The Comparability of Pt to Pt‐Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C

The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 5; pp. 1442 - 1446
Main Authors Li, Qihao, Peng, Hanqing, Wang, Yingming, Xiao, Li, Lu, Juntao, Zhuang, Lin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 28.01.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology. Alkaline polymer electrolyte fuel cells (APEFCs) with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode (gray) is now found to be as good as the Pt‐Ru anode (red) for APEFCs operated at elevated conditions. At T=80 °C with appropriate gas back‐pressure p, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode.
AbstractList The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm , over 1.5 W cm can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology.
The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology.
The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm−2, over 1.5 W cm−2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology. Alkaline polymer electrolyte fuel cells (APEFCs) with Pt‐Ru anodes have provided a performance benchmark over 1 W cm−2 at 60 °C. The Pt anode (gray) is now found to be as good as the Pt‐Ru anode (red) for APEFCs operated at elevated conditions. At T=80 °C with appropriate gas back‐pressure p, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm−2, which is very close to that with a Pt‐Ru anode.
The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm-2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm-2 , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm-2 , over 1.5 W cm-2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology.The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt-Ru anodes have provided a performance benchmark over 1 W cm-2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt-Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back-pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm-2 , which is very close to that with a Pt-Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm-2 , over 1.5 W cm-2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high-power APFEC technology.
The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell research. The Pt catalyst is inferior for HOR in alkaline solutions, and alloying with Ru is an effective promotion strategy. APEFCs with Pt‐Ru anodes have provided a performance benchmark over 1 W cm −2 at 60 °C. The Pt anode is now found to be in fact as good as the Pt‐Ru anode for APEFCs operated at elevated conditions. At 80 °C with appropriate gas back‐pressure, the cell with a Pt anode exhibits a peak power density of about 1.9 W cm −2 , which is very close to that with a Pt‐Ru anode. Even by decreasing the anode Pt loading to 0.1 mg cm −2 , over 1.5 W cm −2 can still be achieved at 80 °C. This finding alters the previous understanding about the Pt catalyzed HOR in alkaline media and casts a new light on the development of practical and high‐power APFEC technology.
Author Wang, Yingming
Peng, Hanqing
Zhuang, Lin
Xiao, Li
Li, Qihao
Lu, Juntao
Author_xml – sequence: 1
  givenname: Qihao
  surname: Li
  fullname: Li, Qihao
  organization: Wuhan University
– sequence: 2
  givenname: Hanqing
  surname: Peng
  fullname: Peng, Hanqing
  organization: Wuhan University
– sequence: 3
  givenname: Yingming
  surname: Wang
  fullname: Wang, Yingming
  organization: Wuhan University
– sequence: 4
  givenname: Li
  surname: Xiao
  fullname: Xiao, Li
  email: chem.lily@whu.edu.cn
  organization: Wuhan University
– sequence: 5
  givenname: Juntao
  surname: Lu
  fullname: Lu, Juntao
  organization: Wuhan University
– sequence: 6
  givenname: Lin
  orcidid: 0000-0002-5642-6735
  surname: Zhuang
  fullname: Zhuang, Lin
  email: lzhuang@whu.edu.cn
  organization: Wuhan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548378$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkssWGTwZfYcZajaEorVUxVlXXkJCfFxbEHx1EJq27ZwZvwDDxKnwS304JUCbGxj63vOzo6_z7acd4BQi8pWVBC2FvtDCwYoYoyKdkTtEcFoxkvCr6T6pzzrFCC7qL9cbxMvFJEPkO7nIhc8ULtoR_nHwFXftjooBtjTZyx7_FpxNGn8-b6-9mEjcOVjtrOX427wDEJR3MX_AU4vP5iOh2Nd_gMdHtX9D7gpf2krXGAT72dBwh4ZaGNIT0i4MMJLK7A2hGvNxB0hA7riBW5uf7262f1HD3ttR3hxf19gD4crs6ro-xk_e64Wp5kbU4Jy0CTVpZNSVRHoWgkE1xqWQrOet6xRqQ_3lOpO0laymjZKKFAdLTIBaWqLPgBerPtuwn-8wRjrAcztmks7cBPY82oKKSQpJQJff0IvfRTcGm6REmlaCmlSNSre2pqBujqTTCDDnP9sOwE5FugDX4cA_R1a-Ld9mLQxtaU1LeZ1reZ1n8yTdrikfbQ-Z9CuRWujIX5P3S9fH-8-uv-BpLDtXE
CitedBy_id crossref_primary_10_1039_D2EE02216H
crossref_primary_10_1016_j_memsci_2021_120109
crossref_primary_10_1016_j_mtener_2021_100846
crossref_primary_10_1016_j_xcrp_2021_100377
crossref_primary_10_1002_ange_202318389
crossref_primary_10_1016_j_cej_2024_158580
crossref_primary_10_1016_j_memsci_2022_120341
crossref_primary_10_1002_anie_202110900
crossref_primary_10_1016_j_jechem_2020_12_008
crossref_primary_10_1016_j_jpowsour_2023_233687
crossref_primary_10_1016_j_nanoen_2020_104877
crossref_primary_10_1039_D3EE04251K
crossref_primary_10_1039_D1TA10868A
crossref_primary_10_1016_j_apcatb_2022_121733
crossref_primary_10_1007_s40843_022_2089_6
crossref_primary_10_1002_adma_202410106
crossref_primary_10_1021_acsaem_9b00657
crossref_primary_10_1002_anie_202013395
crossref_primary_10_1016_j_ijhydene_2020_05_163
crossref_primary_10_1016_j_scib_2020_06_007
crossref_primary_10_1039_D0EE01133A
crossref_primary_10_1002_smll_202100391
crossref_primary_10_1021_acsenergylett_9b00597
crossref_primary_10_1021_acs_energyfuels_4c05199
crossref_primary_10_1016_j_apcatb_2019_117952
crossref_primary_10_1038_s41467_021_26425_2
crossref_primary_10_1021_acs_macromol_2c01874
crossref_primary_10_1002_cjoc_202100425
crossref_primary_10_1016_j_jpowsour_2021_230868
crossref_primary_10_1021_acs_chemmater_9b00999
crossref_primary_10_3390_en16083425
crossref_primary_10_1016_j_jechem_2023_01_054
crossref_primary_10_1016_j_apcatb_2021_120811
crossref_primary_10_1016_j_jechem_2021_12_026
crossref_primary_10_1002_adfm_202107479
crossref_primary_10_1002_anie_201909697
crossref_primary_10_1016_j_memsci_2022_121135
crossref_primary_10_1021_acscatal_0c03938
crossref_primary_10_1016_j_arabjc_2022_104451
crossref_primary_10_2139_ssrn_4005784
crossref_primary_10_1002_anie_202318389
crossref_primary_10_1016_j_joule_2024_06_002
crossref_primary_10_1002_anie_202211098
crossref_primary_10_1016_j_micromeso_2020_110538
crossref_primary_10_1016_j_reactfunctpolym_2019_104348
crossref_primary_10_1002_adma_202417621
crossref_primary_10_1038_s41467_020_19413_5
crossref_primary_10_1039_D1EE03482K
crossref_primary_10_1039_C9EE01204D
crossref_primary_10_1002_tcr_202300067
crossref_primary_10_1002_adfm_202212087
crossref_primary_10_1002_cjoc_202200385
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1016_j_memsci_2022_120676
crossref_primary_10_1149_1945_7111_abc4bd
crossref_primary_10_1016_j_ijhydene_2019_03_264
crossref_primary_10_1007_s40242_020_9074_9
crossref_primary_10_1021_jacs_2c11907
crossref_primary_10_1149_1945_7111_abb7e0
crossref_primary_10_1016_j_apcatb_2023_122375
crossref_primary_10_1002_cssc_202400714
crossref_primary_10_1021_acssuschemeng_0c03263
crossref_primary_10_1002_admi_202000310
crossref_primary_10_1038_s41560_022_01092_9
crossref_primary_10_1039_D4RA04019H
crossref_primary_10_1016_j_jcis_2025_01_223
crossref_primary_10_1016_j_ijhydene_2024_09_012
crossref_primary_10_1016_j_jechem_2022_04_043
crossref_primary_10_1002_ange_202013395
crossref_primary_10_1021_acscatal_9b03892
crossref_primary_10_1002_adma_202105049
crossref_primary_10_1007_s41918_021_00105_7
crossref_primary_10_1016_j_jpowsour_2022_232439
crossref_primary_10_1016_j_memsci_2021_119685
crossref_primary_10_1002_advs_202102637
crossref_primary_10_1016_S1872_2067_23_64572_3
crossref_primary_10_1038_s41467_023_38350_7
crossref_primary_10_1039_C9NH00533A
crossref_primary_10_1007_s12274_023_5987_1
crossref_primary_10_1039_D2TA04882E
crossref_primary_10_1016_j_enconman_2022_116203
crossref_primary_10_1002_ange_201909697
crossref_primary_10_2139_ssrn_3974811
crossref_primary_10_1039_D0CC00008F
crossref_primary_10_1021_acsanm_1c02893
crossref_primary_10_1021_acs_chemmater_9b01092
crossref_primary_10_1002_ange_202211098
crossref_primary_10_1016_j_apcatb_2021_121029
crossref_primary_10_2139_ssrn_4105375
crossref_primary_10_1016_j_fuel_2022_123637
crossref_primary_10_1002_advs_202100284
crossref_primary_10_1007_s12274_024_6584_7
crossref_primary_10_1016_j_cclet_2024_109630
crossref_primary_10_1007_s11426_021_1190_7
crossref_primary_10_1038_s41560_021_00878_7
crossref_primary_10_1002_aenm_202200934
crossref_primary_10_1002_ange_202110900
crossref_primary_10_1016_j_memsci_2024_123038
crossref_primary_10_1038_s41467_024_45873_0
crossref_primary_10_1016_j_jpowsour_2021_230474
crossref_primary_10_1021_acs_inorgchem_4c03785
crossref_primary_10_1016_j_memsci_2019_117507
crossref_primary_10_1149_1945_7111_ac4b81
crossref_primary_10_1016_j_scib_2021_05_027
crossref_primary_10_1038_s41467_021_22612_3
crossref_primary_10_1016_j_ccr_2022_214980
crossref_primary_10_1021_acs_chemrev_1c00331
crossref_primary_10_1021_acsapm_4c01919
crossref_primary_10_1016_j_memsci_2023_121900
crossref_primary_10_1016_j_ijhydene_2022_11_057
crossref_primary_10_1021_acscatal_0c03973
crossref_primary_10_1016_j_egyr_2023_09_011
crossref_primary_10_1016_j_progpolymsci_2020_101345
crossref_primary_10_1002_smll_202006698
crossref_primary_10_1002_adma_202006292
Cites_doi 10.1039/C6EE03079C
10.1016/j.ijhydene.2015.10.108
10.1038/ncomms6848
10.1021/acs.chemmater.8b00358
10.1039/c3cs60053j
10.1016/j.jpowsour.2017.05.006
10.1016/j.jpowsour.2018.04.047
10.1021/ja307466s
10.1038/nchem.1574
10.1039/C6EE01958G
10.1021/acs.macromol.8b00209
10.1021/acsmacrolett.7b00679
10.1038/nchem.1069
10.1073/pnas.0810041106
10.1039/C7CC06392J
10.1002/ange.201307203
10.1038/nnano.2016.265
10.1002/adfm.201702758
10.1016/j.pecs.2018.01.001
10.1002/ange.201605916
10.1021/acscatal.8b00689
10.1016/S0022-0728(02)00683-6
10.1039/C8TA04783A
10.1149/07514.0949ecst
10.1002/fuce.200400045
10.1021/ar200201x
10.1039/C6GC02526A
10.1002/adfm.200901314
10.1021/acsmacrolett.5b00910
10.1039/C4EE00440J
10.1016/j.ijhydene.2012.05.117
10.1002/anie.201605916
10.1016/0013-4686(94)85159-X
10.1021/acs.jpcc.5b03284
10.1039/C7RA01980G
10.1039/C3EE43275K
10.1039/C4EE01303D
10.1016/j.jpowsour.2017.07.117
10.1039/C8EE00122G
10.1016/j.jpowsour.2017.08.010
10.1039/C7EE02053H
10.1149/2.1401809jes
10.1021/acscatal.7b02340
10.1149/1.3483106
10.1039/c3ee00045a
10.1039/FT9969203719
10.1039/C4EE02564D
10.1149/2.0131506jes
10.1016/j.ijhydene.2015.03.119
10.1126/science.1168049
10.1002/anie.201307203
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201812662
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 1446
ExternalDocumentID 30548378
10_1002_anie_201812662
ANIE201812662
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4102-ea0c69b908d1e7b62536a69532f3d2b5e7b3f16ad60c1219b858e5d1745118973
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 12:16:40 EDT 2025
Fri Jul 25 10:34:14 EDT 2025
Mon Jul 21 05:58:19 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Tue Jul 01 02:26:39 EDT 2025
Wed Jan 22 16:19:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords fuel cells
temperature
platinum
hydrogen oxidation reaction
alkaline polymer electrolyte
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-ea0c69b908d1e7b62536a69532f3d2b5e7b3f16ad60c1219b858e5d1745118973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5642-6735
PMID 30548378
PQID 2168819665
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2157656096
proquest_journals_2168819665
pubmed_primary_30548378
crossref_citationtrail_10_1002_anie_201812662
crossref_primary_10_1002_anie_201812662
wiley_primary_10_1002_anie_201812662_ANIE201812662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 28, 2019
PublicationDateYYYYMMDD 2019-01-28
PublicationDate_xml – month: 01
  year: 2019
  text: January 28, 2019
  day: 28
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2015; 162
2017; 6
2017; 7
2018; 28
2018; 165
2015; 6
2013; 42
2016; 75
2008; 105
1996; 92
2012; 37
2018; 66
2011; 3
2013; 5
2015; 8
2013; 6
2016; 11
2016; 5
2018; 6
2018; 375
2017; 53
2010; 20
2018; 8
2016 2016; 55 128
2018; 390
2012; 134
2015; 40
2017; 10
2010; 157
2005; 5
2002; 524
2016; 41
2015; 119
2017; 19
2018; 30
2018; 51
1994; 39
2018; 11
2014; 7
2012; 45
2009; 323
2016; 9
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_2
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_51_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_15_3
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_58_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_35_2
e_1_2_2_56_2
References_xml – volume: 6
  start-page: 5848
  year: 2015
  publication-title: Nat. Commun.
– volume: 165
  start-page: 710
  year: 2018
  end-page: 717
  publication-title: J. Electrochem. Soc.
– volume: 375
  start-page: 170
  year: 2018
  end-page: 184
  publication-title: J. Power Sources
– volume: 39
  start-page: 1739
  year: 1994
  end-page: 1747
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1089
  year: 2017
  end-page: 1093
  publication-title: ACS Macro Lett.
– volume: 105
  start-page: 20611
  year: 2008
  end-page: 20614
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 19153
  year: 2017
  end-page: 19161
  publication-title: RSC Adv.
– volume: 41
  start-page: 1120
  year: 2016
  end-page: 1133
  publication-title: Int. J. Hydrogen Energy
– volume: 40
  start-page: 6655
  year: 2015
  end-page: 6660
  publication-title: Int. J. Hydrogen Energy
– volume: 323
  start-page: 760
  year: 2009
  end-page: 764
  publication-title: Science
– volume: 9
  start-page: 3724
  year: 2016
  end-page: 3735
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 546
  year: 2011
  end-page: 550
  publication-title: Nat. Chem.
– volume: 66
  start-page: 141
  year: 2018
  end-page: 175
  publication-title: Prog. Energy Combust. Sci.
– volume: 8
  start-page: 6665
  year: 2018
  end-page: 6690
  publication-title: ACS Catal.
– volume: 157
  start-page: 1529
  year: 2010
  end-page: 1526
  publication-title: J. Electrochem. Soc.
– volume: 92
  start-page: 3719
  year: 1996
  end-page: 3725
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 390
  start-page: 165
  year: 2018
  end-page: 167
  publication-title: J. Power Sources
– volume: 375
  start-page: 205
  year: 2018
  end-page: 213
  publication-title: J. Power Sources
– volume: 11
  start-page: 1020
  year: 2016
  end-page: 1025
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 187
  year: 2005
  end-page: 200
  publication-title: Fuel Cells
– volume: 5
  start-page: 300
  year: 2013
  end-page: 306
  publication-title: Nat. Chem.
– volume: 5
  start-page: 253
  year: 2016
  end-page: 257
  publication-title: ACS Macro Lett.
– volume: 19
  start-page: 831
  year: 2017
  end-page: 843
  publication-title: Green Chem.
– volume: 45
  start-page: 473
  year: 2012
  end-page: 481
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 354
  year: 2014
  end-page: 360
  publication-title: Energy Environ. Sci.
– volume: 53
  start-page: 11771
  year: 2017
  end-page: 11773
  publication-title: Chem. Commun.
– volume: 37
  start-page: 11912
  year: 2012
  end-page: 11920
  publication-title: Int. J. Hydrogen Energy
– volume: 75
  start-page: 949
  year: 2016
  end-page: 954
  publication-title: ECS Trans.
– volume: 55 128
  start-page: 11499 11671
  year: 2016 2016
  end-page: 11502 11674
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 312
  year: 2010
  end-page: 319
  publication-title: Adv. Funct. Mater.
– volume: 375
  start-page: 158
  year: 2018
  end-page: 169
  publication-title: J. Power Sources
– volume: 7
  start-page: 6485
  year: 2017
  end-page: 6492
  publication-title: ACS Catal.
– volume: 30
  start-page: 2188
  year: 2018
  end-page: 2192
  publication-title: Chem. Mater.
– volume: 119
  start-page: 13481
  year: 2015
  end-page: 13487
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 1702758
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 53 126
  start-page: 4102 4186
  year: 2014 2014
  end-page: 4106 4190
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 551
  year: 2018
  end-page: 558
  publication-title: Energy Environ. Sci.
– volume: 42
  start-page: 5768
  year: 2013
  end-page: 5787
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 2255
  year: 2014
  end-page: 2260
  publication-title: Energy Environ. Sci.
– volume: 162
  start-page: 483
  year: 2015
  end-page: 488
  publication-title: J. Electrochem. Soc.
– volume: 134
  start-page: 18161
  year: 2012
  end-page: 18164
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 2154
  year: 2017
  end-page: 2167
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 177
  year: 2015
  end-page: 181
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 275
  year: 2017
  end-page: 285
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1509
  year: 2013
  end-page: 1512
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 3135
  year: 2014
  end-page: 3191
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 15404
  year: 2018
  end-page: 15412
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 3212
  year: 2018
  end-page: 3218
  publication-title: Macromolecules
– volume: 524
  start-page: 252
  year: 2002
  end-page: 260
  publication-title: J. Electroanal. Chem.
– ident: e_1_2_2_17_2
  doi: 10.1039/C6EE03079C
– ident: e_1_2_2_51_2
  doi: 10.1016/j.ijhydene.2015.10.108
– ident: e_1_2_2_35_2
  doi: 10.1038/ncomms6848
– ident: e_1_2_2_56_2
  doi: 10.1021/acs.chemmater.8b00358
– ident: e_1_2_2_12_2
  doi: 10.1039/c3cs60053j
– ident: e_1_2_2_38_1
– ident: e_1_2_2_54_2
  doi: 10.1016/j.jpowsour.2017.05.006
– ident: e_1_2_2_44_2
  doi: 10.1016/j.jpowsour.2018.04.047
– ident: e_1_2_2_31_1
– ident: e_1_2_2_42_2
  doi: 10.1021/ja307466s
– ident: e_1_2_2_33_2
  doi: 10.1038/nchem.1574
– ident: e_1_2_2_16_2
  doi: 10.1039/C6EE01958G
– ident: e_1_2_2_46_2
  doi: 10.1021/acs.macromol.8b00209
– ident: e_1_2_2_53_2
  doi: 10.1021/acsmacrolett.7b00679
– ident: e_1_2_2_21_2
  doi: 10.1038/nchem.1069
– ident: e_1_2_2_3_2
  doi: 10.1073/pnas.0810041106
– ident: e_1_2_2_24_1
  doi: 10.1039/C7CC06392J
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201307203
– ident: e_1_2_2_5_2
  doi: 10.1038/nnano.2016.265
– ident: e_1_2_2_45_2
  doi: 10.1002/adfm.201702758
– ident: e_1_2_2_8_2
  doi: 10.1016/j.pecs.2018.01.001
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201605916
– ident: e_1_2_2_25_1
  doi: 10.1021/acscatal.8b00689
– ident: e_1_2_2_14_1
– ident: e_1_2_2_27_2
  doi: 10.1016/S0022-0728(02)00683-6
– ident: e_1_2_2_58_2
  doi: 10.1039/C8TA04783A
– ident: e_1_2_2_41_1
– ident: e_1_2_2_9_1
– ident: e_1_2_2_47_1
– ident: e_1_2_2_52_2
  doi: 10.1149/07514.0949ecst
– ident: e_1_2_2_1_1
– ident: e_1_2_2_2_2
  doi: 10.1002/fuce.200400045
– ident: e_1_2_2_11_2
  doi: 10.1021/ar200201x
– ident: e_1_2_2_55_2
  doi: 10.1039/C6GC02526A
– ident: e_1_2_2_10_2
  doi: 10.1002/adfm.200901314
– ident: e_1_2_2_43_2
  doi: 10.1021/acsmacrolett.5b00910
– ident: e_1_2_2_30_2
  doi: 10.1039/C4EE00440J
– ident: e_1_2_2_48_2
  doi: 10.1016/j.ijhydene.2012.05.117
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201605916
– ident: e_1_2_2_32_2
  doi: 10.1016/0013-4686(94)85159-X
– ident: e_1_2_2_26_1
– ident: e_1_2_2_36_1
  doi: 10.1021/acs.jpcc.5b03284
– ident: e_1_2_2_39_2
  doi: 10.1039/C7RA01980G
– ident: e_1_2_2_13_2
  doi: 10.1039/C3EE43275K
– ident: e_1_2_2_4_2
  doi: 10.1039/C4EE01303D
– ident: e_1_2_2_6_2
  doi: 10.1016/j.jpowsour.2017.07.117
– ident: e_1_2_2_40_2
  doi: 10.1039/C8EE00122G
– ident: e_1_2_2_7_2
  doi: 10.1016/j.jpowsour.2017.08.010
– ident: e_1_2_2_18_2
  doi: 10.1039/C7EE02053H
– ident: e_1_2_2_57_2
  doi: 10.1149/2.1401809jes
– ident: e_1_2_2_23_2
  doi: 10.1021/acscatal.7b02340
– ident: e_1_2_2_29_2
  doi: 10.1149/1.3483106
– ident: e_1_2_2_19_1
– ident: e_1_2_2_34_2
  doi: 10.1039/c3ee00045a
– ident: e_1_2_2_28_2
  doi: 10.1039/FT9969203719
– ident: e_1_2_2_37_1
  doi: 10.1039/C4EE02564D
– ident: e_1_2_2_49_2
  doi: 10.1149/2.0131506jes
– ident: e_1_2_2_50_2
  doi: 10.1016/j.ijhydene.2015.03.119
– ident: e_1_2_2_20_2
  doi: 10.1126/science.1168049
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201307203
SSID ssj0028806
Score 2.5943396
Snippet The Pt‐catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel‐cell...
The Pt-catalyzed hydrogen oxidation reaction (HOR) for alkaline polymer electrolyte fuel cells (APEFCs) has been one of the focus subjects in current fuel-cell...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1442
SubjectTerms alkaline polymer electrolyte
Anode effect
Electrolytes
Electrolytic cells
Fuel cells
Fuel technology
hydrogen oxidation reaction
Oxidation
platinum
Polymers
Proton exchange membrane fuel cells
Ruthenium
temperature
Title The Comparability of Pt to Pt‐Ru in Catalyzing the Hydrogen Oxidation Reaction for Alkaline Polymer Electrolyte Fuel Cells Operated at 80 °C
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201812662
https://www.ncbi.nlm.nih.gov/pubmed/30548378
https://www.proquest.com/docview/2168819665
https://www.proquest.com/docview/2157656096
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYll_TS_59tkjKFQk9OZMmW7eNidtkWmoSlgdyMZGkhxLXDrg11Trnm1r5JnyGPkifJyFq73ZZSaC_GtmQsSzPSN_LMN4S8jQLKsYh5jCvqBRrtFKUpqjtDiUksjTa30cgfD8XsJPhwGp7-FMXv-CGGDTerGd18bRVcqtXBD9JQG4FtXbNwhRLdJGwdtiwqmg_8UQyF04UXce7ZLPQ9ayNlB5uPb65Kv0HNTeTaLT3Th0T2jXYeJ-f7Ta3288tf-Bz_56sekQdrXApjJ0iPyT1TPiHbaZ8O7in5hgIFqeMK7xxqW6gWcFxDXeHx9urrvIGzElK7HdRe4oIICC1h1uplhTIKR1_OXPYmmBsXSwEIl2FcnEvbaDiuivazWcLEpeUp2trAtDEFpKYoVnB0YcmfjQZZQ0xvr65vvqfPyMl08imdeet8Dl4eII7xjKS5SFRCY-2bSKHlxYUUScjZgmumQrzHF76QWtDcx5lUxWFsQo02kzWDkog_J1tlVZqXBBYIa3PL9hYzFWiWSBXmhmrpB5FmERUj4vXjmeVrsnObc6PIHE0zy2xHZ0NHj8i7of6Fo_n4Y83dXjyytbqvMuaLGKGVEOGIvBmKcYDs3xdZmqqxddC0Q3yZYONeOLEaXoWTbsfsPyKsE46_tCEbH76fDFev_uWhHXIfz62rnMfiXbJVLxuzh_CqVq87FboDBqwcfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_z9LCwwSEqe0iZ04yXEVdrWFdlutWolbFMdeqWpIqm1WanrqlRu8Cc_Ao_RJmIk3QQtCSHCJlNhWHHvG_saZ-YaxN6HvCiziDhfKdXyNdorSLqo7R4mJiUZbUDTywVROTvz3H4POm5BiYSw_RH_gRprRrtek4HQgvfuTNZRCsMk3C7coSavwbUrrTfT572Y9gxRH8bQBRkI4lIe-4210-e56-_V96TewuY5d281nfI-prtvW5-RsZ1mrnfzqF0bH__qu--zuCprC0MrSA3bLlA_ZZtJlhHvEvqJMQWLpwluf2gaqORzVUFd4vbn-MlvCaQkJnQg1V7gnAqJLmDR6UaGYwuHlqU3gBDNjwykAETMMi7OMeg1HVdF8MgsY2cw8RVMbGC9NAYkpigs4PCf-Z6MhqyFyb64_f_-WPGYn49FxMnFWKR2c3Eco45jMzWWsYjfSngkVGl9CZjIOBJ8LzVWAz8Tck5mWbu7hYqqiIDKBRrOJLKE4FE_YRlmV5hmDOSLbnAjfIq58zeNMBblxdeb5oeahKwfM6SY0zVd855R2o0gtUzNPaaDTfqAH7G1f_9wyffyx5nYnH-lK4y9S7skI0ZWUwYC97otxgugHTFaaakl10LpDiBlj555auepfhetuS-4_YLyVjr_0IR1O90b93fN_afSKbU6OD_bT_b3phy12B5-T55zDo222US-W5gWirVq9bPXpB8SPIJo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkYAL_z9bCgwSEqe0jp04yXGV7mrLz3a1olJvURw7UtWQrLaJ1PTUKzd4E56BR-mTMI53AwtCSHCJlNhWJvaM_Y3j-YaQV4FHORYxh3FJHU-hnyIVRXNnqDGRodHmJhr5_VRMjrw3x_7xT1H8lh-i33AzltHN18bAFyrf-0EaaiKwzdEsXKGEmYSve4JGJnnD_rwnkGKonTa-iHPHpKFf0zZStrfZfnNZ-g1rbkLXbu0Z3yHpWmp75OR0t6nlbnbxC6Hj_3zWXXJ7BUxhaDXpHrmmy_vkZrzOB_eAfEGNgtiShXcnaluocpjVUFd4vbr8PG_gpITY7Ae1F7giAmJLmLRqWaGSwuH5iU3fBHNtgykA8TIMi9PUCA2zqmg_6iWMbF6eoq01jBtdQKyL4gwOF4b9WStIawjp1eWnb1_jh-RoPPoQT5xVQgcn8xDIODqlmYhkREPl6kCi68VFKiKfs5wrJn18xnNXpErQzMWpVIZ-qH2FTpPxg6KAPyJbZVXqJwRyxLWZoXsLmfQUi1LpZ5qq1PUCxQIqBsRZj2eSrdjOTdKNIrE8zSwxHZ30HT0gr_v6C8vz8ceaO2v1SFb2fpYwV4SIrYTwB-RlX4wDZH6_pKWuGlMHfTsEmBEK99iqVf8qnHU7av8BYZ1y_EWGZDg9GPV32__S6AW5MdsfJ-8Opm-fklv42Bybc1i4Q7bqZaOfIdSq5fPOmr4DRBAfSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Comparability+of+Pt+to+Pt%E2%80%90Ru+in+Catalyzing+the+Hydrogen+Oxidation+Reaction+for+Alkaline+Polymer+Electrolyte+Fuel+Cells+Operated+at+80%E2%80%89%C2%B0C&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Qihao&rft.au=Peng%2C+Hanqing&rft.au=Wang%2C+Yingming&rft.au=Xiao%2C+Li&rft.date=2019-01-28&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=5&rft.spage=1442&rft.epage=1446&rft_id=info:doi/10.1002%2Fanie.201812662&rft.externalDBID=10.1002%252Fanie.201812662&rft.externalDocID=ANIE201812662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon