The Comparability of Pt to Pt‐Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C
The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 5; pp. 1442 - 1446 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
28.01.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology.
Alkaline polymer electrolyte fuel cells (APEFCs) with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode (gray) is now found to be as good as the Pt‐Ru anode (red) for APEFCs operated at elevated conditions. At T=80 °C with appropriate gas back‐pressure p, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. |
---|---|
AbstractList | The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm
at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm
, which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm
, over 1.5 W cm
can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology. The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology. The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology. Alkaline polymer electrolyte fuel cells (APEFCs) with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode (gray) is now found to be as good as the Pt‐Ru anode (red) for APEFCs operated at elevated conditions. At T=80 °C with appropriate gas back‐pressure p, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm-2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm-2 , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm-2 , over 1.5 W cm-2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology.The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm-2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm-2 , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm-2 , over 1.5 W cm-2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology. The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm −2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm −2 , which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm −2 , over 1.5 W cm −2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology. |
Author | Wang, Yingming Peng, Hanqing Zhuang, Lin Xiao, Li Li, Qihao Lu, Juntao |
Author_xml | – sequence: 1 givenname: Qihao surname: Li fullname: Li, Qihao organization: Wuhan University – sequence: 2 givenname: Hanqing surname: Peng fullname: Peng, Hanqing organization: Wuhan University – sequence: 3 givenname: Yingming surname: Wang fullname: Wang, Yingming organization: Wuhan University – sequence: 4 givenname: Li surname: Xiao fullname: Xiao, Li email: chem.lily@whu.edu.cn organization: Wuhan University – sequence: 5 givenname: Juntao surname: Lu fullname: Lu, Juntao organization: Wuhan University – sequence: 6 givenname: Lin orcidid: 0000-0002-5642-6735 surname: Zhuang fullname: Zhuang, Lin email: lzhuang@whu.edu.cn organization: Wuhan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548378$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-wZYkssWGTwZfYcZajaEorVUxVlXXkJCfFxbEHx1EJq27ZwZvwDDxKnwS304JUCbGxj63vOzo6_z7acd4BQi8pWVBC2FvtDCwYoYoyKdkTtEcFoxkvCr6T6pzzrFCC7qL9cbxMvFJEPkO7nIhc8ULtoR_nHwFXftjooBtjTZyx7_FpxNGn8-b6-9mEjcOVjtrOX427wDEJR3MX_AU4vP5iOh2Nd_gMdHtX9D7gpf2krXGAT72dBwh4ZaGNIT0i4MMJLK7A2hGvNxB0hA7riBW5uf7262f1HD3ttR3hxf19gD4crs6ro-xk_e64Wp5kbU4Jy0CTVpZNSVRHoWgkE1xqWQrOet6xRqQ_3lOpO0laymjZKKFAdLTIBaWqLPgBerPtuwn-8wRjrAcztmks7cBPY82oKKSQpJQJff0IvfRTcGm6REmlaCmlSNSre2pqBujqTTCDDnP9sOwE5FugDX4cA_R1a-Ld9mLQxtaU1LeZ1reZ1n8yTdrikfbQ-Z9CuRWujIX5P3S9fH-8-uv-BpLDtXE |
CitedBy_id | crossref_primary_10_1039_D2EE02216H crossref_primary_10_1016_j_memsci_2021_120109 crossref_primary_10_1016_j_mtener_2021_100846 crossref_primary_10_1016_j_xcrp_2021_100377 crossref_primary_10_1002_ange_202318389 crossref_primary_10_1016_j_cej_2024_158580 crossref_primary_10_1016_j_memsci_2022_120341 crossref_primary_10_1002_anie_202110900 crossref_primary_10_1016_j_jechem_2020_12_008 crossref_primary_10_1016_j_jpowsour_2023_233687 crossref_primary_10_1016_j_nanoen_2020_104877 crossref_primary_10_1039_D3EE04251K crossref_primary_10_1039_D1TA10868A crossref_primary_10_1016_j_apcatb_2022_121733 crossref_primary_10_1007_s40843_022_2089_6 crossref_primary_10_1002_adma_202410106 crossref_primary_10_1021_acsaem_9b00657 crossref_primary_10_1002_anie_202013395 crossref_primary_10_1016_j_ijhydene_2020_05_163 crossref_primary_10_1016_j_scib_2020_06_007 crossref_primary_10_1039_D0EE01133A crossref_primary_10_1002_smll_202100391 crossref_primary_10_1021_acsenergylett_9b00597 crossref_primary_10_1021_acs_energyfuels_4c05199 crossref_primary_10_1016_j_apcatb_2019_117952 crossref_primary_10_1038_s41467_021_26425_2 crossref_primary_10_1021_acs_macromol_2c01874 crossref_primary_10_1002_cjoc_202100425 crossref_primary_10_1016_j_jpowsour_2021_230868 crossref_primary_10_1021_acs_chemmater_9b00999 crossref_primary_10_3390_en16083425 crossref_primary_10_1016_j_jechem_2023_01_054 crossref_primary_10_1016_j_apcatb_2021_120811 crossref_primary_10_1016_j_jechem_2021_12_026 crossref_primary_10_1002_adfm_202107479 crossref_primary_10_1002_anie_201909697 crossref_primary_10_1016_j_memsci_2022_121135 crossref_primary_10_1021_acscatal_0c03938 crossref_primary_10_1016_j_arabjc_2022_104451 crossref_primary_10_2139_ssrn_4005784 crossref_primary_10_1002_anie_202318389 crossref_primary_10_1016_j_joule_2024_06_002 crossref_primary_10_1002_anie_202211098 crossref_primary_10_1016_j_micromeso_2020_110538 crossref_primary_10_1016_j_reactfunctpolym_2019_104348 crossref_primary_10_1002_adma_202417621 crossref_primary_10_1038_s41467_020_19413_5 crossref_primary_10_1039_D1EE03482K crossref_primary_10_1039_C9EE01204D crossref_primary_10_1002_tcr_202300067 crossref_primary_10_1002_adfm_202212087 crossref_primary_10_1002_cjoc_202200385 crossref_primary_10_1039_D0EE03756G crossref_primary_10_1016_j_memsci_2022_120676 crossref_primary_10_1149_1945_7111_abc4bd crossref_primary_10_1016_j_ijhydene_2019_03_264 crossref_primary_10_1007_s40242_020_9074_9 crossref_primary_10_1021_jacs_2c11907 crossref_primary_10_1149_1945_7111_abb7e0 crossref_primary_10_1016_j_apcatb_2023_122375 crossref_primary_10_1002_cssc_202400714 crossref_primary_10_1021_acssuschemeng_0c03263 crossref_primary_10_1002_admi_202000310 crossref_primary_10_1038_s41560_022_01092_9 crossref_primary_10_1039_D4RA04019H crossref_primary_10_1016_j_jcis_2025_01_223 crossref_primary_10_1016_j_ijhydene_2024_09_012 crossref_primary_10_1016_j_jechem_2022_04_043 crossref_primary_10_1002_ange_202013395 crossref_primary_10_1021_acscatal_9b03892 crossref_primary_10_1002_adma_202105049 crossref_primary_10_1007_s41918_021_00105_7 crossref_primary_10_1016_j_jpowsour_2022_232439 crossref_primary_10_1016_j_memsci_2021_119685 crossref_primary_10_1002_advs_202102637 crossref_primary_10_1016_S1872_2067_23_64572_3 crossref_primary_10_1038_s41467_023_38350_7 crossref_primary_10_1039_C9NH00533A crossref_primary_10_1007_s12274_023_5987_1 crossref_primary_10_1039_D2TA04882E crossref_primary_10_1016_j_enconman_2022_116203 crossref_primary_10_1002_ange_201909697 crossref_primary_10_2139_ssrn_3974811 crossref_primary_10_1039_D0CC00008F crossref_primary_10_1021_acsanm_1c02893 crossref_primary_10_1021_acs_chemmater_9b01092 crossref_primary_10_1002_ange_202211098 crossref_primary_10_1016_j_apcatb_2021_121029 crossref_primary_10_2139_ssrn_4105375 crossref_primary_10_1016_j_fuel_2022_123637 crossref_primary_10_1002_advs_202100284 crossref_primary_10_1007_s12274_024_6584_7 crossref_primary_10_1016_j_cclet_2024_109630 crossref_primary_10_1007_s11426_021_1190_7 crossref_primary_10_1038_s41560_021_00878_7 crossref_primary_10_1002_aenm_202200934 crossref_primary_10_1002_ange_202110900 crossref_primary_10_1016_j_memsci_2024_123038 crossref_primary_10_1038_s41467_024_45873_0 crossref_primary_10_1016_j_jpowsour_2021_230474 crossref_primary_10_1021_acs_inorgchem_4c03785 crossref_primary_10_1016_j_memsci_2019_117507 crossref_primary_10_1149_1945_7111_ac4b81 crossref_primary_10_1016_j_scib_2021_05_027 crossref_primary_10_1038_s41467_021_22612_3 crossref_primary_10_1016_j_ccr_2022_214980 crossref_primary_10_1021_acs_chemrev_1c00331 crossref_primary_10_1021_acsapm_4c01919 crossref_primary_10_1016_j_memsci_2023_121900 crossref_primary_10_1016_j_ijhydene_2022_11_057 crossref_primary_10_1021_acscatal_0c03973 crossref_primary_10_1016_j_egyr_2023_09_011 crossref_primary_10_1016_j_progpolymsci_2020_101345 crossref_primary_10_1002_smll_202006698 crossref_primary_10_1002_adma_202006292 |
Cites_doi | 10.1039/C6EE03079C 10.1016/j.ijhydene.2015.10.108 10.1038/ncomms6848 10.1021/acs.chemmater.8b00358 10.1039/c3cs60053j 10.1016/j.jpowsour.2017.05.006 10.1016/j.jpowsour.2018.04.047 10.1021/ja307466s 10.1038/nchem.1574 10.1039/C6EE01958G 10.1021/acs.macromol.8b00209 10.1021/acsmacrolett.7b00679 10.1038/nchem.1069 10.1073/pnas.0810041106 10.1039/C7CC06392J 10.1002/ange.201307203 10.1038/nnano.2016.265 10.1002/adfm.201702758 10.1016/j.pecs.2018.01.001 10.1002/ange.201605916 10.1021/acscatal.8b00689 10.1016/S0022-0728(02)00683-6 10.1039/C8TA04783A 10.1149/07514.0949ecst 10.1002/fuce.200400045 10.1021/ar200201x 10.1039/C6GC02526A 10.1002/adfm.200901314 10.1021/acsmacrolett.5b00910 10.1039/C4EE00440J 10.1016/j.ijhydene.2012.05.117 10.1002/anie.201605916 10.1016/0013-4686(94)85159-X 10.1021/acs.jpcc.5b03284 10.1039/C7RA01980G 10.1039/C3EE43275K 10.1039/C4EE01303D 10.1016/j.jpowsour.2017.07.117 10.1039/C8EE00122G 10.1016/j.jpowsour.2017.08.010 10.1039/C7EE02053H 10.1149/2.1401809jes 10.1021/acscatal.7b02340 10.1149/1.3483106 10.1039/c3ee00045a 10.1039/FT9969203719 10.1039/C4EE02564D 10.1149/2.0131506jes 10.1016/j.ijhydene.2015.03.119 10.1126/science.1168049 10.1002/anie.201307203 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201812662 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 1446 |
ExternalDocumentID | 30548378 10_1002_anie_201812662 ANIE201812662 |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4102-ea0c69b908d1e7b62536a69532f3d2b5e7b3f16ad60c1219b858e5d1745118973 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 12:16:40 EDT 2025 Fri Jul 25 10:34:14 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Tue Jul 01 02:26:39 EDT 2025 Wed Jan 22 16:19:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | fuel cells temperature platinum hydrogen oxidation reaction alkaline polymer electrolyte |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-ea0c69b908d1e7b62536a69532f3d2b5e7b3f16ad60c1219b858e5d1745118973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5642-6735 |
PMID | 30548378 |
PQID | 2168819665 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2157656096 proquest_journals_2168819665 pubmed_primary_30548378 crossref_citationtrail_10_1002_anie_201812662 crossref_primary_10_1002_anie_201812662 wiley_primary_10_1002_anie_201812662_ANIE201812662 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 28, 2019 |
PublicationDateYYYYMMDD | 2019-01-28 |
PublicationDate_xml | – month: 01 year: 2019 text: January 28, 2019 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2015; 162 2017; 6 2017; 7 2018; 28 2018; 165 2015; 6 2013; 42 2016; 75 2008; 105 1996; 92 2012; 37 2018; 66 2011; 3 2013; 5 2015; 8 2013; 6 2016; 11 2016; 5 2018; 6 2018; 375 2017; 53 2010; 20 2018; 8 2016 2016; 55 128 2018; 390 2012; 134 2015; 40 2017; 10 2010; 157 2005; 5 2002; 524 2016; 41 2015; 119 2017; 19 2018; 30 2018; 51 1994; 39 2018; 11 2014; 7 2012; 45 2009; 323 2016; 9 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_45_2 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_2 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_51_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_15_3 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_58_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_2 e_1_2_2_31_1 e_1_2_2_18_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_35_2 e_1_2_2_56_2 |
References_xml | – volume: 6 start-page: 5848 year: 2015 publication-title: Nat. Commun. – volume: 165 start-page: 710 year: 2018 end-page: 717 publication-title: J. Electrochem. Soc. – volume: 375 start-page: 170 year: 2018 end-page: 184 publication-title: J. Power Sources – volume: 39 start-page: 1739 year: 1994 end-page: 1747 publication-title: Electrochim. Acta – volume: 6 start-page: 1089 year: 2017 end-page: 1093 publication-title: ACS Macro Lett. – volume: 105 start-page: 20611 year: 2008 end-page: 20614 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 19153 year: 2017 end-page: 19161 publication-title: RSC Adv. – volume: 41 start-page: 1120 year: 2016 end-page: 1133 publication-title: Int. J. Hydrogen Energy – volume: 40 start-page: 6655 year: 2015 end-page: 6660 publication-title: Int. J. Hydrogen Energy – volume: 323 start-page: 760 year: 2009 end-page: 764 publication-title: Science – volume: 9 start-page: 3724 year: 2016 end-page: 3735 publication-title: Energy Environ. Sci. – volume: 3 start-page: 546 year: 2011 end-page: 550 publication-title: Nat. Chem. – volume: 66 start-page: 141 year: 2018 end-page: 175 publication-title: Prog. Energy Combust. Sci. – volume: 8 start-page: 6665 year: 2018 end-page: 6690 publication-title: ACS Catal. – volume: 157 start-page: 1529 year: 2010 end-page: 1526 publication-title: J. Electrochem. Soc. – volume: 92 start-page: 3719 year: 1996 end-page: 3725 publication-title: J. Chem. Soc. Faraday Trans. – volume: 390 start-page: 165 year: 2018 end-page: 167 publication-title: J. Power Sources – volume: 375 start-page: 205 year: 2018 end-page: 213 publication-title: J. Power Sources – volume: 11 start-page: 1020 year: 2016 end-page: 1025 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 187 year: 2005 end-page: 200 publication-title: Fuel Cells – volume: 5 start-page: 300 year: 2013 end-page: 306 publication-title: Nat. Chem. – volume: 5 start-page: 253 year: 2016 end-page: 257 publication-title: ACS Macro Lett. – volume: 19 start-page: 831 year: 2017 end-page: 843 publication-title: Green Chem. – volume: 45 start-page: 473 year: 2012 end-page: 481 publication-title: Acc. Chem. Res. – volume: 7 start-page: 354 year: 2014 end-page: 360 publication-title: Energy Environ. Sci. – volume: 53 start-page: 11771 year: 2017 end-page: 11773 publication-title: Chem. Commun. – volume: 37 start-page: 11912 year: 2012 end-page: 11920 publication-title: Int. J. Hydrogen Energy – volume: 75 start-page: 949 year: 2016 end-page: 954 publication-title: ECS Trans. – volume: 55 128 start-page: 11499 11671 year: 2016 2016 end-page: 11502 11674 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 312 year: 2010 end-page: 319 publication-title: Adv. Funct. Mater. – volume: 375 start-page: 158 year: 2018 end-page: 169 publication-title: J. Power Sources – volume: 7 start-page: 6485 year: 2017 end-page: 6492 publication-title: ACS Catal. – volume: 30 start-page: 2188 year: 2018 end-page: 2192 publication-title: Chem. Mater. – volume: 119 start-page: 13481 year: 2015 end-page: 13487 publication-title: J. Phys. Chem. C – volume: 28 start-page: 1702758 year: 2018 publication-title: Adv. Funct. Mater. – volume: 53 126 start-page: 4102 4186 year: 2014 2014 end-page: 4106 4190 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 551 year: 2018 end-page: 558 publication-title: Energy Environ. Sci. – volume: 42 start-page: 5768 year: 2013 end-page: 5787 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 2255 year: 2014 end-page: 2260 publication-title: Energy Environ. Sci. – volume: 162 start-page: 483 year: 2015 end-page: 488 publication-title: J. Electrochem. Soc. – volume: 134 start-page: 18161 year: 2012 end-page: 18164 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 2154 year: 2017 end-page: 2167 publication-title: Energy Environ. Sci. – volume: 8 start-page: 177 year: 2015 end-page: 181 publication-title: Energy Environ. Sci. – volume: 10 start-page: 275 year: 2017 end-page: 285 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1509 year: 2013 end-page: 1512 publication-title: Energy Environ. Sci. – volume: 7 start-page: 3135 year: 2014 end-page: 3191 publication-title: Energy Environ. Sci. – volume: 6 start-page: 15404 year: 2018 end-page: 15412 publication-title: J. Mater. Chem. A – volume: 51 start-page: 3212 year: 2018 end-page: 3218 publication-title: Macromolecules – volume: 524 start-page: 252 year: 2002 end-page: 260 publication-title: J. Electroanal. Chem. – ident: e_1_2_2_17_2 doi: 10.1039/C6EE03079C – ident: e_1_2_2_51_2 doi: 10.1016/j.ijhydene.2015.10.108 – ident: e_1_2_2_35_2 doi: 10.1038/ncomms6848 – ident: e_1_2_2_56_2 doi: 10.1021/acs.chemmater.8b00358 – ident: e_1_2_2_12_2 doi: 10.1039/c3cs60053j – ident: e_1_2_2_38_1 – ident: e_1_2_2_54_2 doi: 10.1016/j.jpowsour.2017.05.006 – ident: e_1_2_2_44_2 doi: 10.1016/j.jpowsour.2018.04.047 – ident: e_1_2_2_31_1 – ident: e_1_2_2_42_2 doi: 10.1021/ja307466s – ident: e_1_2_2_33_2 doi: 10.1038/nchem.1574 – ident: e_1_2_2_16_2 doi: 10.1039/C6EE01958G – ident: e_1_2_2_46_2 doi: 10.1021/acs.macromol.8b00209 – ident: e_1_2_2_53_2 doi: 10.1021/acsmacrolett.7b00679 – ident: e_1_2_2_21_2 doi: 10.1038/nchem.1069 – ident: e_1_2_2_3_2 doi: 10.1073/pnas.0810041106 – ident: e_1_2_2_24_1 doi: 10.1039/C7CC06392J – ident: e_1_2_2_22_3 doi: 10.1002/ange.201307203 – ident: e_1_2_2_5_2 doi: 10.1038/nnano.2016.265 – ident: e_1_2_2_45_2 doi: 10.1002/adfm.201702758 – ident: e_1_2_2_8_2 doi: 10.1016/j.pecs.2018.01.001 – ident: e_1_2_2_15_3 doi: 10.1002/ange.201605916 – ident: e_1_2_2_25_1 doi: 10.1021/acscatal.8b00689 – ident: e_1_2_2_14_1 – ident: e_1_2_2_27_2 doi: 10.1016/S0022-0728(02)00683-6 – ident: e_1_2_2_58_2 doi: 10.1039/C8TA04783A – ident: e_1_2_2_41_1 – ident: e_1_2_2_9_1 – ident: e_1_2_2_47_1 – ident: e_1_2_2_52_2 doi: 10.1149/07514.0949ecst – ident: e_1_2_2_1_1 – ident: e_1_2_2_2_2 doi: 10.1002/fuce.200400045 – ident: e_1_2_2_11_2 doi: 10.1021/ar200201x – ident: e_1_2_2_55_2 doi: 10.1039/C6GC02526A – ident: e_1_2_2_10_2 doi: 10.1002/adfm.200901314 – ident: e_1_2_2_43_2 doi: 10.1021/acsmacrolett.5b00910 – ident: e_1_2_2_30_2 doi: 10.1039/C4EE00440J – ident: e_1_2_2_48_2 doi: 10.1016/j.ijhydene.2012.05.117 – ident: e_1_2_2_15_2 doi: 10.1002/anie.201605916 – ident: e_1_2_2_32_2 doi: 10.1016/0013-4686(94)85159-X – ident: e_1_2_2_26_1 – ident: e_1_2_2_36_1 doi: 10.1021/acs.jpcc.5b03284 – ident: e_1_2_2_39_2 doi: 10.1039/C7RA01980G – ident: e_1_2_2_13_2 doi: 10.1039/C3EE43275K – ident: e_1_2_2_4_2 doi: 10.1039/C4EE01303D – ident: e_1_2_2_6_2 doi: 10.1016/j.jpowsour.2017.07.117 – ident: e_1_2_2_40_2 doi: 10.1039/C8EE00122G – ident: e_1_2_2_7_2 doi: 10.1016/j.jpowsour.2017.08.010 – ident: e_1_2_2_18_2 doi: 10.1039/C7EE02053H – ident: e_1_2_2_57_2 doi: 10.1149/2.1401809jes – ident: e_1_2_2_23_2 doi: 10.1021/acscatal.7b02340 – ident: e_1_2_2_29_2 doi: 10.1149/1.3483106 – ident: e_1_2_2_19_1 – ident: e_1_2_2_34_2 doi: 10.1039/c3ee00045a – ident: e_1_2_2_28_2 doi: 10.1039/FT9969203719 – ident: e_1_2_2_37_1 doi: 10.1039/C4EE02564D – ident: e_1_2_2_49_2 doi: 10.1149/2.0131506jes – ident: e_1_2_2_50_2 doi: 10.1016/j.ijhydene.2015.03.119 – ident: e_1_2_2_20_2 doi: 10.1126/science.1168049 – ident: e_1_2_2_22_2 doi: 10.1002/anie.201307203 |
SSID | ssj0028806 |
Score | 2.5943396 |
Snippet | The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell... The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1442 |
SubjectTerms | alkaline polymer electrolyte Anode effect Electrolytes Electrolytic cells Fuel cells Fuel technology hydrogen oxidation reaction Oxidation platinum Polymers Proton exchange membrane fuel cells Ruthenium temperature |
Title | The Comparability of Pt to Pt‐Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812662 https://www.ncbi.nlm.nih.gov/pubmed/30548378 https://www.proquest.com/docview/2168819665 https://www.proquest.com/docview/2157656096 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_TS_59tkjKFQk9OZMmW7eNidtkWmoSlgdyMZGkhxLXDrg11Trnm1r5JnyGPkifJyFq73ZZSaC_GtmQsSzPSN_LMN4S8jQLKsYh5jCvqBRrtFKUpqjtDiUksjTa30cgfD8XsJPhwGp7-FMXv-CGGDTerGd18bRVcqtXBD9JQG4FtXbNwhRLdJGwdtiwqmg_8UQyF04UXce7ZLPQ9ayNlB5uPb65Kv0HNTeTaLT3Th0T2jXYeJ-f7Ta3288tf-Bz_56sekQdrXApjJ0iPyT1TPiHbaZ8O7in5hgIFqeMK7xxqW6gWcFxDXeHx9urrvIGzElK7HdRe4oIICC1h1uplhTIKR1_OXPYmmBsXSwEIl2FcnEvbaDiuivazWcLEpeUp2trAtDEFpKYoVnB0YcmfjQZZQ0xvr65vvqfPyMl08imdeet8Dl4eII7xjKS5SFRCY-2bSKHlxYUUScjZgmumQrzHF76QWtDcx5lUxWFsQo02kzWDkog_J1tlVZqXBBYIa3PL9hYzFWiWSBXmhmrpB5FmERUj4vXjmeVrsnObc6PIHE0zy2xHZ0NHj8i7of6Fo_n4Y83dXjyytbqvMuaLGKGVEOGIvBmKcYDs3xdZmqqxddC0Q3yZYONeOLEaXoWTbsfsPyKsE46_tCEbH76fDFev_uWhHXIfz62rnMfiXbJVLxuzh_CqVq87FboDBqwcfg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_z9LCwwSEqe0iZ04yXEVdrWFdlutWolbFMdeqWpIqm1WanrqlRu8Cc_Ao_RJmIk3QQtCSHCJlNhWHHvG_saZ-YaxN6HvCiziDhfKdXyNdorSLqo7R4mJiUZbUDTywVROTvz3H4POm5BiYSw_RH_gRprRrtek4HQgvfuTNZRCsMk3C7coSavwbUrrTfT572Y9gxRH8bQBRkI4lIe-4210-e56-_V96TewuY5d281nfI-prtvW5-RsZ1mrnfzqF0bH__qu--zuCprC0MrSA3bLlA_ZZtJlhHvEvqJMQWLpwluf2gaqORzVUFd4vbn-MlvCaQkJnQg1V7gnAqJLmDR6UaGYwuHlqU3gBDNjwykAETMMi7OMeg1HVdF8MgsY2cw8RVMbGC9NAYkpigs4PCf-Z6MhqyFyb64_f_-WPGYn49FxMnFWKR2c3Eco45jMzWWsYjfSngkVGl9CZjIOBJ8LzVWAz8Tck5mWbu7hYqqiIDKBRrOJLKE4FE_YRlmV5hmDOSLbnAjfIq58zeNMBblxdeb5oeahKwfM6SY0zVd855R2o0gtUzNPaaDTfqAH7G1f_9wyffyx5nYnH-lK4y9S7skI0ZWUwYC97otxgugHTFaaakl10LpDiBlj555auepfhetuS-4_YLyVjr_0IR1O90b93fN_afSKbU6OD_bT_b3phy12B5-T55zDo222US-W5gWirVq9bPXpB8SPIJo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkYAL_z9bCgwSEqe0jp04yXGV7mrLz3a1olJvURw7UtWQrLaJ1PTUKzd4E56BR-mTMI53AwtCSHCJlNhWJvaM_Y3j-YaQV4FHORYxh3FJHU-hnyIVRXNnqDGRodHmJhr5_VRMjrw3x_7xT1H8lh-i33AzltHN18bAFyrf-0EaaiKwzdEsXKGEmYSve4JGJnnD_rwnkGKonTa-iHPHpKFf0zZStrfZfnNZ-g1rbkLXbu0Z3yHpWmp75OR0t6nlbnbxC6Hj_3zWXXJ7BUxhaDXpHrmmy_vkZrzOB_eAfEGNgtiShXcnaluocpjVUFd4vbr8PG_gpITY7Ae1F7giAmJLmLRqWaGSwuH5iU3fBHNtgykA8TIMi9PUCA2zqmg_6iWMbF6eoq01jBtdQKyL4gwOF4b9WStIawjp1eWnb1_jh-RoPPoQT5xVQgcn8xDIODqlmYhkREPl6kCi68VFKiKfs5wrJn18xnNXpErQzMWpVIZ-qH2FTpPxg6KAPyJbZVXqJwRyxLWZoXsLmfQUi1LpZ5qq1PUCxQIqBsRZj2eSrdjOTdKNIrE8zSwxHZ30HT0gr_v6C8vz8ceaO2v1SFb2fpYwV4SIrYTwB-RlX4wDZH6_pKWuGlMHfTsEmBEK99iqVf8qnHU7av8BYZ1y_EWGZDg9GPV32__S6AW5MdsfJ-8Opm-fklv42Bybc1i4Q7bqZaOfIdSq5fPOmr4DRBAfSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Comparability+of+Pt+to+Pt%E2%80%90Ru+in+Catalyzing+the+Hydrogen+Oxidation+Reaction+for+Alkaline+Polymer+Electrolyte+Fuel+Cells+Operated+at+80%E2%80%89%C2%B0C&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Qihao&rft.au=Peng%2C+Hanqing&rft.au=Wang%2C+Yingming&rft.au=Xiao%2C+Li&rft.date=2019-01-28&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=5&rft.spage=1442&rft.epage=1446&rft_id=info:doi/10.1002%2Fanie.201812662&rft.externalDBID=10.1002%252Fanie.201812662&rft.externalDocID=ANIE201812662 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |