Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction

The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, N...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 14; no. 8; pp. 1835 - 1839
Main Authors Ni, Youxuan, Lu, Yong, Zhang, Kai, Chen, Jun
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.04.2021
Subjects
Online AccessGet full text
ISSN1864-5631
1864-564X
1864-564X
DOI10.1002/cssc.202100182

Cover

Abstract The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction. (Anti)aromaticity: The aromaticity/antiaromaticity effect of macrocycles on ORR activity of transition metal macrocyclic complexes is unveiled by first‐principle calculations. Macrocycles with weak aromaticity have an improvement in adsorption strength for intermediates on metal centers while antiaromatic macrocycles can greatly strengthen the activity of metal centers.
AbstractList The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.
The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first-principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d-π conjugation, which acted as a bridge between π-electrons on macrocycles and active d-electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction.
The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still unclear. Here, the aromaticity/antiaromaticity effect of macrocycles on ORR activity was investigated based on TM norcorrole (TM=Mn, Fe, Co, Ni), TM porphycene, and TM porphyrin by first‐principle calculations. It was found that the complexes with weaker aromatic macrocycles exhibited a stronger adsorption strength while the complexes with antiaromatic macrocycles showed further enhanced adsorption strengths. Further investigations indicated that the variation in the adsorption strengths of catalysts was attributed to the different redox activities of macrocycles with different aromaticities. Such difference in redox activities of macrocycles was reflected in the activities of metal centers via d–π conjugation, which acted as a bridge between π‐electrons on macrocycles and active d‐electrons on metal centers. This work deepens the understanding of the role of macrocycles in oxygen electroreduction. (Anti)aromaticity: The aromaticity/antiaromaticity effect of macrocycles on ORR activity of transition metal macrocyclic complexes is unveiled by first‐principle calculations. Macrocycles with weak aromaticity have an improvement in adsorption strength for intermediates on metal centers while antiaromatic macrocycles can greatly strengthen the activity of metal centers.
Author Lu, Yong
Chen, Jun
Ni, Youxuan
Zhang, Kai
Author_xml – sequence: 1
  givenname: Youxuan
  surname: Ni
  fullname: Ni, Youxuan
  organization: Nankai University
– sequence: 2
  givenname: Yong
  surname: Lu
  fullname: Lu, Yong
  organization: Nankai University
– sequence: 3
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  organization: Nankai University
– sequence: 4
  givenname: Jun
  orcidid: 0000-0001-8604-9689
  surname: Chen
  fullname: Chen, Jun
  email: chenabc@nankai.edu.cn
  organization: Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33605052$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaR7ttssi6Kabmehhy-PlYKZJISGQB3QnZPmqKMjWVJKTeJtfHpnJAwKlq6t79Z2DdO4h2hv8AAh9pWRJCWHHOka9ZITlhq7YB3RAV6JYlKL4vfd65nQfHcZ4S4ggtRCf0D7ngpSkZAfocR18r5LVNk3H6yFZ9dbjjTGgE_YDXutk7-aRN_g6qCHaZPP4HJJy-Fzp4PWkndW48f3WwQNEnPy9Cl3EG5c98r3K6JSN8cXD9AcGfAndqGeXz-ijUS7Cl-d6hG5-bq6b08XZxcmvZn220AUlbNHWdVW0ghtOKZSsAN4xqFeV6QwliouSM90qWBmmKmiJyTBXRS6kFaKrFD9CP3a-2-D_jhCT7G3U4JwawI9RsqKmdcnqmmT0-zv01o9hyK-TrKSCk4pUIlPfnqmx7aGT22B7FSb5km4Gih2Q84kxgJE5VjX_OQVlnaREzkuU8xLl6xKzbPlO9uL8T0G9E9xbB9N_aNlcXTVv2ifH27GM
CitedBy_id crossref_primary_10_1016_j_jelechem_2024_118398
crossref_primary_10_1016_j_comptc_2023_114113
crossref_primary_10_1016_j_fmre_2023_04_004
crossref_primary_10_1016_j_isci_2022_104557
crossref_primary_10_9767_bcrec_16_4_10978_839_846
crossref_primary_10_1007_s12274_021_4043_2
crossref_primary_10_1016_j_jcis_2023_05_122
crossref_primary_10_1016_j_surfin_2024_104349
crossref_primary_10_1039_D1QO01944A
crossref_primary_10_1016_j_ces_2022_117513
crossref_primary_10_1021_acs_joc_1c02050
crossref_primary_10_1007_s10847_023_01191_4
Cites_doi 10.1021/jacs.9b03561
10.1038/s41467-020-18062-y
10.1021/acscatal.8b00876
10.1002/anie.201905241
10.1002/anie.202003842
10.1002/anie.201604311
10.1002/adfm.201803329
10.1002/ange.201907399
10.1002/anie.202008726
10.1002/anie.201911441
10.1039/C9CP05624F
10.1021/acscatal.9b00310
10.1021/ic0513639
10.1002/anie.201808226
10.1021/ja211987f
10.1002/adma.202003134
10.1002/adma.201600979
10.1038/s41560-020-0667-9
10.1002/anie.201204395
10.1246/bcsj.78.1619
10.1038/nchem.931
10.1021/acs.chemrev.7b00335
10.1038/s41467-020-14565-w
10.1002/anie.201208582
10.1002/ange.201604311
10.1002/wcms.1404
10.1002/ange.201204395
10.1002/ange.201905241
10.1002/adma.201606635
10.1002/ange.202008726
10.1002/ange.201911441
10.1002/adma.201806545
10.1002/adma.201804799
10.1002/ange.201808226
10.1021/acs.chemrev.7b00051
10.1021/acs.langmuir.6b03782
10.1038/s41560-020-0552-6
10.1002/anie.201505236
10.1038/2011212a0
10.1002/ange.201208582
10.1002/aenm.201400654
10.1002/adfm.201906174
10.1002/adfm.201200264
10.1002/cssc.201902443
10.1002/ange.202003842
10.1002/cssc.201902841
10.1002/ange.201505236
10.1016/j.ccr.2016.02.002
10.1002/adma.201905548
10.1002/anie.201907399
10.1039/B713646C
10.1039/C8TA08870E
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202100182
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 1839
ExternalDocumentID 33605052
10_1002_cssc_202100182
CSSC202100182
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Young Elite Scientists Sponsorship Program by CAST
  funderid: 2019QNRC001
– fundername: National Natural Science Foundation of China
  funderid: 21835004; 22020102002
– fundername: National Key R&D Program of China
  funderid: 2017YFA0206700
– fundername: Ministry of Education of China
  funderid: B12015
– fundername: Young Elite Scientists Sponsorship Program by CAST
  grantid: 2019QNRC001
– fundername: National Key R&D Program of China
  grantid: 2017YFA0206700
– fundername: National Natural Science Foundation of China
  grantid: 22020102002
– fundername: National Natural Science Foundation of China
  grantid: 21835004
– fundername: Ministry of Education of China
  grantid: B12015
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAYXX
AEYWJ
AGYGG
CITATION
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-c4102-b9974b63f311e524e3d2e987fdf10a36532cbae8f2a7eb0f74b3a4f740b66d7a3
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 11:48:23 EDT 2025
Fri Jul 25 12:27:06 EDT 2025
Wed Feb 19 02:28:52 EST 2025
Tue Jul 01 00:36:16 EDT 2025
Thu Apr 24 22:55:00 EDT 2025
Wed Jan 22 16:30:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords antiaromaticity
oxygen reduction reaction
d-π conjugation
transition metals
redox activity
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-b9974b63f311e524e3d2e987fdf10a36532cbae8f2a7eb0f74b3a4f740b66d7a3
Notes Dedicated to the 100th anniversary of Chemistry at Nankai University
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8604-9689
PMID 33605052
PQID 2516307076
PQPubID 986333
PageCount 5
ParticipantIDs proquest_miscellaneous_2491952990
proquest_journals_2516307076
pubmed_primary_33605052
crossref_citationtrail_10_1002_cssc_202100182
crossref_primary_10_1002_cssc_202100182
wiley_primary_10_1002_cssc_202100182_CSSC202100182
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 22, 2021
PublicationDateYYYYMMDD 2021-04-22
PublicationDate_xml – month: 04
  year: 2021
  text: April 22, 2021
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2018; 28
2019; 9
2015; 6
2015; 5
2019; 31
2019; 12
2020 2020; 59 132
2016; 32
2020; 13
2008; 10
2017; 29
2020; 11
2020; 32
2019; 141
2011; 3
2005; 44
2019 2019; 58 131
2013 2013; 52 125
2017; 117
2020; 5
2018; 8
2016 2016; 55 128
2012; 134
2021
2018; 118
2018 2018; 57 130
2012 2012; 51 124
2015 2015; 54 127
2019; 29
2016; 315
2020; 22
2016; 28
2012; 22
2005; 78
1964; 201
e_1_2_2_2_3
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_43_2
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_47_1
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_13_1
e_1_2_2_36_3
e_1_2_2_38_1
e_1_2_2_11_2
e_1_2_2_51_2
e_1_2_2_53_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_1
Liang Z. (e_1_2_2_30_2) 2021
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_21_3
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_3
e_1_2_2_46_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
Xie L. (e_1_2_2_29_2) 2021
Li C. (e_1_2_2_5_2) 2015; 6
e_1_2_2_35_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_37_3
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_31_3
e_1_2_2_56_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_50_1
References_xml – volume: 44
  start-page: 9391
  year: 2005
  end-page: 9396
  publication-title: Inorg. Chem.
– volume: 118
  start-page: 2313
  year: 2018
  end-page: 2339
  publication-title: Chem. Rev.
– volume: 10
  start-page: 257
  year: 2008
  end-page: 267
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59 132
  start-page: 9171 9256
  year: 2020 2020
  end-page: 9176 9261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 22
  start-page: 1181
  year: 2020
  end-page: 1186
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 4173
  year: 2020
  publication-title: Nat. Commun.
– volume: 54 127
  start-page: 14080 14286
  year: 2015 2015
  end-page: 14084 14290
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 5024
  year: 2018
  end-page: 5031
  publication-title: ACS Catal.
– volume: 52 125
  start-page: 2474 2534
  year: 2013 2013
  end-page: 2477 2537
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 4320
  year: 2019
  end-page: 4344
  publication-title: ACS Catal.
– volume: 78
  start-page: 1619
  year: 2005
  end-page: 1623
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 28
  start-page: 6391
  year: 2016
  end-page: 6398
  publication-title: Adv. Mater.
– volume: 5
  start-page: 684
  year: 2020
  end-page: 692
  publication-title: Nat. Energy
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  publication-title: Nat. Commun.
– volume: 117
  start-page: 10121
  year: 2017
  end-page: 10211
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 12711 12841
  year: 2019 2019
  end-page: 12716 12846
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 5133
  year: 2019
  end-page: 5141
  publication-title: ChemSusChem
– volume: 58 131
  start-page: 9640 9742
  year: 2019 2019
  end-page: 9645 9747
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 938
  year: 2020
  publication-title: Nat. Commun.
– volume: 51 124
  start-page: 8542 8670
  year: 2012 2012
  end-page: 8545 8673
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 32
  start-page: 13635
  year: 2016
  end-page: 13639
  publication-title: Langmuir
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 811
  year: 2020
  end-page: 818
  publication-title: ChemSusChem
– volume: 3
  start-page: 79
  year: 2011
  end-page: 84
  publication-title: Nat. Chem.
– volume: 58 131
  start-page: 18883 19059
  year: 2019 2019
  end-page: 18887 19063
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 134
  start-page: 5444
  year: 2012
  end-page: 5447
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1
  year: 2020
  end-page: 9
  publication-title: Nat. Energy
– volume: 315
  start-page: 153
  year: 2016
  end-page: 177
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 10744
  year: 2019
  end-page: 10750
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 201
  start-page: 1212
  year: 1964
  end-page: 1213
  publication-title: Nature
– volume: 22
  start-page: 3500
  year: 2012
  end-page: 3508
  publication-title: Adv. Funct. Mater.
– volume: 9
  year: 2019
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 57 130
  start-page: 12567 12747
  year: 2018 2018
  end-page: 12572 12752
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 14510 14726
  year: 2016 2016
  end-page: 14521 14738
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 1380
  year: 2019
  end-page: 1393
  publication-title: J. Mater. Chem. A
– volume: 59 132
  start-page: 22126 22310
  year: 2020 2020
  end-page: 22131 22315
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_3_2
  doi: 10.1021/jacs.9b03561
– ident: e_1_2_2_27_2
  doi: 10.1038/s41467-020-18062-y
– ident: e_1_2_2_41_2
  doi: 10.1021/acscatal.8b00876
– ident: e_1_2_2_32_1
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201905241
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.202003842
– ident: e_1_2_2_38_1
– ident: e_1_2_2_49_1
  doi: 10.1002/anie.201604311
– ident: e_1_2_2_14_2
  doi: 10.1002/adfm.201803329
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201907399
– ident: e_1_2_2_36_2
  doi: 10.1002/anie.202008726
– ident: e_1_2_2_31_2
  doi: 10.1002/anie.201911441
– ident: e_1_2_2_45_1
  doi: 10.1039/C9CP05624F
– ident: e_1_2_2_28_1
– ident: e_1_2_2_44_2
  doi: 10.1021/acscatal.9b00310
– ident: e_1_2_2_51_2
  doi: 10.1021/ic0513639
– ident: e_1_2_2_21_2
  doi: 10.1002/anie.201808226
– ident: e_1_2_2_40_2
  doi: 10.1021/ja211987f
– ident: e_1_2_2_56_1
  doi: 10.1002/adma.202003134
– ident: e_1_2_2_9_2
  doi: 10.1002/adma.201600979
– ident: e_1_2_2_43_2
  doi: 10.1038/s41560-020-0667-9
– ident: e_1_2_2_46_1
  doi: 10.1002/anie.201204395
– ident: e_1_2_2_52_2
  doi: 10.1246/bcsj.78.1619
– ident: e_1_2_2_12_2
  doi: 10.1038/nchem.931
– ident: e_1_2_2_15_2
  doi: 10.1021/acs.chemrev.7b00335
– ident: e_1_2_2_57_1
  doi: 10.1038/s41467-020-14565-w
– ident: e_1_2_2_2_2
  doi: 10.1002/anie.201208582
– ident: e_1_2_2_49_2
  doi: 10.1002/ange.201604311
– ident: e_1_2_2_47_1
  doi: 10.1002/wcms.1404
– ident: e_1_2_2_46_2
  doi: 10.1002/ange.201204395
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201905241
– ident: e_1_2_2_20_2
  doi: 10.1002/adma.201606635
– ident: e_1_2_2_36_3
  doi: 10.1002/ange.202008726
– ident: e_1_2_2_31_3
  doi: 10.1002/ange.201911441
– ident: e_1_2_2_22_2
  doi: 10.1002/adma.201806545
– ident: e_1_2_2_7_1
– ident: e_1_2_2_16_2
  doi: 10.1002/adma.201804799
– ident: e_1_2_2_1_1
– ident: e_1_2_2_21_3
  doi: 10.1002/ange.201808226
– ident: e_1_2_2_10_2
  doi: 10.1021/acs.chemrev.7b00051
– ident: e_1_2_2_39_2
  doi: 10.1038/s41467-020-18062-y
– ident: e_1_2_2_53_2
  doi: 10.1021/acs.langmuir.6b03782
– ident: e_1_2_2_26_2
  doi: 10.1038/s41560-020-0552-6
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.201505236
– ident: e_1_2_2_23_1
  doi: 10.1038/2011212a0
– year: 2021
  ident: e_1_2_2_29_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_2_2_3
  doi: 10.1002/ange.201208582
– ident: e_1_2_2_6_2
  doi: 10.1002/aenm.201400654
– ident: e_1_2_2_42_1
– ident: e_1_2_2_55_1
  doi: 10.1002/adfm.201906174
– ident: e_1_2_2_34_2
  doi: 10.1002/adfm.201200264
– ident: e_1_2_2_54_1
  doi: 10.1002/cssc.201902443
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.202003842
– ident: e_1_2_2_50_1
– ident: e_1_2_2_8_2
  doi: 10.1038/s41467-020-14565-w
– ident: e_1_2_2_18_2
  doi: 10.1002/cssc.201902841
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.201505236
– year: 2021
  ident: e_1_2_2_30_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_2_33_2
  doi: 10.1016/j.ccr.2016.02.002
– ident: e_1_2_2_13_1
– ident: e_1_2_2_4_2
  doi: 10.1002/adma.201905548
– ident: e_1_2_2_19_1
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201907399
– volume: 6
  start-page: 1
  year: 2015
  ident: e_1_2_2_5_2
  publication-title: Nat. Commun.
– ident: e_1_2_2_24_1
– ident: e_1_2_2_48_1
  doi: 10.1039/B713646C
– ident: e_1_2_2_17_2
  doi: 10.1039/C8TA08870E
SSID ssj0060966
Score 2.3943846
Snippet The effect of the coordination sphere around metal centers on the oxygen reduction reaction (ORR) activity of transition metal macrocyclic complexes is still...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1835
SubjectTerms Adsorption
antiaromaticity
Aromaticity
Conjugation
Coordination compounds
d–π conjugation
Electrons
Manganese
Nickel
oxygen reduction reaction
Oxygen reduction reactions
Porphyrins
redox activity
Transition metals
Title Aromaticity/Antiaromaticity Effect on Activity of Transition Metal Macrocyclic Complexes towards Electrocatalytic Oxygen Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202100182
https://www.ncbi.nlm.nih.gov/pubmed/33605052
https://www.proquest.com/docview/2516307076
https://www.proquest.com/docview/2491952990
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFBYll_bSNl3dLKhQ6EkZW7Jl-ThME0JgWkgayM1I8hOUDnaJZyDTY3959aSxk2koheZkG0uylrd81vI9Qj5ozZUqTMoyVwqWa14yLRUwWVirKiM95MfTyPPP8vQyP7sqru6c4o_8EOOEG2pGsNeo4Nr0k1vSUNv3SEHIkURIoRHOhETy_E_nI3-U9Pg8HC9SMmeFFNnA2pjyyXb2ba90D2puI9fgek6eET1UOu44-X60Wpoj-_MPPseHtOo5ebrBpXQaBWmXPIL2BXk8G8LBvSS_ptddoHf1sH0ybb1huH2mkQOZdi2d2hiOgnaOBj8YtoTROXiQT-faN9-u7eKbpWiIFnADPV2Gnbs9PY4RecKE0toXTL_crL1403Nkl8VSXpHLk-Ovs1O2CeDAbO6BCzOV_1sxUjiRZVDwHETDoVKla1yWaiELwa3RoBzXJZjU-cRC5_6SGimbUovXZKftWnhLKIDHiqlrAGyZAyiDzIOiKRsnRCN0kRA2DGBtN-zmGGRjUUdeZl5jz9Zjzybk45j-R-T1-GvK_UEe6o1-97VHhRKtZSkT8n587UcEl1t0C93Kp8mrrCrQ3SfkTZSj8VNCyBBCMCE8SMM_6lDPLi5m49O7_8m0R57gPS6Ecb5PdpbXKzjweGppDoPO_AZZ4xmk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlPaSXvh9O01SFQk_O2pIt28dlm7BtsynkAb0ZSR5B6GKXeBeyOfaXd0ZeO2xDCTQnI1uS9RjNfHp9w9hHrUWepyYKY5fJMNEiC7XKIVSptXlhFEJ-uo08O1bT8-Trj7Q_TUh3YTp-iGHBjUaG19c0wGlBenTDGmrbljgIBbEI5aiFHyaINmj-9flkYJBSiND9BaNcJWGqZNzzNkZitJl-0y7dApub2NUbn8MnzPTF7s6c_NxfLsy-vf6L0fFe9XrKHq-hKR93svSMPYD6Odue9B7hXrDf48vGM7wich-Na9QNN2He0SDzpuZj23mk4I3j3hT6U2F8Bojz-Uxj_e3Kzi8sJ100hyto-cIf3m35QeeUx68prTBj_v1qhRLOT4hglnJ5yc4PD84m03DtwyG0CWKX0BQ4YTFKOhnHkIoEZCWgyDNXuTjSUqVSWKMhd0JnYCKHkaVO8BEZpapMy1dsq25qeMM4AMLFyFUANksAckPkg7LKKidlJXUasLDvwdKuCc7Jz8a87KiZRUktWw4tG7BPQ_xfHbXHP2Pu9gJRrod4WyIwVKQwMxWwD8Nn7BHacdE1NEuMkxRxkZLFD9jrTpCGX0mpvBfBgAkvDneUoZycnk6G0M7_JHrPtqdns6Py6Mvxt7fsEb2nfTEhdtnW4nIJ7xBeLcyeH0B_AO74HcM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYALb0qgBSMhcXI3sR0nOa62XZXHFtRSqbfIdsYSYpVUza7U5cgvZ-xs0m4RQoJT5GSc-DGe-eLHN4S81ZrneWpilrhMMKl5xrTKganU2rwwCiG_P408O1KHp_LDWXp27RR_xw8xTLj5kRHstR_g55UbXZGG2rb1FITckwjlaIRvS4VwwsOi44FASiFAD-eLciVZqkTS0zbGfLSZf9Mt_YY1N6Fr8D3TB0T3pe62nHzfWy7Mnv1xg9Dxf6r1kNxfA1M67jTpEbkF9WNyd9LHg3tCfo4vmsDvirh9NK7RMlylaUeCTJuajm0Xj4I2jgZHGPaE0RkgyqczjdW3Kzv_Zqm3RHO4hJYuwtbdlh50IXnCjNIKX0w_X65Qv-mxp5f1b3lKTqcHXyeHbB3BgVmJyIWZAn9XjBJOJAmkXIKoOBR55iqXxFqoVHBrNOSO6wxM7FBYaImX2ChVZVo8I1t1U8NzQgGwd2NXAdhMAuTGUw-KKqucEJXQaURY34GlXdOb-ygb87IjZualb9lyaNmIvBvkzztijz9K7vT6UK4HeFsiLFTeXGYqIm-Gx9gjfr1F19AsUUYWSZF6fx-R7U6Phk8JoUIMwYjwoA1_KUM5OTmZDKkX_5LpNbnzZX9afnp_9PEluedv-0UxznfI1uJiCbuIrRbmVRg-vwB-7Bxy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aromaticity%2FAntiaromaticity+Effect+on+Activity+of+Transition+Metal+Macrocyclic+Complexes+towards+Electrocatalytic+Oxygen+Reduction&rft.jtitle=ChemSusChem&rft.au=Ni%2C+Youxuan&rft.au=Lu%2C+Yong&rft.au=Zhang%2C+Kai&rft.au=Chen%2C+Jun&rft.date=2021-04-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=14&rft.issue=8&rft.spage=1835&rft.epage=1839&rft_id=info:doi/10.1002%2Fcssc.202100182&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon