PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications
Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in...
Saved in:
Published in | Macromolecular bioscience Vol. 20; no. 2; pp. e1900282 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed.
Poly(amidoamine) (PAMAM) dendrimers have been employed as a powerful platform to be multifunctionalized through their periphery and internal cavities. This review summarizes the recent progresses in the development of radionuclide‐labeled PAMAM dendrimer‐based nanodevices for targeted positron emission tomography (PET), single‐photon emission computed tomography (SPECT), SPECT/computed tomography (CT), SPECT/magnetic resonance imaging, PET/CT imaging, radiotherapy, and nuclear imaging‐guided radiotherapy of cancer. |
---|---|
AbstractList | Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed. Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed. Poly(amidoamine) (PAMAM) dendrimers have been employed as a powerful platform to be multifunctionalized through their periphery and internal cavities. This review summarizes the recent progresses in the development of radionuclide‐labeled PAMAM dendrimer‐based nanodevices for targeted positron emission tomography (PET), single‐photon emission computed tomography (SPECT), SPECT/computed tomography (CT), SPECT/magnetic resonance imaging, PET/CT imaging, radiotherapy, and nuclear imaging‐guided radiotherapy of cancer. Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide-labeled poly(amidoamine) dendrimer-based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT-imaging-guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer-based nuclear nanodevices and future prospects are also discussed.Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide-labeled poly(amidoamine) dendrimer-based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT-imaging-guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer-based nuclear nanodevices and future prospects are also discussed. |
Author | Shi, Xiangyang Shen, Mingwu Xiao, Tingting Li, Du |
Author_xml | – sequence: 1 givenname: Tingting surname: Xiao fullname: Xiao, Tingting organization: Donghua University – sequence: 2 givenname: Du surname: Li fullname: Li, Du organization: Donghua University – sequence: 3 givenname: Xiangyang surname: Shi fullname: Shi, Xiangyang organization: Donghua University – sequence: 4 givenname: Mingwu surname: Shen fullname: Shen, Mingwu email: mwshen@dhu.edu.cn organization: Donghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31829523$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtOwzAUhi1URC-wMqJILCwpvsROPKalQKW2MMAcuc6J5CqXYjegbjwCz8iTkNJSpEqIybb0fedY_99FrbIqAaFzgvsEY3pdqLnpU0xk84joEeoQQYTPieSt_T0K26jr3AJjEkaSnqA2IxGVnLIOGj3G03jq3UCZWlOA_Xz_GCgHqTdTZZXCq9HgvKyy3qzWOSjrTSE12pTgxctlbrRamap0p-g4U7mDs93ZQ8-3o6fhvT95uBsP44mvA4KpDxxwmIWUZxJzoUKJlQ6ZkKkkKsywwPOIES7SLFAsEFgKDVirgAqQWvKUsx662s5d2uqlBrdKCuM05LkqoapdQhnlVErJNujlAbqoals2v2soznggKGUNdbGj6nkBabJsQlB2nfwE1AD9LaBt5ZyFbI8QnGwaSDYNJPsGGiE4ELRZfae0ssrkf2tyq72ZHNb_LEmm8WD8634B3WKYng |
CitedBy_id | crossref_primary_10_1002_adhm_202100833 crossref_primary_10_34172_apb_2023_025 crossref_primary_10_1016_j_jpha_2023_07_008 crossref_primary_10_1016_j_ejmech_2021_113572 crossref_primary_10_1002_advs_202100165 crossref_primary_10_1016_j_eurpolymj_2023_112486 crossref_primary_10_1021_acs_bioconjchem_0c00036 crossref_primary_10_1039_D1NR07725B crossref_primary_10_3390_ijms24065430 crossref_primary_10_1002_VIW_20200120 crossref_primary_10_1016_j_ccr_2020_213463 crossref_primary_10_1021_acs_bioconjchem_1c00005 crossref_primary_10_1007_s11426_021_1191_3 crossref_primary_10_4103_1673_5374_379041 crossref_primary_10_1016_j_ccr_2020_213739 crossref_primary_10_1016_j_ijpharm_2021_120485 crossref_primary_10_3389_fimmu_2024_1500998 crossref_primary_10_61186_ijbc_16_4_86 crossref_primary_10_1021_acs_jpcb_4c05572 crossref_primary_10_1021_acs_molpharmaceut_4c00856 crossref_primary_10_1021_acs_biomac_2c01318 crossref_primary_10_1021_acschemneuro_3c00028 crossref_primary_10_1016_j_envres_2023_116563 crossref_primary_10_1021_acs_langmuir_0c00598 crossref_primary_10_3390_biom13091405 crossref_primary_10_3390_molecules25173982 crossref_primary_10_1016_j_ccr_2021_214062 crossref_primary_10_1021_acs_bioconjchem_2c00487 crossref_primary_10_3389_fmolb_2020_604770 crossref_primary_10_3390_pharmaceutics15030774 crossref_primary_10_3390_pharmaceutics15031005 crossref_primary_10_1016_j_bioactmat_2023_11_021 crossref_primary_10_1021_acsami_1c13341 crossref_primary_10_1039_D4CC00892H crossref_primary_10_1002_smll_202409713 crossref_primary_10_1002_biot_202300113 crossref_primary_10_1002_mabi_202100007 crossref_primary_10_1016_j_mtbio_2021_100111 crossref_primary_10_1016_j_ijbiomac_2021_01_170 |
Cites_doi | 10.1007/s40843-018-9271-4 10.1016/j.biomaterials.2018.07.052 10.1039/C7NR09269E 10.1021/acsami.8b12355 10.1021/cr3003104 10.1166/jbn.2019.2760 10.1080/10717544.2017.1399299 10.1021/acsami.5b05836 10.1021/acsami.7b14836 10.3892/mmr.2017.6284 10.1021/cr500542t 10.1039/C6TB02190E 10.1016/j.nucmedbio.2019.04.003 10.1246/cl.180780 10.3390/molecules22091350 10.1039/C3NR06694K 10.1039/C4NR05269B 10.1016/j.biomaterials.2019.119327 10.1039/C7DT02407J 10.1021/am504849x 10.1021/acs.molpharmaceut.8b01232 10.1155/2018/1382183 10.1002/app.32494 10.1016/j.cej.2019.05.023 10.1016/j.yexcr.2016.04.015 10.1016/j.apradiso.2013.10.021 10.1016/j.cplett.2016.10.058 10.2967/jnumed.108.052399 10.7150/thno.15335 10.1021/acs.chemrev.8b00281 10.1002/adfm.201601341 10.1002/jlcr.3651 10.1039/c3tb20724b 10.2967/jnumed.115.156794 10.1158/1078-0432.CCR-18-0123 10.1021/ja104924b 10.1039/B922628C 10.1021/acs.nanolett.8b04757 10.1155/2016/1039258 10.1021/ja807099s 10.1002/smll.201902352 10.1002/jlcr.3165 10.1039/C7BM00826K 10.7150/thno.26610 10.1021/jm901910j 10.1021/acsami.6b04827 10.1039/C5NR05585G 10.1016/j.biomaterials.2014.05.046 10.1021/bc200162r 10.15171/apb.2017.011 10.1007/s00259-019-04359-8 10.1295/polymj.17.117 10.1021/am404714w 10.1007/BF00256396 10.1007/s11051-018-4291-6 10.1016/j.actbio.2018.08.036 10.7150/thno.8698 10.1021/acsami.7b11926 10.1080/09553002.2018.1478161 10.1021/acsami.6b06883 10.2217/nnm-2016-0001 10.1007/s00259-010-1390-8 10.1007/s11094-018-1880-8 10.1039/C5RA22934K 10.1080/10717544.2018.1474968 10.1002/anie.201305707 10.1097/RLU.0000000000000811 10.1002/adma.201602173 10.1021/mp3005325 10.1016/j.biomaterials.2019.03.001 10.7150/thno.24791 10.1007/s12149-008-0190-8 10.1039/c3py00521f 10.2174/157340612801216256 10.2310/7290.2014.00033 10.1021/ja980438n 10.1039/C7TB00543A 10.1021/acs.bioconjchem.5b00679 10.1016/j.nano.2015.08.002 10.1097/RLU.0000000000002296 10.1021/bc400257u 10.1016/j.apradiso.2015.07.021 10.1016/j.bmc.2011.01.036 10.1039/C7RA00604G 10.2174/1874471011104020109 10.2967/jnumed.117.189571 10.1038/natrevmats.2017.14 10.1016/j.drudis.2016.06.028 10.1021/acsami.6b02662 10.1016/j.progpolymsci.2005.01.007 10.1002/smtd.201700224 10.1038/s41573-018-0005-0 10.1177/1536012117704768 10.1039/C4TB01542H 10.1021/acs.biomac.5b00979 10.1016/j.progpolymsci.2014.08.002 10.1021/acs.biomac.6b00929 10.1039/c3nr02519e 10.1002/smll.201501575 10.1016/j.nano.2007.11.005 10.1016/j.polymer.2005.01.081 10.1021/acsami.9b05526 10.1021/acsami.7b10608 10.1016/j.ijpharm.2014.09.053 10.1002/adfm.201806175 10.1007/s10967-018-6256-8 10.2174/156802611794785172 10.1016/j.cej.2019.03.035 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mabi.201900282 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1616-5195 |
EndPage | n/a |
ExternalDocumentID | 31829523 10_1002_mabi_201900282 MABI201900282 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Shanghai Leading Talents Program funderid: ZX201903000002 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 19410740200; 17540712000; 19XD1400100 – fundername: National Natural Science Foundation of China funderid: 81761148028; 21773026 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZY4 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4102-e5e07f725f9056a790ac7369d91a7f060b83156df4a346096ce0ca426e9c95d53 |
IEDL.DBID | DR2 |
ISSN | 1616-5187 1616-5195 |
IngestDate | Fri Jul 11 06:18:51 EDT 2025 Sun Jul 13 03:27:35 EDT 2025 Thu Apr 03 06:54:13 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 04:32:50 EDT 2025 Wed Jan 22 16:36:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | multimode imaging radiotherapy PAMAM dendrimers radionuclides nuclear imaging |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-e5e07f725f9056a790ac7369d91a7f060b83156df4a346096ce0ca426e9c95d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 31829523 |
PQID | 2353546223 |
PQPubID | 2034242 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2325299935 proquest_journals_2353546223 pubmed_primary_31829523 crossref_primary_10_1002_mabi_201900282 crossref_citationtrail_10_1002_mabi_201900282 wiley_primary_10_1002_mabi_201900282_MABI201900282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular bioscience |
PublicationTitleAlternate | Macromol Biosci |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2010; 53 2019 2019 2018; 217 373 182 2017; 2 2014 2013; 6 4 2013; 1 2015; 105 2013; 24 2019; 15 2017; 46 2019; 203 2016 2016; 344 17 2019; 18 2016; 2016 2014 2015; 35 7 2016; 665 2008; 4 2018; 43 2013; 5 2011; 19 2017; 9 2014 2016 2015; 4 6 16 2013; 18 2018; 8 2013; 10 2019; 319 2017 2016; 5 4 2015 2018; 40 24 1985 2005; 17 30 2014 2015; 6 3 2019 2017; 11 9 1982; 7 2011; 22 2014; 57 2013 2010 2013 2013 2016 2018; 113 132 5 52 28 28 2019; 119 2008; 22 2015 2018 2018; 44 10 10 2017 2016; 58 6 2018; 79 2015; 56 2018 2018; 2018 8 2018 2016 2017; 61 21 1 2019; 71 2010; 37 2015 2016; 7 11 2013; 40 2017; 22 2011 2011; 4 11 2011; 40 2015; 11 2017; 24 2019 2008; 48 130 2018; 61 2014; 84 2018; 20 2018; 25 2005; 46 2014; 476 1998 2019; 120 19 2015; 115 2017; 15 2017; 16 2019; 46 2008; 49 2018; 52 2018; 94 2015 2014; 7 13 2016; 27 2016; 26 2016; 8 2010 2019 2016; 118 16 8 2019 2017; 369 9 2012; 8 e_1_2_9_75_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 Masters B. R. (e_1_2_9_52_1) 2013; 18 e_1_2_9_60_2 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 Naumann R. W. (e_1_2_9_34_1) 2013; 40 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_49_2 e_1_2_9_26_2 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_30_2 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_57_1 e_1_2_9_76_3 e_1_2_9_76_2 e_1_2_9_53_2 e_1_2_9_76_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_19_2 e_1_2_9_42_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_5_2 e_1_2_9_5_1 e_1_2_9_1_3 e_1_2_9_1_2 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_39_6 e_1_2_9_12_3 e_1_2_9_39_1 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_39_4 e_1_2_9_39_5 e_1_2_9_39_2 e_1_2_9_39_3 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_20_3 e_1_2_9_20_2 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_55_2 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_13_2 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_2 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_21_3 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 7 13 start-page: 440 1 year: 2015 2014 publication-title: Nanoscale Mol. Imaging – volume: 52 start-page: 681 year: 2018 publication-title: Pharm. Chem. J. – volume: 53 start-page: 3262 year: 2010 publication-title: J. Med. Chem. – volume: 56 start-page: 1581 year: 2015 publication-title: J. Nucl. Med. – volume: 40 start-page: S415 year: 2013 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 118 16 8 start-page: 1805 1541 9014 year: 2010 2019 2016 publication-title: J. Appl. Polym. Sci. Mol. Pharmaceutics ACS Appl. Mater. Interfaces – volume: 15 start-page: 1201 year: 2019 publication-title: J. Biomed. Nanotechnol. – volume: 4 start-page: 57 year: 2008 publication-title: Nanomedicine – volume: 1 start-page: 4199 year: 2013 publication-title: J. Mater. Chem. B – volume: 46 year: 2017 publication-title: Dalton Trans. – volume: 37 start-page: 1959 year: 2010 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 6 4 start-page: 4412 year: 2014 2013 publication-title: ACS Appl. Mater. Interfaces Polym. Chem. – volume: 43 start-page: E471 year: 2018 publication-title: Clin. Nucl. Med. – volume: 24 start-page: 1624 year: 2013 publication-title: Bioconjugate Chem. – volume: 11 start-page: 6078 year: 2015 publication-title: Small – volume: 5 start-page: 3810 year: 2017 publication-title: J. Mater. Chem. B – volume: 26 start-page: 5335 year: 2016 publication-title: Adv. Funct. Mater. – volume: 94 start-page: 664 year: 2018 publication-title: Int. J. Radiat. Biol. – volume: 57 start-page: 224 year: 2014 publication-title: J. Labelled Compd. Radiopharm. – volume: 17 30 start-page: 117 294 year: 1985 2005 publication-title: Polym. J. Prog. Polym. Sci. – volume: 48 130 start-page: 291 year: 2019 2008 publication-title: Chem. Lett. J. Am. Chem. Soc. – volume: 8 start-page: 5012 year: 2018 publication-title: Theranostics – volume: 5 start-page: 7476 year: 2013 publication-title: Nanoscale – volume: 20 start-page: 204 year: 2018 publication-title: J. Nanopart. Res. – volume: 16 start-page: 1 year: 2017 publication-title: Mol. Imaging – volume: 119 start-page: 870 year: 2019 publication-title: Chem. Rev. – volume: 35 7 start-page: 7635 year: 2014 2015 publication-title: Biomaterials Nanoscale – volume: 44 10 10 start-page: 1 6113 year: 2015 2018 2018 publication-title: Prog. Polym. Sci. Nanoscale ACS Appl. Mater. Interfaces – volume: 10 start-page: 793 year: 2013 publication-title: Mol. Pharmaceutics – volume: 113 132 5 52 28 28 start-page: 858 9581 year: 2013 2010 2013 2013 2016 2018 publication-title: Chem. Rev. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater. – volume: 665 start-page: 111 year: 2016 publication-title: Chem. Phys. Lett. – volume: 8 start-page: 727 year: 2012 publication-title: Med. Chem. – volume: 22 start-page: 1350 year: 2017 publication-title: Molecules – volume: 7 11 start-page: 1253 year: 2015 2016 publication-title: ACS Appl. Mater. Interfaces Nanomedicine – volume: 2018 8 start-page: 6210 year: 2018 2018 publication-title: Contrast Media Mol. Imaging Theranostics – volume: 7 start-page: 104 year: 1982 publication-title: Eur. J. Nucl. Med. – volume: 6 3 start-page: 4521 286 year: 2014 2015 publication-title: Nanoscale J. Mater. Chem. B – volume: 369 9 start-page: 87 year: 2019 2017 publication-title: Chem. Eng. J. ACS Appl. Mater. Interfaces – volume: 4 6 16 start-page: 660 1362 2588 year: 2014 2016 2015 publication-title: Theranostics Theranostics Biomacromolecules – volume: 120 19 start-page: 4877 1216 year: 1998 2019 publication-title: J. Am. Chem. Soc. Nano Lett. – volume: 18 start-page: 9901 year: 2013 publication-title: J. Biomed. Opt. – volume: 217 373 182 start-page: 468 82 year: 2019 2019 2018 publication-title: Biomaterials Chem. Eng. J. Biomaterials – volume: 61 21 1 start-page: 1387 1873 year: 2018 2016 2017 publication-title: Sci. China Mater. Drug Discovery Today Small Methods – volume: 344 17 start-page: 120 3103 year: 2016 2016 publication-title: Exp. Cell Res. Biomacromolecules – volume: 71 start-page: 47 year: 2019 publication-title: Nucl. Med. Biol. – volume: 115 start-page: 5274 year: 2015 publication-title: Chem. Rev. – volume: 5 4 start-page: 2393 7220 year: 2017 2016 publication-title: Biomater. Sci. J. Mater. Chem. B – volume: 58 6 start-page: 1685 year: 2017 2016 publication-title: J. Nucl. Med. RSC Adv. – volume: 19 start-page: 1643 year: 2011 publication-title: Bioorg. Med. Chem. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 2016 year: 2016 publication-title: J. Nanomater. – volume: 84 start-page: 70 year: 2014 publication-title: Appl. Radiat. Isot. – volume: 46 start-page: 1773 year: 2019 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 1384 year: 2018 publication-title: Drug Delivery – volume: 40 24 start-page: 672 3309 year: 2015 2018 publication-title: Clin. Nucl. Med. Clin. Cancer Res. – volume: 40 start-page: 149 year: 2011 publication-title: Chem. Soc. Rev. – volume: 22 start-page: 833 year: 2008 publication-title: Ann. Nucl. Med. – volume: 49 start-page: 1952 year: 2008 publication-title: J. Nucl. Med. – volume: 319 start-page: 69 year: 2019 publication-title: J. Radioanal. Nucl. Chem. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 11 start-page: 109 500 year: 2011 2011 publication-title: Curr. Radiopharm. Curr. Top. Med. Chem. – volume: 61 start-page: 837 year: 2018 publication-title: J. Labelled Compd. Radiopharm. – volume: 18 start-page: 273 year: 2019 publication-title: Nat. Rev. Drug Discovery – volume: 24 start-page: 81 year: 2017 publication-title: Drug Delivery – volume: 476 start-page: 164 year: 2014 publication-title: Int. J. Pharm. – volume: 15 start-page: 2703 year: 2017 publication-title: Mol. Med. Rep. – volume: 46 start-page: 3022 year: 2005 publication-title: Polymer – volume: 105 start-page: 40 year: 2015 publication-title: Appl. Radiat. Isot. – volume: 27 start-page: 1447 year: 2016 publication-title: Bioconjugate Chem. – volume: 79 start-page: 306 year: 2018 publication-title: Acta Biomater. – volume: 11 9 year: 2019 2017 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 11 start-page: 2119 year: 2015 publication-title: Nanomedicine – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 203 start-page: 1 year: 2019 publication-title: Biomaterials – volume: 7 start-page: 87 year: 2017 publication-title: Adv. Pharm. Bull. – volume: 22 start-page: 1784 year: 2011 publication-title: Bioconjugate Chem. – ident: e_1_2_9_21_1 doi: 10.1007/s40843-018-9271-4 – ident: e_1_2_9_1_3 doi: 10.1016/j.biomaterials.2018.07.052 – ident: e_1_2_9_12_2 doi: 10.1039/C7NR09269E – ident: e_1_2_9_12_3 doi: 10.1021/acsami.8b12355 – ident: e_1_2_9_39_1 doi: 10.1021/cr3003104 – ident: e_1_2_9_61_1 doi: 10.1166/jbn.2019.2760 – ident: e_1_2_9_64_1 doi: 10.1080/10717544.2017.1399299 – ident: e_1_2_9_26_1 doi: 10.1021/acsami.5b05836 – ident: e_1_2_9_3_1 doi: 10.1021/acsami.7b14836 – ident: e_1_2_9_78_1 doi: 10.3892/mmr.2017.6284 – ident: e_1_2_9_18_1 doi: 10.1021/cr500542t – ident: e_1_2_9_27_2 doi: 10.1039/C6TB02190E – ident: e_1_2_9_32_1 doi: 10.1016/j.nucmedbio.2019.04.003 – volume: 18 start-page: 9901 year: 2013 ident: e_1_2_9_52_1 publication-title: J. Biomed. Opt. – ident: e_1_2_9_53_1 doi: 10.1246/cl.180780 – ident: e_1_2_9_57_1 doi: 10.3390/molecules22091350 – ident: e_1_2_9_60_1 doi: 10.1039/C3NR06694K – ident: e_1_2_9_35_1 doi: 10.1039/C4NR05269B – ident: e_1_2_9_1_1 doi: 10.1016/j.biomaterials.2019.119327 – ident: e_1_2_9_66_1 doi: 10.1039/C7DT02407J – ident: e_1_2_9_30_1 doi: 10.1021/am504849x – ident: e_1_2_9_20_2 doi: 10.1021/acs.molpharmaceut.8b01232 – ident: e_1_2_9_50_1 doi: 10.1155/2018/1382183 – ident: e_1_2_9_20_1 doi: 10.1002/app.32494 – ident: e_1_2_9_1_2 doi: 10.1016/j.cej.2019.05.023 – ident: e_1_2_9_77_1 doi: 10.1016/j.yexcr.2016.04.015 – ident: e_1_2_9_71_1 doi: 10.1016/j.apradiso.2013.10.021 – ident: e_1_2_9_62_1 doi: 10.1016/j.cplett.2016.10.058 – ident: e_1_2_9_33_1 doi: 10.2967/jnumed.108.052399 – ident: e_1_2_9_76_2 doi: 10.7150/thno.15335 – ident: e_1_2_9_2_1 doi: 10.1021/acs.chemrev.8b00281 – ident: e_1_2_9_14_1 doi: 10.1002/adfm.201601341 – ident: e_1_2_9_70_1 doi: 10.1002/jlcr.3651 – ident: e_1_2_9_17_1 doi: 10.1039/c3tb20724b – ident: e_1_2_9_44_1 doi: 10.2967/jnumed.115.156794 – ident: e_1_2_9_31_2 doi: 10.1158/1078-0432.CCR-18-0123 – ident: e_1_2_9_39_2 doi: 10.1021/ja104924b – ident: e_1_2_9_11_1 doi: 10.1039/B922628C – ident: e_1_2_9_49_2 doi: 10.1021/acs.nanolett.8b04757 – ident: e_1_2_9_72_1 doi: 10.1155/2016/1039258 – ident: e_1_2_9_53_2 doi: 10.1021/ja807099s – ident: e_1_2_9_6_1 doi: 10.1002/smll.201902352 – ident: e_1_2_9_25_1 doi: 10.1002/jlcr.3165 – ident: e_1_2_9_27_1 doi: 10.1039/C7BM00826K – ident: e_1_2_9_50_2 doi: 10.7150/thno.26610 – ident: e_1_2_9_29_1 doi: 10.1021/jm901910j – ident: e_1_2_9_24_1 doi: 10.1021/acsami.6b04827 – ident: e_1_2_9_19_2 doi: 10.1039/C5NR05585G – ident: e_1_2_9_19_1 doi: 10.1016/j.biomaterials.2014.05.046 – ident: e_1_2_9_54_1 doi: 10.1021/bc200162r – ident: e_1_2_9_75_1 doi: 10.15171/apb.2017.011 – ident: e_1_2_9_43_1 doi: 10.1007/s00259-019-04359-8 – ident: e_1_2_9_16_1 doi: 10.1295/polymj.17.117 – ident: e_1_2_9_39_3 doi: 10.1021/am404714w – ident: e_1_2_9_45_1 doi: 10.1007/BF00256396 – ident: e_1_2_9_48_1 doi: 10.1007/s11051-018-4291-6 – ident: e_1_2_9_47_1 doi: 10.1016/j.actbio.2018.08.036 – ident: e_1_2_9_76_1 doi: 10.7150/thno.8698 – ident: e_1_2_9_55_2 doi: 10.1021/acsami.7b11926 – ident: e_1_2_9_69_1 doi: 10.1080/09553002.2018.1478161 – ident: e_1_2_9_4_1 doi: 10.1021/acsami.6b06883 – ident: e_1_2_9_26_2 doi: 10.2217/nnm-2016-0001 – ident: e_1_2_9_51_1 doi: 10.1007/s00259-010-1390-8 – ident: e_1_2_9_68_1 doi: 10.1007/s11094-018-1880-8 – ident: e_1_2_9_13_2 doi: 10.1039/C5RA22934K – ident: e_1_2_9_59_1 doi: 10.1080/10717544.2018.1474968 – ident: e_1_2_9_39_4 doi: 10.1002/anie.201305707 – ident: e_1_2_9_31_1 doi: 10.1097/RLU.0000000000000811 – ident: e_1_2_9_39_5 doi: 10.1002/adma.201602173 – ident: e_1_2_9_28_1 doi: 10.1021/mp3005325 – ident: e_1_2_9_56_1 doi: 10.1016/j.biomaterials.2019.03.001 – ident: e_1_2_9_63_1 doi: 10.7150/thno.24791 – ident: e_1_2_9_36_1 doi: 10.1007/s12149-008-0190-8 – ident: e_1_2_9_30_2 doi: 10.1039/c3py00521f – ident: e_1_2_9_67_1 doi: 10.2174/157340612801216256 – ident: e_1_2_9_35_2 doi: 10.2310/7290.2014.00033 – ident: e_1_2_9_49_1 doi: 10.1021/ja980438n – ident: e_1_2_9_58_1 doi: 10.1039/C7TB00543A – ident: e_1_2_9_23_1 doi: 10.1021/acs.bioconjchem.5b00679 – ident: e_1_2_9_38_1 doi: 10.1016/j.nano.2015.08.002 – ident: e_1_2_9_7_1 doi: 10.1097/RLU.0000000000002296 – ident: e_1_2_9_9_1 doi: 10.1021/bc400257u – ident: e_1_2_9_65_1 doi: 10.1016/j.apradiso.2015.07.021 – ident: e_1_2_9_41_1 doi: 10.1016/j.bmc.2011.01.036 – ident: e_1_2_9_42_1 doi: 10.1039/C7RA00604G – ident: e_1_2_9_46_1 doi: 10.2174/1874471011104020109 – ident: e_1_2_9_13_1 doi: 10.2967/jnumed.117.189571 – ident: e_1_2_9_10_1 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_9_21_2 doi: 10.1016/j.drudis.2016.06.028 – ident: e_1_2_9_20_3 doi: 10.1021/acsami.6b02662 – ident: e_1_2_9_16_2 doi: 10.1016/j.progpolymsci.2005.01.007 – ident: e_1_2_9_21_3 doi: 10.1002/smtd.201700224 – ident: e_1_2_9_15_1 doi: 10.1038/s41573-018-0005-0 – ident: e_1_2_9_73_1 doi: 10.1177/1536012117704768 – ident: e_1_2_9_60_2 doi: 10.1039/C4TB01542H – ident: e_1_2_9_76_3 doi: 10.1021/acs.biomac.5b00979 – ident: e_1_2_9_12_1 doi: 10.1016/j.progpolymsci.2014.08.002 – ident: e_1_2_9_77_2 doi: 10.1021/acs.biomac.6b00929 – ident: e_1_2_9_8_1 doi: 10.1039/c3nr02519e – ident: e_1_2_9_40_1 doi: 10.1002/smll.201501575 – ident: e_1_2_9_74_1 doi: 10.1016/j.nano.2007.11.005 – ident: e_1_2_9_79_1 doi: 10.1016/j.polymer.2005.01.081 – ident: e_1_2_9_5_1 doi: 10.1021/acsami.9b05526 – ident: e_1_2_9_5_2 doi: 10.1021/acsami.7b10608 – ident: e_1_2_9_37_1 doi: 10.1016/j.ijpharm.2014.09.053 – ident: e_1_2_9_39_6 doi: 10.1002/adfm.201806175 – ident: e_1_2_9_22_1 doi: 10.1007/s10967-018-6256-8 – volume: 40 start-page: S415 year: 2013 ident: e_1_2_9_34_1 publication-title: Eur. J. Nucl. Med. Mol. Imaging – ident: e_1_2_9_46_2 doi: 10.2174/156802611794785172 – ident: e_1_2_9_55_1 doi: 10.1016/j.cej.2019.03.035 |
SSID | ssj0017892 |
Score | 2.4516423 |
SecondaryResourceType | review_article |
Snippet | Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1900282 |
SubjectTerms | Computed tomography Dendrimers Dendrimers - chemistry Dendrimers - therapeutic use Emission analysis Humans Magnetic resonance imaging Medical imaging multimode imaging Nanostructures - chemistry Nanostructures - therapeutic use Nanotechnology Nanotechnology devices Neoplasms - diagnostic imaging nuclear imaging Nuclear Medicine PAMAM dendrimers Photon emission Positron emission Positron emission tomography Precision medicine Radiation therapy Radioisotopes radionuclides radiotherapy Sensitivity analysis Single photon emission computed tomography Theranostic Nanomedicine Tomography Tomography, Emission-Computed, Single-Photon Tumors |
Title | PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201900282 https://www.ncbi.nlm.nih.gov/pubmed/31829523 https://www.proquest.com/docview/2353546223 https://www.proquest.com/docview/2325299935 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA0yG934ftQXFQRXmWmbpm2W4zgyCiMiDsyu5FUQtSPz2LjyE_xGv8Sb9KGjiKDL0oSmyc095za35yJ07AvGAOcTTDiXOBSZwgaGsfD9TJFIxpEtB9S_inqD8HJIh5_-4i_0IeoPbmZnWH9tNjgXk9aHaOgjF3cmNYvZsAGcsEnYMqzoptaP8uPEVkUGVhNh6idxpdroBa357vOo9I1qzjNXCz3nK4hXgy4yTu6bs6loyucveo7_eatVtFzyUrddGNIaWtD5OlrsVOXgNlD3Gtxz3z3TuTIVAcZvL6-ngIDKBf88Uto6HBcYsHtlFJL52O2Xp_Zu-9MZ-SYanHdvOz1c1mDAMgTugTXVXpzFAc0YUCUeM4_LmERMMZ_HmRd5IiEQAqos5CSMIB6S2pMcYF8zyaiiZAs18lGud5CrCRgG9SCUD2VIqeBCKioSBgRB-URpB-FqDVJZCpSbOhkPaSGtHKRmctJ6chx0Urd_KqQ5fmy5Xy1pWm7RSRoQSmgYAT1y0FF9GybVnJjwXI9mpk1AAa8ZoQ7aLkyhfhQ4w4BR0zuwC_rLGNJ--_Sivtr9S6c9tBSYaN_mjO-jxnQ80wdAiabi0Jr9O-KQAF0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5VAulH8WChgJxMltYsdJfOCw7bbapc0KoVbqLfgvEoJm0XZXCE48Aq_Cq_AIPAlj5wcWhJCQeuAYxVYcz3i-z87kG4DHsZYScT6nXClDE11Z6mGY6jiuLE9NloZyQMU0HZ8kz0_F6Rp86f6FafQh-gM3vzJCvPYL3B9I7_xQDT1T-rXPzZJh39DmVR66D-9x13b-bDJCEz9h7GD_eG9M28IC1CQIqNQJF2VVxkQlEf9VJiNlMp5KK2OVVVEa6ZzjvsZWieJJiiTfuMgoxDInjRTWF4rAqH_JlxH3cv2jl71iVZzloQ4z8qiUijjPOp3IiO2sjncVB38jt6tcOYDdwSZ87aapyXF5s71c6G3z8RcFyf9qHq_ClZZ6k2GzVq7Bmquvw8ZeV_HuBuy_QAQqyMjV1hc9mH_79HkXQd4ShKCZdSGmEiT5ZOpFoNWcFG1iAhn-lAZwE04u5C1uwXo9q90dII6j74vIaZaYRAittLFC5xI5kI25dQOgndFL02qw-1Igb8tGPZqV3hhlb4wBPO3bv2vUR_7YcqvzobKNQucl44KLJEUGOIBH_W2cVP9RSNVutvRtmEBKIrkYwO3G9_pHYbxnUvjeLHjQX8ZQFsPdSX919186PYSN8XFxVB5Npof34DLzhxshRX4L1hfzpbuPDHChH4Q1R-DVRTvnd8paXAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrQRcWv67UMBIIE5uEztO4gOHbberLmVXFaJSb8F_kVBLttruCsGJR-BReBVegSdh7PzAghASUg8cI9tK4hnP99mZfAPwJNZSIs7nlCtlaKJLSz0MUx3HpeWpydJQDmg8SQ-Okxcn4mQFvrT_wtT6EN2Bm18ZIV77BX5uy50foqHvlH7rU7Nk2DY0aZWH7sN73LRdPB8N0MJPGRvuv947oE1dAWoSxFPqhIuyMmOilAj_KpORMhlPpZWxysoojXTOcVtjy0TxJEWOb1xkFEKZk0YK6-tEYNBf802-WMTgVSdYFWd5KMOMNCqlIs6zViYyYjvLz7sMg79x22WqHLBuuAFf21mqU1xOtxdzvW0-_iIg-T9N43VYb4g36dcr5QasuOomXN1r693dgv0jxJ8xGbjK-pIHs2-fPu8ixFuCADS1LkRUghSfTLwEtJqRcZOWQPo_JQHchuNLeYs7sFpNK7cJxHH0fBE5zRKTCKGVNlboXCIDsjG3rge0tXlhGgV2XwjkrKi1o1nhjVF0xujBs67_ea098seeW60LFU0MuigYF1wkKfK_HjzumnFS_SchVbnpwvdhAgmJ5KIHd2vX626F0Z5J4Uez4EB_eYZi3N8ddVf3_mXQI7hyNBgWL0eTw_twjfmTjZAfvwWr89nCPUD6N9cPw4oj8OayffM7LG1atw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAMAM+Dendrimer%E2%80%90Based+Nanodevices+for+Nuclear+Medicine+Applications&rft.jtitle=Macromolecular+bioscience&rft.au=Xiao%2C+Tingting&rft.au=Li%2C+Du&rft.au=Shi%2C+Xiangyang&rft.au=Shen%2C+Mingwu&rft.date=2020-02-01&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1002%2Fmabi.201900282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mabi_201900282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon |