The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium‐Ion Batteries
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety perform...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 23; pp. 13007 - 13012 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202102593 |
Cover
Loading…
Abstract | Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries.
The boundary of Li plating in a graphite electrode for safe lithium‐ion batteries is defined. The cell with regulated Li plating exhibits highly reversible Li plating/stripping Coulombic efficiency >99.5 % with superior safety performance, offering a strategy to achieve safe high‐energy fast‐charging lithium‐ion batteries. |
---|---|
AbstractList | Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries. Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries. The boundary of Li plating in a graphite electrode for safe lithium‐ion batteries is defined. The cell with regulated Li plating exhibits highly reversible Li plating/stripping Coulombic efficiency >99.5 % with superior safety performance, offering a strategy to achieve safe high‐energy fast‐charging lithium‐ion batteries. Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi Mn Co O | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries. Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi 0.5 Mn 0.3 Co 0.2 O 2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries. Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries. |
Author | Huang, Jia‐Qi Yao, Yu‐Xing Zhang, Qiang Xu, Lei Chen, Xiao‐Ru Cai, Wenlong Yan, Chong |
Author_xml | – sequence: 1 givenname: Wenlong surname: Cai fullname: Cai, Wenlong organization: Tsinghua University – sequence: 2 givenname: Chong surname: Yan fullname: Yan, Chong organization: Tsinghua University – sequence: 3 givenname: Yu‐Xing surname: Yao fullname: Yao, Yu‐Xing organization: Tsinghua University – sequence: 4 givenname: Lei surname: Xu fullname: Xu, Lei organization: Beijing Institute of Technology – sequence: 5 givenname: Xiao‐Ru surname: Chen fullname: Chen, Xiao‐Ru organization: Tsinghua University – sequence: 6 givenname: Jia‐Qi surname: Huang fullname: Huang, Jia‐Qi organization: Beijing Institute of Technology – sequence: 7 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33793052$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1qGzEUhUVJqJO02yyLoJtsxtXPaH6WiXFSg2kCTbsVmtGdWGYsuZKG4F0eIc-YJ4mM7RYCJStp8X2Hyzmn6Mg6CwidUzKmhLBvyhoYM8IoYaLmH9AJFYxmvCz5UfrnnGdlJegInYawTHxVkeIjGnFe1pwIdoJ-3y8AX7nBauU32HV4buLCDCt816to7AM2Ft94tV6YCHjaQxu904A75_FP1cEBf3l6njmLr1SM4A2ET-i4U32Az_v3DP26nt5Pvmfz25vZ5HKetTklPKNFmw5qGNOsYLqrGii1IqSohRCN1rpRjYKi4DWtcq5yXXDVQM1UWbCKi1zwM3Sxy11792eAEOXKhBb6XllwQ5BMkFQFTREJ_foGXbrB23RdojgjVc4ITdSXPTU0K9By7c0qNSMPjSUg3wGtdyF46GRrYqrK2eiV6SUlcjuM3A4j_w6TtPEb7ZD8X6HeCY-mh807tLz8MZv-c18BowOfRA |
CitedBy_id | crossref_primary_10_1149_1945_7111_ac6a14 crossref_primary_10_1016_j_ensm_2024_103574 crossref_primary_10_1016_j_heliyon_2023_e21765 crossref_primary_10_1016_j_xcrp_2023_101740 crossref_primary_10_1016_j_diamond_2024_111152 crossref_primary_10_1016_j_jpowsour_2025_236167 crossref_primary_10_3390_nano12203697 crossref_primary_10_1088_1361_6528_ac8f9c crossref_primary_10_1002_aenm_202400894 crossref_primary_10_1016_j_joule_2023_05_021 crossref_primary_10_1039_D3TA04733D crossref_primary_10_1126_sciadv_abl8390 crossref_primary_10_1016_j_cej_2022_135101 crossref_primary_10_1002_advs_202411466 crossref_primary_10_3390_batteries8110234 crossref_primary_10_1002_smm2_1191 crossref_primary_10_1002_eem2_12334 crossref_primary_10_1039_D2CP04032H crossref_primary_10_54227_elab_20220007 crossref_primary_10_1038_s41467_024_53831_z crossref_primary_10_1002_aenm_202300357 crossref_primary_10_1021_acs_nanolett_2c03535 crossref_primary_10_1039_D4TA02499K crossref_primary_10_1134_S1070427223080086 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1016_j_nanoen_2024_110108 crossref_primary_10_1016_j_carbon_2022_05_023 crossref_primary_10_1080_02670836_2023_2210447 crossref_primary_10_1007_s40820_022_00899_1 crossref_primary_10_1016_j_etran_2022_100211 crossref_primary_10_1016_j_esci_2023_100170 crossref_primary_10_1002_pssr_202400434 crossref_primary_10_1002_anie_202301629 crossref_primary_10_1016_j_cej_2024_157247 crossref_primary_10_1016_j_est_2023_108200 crossref_primary_10_1002_sus2_74 crossref_primary_10_1002_ange_202306963 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1016_j_jpowsour_2025_236568 crossref_primary_10_1002_ange_202210365 crossref_primary_10_1002_adfm_202203242 crossref_primary_10_1016_j_ensm_2023_102809 crossref_primary_10_1002_aenm_202300500 crossref_primary_10_1016_j_apsusc_2024_160914 crossref_primary_10_1149_1945_7111_ad27b4 crossref_primary_10_1039_D1EE03292E crossref_primary_10_1016_j_ensm_2024_103799 crossref_primary_10_1016_j_mtsust_2022_100187 crossref_primary_10_1063_5_0125080 crossref_primary_10_1002_aenm_202400397 crossref_primary_10_1021_acsenergylett_2c02240 crossref_primary_10_1016_j_jiec_2024_11_054 crossref_primary_10_1016_j_matchemphys_2023_128868 crossref_primary_10_1016_j_cej_2024_157755 crossref_primary_10_1016_j_jechem_2024_09_050 crossref_primary_10_1002_elan_202400318 crossref_primary_10_1016_j_colsurfa_2025_136303 crossref_primary_10_1016_j_ensm_2024_103701 crossref_primary_10_1016_j_ensm_2022_08_008 crossref_primary_10_1039_D4EE03468F crossref_primary_10_1002_anie_202208370 crossref_primary_10_1016_j_jpowsour_2021_230437 crossref_primary_10_1016_j_nanoen_2021_106510 crossref_primary_10_1007_s10853_025_10623_0 crossref_primary_10_26599_CF_2024_9200026 crossref_primary_10_1002_cjce_25272 crossref_primary_10_1039_D4TA05871B crossref_primary_10_1016_j_cej_2023_145117 crossref_primary_10_1016_j_jpowsour_2024_234111 crossref_primary_10_1021_acsenergylett_2c02130 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1016_j_jechem_2024_01_009 crossref_primary_10_1021_acs_chemrev_4c00566 crossref_primary_10_1002_aenm_202403804 crossref_primary_10_1016_j_electacta_2023_142629 crossref_primary_10_1016_j_jmst_2022_10_093 crossref_primary_10_1021_acsami_2c21884 crossref_primary_10_1002_cnma_202300265 crossref_primary_10_1016_j_ensm_2021_06_008 crossref_primary_10_1016_j_joule_2023_04_006 crossref_primary_10_3390_batteries8110246 crossref_primary_10_3390_jlpea13020025 crossref_primary_10_1002_smtd_202400183 crossref_primary_10_33961_jecst_2024_00465 crossref_primary_10_1002_anie_202215864 crossref_primary_10_1002_cssc_202201595 crossref_primary_10_1021_acsmaterialslett_2c00810 crossref_primary_10_1016_j_jechem_2021_10_036 crossref_primary_10_1002_smll_202403938 crossref_primary_10_1016_j_cej_2022_140290 crossref_primary_10_26599_CF_2024_9200017 crossref_primary_10_1016_j_jechem_2021_10_030 crossref_primary_10_1039_D2QI00976E crossref_primary_10_1016_j_electacta_2024_145065 crossref_primary_10_1002_aenm_202302749 crossref_primary_10_1016_j_cej_2024_150895 crossref_primary_10_1002_ange_202301629 crossref_primary_10_1039_D4EE00119B crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1002_elt2_72 crossref_primary_10_3390_ma16020704 crossref_primary_10_1002_adma_202305050 crossref_primary_10_1002_ange_202215864 crossref_primary_10_1002_ange_202303888 crossref_primary_10_1016_j_cej_2025_161439 crossref_primary_10_1016_j_ensm_2022_11_030 crossref_primary_10_1016_j_cej_2024_152444 crossref_primary_10_1016_j_ensm_2023_01_035 crossref_primary_10_1016_S1872_5805_23_60747_4 crossref_primary_10_1021_acsaem_1c03268 crossref_primary_10_1039_D1RA03102C crossref_primary_10_1039_D3CS00254C crossref_primary_10_1007_s12274_023_5692_0 crossref_primary_10_1002_cey2_713 crossref_primary_10_1002_eem2_12536 crossref_primary_10_1002_anie_202306963 crossref_primary_10_1002_admi_202201665 crossref_primary_10_1149_1945_7111_acf624 crossref_primary_10_1016_j_est_2023_108649 crossref_primary_10_1007_s42823_024_00749_7 crossref_primary_10_1016_j_carbon_2024_119576 crossref_primary_10_1016_j_apenergy_2024_124190 crossref_primary_10_1016_j_ccr_2025_216604 crossref_primary_10_1016_j_jechem_2025_01_009 crossref_primary_10_1021_acs_nanolett_3c00729 crossref_primary_10_1039_D1CC04560A crossref_primary_10_1021_acsenergylett_4c03307 crossref_primary_10_1021_acsanm_2c00975 crossref_primary_10_7731_KIFSE_f4f02cf1 crossref_primary_10_1039_D4TA02103G crossref_primary_10_1002_ange_202208370 crossref_primary_10_1038_s41467_023_40574_6 crossref_primary_10_1016_j_jechem_2022_05_005 crossref_primary_10_1149_1945_7111_accab0 crossref_primary_10_1002_cplu_202200155 crossref_primary_10_1016_j_ensm_2024_103911 crossref_primary_10_1002_aenm_202301396 crossref_primary_10_1016_j_jechem_2022_09_020 crossref_primary_10_1016_j_ensm_2022_10_006 crossref_primary_10_1038_s41560_023_01194_y crossref_primary_10_3390_batteries9030155 crossref_primary_10_1016_j_est_2024_110919 crossref_primary_10_1016_j_jechem_2024_12_069 crossref_primary_10_1002_advs_202207283 crossref_primary_10_1016_j_cjche_2024_10_034 crossref_primary_10_1002_bte2_20220007 crossref_primary_10_1016_j_nanoen_2025_110777 crossref_primary_10_1016_j_xcrp_2022_101240 crossref_primary_10_1002_aenm_202401289 crossref_primary_10_1021_acsami_1c11134 crossref_primary_10_1016_j_nxmate_2024_100468 crossref_primary_10_1002_aenm_202203767 crossref_primary_10_1021_acsami_3c05630 crossref_primary_10_1002_anie_202210365 crossref_primary_10_1016_j_jpowsour_2022_231086 crossref_primary_10_1016_j_scib_2023_10_029 crossref_primary_10_1002_eem2_12711 crossref_primary_10_1007_s40242_021_1338_5 crossref_primary_10_1002_smll_202301574 crossref_primary_10_1007_s13369_024_09955_x crossref_primary_10_1016_j_jelechem_2024_118107 crossref_primary_10_1016_j_cej_2024_151618 crossref_primary_10_1016_j_jechem_2024_01_043 crossref_primary_10_1002_smll_202206922 crossref_primary_10_1016_j_ensm_2022_07_022 crossref_primary_10_1002_adma_202414207 crossref_primary_10_1016_j_ensm_2024_103585 crossref_primary_10_1016_j_partic_2023_03_001 crossref_primary_10_3390_ma17205083 crossref_primary_10_1016_j_electacta_2023_143194 crossref_primary_10_1002_ange_202208345 crossref_primary_10_1016_j_jechem_2024_08_053 crossref_primary_10_54227_elab_20220011 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1002_anie_202208345 crossref_primary_10_1016_j_cej_2022_138049 crossref_primary_10_1016_j_xcrp_2021_100708 crossref_primary_10_1002_cssc_202400971 crossref_primary_10_1016_j_est_2022_105817 crossref_primary_10_1021_acsaem_2c01463 crossref_primary_10_1002_adma_202106704 crossref_primary_10_1016_j_jelechem_2023_117627 |
Cites_doi | 10.1038/s41560-019-0405-3 10.1016/j.jpowsour.2018.02.063 10.1039/D0CC05084A 10.1021/ja312241y 10.1038/ncomms7362 10.1002/anie.201807034 10.1021/acs.chemrev.7b00115 10.1038/s41560-019-0474-3 10.1038/s41560-019-0336-z 10.1016/j.ensm.2020.04.035 10.1002/adfm.201910777 10.1016/j.jechem.2020.02.052 10.1002/adma.201706102 10.1016/j.elecom.2008.02.006 10.1021/acsami.0c18177 10.1016/j.jechem.2020.02.026 10.1002/anie.202009575 10.1002/celc.202000650 10.1021/acsenergylett.0c00859 10.1016/j.xcrp.2020.100212 10.1039/D0SE00175A 10.1002/anie.202009738 10.1016/j.joule.2020.04.003 10.1002/inf2.12058 10.1039/C9CS00728H 10.1002/ange.202009738 10.1021/acsenergylett.9b01926 10.1149/1945-7111/ab945e 10.1016/j.etran.2019.100011 10.1002/ange.201807034 10.1002/adma.201808392 10.1038/s41467-020-18868-w 10.1002/sstr.202000010 10.1016/j.electacta.2014.04.134 10.1016/j.elecom.2019.106535 10.1039/C6RA19482F 10.1016/j.joule.2019.09.021 10.1149/1945-7111/ab84fd 10.1002/advs.201500213 10.1002/aenm.201903568 10.1016/j.chempr.2016.07.009 10.1002/ange.202009575 10.1016/j.etran.2019.100034 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202102593 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 13012 |
ExternalDocumentID | 33793052 10_1002_anie_202102593 ANIE202102593 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation funderid: Z20J00043 – fundername: National Natural Science Foundation of China funderid: 22005172, 21825501, and U1801257 – fundername: National Natural Science Foundation of China grantid: 22005172, 21825501, and U1801257 – fundername: Beijing Municipal Natural Science Foundation grantid: Z20J00043 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT .GJ .HR .Y3 186 31~ 9M8 AANHP AASGY AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ACBWZ ACRPL ACYXJ ADNMO ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4103-16c806b22d262df8be7da0069555bdddbabae66391843a4d63abe92a762835453 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 16:14:40 EDT 2025 Fri Jul 25 12:02:12 EDT 2025 Thu Apr 03 07:04:51 EDT 2025 Tue Jul 01 01:17:59 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Jan 22 16:30:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | lithium-ion batteries battery safety performance high Coulombic efficiency uniform distribution lithium plating |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4103-16c806b22d262df8be7da0069555bdddbabae66391843a4d63abe92a762835453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3929-1541 |
PMID | 33793052 |
PQID | 2532084201 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2507731663 proquest_journals_2532084201 pubmed_primary_33793052 crossref_citationtrail_10_1002_anie_202102593 crossref_primary_10_1002_anie_202102593 wiley_primary_10_1002_anie_202102593_ANIE202102593 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2018 2019; 57 130 31 2018 2020; 384 56 2015; 6 2019; 4 2020 2020 2020 2019; 1 11 5 2 2019; 1 2013 2008; 135 10 2020 2020; 59 132 2020; 167 2020; 12 2020; 10 2019; 107 2020 2020; 49 48 2017; 117 2014; 134 2016; 6 2019 2020 2019; 4 1 3 2020; 4 2016; 1 2020; 2 2016; 3 2020; 30 2020 2020; 4 7 2020; 49 2021 2021; 60 133 2018; 30 2019 2019; 4 4 e_1_2_6_10_1 e_1_2_6_16_4 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_17_1 e_1_2_6_16_3 e_1_2_6_18_1 e_1_2_6_14_2 e_1_2_6_15_1 e_1_2_6_14_3 e_1_2_6_16_1 e_1_2_6_20_2 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_8_3 e_1_2_6_4_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 942 year: 2020 end-page: 949 publication-title: InfoMat – volume: 1 11 5 2 start-page: 5100 2045 year: 2020 2020 2020 2019 end-page: 2051 publication-title: Cell Rep. Phys. Sci. Nat. Commun. ACS Energy Lett. eTransportation – volume: 30 start-page: 87 year: 2020 end-page: 97 publication-title: Energy Storage Mater. – volume: 6 start-page: 88683 year: 2016 end-page: 88700 publication-title: RSC Adv. – volume: 1 year: 2019 publication-title: eTransportation – volume: 117 start-page: 10403 year: 2017 end-page: 10473 publication-title: Chem. Rev. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 135 10 start-page: 4450 635 year: 2013 2008 end-page: 4456 638 publication-title: J. Am. Chem. Soc. Electrochem. Commun. – volume: 57 130 31 start-page: 14055 14251 year: 2018 2018 2019 end-page: 14059 14255 publication-title: Angew. Chem. Int. Ed. Angew. Chem. Adv. Mater. – volume: 384 56 start-page: 107 14570 year: 2018 2020 end-page: 124 14584 publication-title: J. Power Sources Chem. Commun. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 4 1 3 start-page: 540 3002 year: 2019 2020 2019 end-page: 550 3019 publication-title: Nat. Energy Small Struct. Joule – volume: 49 48 start-page: 335 285 year: 2020 2020 end-page: 338 292 publication-title: J. Energy Chem. J. Energy Chem. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 54893 year: 2020 end-page: 54903 publication-title: ACS Appl. Mater. Interfaces – volume: 107 year: 2019 publication-title: Electrochem. Commun. – volume: 4 7 start-page: 5387 3569 year: 2020 2020 end-page: 5416 3577 publication-title: Sustainable Energy Fuels ChemElectroChem – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 1 start-page: 287 year: 2016 end-page: 297 publication-title: Chem – volume: 134 start-page: 327 year: 2014 end-page: 337 publication-title: Electrochim. Acta – volume: 4 start-page: 1296 year: 2020 end-page: 1310 publication-title: Joule – volume: 4 start-page: 2529 year: 2019 end-page: 2534 publication-title: ACS Energy Lett. – volume: 4 4 start-page: 882 269 year: 2019 2019 end-page: 890 280 publication-title: Nat. Energy Nat. Energy – volume: 49 start-page: 3806 year: 2020 end-page: 3833 publication-title: Chem. Soc. Rev. – volume: 60 133 start-page: 3402 3444 year: 2021 2021 end-page: 3406 3448 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 22194 22378 year: 2020 2020 end-page: 22201 22385 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_6_14_1 doi: 10.1038/s41560-019-0405-3 – ident: e_1_2_6_7_1 doi: 10.1016/j.jpowsour.2018.02.063 – ident: e_1_2_6_7_2 doi: 10.1039/D0CC05084A – ident: e_1_2_6_20_1 doi: 10.1021/ja312241y – ident: e_1_2_6_21_1 doi: 10.1038/ncomms7362 – ident: e_1_2_6_8_1 doi: 10.1002/anie.201807034 – ident: e_1_2_6_12_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_6_22_1 doi: 10.1038/s41560-019-0474-3 – ident: e_1_2_6_22_2 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_6_26_1 doi: 10.1016/j.ensm.2020.04.035 – ident: e_1_2_6_15_1 doi: 10.1002/adfm.201910777 – ident: e_1_2_6_3_1 doi: 10.1016/j.jechem.2020.02.052 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201706102 – ident: e_1_2_6_20_2 doi: 10.1016/j.elecom.2008.02.006 – ident: e_1_2_6_24_1 doi: 10.1021/acsami.0c18177 – ident: e_1_2_6_3_2 doi: 10.1016/j.jechem.2020.02.026 – ident: e_1_2_6_10_1 doi: 10.1002/anie.202009575 – ident: e_1_2_6_4_2 doi: 10.1002/celc.202000650 – ident: e_1_2_6_16_3 doi: 10.1021/acsenergylett.0c00859 – ident: e_1_2_6_16_1 doi: 10.1016/j.xcrp.2020.100212 – ident: e_1_2_6_4_1 doi: 10.1039/D0SE00175A – ident: e_1_2_6_23_1 doi: 10.1002/anie.202009738 – ident: e_1_2_6_18_1 doi: 10.1016/j.joule.2020.04.003 – ident: e_1_2_6_29_1 doi: 10.1002/inf2.12058 – ident: e_1_2_6_1_1 doi: 10.1039/C9CS00728H – ident: e_1_2_6_23_2 doi: 10.1002/ange.202009738 – ident: e_1_2_6_25_1 doi: 10.1021/acsenergylett.9b01926 – ident: e_1_2_6_28_1 doi: 10.1149/1945-7111/ab945e – ident: e_1_2_6_5_1 doi: 10.1016/j.etran.2019.100011 – ident: e_1_2_6_8_2 doi: 10.1002/ange.201807034 – ident: e_1_2_6_8_3 doi: 10.1002/adma.201808392 – ident: e_1_2_6_16_2 doi: 10.1038/s41467-020-18868-w – ident: e_1_2_6_14_2 doi: 10.1002/sstr.202000010 – ident: e_1_2_6_17_1 doi: 10.1016/j.electacta.2014.04.134 – ident: e_1_2_6_27_1 doi: 10.1016/j.elecom.2019.106535 – ident: e_1_2_6_6_1 doi: 10.1039/C6RA19482F – ident: e_1_2_6_14_3 doi: 10.1016/j.joule.2019.09.021 – ident: e_1_2_6_11_1 doi: 10.1149/1945-7111/ab84fd – ident: e_1_2_6_13_1 doi: 10.1002/advs.201500213 – ident: e_1_2_6_19_1 doi: 10.1002/aenm.201903568 – ident: e_1_2_6_2_1 doi: 10.1016/j.chempr.2016.07.009 – ident: e_1_2_6_10_2 doi: 10.1002/ange.202009575 – ident: e_1_2_6_16_4 doi: 10.1016/j.etran.2019.100034 |
SSID | ssj0028806 |
Score | 2.6805842 |
Snippet | Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13007 |
SubjectTerms | battery safety performance Dendrites Electrodes Flux density Graphite high Coulombic efficiency Lithium lithium plating Lithium-ion batteries Plating Product safety uniform distribution |
Title | The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202102593 https://www.ncbi.nlm.nih.gov/pubmed/33793052 https://www.proquest.com/docview/2532084201 https://www.proquest.com/docview/2507731663 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhX8omIyFxSkkdO2mOgMomqBCbeovs2IEKSFGXA5z4BL6RL2EmTgIFISS4JYqdOPaM88YZv0fIZujqBq_XteMawRwuY-aEieAOh9BD-0lduy5ucD5t-YdX_Lgt2p928Vt-iHLBDT0jm6_RwaXqb3-QhuIObIjvMGQRIdJ9YsIWoqLzkj-KgXHa7UWe56AKfcHa6LLt0eqjX6VvUHMUuWafnv0pIotG24yTu9pwoGrx8xc-x_-81TSZzHEp3bGGNEPGTDpLxvcKObg5cg0GRXczEabeE-0m9KQzuO0MH-gZZtOlN7ST0gNkvwYMS5tWXEcbCpiYXsjEFMXfXl6Puim1tJ4Qpc-Tq_3m5d6hk4syODGvYx6bH0OnKsY085lOGsoEWiLfsRBCaa2VVNIAjAlRSEZy7XtSmZBJmHRxjUl4C6SSdlOzRKgODQ8SCQGZ0TzWXAUydqVClkZAUaGpEqcYlCjOGctROOM-slzLLMLeisreqpKtsvyj5er4seRqMcZR7rP9iKFGRoMDIqqSjfIy9DL-QpGp6Q6xjBug1pcPt1i0tlE-yvNgrnMFqxKWjfAvbYh2WkfN8mz5L5VWyAQe28y1VVIZ9IZmDTDSQK1nfvAOtQQHHQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5i8NC9jMtuHZd50qQ9BVLHTppHKC0ta6uJwbS3yI6drdqWTtA8wBM_gd_IL-GcuMlUpglpPCaxE8f2cb7jnPN9AO9j37RFq2U830ruCZVyL86k8AS6HibMWsb3KcF5NA77Z-L4q6yiCSkXxvFD1BtuZBnlek0GThvSe39YQykFGx088llkHDyBFZL1Jts8PKkZpDhOT5dgFAQe6dBXvI0-31usv_hd-gtsLmLX8uPTWwVdNdvFnPzYLWZ6N726x-j4qPdag2dzaMr23VxahyWbb0CjUynCPYcvOKfYQanDdH7JphkbTmbfJ8Uv9okC6vJvbJKzIyLARhjLuk5fx1iGsJh9Vpmtit9e3wymOXPMnuiov4CzXve00_fmugxeKloUyham2Kuac8NDbrK2tpFRRHkspdTGGK20sohkYtKSUcKEgdI25grXXdpmksFLWM6nuX0NzMRWRJlCn8wakRqhI5X6ShNRIwKp2DbBq0YlSeek5aSd8TNxdMs8od5K6t5qwoe6_G9H1_HPklvVICdzs71IOMlktAWCoia8qy9jL9NfFJXbaUFl_IjkvkK8xSs3OepHBQEud77kTeDlED_QhmR_POjWR2_-p9JbaPRPR8NkOBh_3ISndN4Fsm3B8uy8sNsImWZ6pzSKOyM4CzY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH4aTBpcGLABZTCMhLRTwHXstDkyaKGMVYiNiVtkxw5UQIqgPcCJn7DfuF-y9-ImrJsmJDgmeU6c52fne479fQAbMbdNWa_bgDslAqlTEcSZkoHE1MNGWd1yThucv3aj_RN5cKpO_9jF7_khqgk36hnFeE0d_NpmW4-kobQDG_M7SllUHE7AaxnxJqVfu8cVgZTA6PT7i8IwIBn6kraRi63x8uOfpX-w5jh0Lb497begy1r7JScXm8OB2Uzv_yJ0fMlrzcLMCJiybR9Jc_DK5fMwtVPqwb2DHxhR7HOhwnRzx_oZO-wNznvDK3ZEy-nyM9bL2R7RXyOIZS2vrmMdQ1DMvunMlea_Hn52-jnzvJ6Ypr-Hk3br-85-MFJlCFJZp4VsUYpONUJYEQmbNY1rWE2Ex0opY6012miHOCYmJRktbRRq42KhcdSlSSYVLsBk3s_dEjAbO9nINGZkzsrUStPQKdeGaBoRRsWuBkHZKEk6oiwn5YzLxJMti4S8lVTeqsGnyv7ak3X813KlbONk1GlvE0EiGU2JkKgG69Vl9DL9Q9G56w_JhjdI7CvCWyz62KgeFYY42HElaiCKFn6iDsl2t9OqjpafU2gN3hzttpPDTvfLB5im034V2wpMDm6GbhXx0sB8LLrEbwxTCe4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Boundary+of+Lithium+Plating+in+Graphite+Electrode+for+Safe+Lithium-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cai%2C+Wenlong&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Xu%2C+Lei&rft.date=2021-06-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=23&rft.spage=13007&rft_id=info:doi/10.1002%2Fanie.202102593&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |