Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction
The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, N...
Saved in:
Published in | ChemSusChem Vol. 14; no. 8; pp. 1835 - 1839 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1864-5631 1864-564X 1864-564X |
DOI | 10.1002/cssc.202100182 |
Cover
Abstract | The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.
(Anti)aromaticity: The aromaticity/antiaromaticity effect of macrocycles on ORR activity of transition metal macrocyclic complexes is unveiled by first‐principle calculations. Macrocycles with weak aromaticity have an improvement in adsorption strength for intermediates on metal centers while antiaromatic macrocycles can greatly strengthen the activity of metal centers. |
---|---|
AbstractList | The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction. The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction. The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction. (Anti)aromaticity: The aromaticity/antiaromaticity effect of macrocycles on ORR activity of transition metal macrocyclic complexes is unveiled by first‐principle calculations. Macrocycles with weak aromaticity have an improvement in adsorption strength for intermediates on metal centers while antiaromatic macrocycles can greatly strengthen the activity of metal centers. |
Author | Lu, Yong Chen, Jun Ni, Youxuan Zhang, Kai |
Author_xml | – sequence: 1 givenname: Youxuan surname: Ni fullname: Ni, Youxuan organization: Nankai University – sequence: 2 givenname: Yong surname: Lu fullname: Lu, Yong organization: Nankai University – sequence: 3 givenname: Kai surname: Zhang fullname: Zhang, Kai organization: Nankai University – sequence: 4 givenname: Jun orcidid: 0000-0001-8604-9689 surname: Chen fullname: Chen, Jun email: chenabc@nankai.edu.cn organization: Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33605052$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaR7ttssi6Kabmehhy-PlYKZJISGQB3QnZPmqKMjWVJKTeJtfHpnJAwKlq6t79Z2DdO4h2hv8AAh9pWRJCWHHOka9ZITlhq7YB3RAV6JYlKL4vfd65nQfHcZ4S4ggtRCf0D7ngpSkZAfocR18r5LVNk3H6yFZ9dbjjTGgE_YDXutk7-aRN_g6qCHaZPP4HJJy-Fzp4PWkndW48f3WwQNEnPy9Cl3EG5c98r3K6JSN8cXD9AcGfAndqGeXz-ijUS7Cl-d6hG5-bq6b08XZxcmvZn220AUlbNHWdVW0ghtOKZSsAN4xqFeV6QwliouSM90qWBmmKmiJyTBXRS6kFaKrFD9CP3a-2-D_jhCT7G3U4JwawI9RsqKmdcnqmmT0-zv01o9hyK-TrKSCk4pUIlPfnqmx7aGT22B7FSb5km4Gih2Q84kxgJE5VjX_OQVlnaREzkuU8xLl6xKzbPlO9uL8T0G9E9xbB9N_aNlcXTVv2ifH27GM |
CitedBy_id | crossref_primary_10_1016_j_jelechem_2024_118398 crossref_primary_10_1016_j_comptc_2023_114113 crossref_primary_10_1016_j_fmre_2023_04_004 crossref_primary_10_1016_j_isci_2022_104557 crossref_primary_10_9767_bcrec_16_4_10978_839_846 crossref_primary_10_1007_s12274_021_4043_2 crossref_primary_10_1016_j_jcis_2023_05_122 crossref_primary_10_1016_j_surfin_2024_104349 crossref_primary_10_1039_D1QO01944A crossref_primary_10_1016_j_ces_2022_117513 crossref_primary_10_1021_acs_joc_1c02050 crossref_primary_10_1007_s10847_023_01191_4 |
Cites_doi | 10.1021/jacs.9b03561 10.1038/s41467-020-18062-y 10.1021/acscatal.8b00876 10.1002/anie.201905241 10.1002/anie.202003842 10.1002/anie.201604311 10.1002/adfm.201803329 10.1002/ange.201907399 10.1002/anie.202008726 10.1002/anie.201911441 10.1039/C9CP05624F 10.1021/acscatal.9b00310 10.1021/ic0513639 10.1002/anie.201808226 10.1021/ja211987f 10.1002/adma.202003134 10.1002/adma.201600979 10.1038/s41560-020-0667-9 10.1002/anie.201204395 10.1246/bcsj.78.1619 10.1038/nchem.931 10.1021/acs.chemrev.7b00335 10.1038/s41467-020-14565-w 10.1002/anie.201208582 10.1002/ange.201604311 10.1002/wcms.1404 10.1002/ange.201204395 10.1002/ange.201905241 10.1002/adma.201606635 10.1002/ange.202008726 10.1002/ange.201911441 10.1002/adma.201806545 10.1002/adma.201804799 10.1002/ange.201808226 10.1021/acs.chemrev.7b00051 10.1021/acs.langmuir.6b03782 10.1038/s41560-020-0552-6 10.1002/anie.201505236 10.1038/2011212a0 10.1002/ange.201208582 10.1002/aenm.201400654 10.1002/adfm.201906174 10.1002/adfm.201200264 10.1002/cssc.201902443 10.1002/ange.202003842 10.1002/cssc.201902841 10.1002/ange.201505236 10.1016/j.ccr.2016.02.002 10.1002/adma.201905548 10.1002/anie.201907399 10.1039/B713646C 10.1039/C8TA08870E |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202100182 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 1839 |
ExternalDocumentID | 33605052 10_1002_cssc_202100182 CSSC202100182 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Young Elite Scientists Sponsorship Program by CAST funderid: 2019QNRC001 – fundername: National Natural Science Foundation of China funderid: 21835004; 22020102002 – fundername: National Key R&D Program of China funderid: 2017YFA0206700 – fundername: Ministry of Education of China funderid: B12015 – fundername: Young Elite Scientists Sponsorship Program by CAST grantid: 2019QNRC001 – fundername: National Key R&D Program of China grantid: 2017YFA0206700 – fundername: National Natural Science Foundation of China grantid: 22020102002 – fundername: National Natural Science Foundation of China grantid: 21835004 – fundername: Ministry of Education of China grantid: B12015 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAYXX AEYWJ AGYGG CITATION NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4102-b9974b63f311e524e3d2e987fdf10a36532cbae8f2a7eb0f74b3a4f740b66d7a3 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 11:48:23 EDT 2025 Fri Jul 25 12:27:06 EDT 2025 Wed Feb 19 02:28:52 EST 2025 Tue Jul 01 00:36:16 EDT 2025 Thu Apr 24 22:55:00 EDT 2025 Wed Jan 22 16:30:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | antiaromaticity oxygen reduction reaction d-π conjugation transition metals redox activity |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-b9974b63f311e524e3d2e987fdf10a36532cbae8f2a7eb0f74b3a4f740b66d7a3 |
Notes | Dedicated to the 100th anniversary of Chemistry at Nankai University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8604-9689 |
PMID | 33605052 |
PQID | 2516307076 |
PQPubID | 986333 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2491952990 proquest_journals_2516307076 pubmed_primary_33605052 crossref_citationtrail_10_1002_cssc_202100182 crossref_primary_10_1002_cssc_202100182 wiley_primary_10_1002_cssc_202100182_CSSC202100182 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 22, 2021 |
PublicationDateYYYYMMDD | 2021-04-22 |
PublicationDate_xml | – month: 04 year: 2021 text: April 22, 2021 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2018; 28 2019; 9 2015; 6 2015; 5 2019; 31 2019; 12 2020 2020; 59 132 2016; 32 2020; 13 2008; 10 2017; 29 2020; 11 2020; 32 2019; 141 2011; 3 2005; 44 2019 2019; 58 131 2013 2013; 52 125 2017; 117 2020; 5 2018; 8 2016 2016; 55 128 2012; 134 2021 2018; 118 2018 2018; 57 130 2012 2012; 51 124 2015 2015; 54 127 2019; 29 2016; 315 2020; 22 2016; 28 2012; 22 2005; 78 1964; 201 e_1_2_2_2_3 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_43_2 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_47_1 e_1_2_2_36_2 e_1_2_2_11_3 e_1_2_2_13_1 e_1_2_2_36_3 e_1_2_2_38_1 e_1_2_2_11_2 e_1_2_2_51_2 e_1_2_2_53_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_55_1 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_1 Liang Z. (e_1_2_2_30_2) 2021 e_1_2_2_3_2 e_1_2_2_48_1 e_1_2_2_21_3 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_42_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_3 e_1_2_2_46_1 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 Xie L. (e_1_2_2_29_2) 2021 Li C. (e_1_2_2_5_2) 2015; 6 e_1_2_2_35_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_37_3 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_31_3 e_1_2_2_56_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_50_1 |
References_xml | – volume: 44 start-page: 9391 year: 2005 end-page: 9396 publication-title: Inorg. Chem. – volume: 118 start-page: 2313 year: 2018 end-page: 2339 publication-title: Chem. Rev. – volume: 10 start-page: 257 year: 2008 end-page: 267 publication-title: Phys. Chem. Chem. Phys. – volume: 59 132 start-page: 9171 9256 year: 2020 2020 end-page: 9176 9261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 22 start-page: 1181 year: 2020 end-page: 1186 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 4173 year: 2020 publication-title: Nat. Commun. – volume: 54 127 start-page: 14080 14286 year: 2015 2015 end-page: 14084 14290 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 5024 year: 2018 end-page: 5031 publication-title: ACS Catal. – volume: 52 125 start-page: 2474 2534 year: 2013 2013 end-page: 2477 2537 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 4320 year: 2019 end-page: 4344 publication-title: ACS Catal. – volume: 78 start-page: 1619 year: 2005 end-page: 1623 publication-title: Bull. Chem. Soc. Jpn. – volume: 28 start-page: 6391 year: 2016 end-page: 6398 publication-title: Adv. Mater. – volume: 5 start-page: 684 year: 2020 end-page: 692 publication-title: Nat. Energy – volume: 6 start-page: 1 year: 2015 end-page: 8 publication-title: Nat. Commun. – volume: 117 start-page: 10121 year: 2017 end-page: 10211 publication-title: Chem. Rev. – volume: 58 131 start-page: 12711 12841 year: 2019 2019 end-page: 12716 12846 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 5133 year: 2019 end-page: 5141 publication-title: ChemSusChem – volume: 58 131 start-page: 9640 9742 year: 2019 2019 end-page: 9645 9747 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 938 year: 2020 publication-title: Nat. Commun. – volume: 51 124 start-page: 8542 8670 year: 2012 2012 end-page: 8545 8673 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 32 start-page: 13635 year: 2016 end-page: 13639 publication-title: Langmuir – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 811 year: 2020 end-page: 818 publication-title: ChemSusChem – volume: 3 start-page: 79 year: 2011 end-page: 84 publication-title: Nat. Chem. – volume: 58 131 start-page: 18883 19059 year: 2019 2019 end-page: 18887 19063 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 134 start-page: 5444 year: 2012 end-page: 5447 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 5 start-page: 1 year: 2020 end-page: 9 publication-title: Nat. Energy – volume: 315 start-page: 153 year: 2016 end-page: 177 publication-title: Coord. Chem. Rev. – volume: 141 start-page: 10744 year: 2019 end-page: 10750 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 201 start-page: 1212 year: 1964 end-page: 1213 publication-title: Nature – volume: 22 start-page: 3500 year: 2012 end-page: 3508 publication-title: Adv. Funct. Mater. – volume: 9 year: 2019 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 57 130 start-page: 12567 12747 year: 2018 2018 end-page: 12572 12752 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 14510 14726 year: 2016 2016 end-page: 14521 14738 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1380 year: 2019 end-page: 1393 publication-title: J. Mater. Chem. A – volume: 59 132 start-page: 22126 22310 year: 2020 2020 end-page: 22131 22315 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_3_2 doi: 10.1021/jacs.9b03561 – ident: e_1_2_2_27_2 doi: 10.1038/s41467-020-18062-y – ident: e_1_2_2_41_2 doi: 10.1021/acscatal.8b00876 – ident: e_1_2_2_32_1 – ident: e_1_2_2_11_2 doi: 10.1002/anie.201905241 – ident: e_1_2_2_37_2 doi: 10.1002/anie.202003842 – ident: e_1_2_2_38_1 – ident: e_1_2_2_49_1 doi: 10.1002/anie.201604311 – ident: e_1_2_2_14_2 doi: 10.1002/adfm.201803329 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201907399 – ident: e_1_2_2_36_2 doi: 10.1002/anie.202008726 – ident: e_1_2_2_31_2 doi: 10.1002/anie.201911441 – ident: e_1_2_2_45_1 doi: 10.1039/C9CP05624F – ident: e_1_2_2_28_1 – ident: e_1_2_2_44_2 doi: 10.1021/acscatal.9b00310 – ident: e_1_2_2_51_2 doi: 10.1021/ic0513639 – ident: e_1_2_2_21_2 doi: 10.1002/anie.201808226 – ident: e_1_2_2_40_2 doi: 10.1021/ja211987f – ident: e_1_2_2_56_1 doi: 10.1002/adma.202003134 – ident: e_1_2_2_9_2 doi: 10.1002/adma.201600979 – ident: e_1_2_2_43_2 doi: 10.1038/s41560-020-0667-9 – ident: e_1_2_2_46_1 doi: 10.1002/anie.201204395 – ident: e_1_2_2_52_2 doi: 10.1246/bcsj.78.1619 – ident: e_1_2_2_12_2 doi: 10.1038/nchem.931 – ident: e_1_2_2_15_2 doi: 10.1021/acs.chemrev.7b00335 – ident: e_1_2_2_57_1 doi: 10.1038/s41467-020-14565-w – ident: e_1_2_2_2_2 doi: 10.1002/anie.201208582 – ident: e_1_2_2_49_2 doi: 10.1002/ange.201604311 – ident: e_1_2_2_47_1 doi: 10.1002/wcms.1404 – ident: e_1_2_2_46_2 doi: 10.1002/ange.201204395 – ident: e_1_2_2_11_3 doi: 10.1002/ange.201905241 – ident: e_1_2_2_20_2 doi: 10.1002/adma.201606635 – ident: e_1_2_2_36_3 doi: 10.1002/ange.202008726 – ident: e_1_2_2_31_3 doi: 10.1002/ange.201911441 – ident: e_1_2_2_22_2 doi: 10.1002/adma.201806545 – ident: e_1_2_2_7_1 – ident: e_1_2_2_16_2 doi: 10.1002/adma.201804799 – ident: e_1_2_2_1_1 – ident: e_1_2_2_21_3 doi: 10.1002/ange.201808226 – ident: e_1_2_2_10_2 doi: 10.1021/acs.chemrev.7b00051 – ident: e_1_2_2_39_2 doi: 10.1038/s41467-020-18062-y – ident: e_1_2_2_53_2 doi: 10.1021/acs.langmuir.6b03782 – ident: e_1_2_2_26_2 doi: 10.1038/s41560-020-0552-6 – ident: e_1_2_2_35_2 doi: 10.1002/anie.201505236 – ident: e_1_2_2_23_1 doi: 10.1038/2011212a0 – year: 2021 ident: e_1_2_2_29_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_2_2_3 doi: 10.1002/ange.201208582 – ident: e_1_2_2_6_2 doi: 10.1002/aenm.201400654 – ident: e_1_2_2_42_1 – ident: e_1_2_2_55_1 doi: 10.1002/adfm.201906174 – ident: e_1_2_2_34_2 doi: 10.1002/adfm.201200264 – ident: e_1_2_2_54_1 doi: 10.1002/cssc.201902443 – ident: e_1_2_2_37_3 doi: 10.1002/ange.202003842 – ident: e_1_2_2_50_1 – ident: e_1_2_2_8_2 doi: 10.1038/s41467-020-14565-w – ident: e_1_2_2_18_2 doi: 10.1002/cssc.201902841 – ident: e_1_2_2_35_3 doi: 10.1002/ange.201505236 – year: 2021 ident: e_1_2_2_30_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_2_33_2 doi: 10.1016/j.ccr.2016.02.002 – ident: e_1_2_2_13_1 – ident: e_1_2_2_4_2 doi: 10.1002/adma.201905548 – ident: e_1_2_2_19_1 – ident: e_1_2_2_25_2 doi: 10.1002/anie.201907399 – volume: 6 start-page: 1 year: 2015 ident: e_1_2_2_5_2 publication-title: Nat. Commun. – ident: e_1_2_2_24_1 – ident: e_1_2_2_48_1 doi: 10.1039/B713646C – ident: e_1_2_2_17_2 doi: 10.1039/C8TA08870E |
SSID | ssj0060966 |
Score | 2.3943846 |
Snippet | The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1835 |
SubjectTerms | Adsorption antiaromaticity Aromaticity Conjugation Coordination compounds d–π conjugation Electrons Manganese Nickel oxygen reduction reaction Oxygen reduction reactions Porphyrins redox activity Transition metals |
Title | Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202100182 https://www.ncbi.nlm.nih.gov/pubmed/33605052 https://www.proquest.com/docview/2516307076 https://www.proquest.com/docview/2491952990 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFBYll_bSNl3dLKhQ6EkZW7Jl-ThME0JgWkgayM1I8hOUDnaJZyDTY3959aSxk2koheZkG0uylrd81vI9Qj5ozZUqTMoyVwqWa14yLRUwWVirKiM95MfTyPPP8vQyP7sqru6c4o_8EOOEG2pGsNeo4Nr0k1vSUNv3SEHIkURIoRHOhETy_E_nI3-U9Pg8HC9SMmeFFNnA2pjyyXb2ba90D2puI9fgek6eET1UOu44-X60Wpoj-_MPPseHtOo5ebrBpXQaBWmXPIL2BXk8G8LBvSS_ptddoHf1sH0ybb1huH2mkQOZdi2d2hiOgnaOBj8YtoTROXiQT-faN9-u7eKbpWiIFnADPV2Gnbs9PY4RecKE0toXTL_crL1403Nkl8VSXpHLk-Ovs1O2CeDAbO6BCzOV_1sxUjiRZVDwHETDoVKla1yWaiELwa3RoBzXJZjU-cRC5_6SGimbUovXZKftWnhLKIDHiqlrAGyZAyiDzIOiKRsnRCN0kRA2DGBtN-zmGGRjUUdeZl5jz9Zjzybk45j-R-T1-GvK_UEe6o1-97VHhRKtZSkT8n587UcEl1t0C93Kp8mrrCrQ3SfkTZSj8VNCyBBCMCE8SMM_6lDPLi5m49O7_8m0R57gPS6Ecb5PdpbXKzjweGppDoPO_AZZ4xmk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlPaSXvh9O01SFQk_O2pIt28dlm7BtsynkAb0ZSR5B6GKXeBeyOfaXd0ZeO2xDCTQnI1uS9RjNfHp9w9hHrUWepyYKY5fJMNEiC7XKIVSptXlhFEJ-uo08O1bT8-Trj7Q_TUh3YTp-iGHBjUaG19c0wGlBenTDGmrbljgIBbEI5aiFHyaINmj-9flkYJBSiND9BaNcJWGqZNzzNkZitJl-0y7dApub2NUbn8MnzPTF7s6c_NxfLsy-vf6L0fFe9XrKHq-hKR93svSMPYD6Odue9B7hXrDf48vGM7wich-Na9QNN2He0SDzpuZj23mk4I3j3hT6U2F8Bojz-Uxj_e3Kzi8sJ100hyto-cIf3m35QeeUx68prTBj_v1qhRLOT4hglnJ5yc4PD84m03DtwyG0CWKX0BQ4YTFKOhnHkIoEZCWgyDNXuTjSUqVSWKMhd0JnYCKHkaVO8BEZpapMy1dsq25qeMM4AMLFyFUANksAckPkg7LKKidlJXUasLDvwdKuCc7Jz8a87KiZRUktWw4tG7BPQ_xfHbXHP2Pu9gJRrod4WyIwVKQwMxWwD8Nn7BHacdE1NEuMkxRxkZLFD9jrTpCGX0mpvBfBgAkvDneUoZycnk6G0M7_JHrPtqdns6Py6Mvxt7fsEb2nfTEhdtnW4nIJ7xBeLcyeH0B_AO74HcM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALb0qgBSMhcXI3sR0nOa62XZXHFtRSqbfIdsYSYpVUza7U5cgvZ-xs0m4RQoJT5GSc-DGe-eLHN4S81ZrneWpilrhMMKl5xrTKganU2rwwCiG_P408O1KHp_LDWXp27RR_xw8xTLj5kRHstR_g55UbXZGG2rb1FITckwjlaIRvS4VwwsOi44FASiFAD-eLciVZqkTS0zbGfLSZf9Mt_YY1N6Fr8D3TB0T3pe62nHzfWy7Mnv1xg9Dxf6r1kNxfA1M67jTpEbkF9WNyd9LHg3tCfo4vmsDvirh9NK7RMlylaUeCTJuajm0Xj4I2jgZHGPaE0RkgyqczjdW3Kzv_Zqm3RHO4hJYuwtbdlh50IXnCjNIKX0w_X65Qv-mxp5f1b3lKTqcHXyeHbB3BgVmJyIWZAn9XjBJOJAmkXIKoOBR55iqXxFqoVHBrNOSO6wxM7FBYaImX2ChVZVo8I1t1U8NzQgGwd2NXAdhMAuTGUw-KKqucEJXQaURY34GlXdOb-ygb87IjZualb9lyaNmIvBvkzztijz9K7vT6UK4HeFsiLFTeXGYqIm-Gx9gjfr1F19AsUUYWSZF6fx-R7U6Phk8JoUIMwYjwoA1_KUM5OTmZDKkX_5LpNbnzZX9afnp_9PEluedv-0UxznfI1uJiCbuIrRbmVRg-vwB-7Bxy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromaticity%2FAntiaromaticity+Effect+on+Activity+of+Transition+Metal+Macrocyclic+Complexes+towards+Electrocatalytic+Oxygen+Reduction&rft.jtitle=ChemSusChem&rft.au=Ni%2C+Youxuan&rft.au=Lu%2C+Yong&rft.au=Zhang%2C+Kai&rft.au=Chen%2C+Jun&rft.date=2021-04-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=14&rft.issue=8&rft.spage=1835&rft.epage=1839&rft_id=info:doi/10.1002%2Fcssc.202100182&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |