The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium‐Ion Batteries

Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety perform...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 23; pp. 13007 - 13012
Main Authors Cai, Wenlong, Yan, Chong, Yao, Yu‐Xing, Xu, Lei, Chen, Xiao‐Ru, Huang, Jia‐Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.202102593

Cover

Loading…
Abstract Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries. The boundary of Li plating in a graphite electrode for safe lithium‐ion batteries is defined. The cell with regulated Li plating exhibits highly reversible Li plating/stripping Coulombic efficiency >99.5 % with superior safety performance, offering a strategy to achieve safe high‐energy fast‐charging lithium‐ion batteries.
AbstractList Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries. The boundary of Li plating in a graphite electrode for safe lithium‐ion batteries is defined. The cell with regulated Li plating exhibits highly reversible Li plating/stripping Coulombic efficiency >99.5 % with superior safety performance, offering a strategy to achieve safe high‐energy fast‐charging lithium‐ion batteries.
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi Mn Co O | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi 0.5 Mn 0.3 Co 0.2 O 2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries.
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium‐ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of “dead Li” can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast‐charging capability, low‐temperature performance, and energy density of practical lithium‐ion batteries.
Author Huang, Jia‐Qi
Yao, Yu‐Xing
Zhang, Qiang
Xu, Lei
Chen, Xiao‐Ru
Cai, Wenlong
Yan, Chong
Author_xml – sequence: 1
  givenname: Wenlong
  surname: Cai
  fullname: Cai, Wenlong
  organization: Tsinghua University
– sequence: 2
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Tsinghua University
– sequence: 3
  givenname: Yu‐Xing
  surname: Yao
  fullname: Yao, Yu‐Xing
  organization: Tsinghua University
– sequence: 4
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Xiao‐Ru
  surname: Chen
  fullname: Chen, Xiao‐Ru
  organization: Tsinghua University
– sequence: 6
  givenname: Jia‐Qi
  surname: Huang
  fullname: Huang, Jia‐Qi
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33793052$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1qGzEUhUVJqJO02yyLoJtsxtXPaH6WiXFSg2kCTbsVmtGdWGYsuZKG4F0eIc-YJ4mM7RYCJStp8X2Hyzmn6Mg6CwidUzKmhLBvyhoYM8IoYaLmH9AJFYxmvCz5UfrnnGdlJegInYawTHxVkeIjGnFe1pwIdoJ-3y8AX7nBauU32HV4buLCDCt816to7AM2Ft94tV6YCHjaQxu904A75_FP1cEBf3l6njmLr1SM4A2ET-i4U32Az_v3DP26nt5Pvmfz25vZ5HKetTklPKNFmw5qGNOsYLqrGii1IqSohRCN1rpRjYKi4DWtcq5yXXDVQM1UWbCKi1zwM3Sxy11792eAEOXKhBb6XllwQ5BMkFQFTREJ_foGXbrB23RdojgjVc4ITdSXPTU0K9By7c0qNSMPjSUg3wGtdyF46GRrYqrK2eiV6SUlcjuM3A4j_w6TtPEb7ZD8X6HeCY-mh807tLz8MZv-c18BowOfRA
CitedBy_id crossref_primary_10_1149_1945_7111_ac6a14
crossref_primary_10_1016_j_ensm_2024_103574
crossref_primary_10_1016_j_heliyon_2023_e21765
crossref_primary_10_1016_j_xcrp_2023_101740
crossref_primary_10_1016_j_diamond_2024_111152
crossref_primary_10_1016_j_jpowsour_2025_236167
crossref_primary_10_3390_nano12203697
crossref_primary_10_1088_1361_6528_ac8f9c
crossref_primary_10_1002_aenm_202400894
crossref_primary_10_1016_j_joule_2023_05_021
crossref_primary_10_1039_D3TA04733D
crossref_primary_10_1126_sciadv_abl8390
crossref_primary_10_1016_j_cej_2022_135101
crossref_primary_10_1002_advs_202411466
crossref_primary_10_3390_batteries8110234
crossref_primary_10_1002_smm2_1191
crossref_primary_10_1002_eem2_12334
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_54227_elab_20220007
crossref_primary_10_1038_s41467_024_53831_z
crossref_primary_10_1002_aenm_202300357
crossref_primary_10_1021_acs_nanolett_2c03535
crossref_primary_10_1039_D4TA02499K
crossref_primary_10_1134_S1070427223080086
crossref_primary_10_23919_IEN_2022_0003
crossref_primary_10_1016_j_nanoen_2024_110108
crossref_primary_10_1016_j_carbon_2022_05_023
crossref_primary_10_1080_02670836_2023_2210447
crossref_primary_10_1007_s40820_022_00899_1
crossref_primary_10_1016_j_etran_2022_100211
crossref_primary_10_1016_j_esci_2023_100170
crossref_primary_10_1002_pssr_202400434
crossref_primary_10_1002_anie_202301629
crossref_primary_10_1016_j_cej_2024_157247
crossref_primary_10_1016_j_est_2023_108200
crossref_primary_10_1002_sus2_74
crossref_primary_10_1002_ange_202306963
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1016_j_jpowsour_2025_236568
crossref_primary_10_1002_ange_202210365
crossref_primary_10_1002_adfm_202203242
crossref_primary_10_1016_j_ensm_2023_102809
crossref_primary_10_1002_aenm_202300500
crossref_primary_10_1016_j_apsusc_2024_160914
crossref_primary_10_1149_1945_7111_ad27b4
crossref_primary_10_1039_D1EE03292E
crossref_primary_10_1016_j_ensm_2024_103799
crossref_primary_10_1016_j_mtsust_2022_100187
crossref_primary_10_1063_5_0125080
crossref_primary_10_1002_aenm_202400397
crossref_primary_10_1021_acsenergylett_2c02240
crossref_primary_10_1016_j_jiec_2024_11_054
crossref_primary_10_1016_j_matchemphys_2023_128868
crossref_primary_10_1016_j_cej_2024_157755
crossref_primary_10_1016_j_jechem_2024_09_050
crossref_primary_10_1002_elan_202400318
crossref_primary_10_1016_j_colsurfa_2025_136303
crossref_primary_10_1016_j_ensm_2024_103701
crossref_primary_10_1016_j_ensm_2022_08_008
crossref_primary_10_1039_D4EE03468F
crossref_primary_10_1002_anie_202208370
crossref_primary_10_1016_j_jpowsour_2021_230437
crossref_primary_10_1016_j_nanoen_2021_106510
crossref_primary_10_1007_s10853_025_10623_0
crossref_primary_10_26599_CF_2024_9200026
crossref_primary_10_1002_cjce_25272
crossref_primary_10_1039_D4TA05871B
crossref_primary_10_1016_j_cej_2023_145117
crossref_primary_10_1016_j_jpowsour_2024_234111
crossref_primary_10_1021_acsenergylett_2c02130
crossref_primary_10_1002_smll_202407395
crossref_primary_10_1016_j_jechem_2024_01_009
crossref_primary_10_1021_acs_chemrev_4c00566
crossref_primary_10_1002_aenm_202403804
crossref_primary_10_1016_j_electacta_2023_142629
crossref_primary_10_1016_j_jmst_2022_10_093
crossref_primary_10_1021_acsami_2c21884
crossref_primary_10_1002_cnma_202300265
crossref_primary_10_1016_j_ensm_2021_06_008
crossref_primary_10_1016_j_joule_2023_04_006
crossref_primary_10_3390_batteries8110246
crossref_primary_10_3390_jlpea13020025
crossref_primary_10_1002_smtd_202400183
crossref_primary_10_33961_jecst_2024_00465
crossref_primary_10_1002_anie_202215864
crossref_primary_10_1002_cssc_202201595
crossref_primary_10_1021_acsmaterialslett_2c00810
crossref_primary_10_1016_j_jechem_2021_10_036
crossref_primary_10_1002_smll_202403938
crossref_primary_10_1016_j_cej_2022_140290
crossref_primary_10_26599_CF_2024_9200017
crossref_primary_10_1016_j_jechem_2021_10_030
crossref_primary_10_1039_D2QI00976E
crossref_primary_10_1016_j_electacta_2024_145065
crossref_primary_10_1002_aenm_202302749
crossref_primary_10_1016_j_cej_2024_150895
crossref_primary_10_1002_ange_202301629
crossref_primary_10_1039_D4EE00119B
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1002_elt2_72
crossref_primary_10_3390_ma16020704
crossref_primary_10_1002_adma_202305050
crossref_primary_10_1002_ange_202215864
crossref_primary_10_1002_ange_202303888
crossref_primary_10_1016_j_cej_2025_161439
crossref_primary_10_1016_j_ensm_2022_11_030
crossref_primary_10_1016_j_cej_2024_152444
crossref_primary_10_1016_j_ensm_2023_01_035
crossref_primary_10_1016_S1872_5805_23_60747_4
crossref_primary_10_1021_acsaem_1c03268
crossref_primary_10_1039_D1RA03102C
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1007_s12274_023_5692_0
crossref_primary_10_1002_cey2_713
crossref_primary_10_1002_eem2_12536
crossref_primary_10_1002_anie_202306963
crossref_primary_10_1002_admi_202201665
crossref_primary_10_1149_1945_7111_acf624
crossref_primary_10_1016_j_est_2023_108649
crossref_primary_10_1007_s42823_024_00749_7
crossref_primary_10_1016_j_carbon_2024_119576
crossref_primary_10_1016_j_apenergy_2024_124190
crossref_primary_10_1016_j_ccr_2025_216604
crossref_primary_10_1016_j_jechem_2025_01_009
crossref_primary_10_1021_acs_nanolett_3c00729
crossref_primary_10_1039_D1CC04560A
crossref_primary_10_1021_acsenergylett_4c03307
crossref_primary_10_1021_acsanm_2c00975
crossref_primary_10_7731_KIFSE_f4f02cf1
crossref_primary_10_1039_D4TA02103G
crossref_primary_10_1002_ange_202208370
crossref_primary_10_1038_s41467_023_40574_6
crossref_primary_10_1016_j_jechem_2022_05_005
crossref_primary_10_1149_1945_7111_accab0
crossref_primary_10_1002_cplu_202200155
crossref_primary_10_1016_j_ensm_2024_103911
crossref_primary_10_1002_aenm_202301396
crossref_primary_10_1016_j_jechem_2022_09_020
crossref_primary_10_1016_j_ensm_2022_10_006
crossref_primary_10_1038_s41560_023_01194_y
crossref_primary_10_3390_batteries9030155
crossref_primary_10_1016_j_est_2024_110919
crossref_primary_10_1016_j_jechem_2024_12_069
crossref_primary_10_1002_advs_202207283
crossref_primary_10_1016_j_cjche_2024_10_034
crossref_primary_10_1002_bte2_20220007
crossref_primary_10_1016_j_nanoen_2025_110777
crossref_primary_10_1016_j_xcrp_2022_101240
crossref_primary_10_1002_aenm_202401289
crossref_primary_10_1021_acsami_1c11134
crossref_primary_10_1016_j_nxmate_2024_100468
crossref_primary_10_1002_aenm_202203767
crossref_primary_10_1021_acsami_3c05630
crossref_primary_10_1002_anie_202210365
crossref_primary_10_1016_j_jpowsour_2022_231086
crossref_primary_10_1016_j_scib_2023_10_029
crossref_primary_10_1002_eem2_12711
crossref_primary_10_1007_s40242_021_1338_5
crossref_primary_10_1002_smll_202301574
crossref_primary_10_1007_s13369_024_09955_x
crossref_primary_10_1016_j_jelechem_2024_118107
crossref_primary_10_1016_j_cej_2024_151618
crossref_primary_10_1016_j_jechem_2024_01_043
crossref_primary_10_1002_smll_202206922
crossref_primary_10_1016_j_ensm_2022_07_022
crossref_primary_10_1002_adma_202414207
crossref_primary_10_1016_j_ensm_2024_103585
crossref_primary_10_1016_j_partic_2023_03_001
crossref_primary_10_3390_ma17205083
crossref_primary_10_1016_j_electacta_2023_143194
crossref_primary_10_1002_ange_202208345
crossref_primary_10_1016_j_jechem_2024_08_053
crossref_primary_10_54227_elab_20220011
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1002_anie_202208345
crossref_primary_10_1016_j_cej_2022_138049
crossref_primary_10_1016_j_xcrp_2021_100708
crossref_primary_10_1002_cssc_202400971
crossref_primary_10_1016_j_est_2022_105817
crossref_primary_10_1021_acsaem_2c01463
crossref_primary_10_1002_adma_202106704
crossref_primary_10_1016_j_jelechem_2023_117627
Cites_doi 10.1038/s41560-019-0405-3
10.1016/j.jpowsour.2018.02.063
10.1039/D0CC05084A
10.1021/ja312241y
10.1038/ncomms7362
10.1002/anie.201807034
10.1021/acs.chemrev.7b00115
10.1038/s41560-019-0474-3
10.1038/s41560-019-0336-z
10.1016/j.ensm.2020.04.035
10.1002/adfm.201910777
10.1016/j.jechem.2020.02.052
10.1002/adma.201706102
10.1016/j.elecom.2008.02.006
10.1021/acsami.0c18177
10.1016/j.jechem.2020.02.026
10.1002/anie.202009575
10.1002/celc.202000650
10.1021/acsenergylett.0c00859
10.1016/j.xcrp.2020.100212
10.1039/D0SE00175A
10.1002/anie.202009738
10.1016/j.joule.2020.04.003
10.1002/inf2.12058
10.1039/C9CS00728H
10.1002/ange.202009738
10.1021/acsenergylett.9b01926
10.1149/1945-7111/ab945e
10.1016/j.etran.2019.100011
10.1002/ange.201807034
10.1002/adma.201808392
10.1038/s41467-020-18868-w
10.1002/sstr.202000010
10.1016/j.electacta.2014.04.134
10.1016/j.elecom.2019.106535
10.1039/C6RA19482F
10.1016/j.joule.2019.09.021
10.1149/1945-7111/ab84fd
10.1002/advs.201500213
10.1002/aenm.201903568
10.1016/j.chempr.2016.07.009
10.1002/ange.202009575
10.1016/j.etran.2019.100034
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202102593
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 13012
ExternalDocumentID 33793052
10_1002_anie_202102593
ANIE202102593
Genre article
Journal Article
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  funderid: Z20J00043
– fundername: National Natural Science Foundation of China
  funderid: 22005172, 21825501, and U1801257
– fundername: National Natural Science Foundation of China
  grantid: 22005172, 21825501, and U1801257
– fundername: Beijing Municipal Natural Science Foundation
  grantid: Z20J00043
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
.GJ
.HR
.Y3
186
31~
9M8
AANHP
AASGY
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ACBWZ
ACRPL
ACYXJ
ADNMO
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4103-16c806b22d262df8be7da0069555bdddbabae66391843a4d63abe92a762835453
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 16:14:40 EDT 2025
Fri Jul 25 12:02:12 EDT 2025
Thu Apr 03 07:04:51 EDT 2025
Tue Jul 01 01:17:59 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Jan 22 16:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords lithium-ion batteries
battery safety performance
high Coulombic efficiency
uniform distribution
lithium plating
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4103-16c806b22d262df8be7da0069555bdddbabae66391843a4d63abe92a762835453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3929-1541
PMID 33793052
PQID 2532084201
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2507731663
proquest_journals_2532084201
pubmed_primary_33793052
crossref_citationtrail_10_1002_anie_202102593
crossref_primary_10_1002_anie_202102593
wiley_primary_10_1002_anie_202102593_ANIE202102593
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2018 2019; 57 130 31
2018 2020; 384 56
2015; 6
2019; 4
2020 2020 2020 2019; 1 11 5 2
2019; 1
2013 2008; 135 10
2020 2020; 59 132
2020; 167
2020; 12
2020; 10
2019; 107
2020 2020; 49 48
2017; 117
2014; 134
2016; 6
2019 2020 2019; 4 1 3
2020; 4
2016; 1
2020; 2
2016; 3
2020; 30
2020 2020; 4 7
2020; 49
2021 2021; 60 133
2018; 30
2019 2019; 4 4
e_1_2_6_10_1
e_1_2_6_16_4
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_17_1
e_1_2_6_16_3
e_1_2_6_18_1
e_1_2_6_14_2
e_1_2_6_15_1
e_1_2_6_14_3
e_1_2_6_16_1
e_1_2_6_20_2
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_8_3
e_1_2_6_4_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 942
  year: 2020
  end-page: 949
  publication-title: InfoMat
– volume: 1 11 5 2
  start-page: 5100 2045
  year: 2020 2020 2020 2019
  end-page: 2051
  publication-title: Cell Rep. Phys. Sci. Nat. Commun. ACS Energy Lett. eTransportation
– volume: 30
  start-page: 87
  year: 2020
  end-page: 97
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 88683
  year: 2016
  end-page: 88700
  publication-title: RSC Adv.
– volume: 1
  year: 2019
  publication-title: eTransportation
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  publication-title: Chem. Rev.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 135 10
  start-page: 4450 635
  year: 2013 2008
  end-page: 4456 638
  publication-title: J. Am. Chem. Soc. Electrochem. Commun.
– volume: 57 130 31
  start-page: 14055 14251
  year: 2018 2018 2019
  end-page: 14059 14255
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Adv. Mater.
– volume: 384 56
  start-page: 107 14570
  year: 2018 2020
  end-page: 124 14584
  publication-title: J. Power Sources Chem. Commun.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 4 1 3
  start-page: 540 3002
  year: 2019 2020 2019
  end-page: 550 3019
  publication-title: Nat. Energy Small Struct. Joule
– volume: 49 48
  start-page: 335 285
  year: 2020 2020
  end-page: 338 292
  publication-title: J. Energy Chem. J. Energy Chem.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 54893
  year: 2020
  end-page: 54903
  publication-title: ACS Appl. Mater. Interfaces
– volume: 107
  year: 2019
  publication-title: Electrochem. Commun.
– volume: 4 7
  start-page: 5387 3569
  year: 2020 2020
  end-page: 5416 3577
  publication-title: Sustainable Energy Fuels ChemElectroChem
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 1
  start-page: 287
  year: 2016
  end-page: 297
  publication-title: Chem
– volume: 134
  start-page: 327
  year: 2014
  end-page: 337
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 1296
  year: 2020
  end-page: 1310
  publication-title: Joule
– volume: 4
  start-page: 2529
  year: 2019
  end-page: 2534
  publication-title: ACS Energy Lett.
– volume: 4 4
  start-page: 882 269
  year: 2019 2019
  end-page: 890 280
  publication-title: Nat. Energy Nat. Energy
– volume: 49
  start-page: 3806
  year: 2020
  end-page: 3833
  publication-title: Chem. Soc. Rev.
– volume: 60 133
  start-page: 3402 3444
  year: 2021 2021
  end-page: 3406 3448
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 22194 22378
  year: 2020 2020
  end-page: 22201 22385
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_6_14_1
  doi: 10.1038/s41560-019-0405-3
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jpowsour.2018.02.063
– ident: e_1_2_6_7_2
  doi: 10.1039/D0CC05084A
– ident: e_1_2_6_20_1
  doi: 10.1021/ja312241y
– ident: e_1_2_6_21_1
  doi: 10.1038/ncomms7362
– ident: e_1_2_6_8_1
  doi: 10.1002/anie.201807034
– ident: e_1_2_6_12_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_6_22_1
  doi: 10.1038/s41560-019-0474-3
– ident: e_1_2_6_22_2
  doi: 10.1038/s41560-019-0336-z
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ensm.2020.04.035
– ident: e_1_2_6_15_1
  doi: 10.1002/adfm.201910777
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jechem.2020.02.052
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201706102
– ident: e_1_2_6_20_2
  doi: 10.1016/j.elecom.2008.02.006
– ident: e_1_2_6_24_1
  doi: 10.1021/acsami.0c18177
– ident: e_1_2_6_3_2
  doi: 10.1016/j.jechem.2020.02.026
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.202009575
– ident: e_1_2_6_4_2
  doi: 10.1002/celc.202000650
– ident: e_1_2_6_16_3
  doi: 10.1021/acsenergylett.0c00859
– ident: e_1_2_6_16_1
  doi: 10.1016/j.xcrp.2020.100212
– ident: e_1_2_6_4_1
  doi: 10.1039/D0SE00175A
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.202009738
– ident: e_1_2_6_18_1
  doi: 10.1016/j.joule.2020.04.003
– ident: e_1_2_6_29_1
  doi: 10.1002/inf2.12058
– ident: e_1_2_6_1_1
  doi: 10.1039/C9CS00728H
– ident: e_1_2_6_23_2
  doi: 10.1002/ange.202009738
– ident: e_1_2_6_25_1
  doi: 10.1021/acsenergylett.9b01926
– ident: e_1_2_6_28_1
  doi: 10.1149/1945-7111/ab945e
– ident: e_1_2_6_5_1
  doi: 10.1016/j.etran.2019.100011
– ident: e_1_2_6_8_2
  doi: 10.1002/ange.201807034
– ident: e_1_2_6_8_3
  doi: 10.1002/adma.201808392
– ident: e_1_2_6_16_2
  doi: 10.1038/s41467-020-18868-w
– ident: e_1_2_6_14_2
  doi: 10.1002/sstr.202000010
– ident: e_1_2_6_17_1
  doi: 10.1016/j.electacta.2014.04.134
– ident: e_1_2_6_27_1
  doi: 10.1016/j.elecom.2019.106535
– ident: e_1_2_6_6_1
  doi: 10.1039/C6RA19482F
– ident: e_1_2_6_14_3
  doi: 10.1016/j.joule.2019.09.021
– ident: e_1_2_6_11_1
  doi: 10.1149/1945-7111/ab84fd
– ident: e_1_2_6_13_1
  doi: 10.1002/advs.201500213
– ident: e_1_2_6_19_1
  doi: 10.1002/aenm.201903568
– ident: e_1_2_6_2_1
  doi: 10.1016/j.chempr.2016.07.009
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.202009575
– ident: e_1_2_6_16_4
  doi: 10.1016/j.etran.2019.100034
SSID ssj0028806
Score 2.6805842
Snippet Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13007
SubjectTerms battery safety performance
Dendrites
Electrodes
Flux density
Graphite
high Coulombic efficiency
Lithium
lithium plating
Lithium-ion batteries
Plating
Product safety
uniform distribution
Title The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202102593
https://www.ncbi.nlm.nih.gov/pubmed/33793052
https://www.proquest.com/docview/2532084201
https://www.proquest.com/docview/2507731663
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhX8omIyFxSkkdO2mOgMomqBCbeovs2IEKSFGXA5z4BL6RL2EmTgIFISS4JYqdOPaM88YZv0fIZujqBq_XteMawRwuY-aEieAOh9BD-0lduy5ucD5t-YdX_Lgt2p928Vt-iHLBDT0jm6_RwaXqb3-QhuIObIjvMGQRIdJ9YsIWoqLzkj-KgXHa7UWe56AKfcHa6LLt0eqjX6VvUHMUuWafnv0pIotG24yTu9pwoGrx8xc-x_-81TSZzHEp3bGGNEPGTDpLxvcKObg5cg0GRXczEabeE-0m9KQzuO0MH-gZZtOlN7ST0gNkvwYMS5tWXEcbCpiYXsjEFMXfXl6Puim1tJ4Qpc-Tq_3m5d6hk4syODGvYx6bH0OnKsY085lOGsoEWiLfsRBCaa2VVNIAjAlRSEZy7XtSmZBJmHRxjUl4C6SSdlOzRKgODQ8SCQGZ0TzWXAUydqVClkZAUaGpEqcYlCjOGctROOM-slzLLMLeisreqpKtsvyj5er4seRqMcZR7rP9iKFGRoMDIqqSjfIy9DL-QpGp6Q6xjBug1pcPt1i0tlE-yvNgrnMFqxKWjfAvbYh2WkfN8mz5L5VWyAQe28y1VVIZ9IZmDTDSQK1nfvAOtQQHHQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5i8NC9jMtuHZd50qQ9BVLHTppHKC0ta6uJwbS3yI6drdqWTtA8wBM_gd_IL-GcuMlUpglpPCaxE8f2cb7jnPN9AO9j37RFq2U830ruCZVyL86k8AS6HibMWsb3KcF5NA77Z-L4q6yiCSkXxvFD1BtuZBnlek0GThvSe39YQykFGx088llkHDyBFZL1Jts8PKkZpDhOT5dgFAQe6dBXvI0-31usv_hd-gtsLmLX8uPTWwVdNdvFnPzYLWZ6N726x-j4qPdag2dzaMr23VxahyWbb0CjUynCPYcvOKfYQanDdH7JphkbTmbfJ8Uv9okC6vJvbJKzIyLARhjLuk5fx1iGsJh9Vpmtit9e3wymOXPMnuiov4CzXve00_fmugxeKloUyham2Kuac8NDbrK2tpFRRHkspdTGGK20sohkYtKSUcKEgdI25grXXdpmksFLWM6nuX0NzMRWRJlCn8wakRqhI5X6ShNRIwKp2DbBq0YlSeek5aSd8TNxdMs8od5K6t5qwoe6_G9H1_HPklvVICdzs71IOMlktAWCoia8qy9jL9NfFJXbaUFl_IjkvkK8xSs3OepHBQEud77kTeDlED_QhmR_POjWR2_-p9JbaPRPR8NkOBh_3ISndN4Fsm3B8uy8sNsImWZ6pzSKOyM4CzY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFH4aTBpcGLABZTCMhLRTwHXstDkyaKGMVYiNiVtkxw5UQIqgPcCJn7DfuF-y9-ImrJsmJDgmeU6c52fne479fQAbMbdNWa_bgDslAqlTEcSZkoHE1MNGWd1yThucv3aj_RN5cKpO_9jF7_khqgk36hnFeE0d_NpmW4-kobQDG_M7SllUHE7AaxnxJqVfu8cVgZTA6PT7i8IwIBn6kraRi63x8uOfpX-w5jh0Lb497begy1r7JScXm8OB2Uzv_yJ0fMlrzcLMCJiybR9Jc_DK5fMwtVPqwb2DHxhR7HOhwnRzx_oZO-wNznvDK3ZEy-nyM9bL2R7RXyOIZS2vrmMdQ1DMvunMlea_Hn52-jnzvJ6Ypr-Hk3br-85-MFJlCFJZp4VsUYpONUJYEQmbNY1rWE2Ex0opY6012miHOCYmJRktbRRq42KhcdSlSSYVLsBk3s_dEjAbO9nINGZkzsrUStPQKdeGaBoRRsWuBkHZKEk6oiwn5YzLxJMti4S8lVTeqsGnyv7ak3X813KlbONk1GlvE0EiGU2JkKgG69Vl9DL9Q9G56w_JhjdI7CvCWyz62KgeFYY42HElaiCKFn6iDsl2t9OqjpafU2gN3hzttpPDTvfLB5im034V2wpMDm6GbhXx0sB8LLrEbwxTCe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Boundary+of+Lithium+Plating+in+Graphite+Electrode+for+Safe+Lithium-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cai%2C+Wenlong&rft.au=Yan%2C+Chong&rft.au=Yao%2C+Yu-Xing&rft.au=Xu%2C+Lei&rft.date=2021-06-01&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=60&rft.issue=23&rft.spage=13007&rft_id=info:doi/10.1002%2Fanie.202102593&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon