlb3mCa7T-cmSNNTc_mQKQuaXC3ym--QFW4yKvi35oyKvjrgUpzul329ZGz15svr4qlf6C2quItfK9YzfgG4bXa84uT5elOmxuf-Dz_ElX7UJrxtcKob1QHoLa5i_g1ejthzcFqRjnM2KG_0jx3IyvxE6tyLW0-zp4fEMCcFPJ4YAvZjkYlgWFQfB9E5wVVARF9QQcT4pZwWNVsK2VnxhmmyysuIzOVErGtr0bbgcn34fxW5ToME1quf5rjKDNCQAaTAkhXuokXwdRZRWDyjK8gzZCpRK90OSCiI_zSjgo_DQj0KdRZxAfQ_reZHjBxCo2Lb42GObIjEbWK7VEClrAs9KVA64rYIS07CXcxGNaVLzLsuEey7pes6Bo07-tubteFZyv9V30szfedLj9HCkelI6cNjdph7ndIrOsViwDHkL1afDgZ16nHSvkkwjSNGnA7LS9j_akIwu4lF3tfs_D-3BBp9Xy9-CfVgvZws8ILxUph-rOfELdakLZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VkCBYyExClt1vYm2WNZWAJ0Vwi1ErfIsSewYptU2-yhPfUn8Bv7SzqTV7UghAS5JRkrjsfz8tjfALxSUY6OAg8_MKQCNWrrxzkq3yDbJ-lCjPk08nQWJkf649dht5uQz8I0-BD9ghtLRq2vWcB5QXrvGjXUnnxnDEIGmAuVugm3uKw3FzF4--UaQSoOmphLc8JTqmGH2xjIvfX263bpN2dz3Xetjc9kC7Ku282ekx-7qyrbtee_IDr-13_dhTutayr2m7l0D25gcR82x11FuAeQTXC5LI_NtwKr-emxMIUTiVnklxc_p0hO_GJuyacX80LsV2UNQ7A4E1wYVCQl9UTM5tWypAlL7q0T7xkpmxSteEN21IkWOf0hHE3eHY4Tv63R4Fs9CJSv7SiLyIe0GBHPAzRI5o6CSmdGFGgFltQFSm2GEVGFscpyivkoQlRxZPKYc6iPYKMoC3wMAjWrF4UDVisS85Hjcg2xdjYMnETtgd9xKLUtgDnX0VikDfSyTHnk0n7kPHjd05800B1_pNzpGJ62InyaDjhDHOuBlB687F_TiHNGxRRYrpiGDIYe0uXBdjNR-k9JRhKkANQDWbP7L31Ix5-TcX_35F8avYDN5HB6kB58mH16Crf5eb0bLtyBjWq5wmfkPlXZ81pArgApyw-B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3o_QAkZC4pQ2a3uT7LEsLOHRVYWo1Fvk2BNYdZusttlDe-In8Bv5JZ3JqywIIUFuSRzF8XhmvsnY3wC8UFGOjgIPPzBkAjVq68c5Kt8g-yfpQox5N_L-NEwO9fuj4dFPu_gbfoj-hxtrRm2vWcEXLt-9JA21i69MQcj8cqFSV-GaDkljGBZ9uiSQioMm5NKc75Rq2NE2BnJ3_fl1t_Qb1lyHrrXvmdwC0_W6WXJyvLOqsh17_guh4_981m242QJTsdfMpDtwBYu7cGPc1YO7B9kEl8vyxHwpsJqdnghTOJGYef7j2_d9JAg_n1lC9GJWiL2qrEkI5meCy4KKpKSOiOmsWpY0XQncOvGWebLJzIpX5EWdaHnT78Ph5M3nceK3FRp8qweB8rUdZREhSIsRSTxAg-TsKKR0ZkRhVmDJWKDUZhhRqzBWWU4RH8WHKo5MHnMG9QFsFGWBj0CgZuOicMBGRWI-clysIdbOhoGTqD3wOwGltqUv5yoa87QhXpYpj1zaj5wHL_v2i4a4448ttzt5p60Cn6YDzg_HeiClB8_72zTinE8xBZYrbkPuQg_p8OBhM0_6V0nmEaTw0wNZS_svfUjHB8m4P3v8Lw89g-sHryfpx3fTD1uwyZfrpXDhNmxUyxU-IexUZU9r9bgAAnYOOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferromagnetism+and+Half%E2%80%90Metallicity+in+Atomically+Thin+Holey+Nitrogenated+Graphene+Based+Systems&rft.jtitle=Chemphyschem&rft.au=Choudhuri%2C+Indrani&rft.au=Pathak%2C+Biswarup&rft.date=2017-09-06&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=18&rft.issue=17&rft.spage=2336&rft.epage=2346&rft_id=info:doi/10.1002%2Fcphc.201700633&rft.externalDBID=10.1002%252Fcphc.201700633&rft.externalDocID=CPHC201700633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon