PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications

Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular bioscience Vol. 20; no. 2; pp. e1900282 - n/a
Main Authors Xiao, Tingting, Li, Du, Shi, Xiangyang, Shen, Mingwu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed. Poly(amidoamine) (PAMAM) dendrimers have been employed as a powerful platform to be multifunctionalized through their periphery and internal cavities. This review summarizes the recent progresses in the development of radionuclide‐labeled PAMAM dendrimer‐based nanodevices for targeted positron emission tomography (PET), single‐photon emission computed tomography (SPECT), SPECT/computed tomography (CT), SPECT/magnetic resonance imaging, PET/CT imaging, radiotherapy, and nuclear imaging‐guided radiotherapy of cancer.
AbstractList Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed.
Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single‐photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide‐labeled poly(amidoamine) dendrimer‐based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT‐imaging‐guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer‐based nuclear nanodevices and future prospects are also discussed. Poly(amidoamine) (PAMAM) dendrimers have been employed as a powerful platform to be multifunctionalized through their periphery and internal cavities. This review summarizes the recent progresses in the development of radionuclide‐labeled PAMAM dendrimer‐based nanodevices for targeted positron emission tomography (PET), single‐photon emission computed tomography (SPECT), SPECT/computed tomography (CT), SPECT/magnetic resonance imaging, PET/CT imaging, radiotherapy, and nuclear imaging‐guided radiotherapy of cancer.
Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide-labeled poly(amidoamine) dendrimer-based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT-imaging-guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer-based nuclear nanodevices and future prospects are also discussed.Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several examples have been successfully translated into clinical practice. The combination of radionuclides with dendrimers has long been investigated in nuclear imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), providing functional information for whole body quantitative analysis with high sensitivity due to the unique structural advantages of the dendrimer platform. Besides, radioisotopes with both therapeutic and imaging functionalities can also be combined with dendrimer platforms for theranostic applications. In this review, the recent advances in the development of radionuclide-labeled poly(amidoamine) dendrimer-based nanodevices for targeted PET, SPECT, SPECT/computed tomography, SPECT/magnetic resonance imaging of tumors, RT, as well as for SPECT-imaging-guided RT of cancer are summarized. Current restrictions hindering the clinical translation of dendrimer-based nuclear nanodevices and future prospects are also discussed.
Author Shi, Xiangyang
Shen, Mingwu
Xiao, Tingting
Li, Du
Author_xml – sequence: 1
  givenname: Tingting
  surname: Xiao
  fullname: Xiao, Tingting
  organization: Donghua University
– sequence: 2
  givenname: Du
  surname: Li
  fullname: Li, Du
  organization: Donghua University
– sequence: 3
  givenname: Xiangyang
  surname: Shi
  fullname: Shi, Xiangyang
  organization: Donghua University
– sequence: 4
  givenname: Mingwu
  surname: Shen
  fullname: Shen, Mingwu
  email: mwshen@dhu.edu.cn
  organization: Donghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31829523$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtOwzAUhi1URC-wMqJILCwpvsROPKalQKW2MMAcuc6J5CqXYjegbjwCz8iTkNJSpEqIybb0fedY_99FrbIqAaFzgvsEY3pdqLnpU0xk84joEeoQQYTPieSt_T0K26jr3AJjEkaSnqA2IxGVnLIOGj3G03jq3UCZWlOA_Xz_GCgHqTdTZZXCq9HgvKyy3qzWOSjrTSE12pTgxctlbrRamap0p-g4U7mDs93ZQ8-3o6fhvT95uBsP44mvA4KpDxxwmIWUZxJzoUKJlQ6ZkKkkKsywwPOIES7SLFAsEFgKDVirgAqQWvKUsx662s5d2uqlBrdKCuM05LkqoapdQhnlVErJNujlAbqoals2v2soznggKGUNdbGj6nkBabJsQlB2nfwE1AD9LaBt5ZyFbI8QnGwaSDYNJPsGGiE4ELRZfae0ssrkf2tyq72ZHNb_LEmm8WD8634B3WKYng
CitedBy_id crossref_primary_10_1002_adhm_202100833
crossref_primary_10_34172_apb_2023_025
crossref_primary_10_1016_j_jpha_2023_07_008
crossref_primary_10_1016_j_ejmech_2021_113572
crossref_primary_10_1002_advs_202100165
crossref_primary_10_1016_j_eurpolymj_2023_112486
crossref_primary_10_1021_acs_bioconjchem_0c00036
crossref_primary_10_1039_D1NR07725B
crossref_primary_10_3390_ijms24065430
crossref_primary_10_1002_VIW_20200120
crossref_primary_10_1016_j_ccr_2020_213463
crossref_primary_10_1021_acs_bioconjchem_1c00005
crossref_primary_10_1007_s11426_021_1191_3
crossref_primary_10_4103_1673_5374_379041
crossref_primary_10_1016_j_ccr_2020_213739
crossref_primary_10_1016_j_ijpharm_2021_120485
crossref_primary_10_3389_fimmu_2024_1500998
crossref_primary_10_61186_ijbc_16_4_86
crossref_primary_10_1021_acs_jpcb_4c05572
crossref_primary_10_1021_acs_molpharmaceut_4c00856
crossref_primary_10_1021_acs_biomac_2c01318
crossref_primary_10_1021_acschemneuro_3c00028
crossref_primary_10_1016_j_envres_2023_116563
crossref_primary_10_1021_acs_langmuir_0c00598
crossref_primary_10_3390_biom13091405
crossref_primary_10_3390_molecules25173982
crossref_primary_10_1016_j_ccr_2021_214062
crossref_primary_10_1021_acs_bioconjchem_2c00487
crossref_primary_10_3389_fmolb_2020_604770
crossref_primary_10_3390_pharmaceutics15030774
crossref_primary_10_3390_pharmaceutics15031005
crossref_primary_10_1016_j_bioactmat_2023_11_021
crossref_primary_10_1021_acsami_1c13341
crossref_primary_10_1039_D4CC00892H
crossref_primary_10_1002_smll_202409713
crossref_primary_10_1002_biot_202300113
crossref_primary_10_1002_mabi_202100007
crossref_primary_10_1016_j_mtbio_2021_100111
crossref_primary_10_1016_j_ijbiomac_2021_01_170
Cites_doi 10.1007/s40843-018-9271-4
10.1016/j.biomaterials.2018.07.052
10.1039/C7NR09269E
10.1021/acsami.8b12355
10.1021/cr3003104
10.1166/jbn.2019.2760
10.1080/10717544.2017.1399299
10.1021/acsami.5b05836
10.1021/acsami.7b14836
10.3892/mmr.2017.6284
10.1021/cr500542t
10.1039/C6TB02190E
10.1016/j.nucmedbio.2019.04.003
10.1246/cl.180780
10.3390/molecules22091350
10.1039/C3NR06694K
10.1039/C4NR05269B
10.1016/j.biomaterials.2019.119327
10.1039/C7DT02407J
10.1021/am504849x
10.1021/acs.molpharmaceut.8b01232
10.1155/2018/1382183
10.1002/app.32494
10.1016/j.cej.2019.05.023
10.1016/j.yexcr.2016.04.015
10.1016/j.apradiso.2013.10.021
10.1016/j.cplett.2016.10.058
10.2967/jnumed.108.052399
10.7150/thno.15335
10.1021/acs.chemrev.8b00281
10.1002/adfm.201601341
10.1002/jlcr.3651
10.1039/c3tb20724b
10.2967/jnumed.115.156794
10.1158/1078-0432.CCR-18-0123
10.1021/ja104924b
10.1039/B922628C
10.1021/acs.nanolett.8b04757
10.1155/2016/1039258
10.1021/ja807099s
10.1002/smll.201902352
10.1002/jlcr.3165
10.1039/C7BM00826K
10.7150/thno.26610
10.1021/jm901910j
10.1021/acsami.6b04827
10.1039/C5NR05585G
10.1016/j.biomaterials.2014.05.046
10.1021/bc200162r
10.15171/apb.2017.011
10.1007/s00259-019-04359-8
10.1295/polymj.17.117
10.1021/am404714w
10.1007/BF00256396
10.1007/s11051-018-4291-6
10.1016/j.actbio.2018.08.036
10.7150/thno.8698
10.1021/acsami.7b11926
10.1080/09553002.2018.1478161
10.1021/acsami.6b06883
10.2217/nnm-2016-0001
10.1007/s00259-010-1390-8
10.1007/s11094-018-1880-8
10.1039/C5RA22934K
10.1080/10717544.2018.1474968
10.1002/anie.201305707
10.1097/RLU.0000000000000811
10.1002/adma.201602173
10.1021/mp3005325
10.1016/j.biomaterials.2019.03.001
10.7150/thno.24791
10.1007/s12149-008-0190-8
10.1039/c3py00521f
10.2174/157340612801216256
10.2310/7290.2014.00033
10.1021/ja980438n
10.1039/C7TB00543A
10.1021/acs.bioconjchem.5b00679
10.1016/j.nano.2015.08.002
10.1097/RLU.0000000000002296
10.1021/bc400257u
10.1016/j.apradiso.2015.07.021
10.1016/j.bmc.2011.01.036
10.1039/C7RA00604G
10.2174/1874471011104020109
10.2967/jnumed.117.189571
10.1038/natrevmats.2017.14
10.1016/j.drudis.2016.06.028
10.1021/acsami.6b02662
10.1016/j.progpolymsci.2005.01.007
10.1002/smtd.201700224
10.1038/s41573-018-0005-0
10.1177/1536012117704768
10.1039/C4TB01542H
10.1021/acs.biomac.5b00979
10.1016/j.progpolymsci.2014.08.002
10.1021/acs.biomac.6b00929
10.1039/c3nr02519e
10.1002/smll.201501575
10.1016/j.nano.2007.11.005
10.1016/j.polymer.2005.01.081
10.1021/acsami.9b05526
10.1021/acsami.7b10608
10.1016/j.ijpharm.2014.09.053
10.1002/adfm.201806175
10.1007/s10967-018-6256-8
10.2174/156802611794785172
10.1016/j.cej.2019.03.035
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mabi.201900282
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1616-5195
EndPage n/a
ExternalDocumentID 31829523
10_1002_mabi_201900282
MABI201900282
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Shanghai Leading Talents Program
  funderid: ZX201903000002
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 19410740200; 17540712000; 19XD1400100
– fundername: National Natural Science Foundation of China
  funderid: 81761148028; 21773026
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
7X8
ID FETCH-LOGICAL-c4102-e5e07f725f9056a790ac7369d91a7f060b83156df4a346096ce0ca426e9c95d53
IEDL.DBID DR2
ISSN 1616-5187
1616-5195
IngestDate Fri Jul 11 06:18:51 EDT 2025
Sun Jul 13 03:27:35 EDT 2025
Thu Apr 03 06:54:13 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 04:32:50 EDT 2025
Wed Jan 22 16:36:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords multimode imaging
radiotherapy
PAMAM dendrimers
radionuclides
nuclear imaging
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-e5e07f725f9056a790ac7369d91a7f060b83156df4a346096ce0ca426e9c95d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 31829523
PQID 2353546223
PQPubID 2034242
PageCount 12
ParticipantIDs proquest_miscellaneous_2325299935
proquest_journals_2353546223
pubmed_primary_31829523
crossref_primary_10_1002_mabi_201900282
crossref_citationtrail_10_1002_mabi_201900282
wiley_primary_10_1002_mabi_201900282_MABI201900282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular bioscience
PublicationTitleAlternate Macromol Biosci
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2010; 53
2019 2019 2018; 217 373 182
2017; 2
2014 2013; 6 4
2013; 1
2015; 105
2013; 24
2019; 15
2017; 46
2019; 203
2016 2016; 344 17
2019; 18
2016; 2016
2014 2015; 35 7
2016; 665
2008; 4
2018; 43
2013; 5
2011; 19
2017; 9
2014 2016 2015; 4 6 16
2013; 18
2018; 8
2013; 10
2019; 319
2017 2016; 5 4
2015 2018; 40 24
1985 2005; 17 30
2014 2015; 6 3
2019 2017; 11 9
1982; 7
2011; 22
2014; 57
2013 2010 2013 2013 2016 2018; 113 132 5 52 28 28
2019; 119
2008; 22
2015 2018 2018; 44 10 10
2017 2016; 58 6
2018; 79
2015; 56
2018 2018; 2018 8
2018 2016 2017; 61 21 1
2019; 71
2010; 37
2015 2016; 7 11
2013; 40
2017; 22
2011 2011; 4 11
2011; 40
2015; 11
2017; 24
2019 2008; 48 130
2018; 61
2014; 84
2018; 20
2018; 25
2005; 46
2014; 476
1998 2019; 120 19
2015; 115
2017; 15
2017; 16
2019; 46
2008; 49
2018; 52
2018; 94
2015 2014; 7 13
2016; 27
2016; 26
2016; 8
2010 2019 2016; 118 16 8
2019 2017; 369 9
2012; 8
e_1_2_9_75_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
Masters B. R. (e_1_2_9_52_1) 2013; 18
e_1_2_9_60_2
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
Naumann R. W. (e_1_2_9_34_1) 2013; 40
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_30_2
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_76_3
e_1_2_9_76_2
e_1_2_9_53_2
e_1_2_9_76_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_19_2
e_1_2_9_42_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_5_2
e_1_2_9_5_1
e_1_2_9_1_3
e_1_2_9_1_2
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_39_6
e_1_2_9_12_3
e_1_2_9_39_1
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_39_4
e_1_2_9_39_5
e_1_2_9_39_2
e_1_2_9_39_3
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_20_3
e_1_2_9_20_2
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_55_2
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_13_2
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_2
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_21_3
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 7 13
  start-page: 440 1
  year: 2015 2014
  publication-title: Nanoscale Mol. Imaging
– volume: 52
  start-page: 681
  year: 2018
  publication-title: Pharm. Chem. J.
– volume: 53
  start-page: 3262
  year: 2010
  publication-title: J. Med. Chem.
– volume: 56
  start-page: 1581
  year: 2015
  publication-title: J. Nucl. Med.
– volume: 40
  start-page: S415
  year: 2013
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 118 16 8
  start-page: 1805 1541 9014
  year: 2010 2019 2016
  publication-title: J. Appl. Polym. Sci. Mol. Pharmaceutics ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 1201
  year: 2019
  publication-title: J. Biomed. Nanotechnol.
– volume: 4
  start-page: 57
  year: 2008
  publication-title: Nanomedicine
– volume: 1
  start-page: 4199
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 37
  start-page: 1959
  year: 2010
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 6 4
  start-page: 4412
  year: 2014 2013
  publication-title: ACS Appl. Mater. Interfaces Polym. Chem.
– volume: 43
  start-page: E471
  year: 2018
  publication-title: Clin. Nucl. Med.
– volume: 24
  start-page: 1624
  year: 2013
  publication-title: Bioconjugate Chem.
– volume: 11
  start-page: 6078
  year: 2015
  publication-title: Small
– volume: 5
  start-page: 3810
  year: 2017
  publication-title: J. Mater. Chem. B
– volume: 26
  start-page: 5335
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 94
  start-page: 664
  year: 2018
  publication-title: Int. J. Radiat. Biol.
– volume: 57
  start-page: 224
  year: 2014
  publication-title: J. Labelled Compd. Radiopharm.
– volume: 17 30
  start-page: 117 294
  year: 1985 2005
  publication-title: Polym. J. Prog. Polym. Sci.
– volume: 48 130
  start-page: 291
  year: 2019 2008
  publication-title: Chem. Lett. J. Am. Chem. Soc.
– volume: 8
  start-page: 5012
  year: 2018
  publication-title: Theranostics
– volume: 5
  start-page: 7476
  year: 2013
  publication-title: Nanoscale
– volume: 20
  start-page: 204
  year: 2018
  publication-title: J. Nanopart. Res.
– volume: 16
  start-page: 1
  year: 2017
  publication-title: Mol. Imaging
– volume: 119
  start-page: 870
  year: 2019
  publication-title: Chem. Rev.
– volume: 35 7
  start-page: 7635
  year: 2014 2015
  publication-title: Biomaterials Nanoscale
– volume: 44 10 10
  start-page: 1 6113
  year: 2015 2018 2018
  publication-title: Prog. Polym. Sci. Nanoscale ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 793
  year: 2013
  publication-title: Mol. Pharmaceutics
– volume: 113 132 5 52 28 28
  start-page: 858 9581
  year: 2013 2010 2013 2013 2016 2018
  publication-title: Chem. Rev. J. Am. Chem. Soc. ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Adv. Mater. Adv. Funct. Mater.
– volume: 665
  start-page: 111
  year: 2016
  publication-title: Chem. Phys. Lett.
– volume: 8
  start-page: 727
  year: 2012
  publication-title: Med. Chem.
– volume: 22
  start-page: 1350
  year: 2017
  publication-title: Molecules
– volume: 7 11
  start-page: 1253
  year: 2015 2016
  publication-title: ACS Appl. Mater. Interfaces Nanomedicine
– volume: 2018 8
  start-page: 6210
  year: 2018 2018
  publication-title: Contrast Media Mol. Imaging Theranostics
– volume: 7
  start-page: 104
  year: 1982
  publication-title: Eur. J. Nucl. Med.
– volume: 6 3
  start-page: 4521 286
  year: 2014 2015
  publication-title: Nanoscale J. Mater. Chem. B
– volume: 369 9
  start-page: 87
  year: 2019 2017
  publication-title: Chem. Eng. J. ACS Appl. Mater. Interfaces
– volume: 4 6 16
  start-page: 660 1362 2588
  year: 2014 2016 2015
  publication-title: Theranostics Theranostics Biomacromolecules
– volume: 120 19
  start-page: 4877 1216
  year: 1998 2019
  publication-title: J. Am. Chem. Soc. Nano Lett.
– volume: 18
  start-page: 9901
  year: 2013
  publication-title: J. Biomed. Opt.
– volume: 217 373 182
  start-page: 468 82
  year: 2019 2019 2018
  publication-title: Biomaterials Chem. Eng. J. Biomaterials
– volume: 61 21 1
  start-page: 1387 1873
  year: 2018 2016 2017
  publication-title: Sci. China Mater. Drug Discovery Today Small Methods
– volume: 344 17
  start-page: 120 3103
  year: 2016 2016
  publication-title: Exp. Cell Res. Biomacromolecules
– volume: 71
  start-page: 47
  year: 2019
  publication-title: Nucl. Med. Biol.
– volume: 115
  start-page: 5274
  year: 2015
  publication-title: Chem. Rev.
– volume: 5 4
  start-page: 2393 7220
  year: 2017 2016
  publication-title: Biomater. Sci. J. Mater. Chem. B
– volume: 58 6
  start-page: 1685
  year: 2017 2016
  publication-title: J. Nucl. Med. RSC Adv.
– volume: 19
  start-page: 1643
  year: 2011
  publication-title: Bioorg. Med. Chem.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 2016
  year: 2016
  publication-title: J. Nanomater.
– volume: 84
  start-page: 70
  year: 2014
  publication-title: Appl. Radiat. Isot.
– volume: 46
  start-page: 1773
  year: 2019
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 1384
  year: 2018
  publication-title: Drug Delivery
– volume: 40 24
  start-page: 672 3309
  year: 2015 2018
  publication-title: Clin. Nucl. Med. Clin. Cancer Res.
– volume: 40
  start-page: 149
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 22
  start-page: 833
  year: 2008
  publication-title: Ann. Nucl. Med.
– volume: 49
  start-page: 1952
  year: 2008
  publication-title: J. Nucl. Med.
– volume: 319
  start-page: 69
  year: 2019
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4 11
  start-page: 109 500
  year: 2011 2011
  publication-title: Curr. Radiopharm. Curr. Top. Med. Chem.
– volume: 61
  start-page: 837
  year: 2018
  publication-title: J. Labelled Compd. Radiopharm.
– volume: 18
  start-page: 273
  year: 2019
  publication-title: Nat. Rev. Drug Discovery
– volume: 24
  start-page: 81
  year: 2017
  publication-title: Drug Delivery
– volume: 476
  start-page: 164
  year: 2014
  publication-title: Int. J. Pharm.
– volume: 15
  start-page: 2703
  year: 2017
  publication-title: Mol. Med. Rep.
– volume: 46
  start-page: 3022
  year: 2005
  publication-title: Polymer
– volume: 105
  start-page: 40
  year: 2015
  publication-title: Appl. Radiat. Isot.
– volume: 27
  start-page: 1447
  year: 2016
  publication-title: Bioconjugate Chem.
– volume: 79
  start-page: 306
  year: 2018
  publication-title: Acta Biomater.
– volume: 11 9
  year: 2019 2017
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2119
  year: 2015
  publication-title: Nanomedicine
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 203
  start-page: 1
  year: 2019
  publication-title: Biomaterials
– volume: 7
  start-page: 87
  year: 2017
  publication-title: Adv. Pharm. Bull.
– volume: 22
  start-page: 1784
  year: 2011
  publication-title: Bioconjugate Chem.
– ident: e_1_2_9_21_1
  doi: 10.1007/s40843-018-9271-4
– ident: e_1_2_9_1_3
  doi: 10.1016/j.biomaterials.2018.07.052
– ident: e_1_2_9_12_2
  doi: 10.1039/C7NR09269E
– ident: e_1_2_9_12_3
  doi: 10.1021/acsami.8b12355
– ident: e_1_2_9_39_1
  doi: 10.1021/cr3003104
– ident: e_1_2_9_61_1
  doi: 10.1166/jbn.2019.2760
– ident: e_1_2_9_64_1
  doi: 10.1080/10717544.2017.1399299
– ident: e_1_2_9_26_1
  doi: 10.1021/acsami.5b05836
– ident: e_1_2_9_3_1
  doi: 10.1021/acsami.7b14836
– ident: e_1_2_9_78_1
  doi: 10.3892/mmr.2017.6284
– ident: e_1_2_9_18_1
  doi: 10.1021/cr500542t
– ident: e_1_2_9_27_2
  doi: 10.1039/C6TB02190E
– ident: e_1_2_9_32_1
  doi: 10.1016/j.nucmedbio.2019.04.003
– volume: 18
  start-page: 9901
  year: 2013
  ident: e_1_2_9_52_1
  publication-title: J. Biomed. Opt.
– ident: e_1_2_9_53_1
  doi: 10.1246/cl.180780
– ident: e_1_2_9_57_1
  doi: 10.3390/molecules22091350
– ident: e_1_2_9_60_1
  doi: 10.1039/C3NR06694K
– ident: e_1_2_9_35_1
  doi: 10.1039/C4NR05269B
– ident: e_1_2_9_1_1
  doi: 10.1016/j.biomaterials.2019.119327
– ident: e_1_2_9_66_1
  doi: 10.1039/C7DT02407J
– ident: e_1_2_9_30_1
  doi: 10.1021/am504849x
– ident: e_1_2_9_20_2
  doi: 10.1021/acs.molpharmaceut.8b01232
– ident: e_1_2_9_50_1
  doi: 10.1155/2018/1382183
– ident: e_1_2_9_20_1
  doi: 10.1002/app.32494
– ident: e_1_2_9_1_2
  doi: 10.1016/j.cej.2019.05.023
– ident: e_1_2_9_77_1
  doi: 10.1016/j.yexcr.2016.04.015
– ident: e_1_2_9_71_1
  doi: 10.1016/j.apradiso.2013.10.021
– ident: e_1_2_9_62_1
  doi: 10.1016/j.cplett.2016.10.058
– ident: e_1_2_9_33_1
  doi: 10.2967/jnumed.108.052399
– ident: e_1_2_9_76_2
  doi: 10.7150/thno.15335
– ident: e_1_2_9_2_1
  doi: 10.1021/acs.chemrev.8b00281
– ident: e_1_2_9_14_1
  doi: 10.1002/adfm.201601341
– ident: e_1_2_9_70_1
  doi: 10.1002/jlcr.3651
– ident: e_1_2_9_17_1
  doi: 10.1039/c3tb20724b
– ident: e_1_2_9_44_1
  doi: 10.2967/jnumed.115.156794
– ident: e_1_2_9_31_2
  doi: 10.1158/1078-0432.CCR-18-0123
– ident: e_1_2_9_39_2
  doi: 10.1021/ja104924b
– ident: e_1_2_9_11_1
  doi: 10.1039/B922628C
– ident: e_1_2_9_49_2
  doi: 10.1021/acs.nanolett.8b04757
– ident: e_1_2_9_72_1
  doi: 10.1155/2016/1039258
– ident: e_1_2_9_53_2
  doi: 10.1021/ja807099s
– ident: e_1_2_9_6_1
  doi: 10.1002/smll.201902352
– ident: e_1_2_9_25_1
  doi: 10.1002/jlcr.3165
– ident: e_1_2_9_27_1
  doi: 10.1039/C7BM00826K
– ident: e_1_2_9_50_2
  doi: 10.7150/thno.26610
– ident: e_1_2_9_29_1
  doi: 10.1021/jm901910j
– ident: e_1_2_9_24_1
  doi: 10.1021/acsami.6b04827
– ident: e_1_2_9_19_2
  doi: 10.1039/C5NR05585G
– ident: e_1_2_9_19_1
  doi: 10.1016/j.biomaterials.2014.05.046
– ident: e_1_2_9_54_1
  doi: 10.1021/bc200162r
– ident: e_1_2_9_75_1
  doi: 10.15171/apb.2017.011
– ident: e_1_2_9_43_1
  doi: 10.1007/s00259-019-04359-8
– ident: e_1_2_9_16_1
  doi: 10.1295/polymj.17.117
– ident: e_1_2_9_39_3
  doi: 10.1021/am404714w
– ident: e_1_2_9_45_1
  doi: 10.1007/BF00256396
– ident: e_1_2_9_48_1
  doi: 10.1007/s11051-018-4291-6
– ident: e_1_2_9_47_1
  doi: 10.1016/j.actbio.2018.08.036
– ident: e_1_2_9_76_1
  doi: 10.7150/thno.8698
– ident: e_1_2_9_55_2
  doi: 10.1021/acsami.7b11926
– ident: e_1_2_9_69_1
  doi: 10.1080/09553002.2018.1478161
– ident: e_1_2_9_4_1
  doi: 10.1021/acsami.6b06883
– ident: e_1_2_9_26_2
  doi: 10.2217/nnm-2016-0001
– ident: e_1_2_9_51_1
  doi: 10.1007/s00259-010-1390-8
– ident: e_1_2_9_68_1
  doi: 10.1007/s11094-018-1880-8
– ident: e_1_2_9_13_2
  doi: 10.1039/C5RA22934K
– ident: e_1_2_9_59_1
  doi: 10.1080/10717544.2018.1474968
– ident: e_1_2_9_39_4
  doi: 10.1002/anie.201305707
– ident: e_1_2_9_31_1
  doi: 10.1097/RLU.0000000000000811
– ident: e_1_2_9_39_5
  doi: 10.1002/adma.201602173
– ident: e_1_2_9_28_1
  doi: 10.1021/mp3005325
– ident: e_1_2_9_56_1
  doi: 10.1016/j.biomaterials.2019.03.001
– ident: e_1_2_9_63_1
  doi: 10.7150/thno.24791
– ident: e_1_2_9_36_1
  doi: 10.1007/s12149-008-0190-8
– ident: e_1_2_9_30_2
  doi: 10.1039/c3py00521f
– ident: e_1_2_9_67_1
  doi: 10.2174/157340612801216256
– ident: e_1_2_9_35_2
  doi: 10.2310/7290.2014.00033
– ident: e_1_2_9_49_1
  doi: 10.1021/ja980438n
– ident: e_1_2_9_58_1
  doi: 10.1039/C7TB00543A
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.bioconjchem.5b00679
– ident: e_1_2_9_38_1
  doi: 10.1016/j.nano.2015.08.002
– ident: e_1_2_9_7_1
  doi: 10.1097/RLU.0000000000002296
– ident: e_1_2_9_9_1
  doi: 10.1021/bc400257u
– ident: e_1_2_9_65_1
  doi: 10.1016/j.apradiso.2015.07.021
– ident: e_1_2_9_41_1
  doi: 10.1016/j.bmc.2011.01.036
– ident: e_1_2_9_42_1
  doi: 10.1039/C7RA00604G
– ident: e_1_2_9_46_1
  doi: 10.2174/1874471011104020109
– ident: e_1_2_9_13_1
  doi: 10.2967/jnumed.117.189571
– ident: e_1_2_9_10_1
  doi: 10.1038/natrevmats.2017.14
– ident: e_1_2_9_21_2
  doi: 10.1016/j.drudis.2016.06.028
– ident: e_1_2_9_20_3
  doi: 10.1021/acsami.6b02662
– ident: e_1_2_9_16_2
  doi: 10.1016/j.progpolymsci.2005.01.007
– ident: e_1_2_9_21_3
  doi: 10.1002/smtd.201700224
– ident: e_1_2_9_15_1
  doi: 10.1038/s41573-018-0005-0
– ident: e_1_2_9_73_1
  doi: 10.1177/1536012117704768
– ident: e_1_2_9_60_2
  doi: 10.1039/C4TB01542H
– ident: e_1_2_9_76_3
  doi: 10.1021/acs.biomac.5b00979
– ident: e_1_2_9_12_1
  doi: 10.1016/j.progpolymsci.2014.08.002
– ident: e_1_2_9_77_2
  doi: 10.1021/acs.biomac.6b00929
– ident: e_1_2_9_8_1
  doi: 10.1039/c3nr02519e
– ident: e_1_2_9_40_1
  doi: 10.1002/smll.201501575
– ident: e_1_2_9_74_1
  doi: 10.1016/j.nano.2007.11.005
– ident: e_1_2_9_79_1
  doi: 10.1016/j.polymer.2005.01.081
– ident: e_1_2_9_5_1
  doi: 10.1021/acsami.9b05526
– ident: e_1_2_9_5_2
  doi: 10.1021/acsami.7b10608
– ident: e_1_2_9_37_1
  doi: 10.1016/j.ijpharm.2014.09.053
– ident: e_1_2_9_39_6
  doi: 10.1002/adfm.201806175
– ident: e_1_2_9_22_1
  doi: 10.1007/s10967-018-6256-8
– volume: 40
  start-page: S415
  year: 2013
  ident: e_1_2_9_34_1
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– ident: e_1_2_9_46_2
  doi: 10.2174/156802611794785172
– ident: e_1_2_9_55_1
  doi: 10.1016/j.cej.2019.03.035
SSID ssj0017892
Score 2.4516423
SecondaryResourceType review_article
Snippet Nuclear medicine, involving nuclear medicine imaging and radiotherapy (RT), has become a mainstay of theranostics in the field of nanomedicine and several...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900282
SubjectTerms Computed tomography
Dendrimers
Dendrimers - chemistry
Dendrimers - therapeutic use
Emission analysis
Humans
Magnetic resonance imaging
Medical imaging
multimode imaging
Nanostructures - chemistry
Nanostructures - therapeutic use
Nanotechnology
Nanotechnology devices
Neoplasms - diagnostic imaging
nuclear imaging
Nuclear Medicine
PAMAM dendrimers
Photon emission
Positron emission
Positron emission tomography
Precision medicine
Radiation therapy
Radioisotopes
radionuclides
radiotherapy
Sensitivity analysis
Single photon emission computed tomography
Theranostic Nanomedicine
Tomography
Tomography, Emission-Computed, Single-Photon
Tumors
Title PAMAM Dendrimer‐Based Nanodevices for Nuclear Medicine Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmabi.201900282
https://www.ncbi.nlm.nih.gov/pubmed/31829523
https://www.proquest.com/docview/2353546223
https://www.proquest.com/docview/2325299935
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA0yG934ftQXFQRXmWmbpm2W4zgyCiMiDsyu5FUQtSPz2LjyE_xGv8Sb9KGjiKDL0oSmyc095za35yJ07AvGAOcTTDiXOBSZwgaGsfD9TJFIxpEtB9S_inqD8HJIh5_-4i_0IeoPbmZnWH9tNjgXk9aHaOgjF3cmNYvZsAGcsEnYMqzoptaP8uPEVkUGVhNh6idxpdroBa357vOo9I1qzjNXCz3nK4hXgy4yTu6bs6loyucveo7_eatVtFzyUrddGNIaWtD5OlrsVOXgNlD3Gtxz3z3TuTIVAcZvL6-ngIDKBf88Uto6HBcYsHtlFJL52O2Xp_Zu-9MZ-SYanHdvOz1c1mDAMgTugTXVXpzFAc0YUCUeM4_LmERMMZ_HmRd5IiEQAqos5CSMIB6S2pMcYF8zyaiiZAs18lGud5CrCRgG9SCUD2VIqeBCKioSBgRB-URpB-FqDVJZCpSbOhkPaSGtHKRmctJ6chx0Urd_KqQ5fmy5Xy1pWm7RSRoQSmgYAT1y0FF9GybVnJjwXI9mpk1AAa8ZoQ7aLkyhfhQ4w4BR0zuwC_rLGNJ--_Sivtr9S6c9tBSYaN_mjO-jxnQ80wdAiabi0Jr9O-KQAF0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V5VAulH8WChgJxMltYsdJfOCw7bbapc0KoVbqLfgvEoJm0XZXCE48Aq_Cq_AIPAlj5wcWhJCQeuAYxVYcz3i-z87kG4DHsZYScT6nXClDE11Z6mGY6jiuLE9NloZyQMU0HZ8kz0_F6Rp86f6FafQh-gM3vzJCvPYL3B9I7_xQDT1T-rXPzZJh39DmVR66D-9x13b-bDJCEz9h7GD_eG9M28IC1CQIqNQJF2VVxkQlEf9VJiNlMp5KK2OVVVEa6ZzjvsZWieJJiiTfuMgoxDInjRTWF4rAqH_JlxH3cv2jl71iVZzloQ4z8qiUijjPOp3IiO2sjncVB38jt6tcOYDdwSZ87aapyXF5s71c6G3z8RcFyf9qHq_ClZZ6k2GzVq7Bmquvw8ZeV_HuBuy_QAQqyMjV1hc9mH_79HkXQd4ShKCZdSGmEiT5ZOpFoNWcFG1iAhn-lAZwE04u5C1uwXo9q90dII6j74vIaZaYRAittLFC5xI5kI25dQOgndFL02qw-1Igb8tGPZqV3hhlb4wBPO3bv2vUR_7YcqvzobKNQucl44KLJEUGOIBH_W2cVP9RSNVutvRtmEBKIrkYwO3G9_pHYbxnUvjeLHjQX8ZQFsPdSX919186PYSN8XFxVB5Npof34DLzhxshRX4L1hfzpbuPDHChH4Q1R-DVRTvnd8paXAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VrQRcWv67UMBIIE5uEztO4gOHbberLmVXFaJSb8F_kVBLttruCsGJR-BReBVegSdh7PzAghASUg8cI9tK4hnP99mZfAPwJNZSIs7nlCtlaKJLSz0MUx3HpeWpydJQDmg8SQ-Okxcn4mQFvrT_wtT6EN2Bm18ZIV77BX5uy50foqHvlH7rU7Nk2DY0aZWH7sN73LRdPB8N0MJPGRvuv947oE1dAWoSxFPqhIuyMmOilAj_KpORMhlPpZWxysoojXTOcVtjy0TxJEWOb1xkFEKZk0YK6-tEYNBf802-WMTgVSdYFWd5KMOMNCqlIs6zViYyYjvLz7sMg79x22WqHLBuuAFf21mqU1xOtxdzvW0-_iIg-T9N43VYb4g36dcr5QasuOomXN1r693dgv0jxJ8xGbjK-pIHs2-fPu8ixFuCADS1LkRUghSfTLwEtJqRcZOWQPo_JQHchuNLeYs7sFpNK7cJxHH0fBE5zRKTCKGVNlboXCIDsjG3rge0tXlhGgV2XwjkrKi1o1nhjVF0xujBs67_ea098seeW60LFU0MuigYF1wkKfK_HjzumnFS_SchVbnpwvdhAgmJ5KIHd2vX626F0Z5J4Uez4EB_eYZi3N8ddVf3_mXQI7hyNBgWL0eTw_twjfmTjZAfvwWr89nCPUD6N9cPw4oj8OayffM7LG1atw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PAMAM+Dendrimer%E2%80%90Based+Nanodevices+for+Nuclear+Medicine+Applications&rft.jtitle=Macromolecular+bioscience&rft.au=Xiao%2C+Tingting&rft.au=Li%2C+Du&rft.au=Shi%2C+Xiangyang&rft.au=Shen%2C+Mingwu&rft.date=2020-02-01&rft.issn=1616-5187&rft.eissn=1616-5195&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1002%2Fmabi.201900282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mabi_201900282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-5187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-5187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-5187&client=summon