Ferromagnetism and Half‐Metallicity in Atomically Thin Holey Nitrogenated Graphene Based Systems
Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism...
Saved in:
Published in | Chemphyschem Vol. 18; no. 17; pp. 2336 - 2346 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1439-4235 1439-7641 1439-7641 |
DOI | 10.1002/cphc.201700633 |
Cover
Loading…
Abstract | Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices.
Holey doped graphene: By using density functional theoretical (DFT) calculations, C‐doped holey nitrogenated graphene based systems were studied for possible spintronic devices. Ferromagnetism is observed in all C‐doped systems and strong half‐metallicity is observed after achieving a particular C‐doping concentration (16.67 %) in C2N. The presence of half‐metallicity can be explained by the unsaturation on the doped C atom. |
---|---|
AbstractList | Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices.
Holey doped graphene: By using density functional theoretical (DFT) calculations, C‐doped holey nitrogenated graphene based systems were studied for possible spintronic devices. Ferromagnetism is observed in all C‐doped systems and strong half‐metallicity is observed after achieving a particular C‐doping concentration (16.67 %) in C2N. The presence of half‐metallicity can be explained by the unsaturation on the doped C atom. Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2N) based system shows strong half-metallicity with a Curie temperature of approximately 297K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100% spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices. Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices. Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C 2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C‐doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C 2 N) based system shows strong half‐metallicity with a Curie temperature of approximately 297 K when a particular C‐doping concentration is reached. It shows a strong half‐metallicity compared with any metal‐free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C‐doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal‐free planar ferromagnetic half‐metallic holey nitrogenated graphene based system for room‐temperature spintronic devices. Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2 N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices.Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT) calculations, atomically thin holey nitrogenated graphene (C2 N) based systems are studied for possible spintronic applications. Ferromagnetism is observed in all the C-doped holey nitrogenated graphene. Interestingly, the holey nitrogenated graphene (C2 N) based system shows strong half-metallicity with a Curie temperature of approximately 297 K when a particular C-doping concentration is reached. It shows a strong half-metallicity compared with any metal-free systems studied to date. Thus, such carbon nitride based systems can be used for a 100 % spin polarized current. Furthermore, such C-doped systems show excellent dynamical, thermal, and mechanical properties. Thus, we predict a metal-free planar ferromagnetic half-metallic holey nitrogenated graphene based system for room-temperature spintronic devices. |
Author | Pathak, Biswarup Choudhuri, Indrani |
Author_xml | – sequence: 1 givenname: Indrani surname: Choudhuri fullname: Choudhuri, Indrani organization: Indian Institute of Technology (IIT) Indore – sequence: 2 givenname: Biswarup orcidid: 0000-0002-9972-9947 surname: Pathak fullname: Pathak, Biswarup email: biswarup@iiti.ac.in organization: Indian Institute of Technology (IIT) Indore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28665014$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhGtxIVL0vHHrr3HEtEGqaVIlLPleGcbV7t2sB1Ve-Mn8Bv5JbhKClIlVF_GM3re0eh9j8mBDx4JeUthTgHYqd2s7ZwBlQAN5y_IERW8nclG0IP9XzBeH5LjlO4AQIGkr8ghU01TAxVHZHWOMYbR3HrMLo2V8V21NEP_--evK8xmGJx1eaqcr85yGJ0tk6m6WZd-GQacqi8ux3CL3mTsqotoNmv0WH00qbTfppRxTK_Jy94MCd_s6wn5fv7pZrGcXV5ffF6cXc6soMBnwrYr2UppUWLHAA0qIRmlnWmpUGAZq5EJU8tCNYqvemBNSyVX0vRK1sBPyIfd3k0MP7aYsh5dsjgMxmPYJk1bWnNRl1fQ90_Qu7CNvlxXKF4rJShjhXq3p7arETu9iW40cdKP7hVA7AAbQ0oRe13MMtkFn6Nxg6agH0LSDyHpvyEV2fyJ7HHzfwXtTnDviufP0Hrxdbn4p_0DYpajyA |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2021_124282 crossref_primary_10_1016_j_jmmm_2019_165745 crossref_primary_10_1007_s10853_022_07133_8 crossref_primary_10_1088_2053_1583_aca7d4 crossref_primary_10_1088_1361_6463_aa81b8 crossref_primary_10_1063_1_5120525 crossref_primary_10_1021_acs_jpcc_7b12428 crossref_primary_10_1039_C9CP02936B crossref_primary_10_1088_1361_648X_ab5ca4 crossref_primary_10_1021_acs_chemmater_9b02243 crossref_primary_10_1002_cphc_202400143 crossref_primary_10_1016_j_carbon_2019_10_038 crossref_primary_10_3390_cryst8010024 |
Cites_doi | 10.1088/0953-8984/26/10/103202 10.1088/0953-8984/21/8/084204 10.1038/srep04014 10.1103/PhysRevB.50.17953 10.1021/nl070593c 10.1103/PhysRevB.78.134106 10.4324/9780203212554 10.1063/1.472933 10.1088/0953-8984/25/50/505502 10.1063/1.2821112 10.1039/C5CP03794H 10.1063/1.447334 10.1088/0953-8984/9/4/002 10.1038/nature17151 10.1039/C6TC03030K 10.1103/PhysRevLett.102.096601 10.1021/ja710407t 10.1002/adfm.201401149 10.1021/ja308576g 10.1038/nphys3242 10.1063/1.1564060 10.1063/1.448799 10.1063/1.478522 10.1016/j.carbon.2016.04.059 10.1039/c3nr04743a 10.1103/PhysRevB.59.1758 10.1002/ange.200705710 10.1039/C6NR03282F 10.1103/PhysRevB.90.245420 10.1021/ja908475v 10.1002/anie.200601815 10.1038/nphys551 10.1021/cm303751n 10.1039/C6TC04163A 10.1038/srep35768 10.1103/PhysRevB.37.785 10.1021/cr00005a013 10.1038/srep04374 10.1021/acs.jpcc.5b09037 10.1021/nl9020733 10.1021/acs.chemmater.5b01734 10.1021/acs.jpclett.6b00096 10.1039/C5TA05700K 10.1021/ja106134s 10.1021/nl1031919 10.1039/C6TA03245A 10.1016/j.carbon.2016.08.088 10.1063/1.470829 10.1038/srep21832 10.1021/nl2009058 10.1103/PhysRevLett.58.1861 10.1038/srep19407 10.1021/nn3005262 10.1088/0022-3727/49/29/295301 10.1021/nn9003428 10.1021/nn103548r 10.1103/PhysRevB.82.054415 10.1021/acs.jpclett.6b01807 10.1039/C6TC03438A 10.1002/anie.200705710 10.1016/j.commatsci.2005.04.010 10.1038/nature05180 10.1002/adma.200901285 10.1103/PhysRevLett.97.216803 10.1021/acssensors.6b00031 10.1038/nphys2766 10.1038/srep06059 10.1063/1.4937269 10.1002/adma.200802627 10.1103/PhysRevLett.108.197207 10.1093/oso/9780198506348.001.0001 10.1039/c3tc30371c 10.1002/ange.200601815 10.1039/C5CP05538E 10.1103/PhysRevB.46.6671 10.1039/c3tc31213e 10.1038/ncomms7486 10.1039/C6CP03210A 10.1021/jp711483t 10.1016/j.diamond.2006.01.013 10.1038/nmat2317 10.1063/1.3143611 10.1021/nl404627h 10.1002/jcc.20575 10.1038/ncomms3010 10.1021/acs.jpcc.6b01622 10.1021/ja412317s 10.1007/978-0-387-71481-3_2 10.1021/ja204990j 10.1021/jp710637c 10.1021/cs502002u 10.1039/c1cs15047b 10.1039/C5TC02911B 10.1021/nn102492g 10.1063/1.464913 10.1021/acs.jpcc.5b07359 10.1002/adma.200903403 10.1039/C6NR08810D 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.13.5188 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/cphc.201700633 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 2346 |
ExternalDocumentID | 28665014 10_1002_cphc_201700633 CPHC201700633 |
Genre | article Journal Article |
GroupedDBID | --- -DZ -~X 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 4ZD 50Y 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W P4E PQQKQ QRW R.K RNS ROL RWI RX1 SUPJJ SV3 UPT V2E W99 WBKPD WH7 WJL WOHZO WXSBR WYJ XPP XV2 Y6R YZZ ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4103-4c9b7977ce7ed20eae847211da91480c225e24a57b79683bf026917387af87503 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Fri Jul 11 11:43:24 EDT 2025 Fri Jul 25 12:12:58 EDT 2025 Wed Feb 19 02:40:14 EST 2025 Thu Apr 24 22:54:43 EDT 2025 Tue Jul 01 03:17:17 EDT 2025 Wed Jan 22 17:00:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | half-metallicity spintronics holey nitrogenated graphene metal-free conditions C-doping pyrazine/pyridine linkers C2N |
Language | English |
License | 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4103-4c9b7977ce7ed20eae847211da91480c225e24a57b79683bf026917387af87503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9972-9947 |
PMID | 28665014 |
PQID | 1935884122 |
PQPubID | 986334 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1915345555 proquest_journals_1935884122 pubmed_primary_28665014 crossref_citationtrail_10_1002_cphc_201700633 crossref_primary_10_1002_cphc_201700633 wiley_primary_10_1002_cphc_201700633_CPHC201700633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 6, 2017 |
PublicationDateYYYYMMDD | 2017-09-06 |
PublicationDate_xml | – month: 09 year: 2017 text: September 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | Chemphyschem |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2013; 25 2003; 118 2013; 1 2016; 109 1988; 37 2006; 36 2014; 26 2011; 11 2008; 78 2014; 24 2016; 105 2008 2008; 47 120 2015; 107 1996; 104 1997; 9 2017; 9 2014; 136 2013; 9 1996; 77 1996; 105 2007; 28 2010; 22 2014; 4 2012; 134 2001 2009; 94 1999; 59 2014; 14 1991; 91 2007; 7 1992; 46 2007; 3 2008; 112 2016; 49 2014; 6 2006; 444 1987; 58 2015; 6 2015; 17 2006; 97 2015; 5 2014; 90 2009; 21 1984; 81 2015; 3 2015; 11 2011; 40 2006; 15 1997 2007; 91 2007 2005 1985; 82 2016; 18 2011; 5 2016; 120 2012; 108 2011; 133 2010; 82 2016; 4 2016; 6 2016; 7 2015; 27 1976; 13 2016; 1 1993; 98 2007 2007; 46 119 2016; 531 2010; 132 1999; 110 2009; 9 2009; 102 2009; 8 2015; 119 2009; 3 2012; 6 1994; 50 2016; 8 2008; 130 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_1_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 Kittel C. (e_1_2_6_81_1) 2005 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 Schweiger A. (e_1_2_6_60_1) 2001 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 7 start-page: 4165 year: 2016 end-page: 4170 publication-title: J. Phys. Chem. Lett. – volume: 110 start-page: 6158 year: 1999 end-page: 6170 publication-title: J. Chem. Phys. – volume: 25 start-page: 505502 year: 2013 publication-title: J. Phys. Condens. Matter – year: 2005 – volume: 8 start-page: 76 year: 2009 end-page: 80 publication-title: Nat. Mater. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 531 start-page: 489 year: 2016 end-page: 492 publication-title: Nature – volume: 4 start-page: 11530 year: 2016 end-page: 11539 publication-title: J. Mater. Chem. C – volume: 105 start-page: 9982 year: 1996 end-page: 9985 publication-title: J. Chem. Phys. – volume: 1 start-page: 3655 year: 2013 end-page: 3660 publication-title: J. Mater. Chem. C – volume: 24 start-page: 5985 year: 2014 end-page: 5992 publication-title: Adv. Funct. Mater. – volume: 105 start-page: 463 year: 2016 end-page: 473 publication-title: Carbon – volume: 7 start-page: 1750 year: 2016 end-page: 1755 publication-title: J. Phys. Chem. Lett. – volume: 98 start-page: 5648 year: 1993 end-page: 5652 publication-title: J. Chem. Phys. – volume: 94 start-page: 223111 year: 2009 publication-title: Appl. Phys. Lett. – volume: 104 start-page: 1040 year: 1996 end-page: 1046 publication-title: J. Chem. Phys. – volume: 134 start-page: 19326 year: 2012 end-page: 19329 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1952 year: 2009 end-page: 1958 publication-title: ACS Nano – volume: 6 start-page: 1970 year: 2012 end-page: 1978 publication-title: ACS Nano – volume: 5 start-page: 2601 year: 2011 end-page: 2610 publication-title: ACS Nano – volume: 11 start-page: 307 year: 2015 end-page: 315 publication-title: Nat. Phys. – volume: 108 start-page: 197207 year: 2012 publication-title: Phyc. Rev. Lett. – volume: 18 start-page: 22678 year: 2016 end-page: 22686 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 2211 year: 2007 end-page: 2213 publication-title: Nano Lett. – year: 2007 – volume: 8 start-page: 14117 year: 2016 end-page: 14126 publication-title: Nanoscale – volume: 6 start-page: 6486 year: 2015 publication-title: Nat. Commun. – volume: 118 start-page: 8207 year: 2003 end-page: 8215 publication-title: J. Chem. Phys. – volume: 6 start-page: 19407 year: 2015 publication-title: Sci. Rep. – volume: 4 start-page: 6059 year: 2014 publication-title: Sci. Rep. – volume: 4 start-page: 4374 year: 2014 publication-title: Sci. Rep. – volume: 4 start-page: 04014 year: 2013 publication-title: Sci. Rep. – volume: 109 start-page: 764 year: 2016 end-page: 770 publication-title: Carbon – volume: 47 120 start-page: 3450 3499 year: 2008 2008 end-page: 3453 3502 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 78 start-page: 134106 year: 2008 publication-title: Phys. Rev. B – volume: 136 start-page: 5664 year: 2014 end-page: 5669 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3144 year: 2016 end-page: 3150 publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 2916 year: 2011 end-page: 2922 publication-title: ACS Nano – volume: 6 start-page: 35768 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 21832 year: 2016 publication-title: Sci. Rep. – volume: 6 start-page: 2577 year: 2014 end-page: 2581 publication-title: Nanoscale – volume: 22 start-page: 1004 year: 2010 end-page: 1007 publication-title: Adv. Mater. – volume: 21 start-page: 4726 year: 2009 end-page: 4730 publication-title: Adv. Mater. – volume: 81 start-page: 511 year: 1984 end-page: 519 publication-title: J. Chem. Phys. – volume: 133 start-page: 15113 year: 2011 end-page: 15119 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2472 year: 2011 end-page: 2477 publication-title: Nano Lett. – volume: 28 start-page: 899 year: 2007 end-page: 908 publication-title: Comput. Chem. – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B – volume: 4 start-page: 9069 year: 2016 end-page: 9077 publication-title: J. Mater. Chem. C – volume: 49 start-page: 295301 year: 2016 publication-title: J. Phys. D – volume: 17 start-page: 22136 year: 2015 end-page: 22143 publication-title: Phys. Chem. Chem. Phys. – volume: 36 start-page: 354 year: 2006 end-page: 360 publication-title: Comput. Mater. Sci. – volume: 3 start-page: 21351 year: 2015 end-page: 21356 publication-title: Mater. Chem. A – volume: 13 start-page: 5188 year: 1976 end-page: 5192 publication-title: Phys. Rev. B – volume: 102 start-page: 096601 year: 2009 publication-title: Phys. Rev. Lett. – year: 2001 – volume: 21 start-page: 1609 year: 2009 end-page: 1612 publication-title: Adv. Mater. – volume: 46 119 start-page: 668 680 year: 2007 2007 end-page: 699 713 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 91 start-page: 893 year: 1991 end-page: 928 publication-title: Chem. Rev. – volume: 5 start-page: 941 year: 2015 end-page: 947 publication-title: ACS Catal. – volume: 132 start-page: 1699 year: 2010 end-page: 1705 publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 216803 year: 2006 publication-title: Phys. Rev. Lett. – volume: 119 start-page: 24827 year: 2015 end-page: 24836 publication-title: J. Phys. Chem. C – volume: 4 start-page: 2010 year: 2013 publication-title: Nat. Commun. – volume: 132 start-page: 13592 year: 2010 end-page: 13593 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 1542 year: 2013 end-page: 1548 publication-title: Chem. Mater. – volume: 27 start-page: 4860 year: 2015 end-page: 4864 publication-title: Chem. Mater. – volume: 82 start-page: 270 year: 1985 end-page: 283 publication-title: J. Chem. Phys. – year: 1997 – volume: 1 start-page: 6265 year: 2013 end-page: 6270 publication-title: J. Mater. Chem. C – volume: 4 start-page: 8253 year: 2016 end-page: 8262 publication-title: J. Mater. Chem. C – volume: 9 start-page: 3867 year: 2009 end-page: 3870 publication-title: Nano Lett. – volume: 14 start-page: 1853 year: 2014 end-page: 1858 publication-title: Nano Lett. – volume: 3 start-page: 153 year: 2007 end-page: 159 publication-title: Nature Phys. – volume: 9 start-page: 767 year: 1997 publication-title: J. Phys. Condens. Matter – volume: 82 start-page: 054415 year: 2010 publication-title: Phys. Rev. B – volume: 37 start-page: 785 year: 1988 end-page: 789 publication-title: Phys. Rev. B – volume: 119 start-page: 26348 year: 2015 end-page: 26354 publication-title: J. Phys. Chem. C – volume: 1 start-page: 451 year: 2016 end-page: 459 publication-title: ACS Sens. – volume: 40 start-page: 3336 year: 2011 end-page: 3355 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 1333 year: 2008 end-page: 1335 publication-title: J. Phys. Chem. B – volume: 90 start-page: 245420 year: 2014 publication-title: Phys. Rev. B – volume: 59 start-page: 1758 year: 1999 end-page: 1775 publication-title: Phys. Rev. B – volume: 26 start-page: 103202 year: 2014 publication-title: J. Phys. Condens. Matter – volume: 3 start-page: 12230 year: 2015 end-page: 12235 publication-title: J. Mater. Chem. C – volume: 112 start-page: 5447 year: 2008 end-page: 5453 publication-title: J. Phys. Chem. C – volume: 9 start-page: 801 year: 2013 end-page: 805 publication-title: Nat. Phys. – volume: 120 start-page: 7052 year: 2016 end-page: 7060 publication-title: J. Phys. Chem. C – volume: 130 start-page: 4224 year: 2008 end-page: 4225 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 12756 year: 2016 end-page: 12767 publication-title: J. Mater. Chem. A – volume: 9 start-page: 2428 year: 2017 end-page: 2435 publication-title: Nanoscale – volume: 21 start-page: 084204 year: 2009 publication-title: J. Phys. Condens. Matter – volume: 107 start-page: 231904 year: 2015 publication-title: Appl. Phys. Lett. – volume: 444 start-page: 347 year: 2006 end-page: 349 publication-title: Nature – volume: 4 start-page: 04374 year: 2014 publication-title: Sci. Rep. – volume: 15 start-page: 1593 year: 2006 end-page: 1600 publication-title: Diamond Relat. Mater. – volume: 91 start-page: 243116 year: 2007 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 151 year: 2011 end-page: 155 publication-title: Nano Lett. – volume: 46 start-page: 6671 year: 1992 end-page: 6687 publication-title: Phys. Rev. B – volume: 58 start-page: 1861 year: 1987 publication-title: Phys. Rev. Lett. – ident: e_1_2_6_62_1 – ident: e_1_2_6_101_1 doi: 10.1088/0953-8984/26/10/103202 – ident: e_1_2_6_58_1 doi: 10.1088/0953-8984/21/8/084204 – ident: e_1_2_6_7_1 doi: 10.1038/srep04014 – ident: e_1_2_6_50_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_6_70_1 doi: 10.1021/nl070593c – ident: e_1_2_6_84_1 doi: 10.1103/PhysRevB.78.134106 – ident: e_1_2_6_95_1 doi: 10.4324/9780203212554 – ident: e_1_2_6_53_1 doi: 10.1063/1.472933 – ident: e_1_2_6_73_1 doi: 10.1088/0953-8984/25/50/505502 – ident: e_1_2_6_71_1 doi: 10.1063/1.2821112 – ident: e_1_2_6_97_1 doi: 10.1039/C5CP03794H – ident: e_1_2_6_59_1 doi: 10.1063/1.447334 – ident: e_1_2_6_49_1 doi: 10.1088/0953-8984/9/4/002 – ident: e_1_2_6_22_1 doi: 10.1038/nature17151 – ident: e_1_2_6_16_1 doi: 10.1039/C6TC03030K – ident: e_1_2_6_24_1 doi: 10.1103/PhysRevLett.102.096601 – ident: e_1_2_6_23_1 doi: 10.1021/ja710407t – ident: e_1_2_6_90_1 doi: 10.1002/adfm.201401149 – ident: e_1_2_6_86_1 doi: 10.1021/ja308576g – ident: e_1_2_6_1_1 doi: 10.1038/nphys3242 – ident: e_1_2_6_52_1 doi: 10.1063/1.1564060 – ident: e_1_2_6_66_1 doi: 10.1063/1.448799 – ident: e_1_2_6_54_1 doi: 10.1063/1.478522 – ident: e_1_2_6_61_1 – ident: e_1_2_6_41_1 doi: 10.1016/j.carbon.2016.04.059 – ident: e_1_2_6_9_1 doi: 10.1039/c3nr04743a – ident: e_1_2_6_46_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_6_11_2 doi: 10.1002/ange.200705710 – ident: e_1_2_6_15_1 doi: 10.1039/C6NR03282F – ident: e_1_2_6_32_1 doi: 10.1103/PhysRevB.90.245420 – ident: e_1_2_6_28_1 doi: 10.1021/ja908475v – ident: e_1_2_6_21_1 doi: 10.1002/anie.200601815 – ident: e_1_2_6_20_1 doi: 10.1038/nphys551 – ident: e_1_2_6_12_1 doi: 10.1021/cm303751n – ident: e_1_2_6_43_1 doi: 10.1039/C6TC04163A – ident: e_1_2_6_99_1 doi: 10.1038/srep35768 – ident: e_1_2_6_65_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_6_55_1 doi: 10.1021/cr00005a013 – ident: e_1_2_6_8_1 doi: 10.1038/srep04374 – volume-title: Introduction to Solid State Physics year: 2005 ident: e_1_2_6_81_1 – ident: e_1_2_6_80_1 doi: 10.1021/acs.jpcc.5b09037 – ident: e_1_2_6_35_1 doi: 10.1038/srep04374 – ident: e_1_2_6_27_1 doi: 10.1021/nl9020733 – ident: e_1_2_6_40_1 doi: 10.1021/acs.chemmater.5b01734 – ident: e_1_2_6_42_1 doi: 10.1021/acs.jpclett.6b00096 – ident: e_1_2_6_39_1 doi: 10.1039/C5TA05700K – ident: e_1_2_6_91_1 doi: 10.1021/ja106134s – ident: e_1_2_6_5_1 doi: 10.1021/nl1031919 – ident: e_1_2_6_19_1 doi: 10.1039/C6TA03245A – ident: e_1_2_6_45_1 doi: 10.1016/j.carbon.2016.08.088 – ident: e_1_2_6_64_1 doi: 10.1063/1.470829 – ident: e_1_2_6_100_1 doi: 10.1038/srep21832 – ident: e_1_2_6_88_1 doi: 10.1021/nl2009058 – ident: e_1_2_6_85_1 doi: 10.1103/PhysRevLett.58.1861 – ident: e_1_2_6_74_1 doi: 10.1038/srep19407 – ident: e_1_2_6_79_1 doi: 10.1021/nn3005262 – ident: e_1_2_6_36_1 doi: 10.1088/0022-3727/49/29/295301 – ident: e_1_2_6_26_1 doi: 10.1021/nn9003428 – ident: e_1_2_6_89_1 doi: 10.1021/nn103548r – ident: e_1_2_6_102_1 doi: 10.1103/PhysRevB.82.054415 – ident: e_1_2_6_68_1 doi: 10.1021/acs.jpclett.6b01807 – ident: e_1_2_6_17_1 doi: 10.1039/C6TC03438A – ident: e_1_2_6_11_1 doi: 10.1002/anie.200705710 – ident: e_1_2_6_56_1 doi: 10.1016/j.commatsci.2005.04.010 – ident: e_1_2_6_14_1 doi: 10.1038/nature05180 – ident: e_1_2_6_92_1 doi: 10.1002/adma.200901285 – ident: e_1_2_6_13_1 doi: 10.1103/PhysRevLett.97.216803 – ident: e_1_2_6_77_1 doi: 10.1021/acssensors.6b00031 – ident: e_1_2_6_2_1 doi: 10.1038/nphys2766 – ident: e_1_2_6_34_1 doi: 10.1038/srep06059 – ident: e_1_2_6_87_1 doi: 10.1063/1.4937269 – ident: e_1_2_6_94_1 doi: 10.1002/adma.200802627 – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevLett.108.197207 – volume-title: Principles of Pulse Electron Paramagnetic Resonance year: 2001 ident: e_1_2_6_60_1 doi: 10.1093/oso/9780198506348.001.0001 – ident: e_1_2_6_69_1 doi: 10.1039/c3tc30371c – ident: e_1_2_6_21_2 doi: 10.1002/ange.200601815 – ident: e_1_2_6_67_1 doi: 10.1039/C5CP05538E – ident: e_1_2_6_48_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_6_37_1 doi: 10.1039/c3tc31213e – ident: e_1_2_6_38_1 doi: 10.1038/ncomms7486 – ident: e_1_2_6_44_1 doi: 10.1039/C6CP03210A – ident: e_1_2_6_82_1 doi: 10.1021/jp711483t – ident: e_1_2_6_10_1 doi: 10.1016/j.diamond.2006.01.013 – ident: e_1_2_6_93_1 doi: 10.1038/nmat2317 – ident: e_1_2_6_72_1 doi: 10.1063/1.3143611 – ident: e_1_2_6_3_1 doi: 10.1021/nl404627h – ident: e_1_2_6_57_1 doi: 10.1002/jcc.20575 – ident: e_1_2_6_31_1 doi: 10.1038/ncomms3010 – ident: e_1_2_6_18_1 doi: 10.1021/acs.jpcc.6b01622 – ident: e_1_2_6_96_1 doi: 10.1021/ja412317s – ident: e_1_2_6_78_1 doi: 10.1007/978-0-387-71481-3_2 – ident: e_1_2_6_75_1 doi: 10.1021/ja204990j – ident: e_1_2_6_25_1 doi: 10.1021/jp710637c – ident: e_1_2_6_29_1 doi: 10.1021/cs502002u – ident: e_1_2_6_6_1 doi: 10.1039/c1cs15047b – ident: e_1_2_6_98_1 doi: 10.1039/C5TC02911B – ident: e_1_2_6_4_1 doi: 10.1021/nn102492g – ident: e_1_2_6_63_1 doi: 10.1063/1.464913 – ident: e_1_2_6_76_1 doi: 10.1021/acs.jpcc.5b07359 – ident: e_1_2_6_33_1 doi: 10.1002/adma.200903403 – ident: e_1_2_6_83_1 doi: 10.1039/C6NR08810D – ident: e_1_2_6_47_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_51_1 doi: 10.1103/PhysRevB.13.5188 |
SSID | ssj0008071 |
Score | 2.2852707 |
Snippet | Metal‐free half‐metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT)... Metal-free half-metallicity has been the subject of immense research focus in the field of spintronic devices. By using density functional theoretical (DFT)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2336 |
SubjectTerms | C-doping C2N Carbon nitrides Curie temperature Devices Electrons Ferromagnetism Graphene half-metallicity holey nitrogenated graphene Mechanical properties metal-free conditions Metallicity pyrazine/pyridine linkers spintronics |
Title | Ferromagnetism and Half‐Metallicity in Atomically Thin Holey Nitrogenated Graphene Based Systems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201700633 https://www.ncbi.nlm.nih.gov/pubmed/28665014 https://www.proquest.com/docview/1935884122 https://www.proquest.com/docview/1915345555 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4hLuXS0kKp-akWqRIng7Pe2M4xjUitSiBUFYmbtd4dtxHBRolzgBOPwDPyJJ3xX5pWqFLxyZbH8npnd-Ybz-43AJ_8MENLgYfraTKBCpVxowx9VyP7J2kDjHg38tl5EF-qr1f9q9928df8EN0PN54Zlb3mCa7T-cmSNNTc_mQKQuaXC3ym--QFW4yKvi35oyKvjrgUpzul329ZGz15svr4qlf6C2quItfK9YzfgG4bXa84uT5elOmxuf-Dz_ElX7UJrxtcKob1QHoLa5i_g1ejthzcFqRjnM2KG_0jx3IyvxE6tyLW0-zp4fEMCcFPJ4YAvZjkYlgWFQfB9E5wVVARF9QQcT4pZwWNVsK2VnxhmmyysuIzOVErGtr0bbgcn34fxW5ToME1quf5rjKDNCQAaTAkhXuokXwdRZRWDyjK8gzZCpRK90OSCiI_zSjgo_DQj0KdRZxAfQ_reZHjBxCo2Lb42GObIjEbWK7VEClrAs9KVA64rYIS07CXcxGNaVLzLsuEey7pes6Bo07-tubteFZyv9V30szfedLj9HCkelI6cNjdph7ndIrOsViwDHkL1afDgZ16nHSvkkwjSNGnA7LS9j_akIwu4lF3tfs_D-3BBp9Xy9-CfVgvZws8ILxUph-rOfELdakLZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQL5VkCBYyExClt1vYm2WNZWAJ0Vwi1ErfIsSewYptU2-yhPfUn8Bv7SzqTV7UghAS5JRkrjsfz8tjfALxSUY6OAg8_MKQCNWrrxzkq3yDbJ-lCjPk08nQWJkf649dht5uQz8I0-BD9ghtLRq2vWcB5QXrvGjXUnnxnDEIGmAuVugm3uKw3FzF4--UaQSoOmphLc8JTqmGH2xjIvfX263bpN2dz3Xetjc9kC7Ku282ekx-7qyrbtee_IDr-13_dhTutayr2m7l0D25gcR82x11FuAeQTXC5LI_NtwKr-emxMIUTiVnklxc_p0hO_GJuyacX80LsV2UNQ7A4E1wYVCQl9UTM5tWypAlL7q0T7xkpmxSteEN21IkWOf0hHE3eHY4Tv63R4Fs9CJSv7SiLyIe0GBHPAzRI5o6CSmdGFGgFltQFSm2GEVGFscpyivkoQlRxZPKYc6iPYKMoC3wMAjWrF4UDVisS85Hjcg2xdjYMnETtgd9xKLUtgDnX0VikDfSyTHnk0n7kPHjd05800B1_pNzpGJ62InyaDjhDHOuBlB687F_TiHNGxRRYrpiGDIYe0uXBdjNR-k9JRhKkANQDWbP7L31Ix5-TcX_35F8avYDN5HB6kB58mH16Crf5eb0bLtyBjWq5wmfkPlXZ81pArgApyw-B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAX3o_QAkZC4pQ2a3uT7LEsLOHRVYWo1Fvk2BNYdZusttlDe-In8Bv5JZ3JqywIIUFuSRzF8XhmvsnY3wC8UFGOjgIPPzBkAjVq68c5Kt8g-yfpQox5N_L-NEwO9fuj4dFPu_gbfoj-hxtrRm2vWcEXLt-9JA21i69MQcj8cqFSV-GaDkljGBZ9uiSQioMm5NKc75Rq2NE2BnJ3_fl1t_Qb1lyHrrXvmdwC0_W6WXJyvLOqsh17_guh4_981m242QJTsdfMpDtwBYu7cGPc1YO7B9kEl8vyxHwpsJqdnghTOJGYef7j2_d9JAg_n1lC9GJWiL2qrEkI5meCy4KKpKSOiOmsWpY0XQncOvGWebLJzIpX5EWdaHnT78Ph5M3nceK3FRp8qweB8rUdZREhSIsRSTxAg-TsKKR0ZkRhVmDJWKDUZhhRqzBWWU4RH8WHKo5MHnMG9QFsFGWBj0CgZuOicMBGRWI-clysIdbOhoGTqD3wOwGltqUv5yoa87QhXpYpj1zaj5wHL_v2i4a4448ttzt5p60Cn6YDzg_HeiClB8_72zTinE8xBZYrbkPuQg_p8OBhM0_6V0nmEaTw0wNZS_svfUjHB8m4P3v8Lw89g-sHryfpx3fTD1uwyZfrpXDhNmxUyxU-IexUZU9r9bgAAnYOOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferromagnetism+and+Half%E2%80%90Metallicity+in+Atomically+Thin+Holey+Nitrogenated+Graphene+Based+Systems&rft.jtitle=Chemphyschem&rft.au=Choudhuri%2C+Indrani&rft.au=Pathak%2C+Biswarup&rft.date=2017-09-06&rft.issn=1439-4235&rft.eissn=1439-7641&rft.volume=18&rft.issue=17&rft.spage=2336&rft.epage=2346&rft_id=info:doi/10.1002%2Fcphc.201700633&rft.externalDBID=10.1002%252Fcphc.201700633&rft.externalDocID=CPHC201700633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |