Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts

Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest o...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 25; pp. 6519 - 6524
Main Authors Sugimoto, Masumi, Liu, Xin‐Ling, Tsunega, Seiji, Nakajima, Erika, Abe, Shunsuke, Nakashima, Takuya, Kawai, Tsuyoshi, Jin, Ren‐Hua
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts. Sand in the tartan kilt? Inorganic materials assembled with chiral silica hosts and luminescent oxide guests were synthesized by entrapping lanthanide ions into chiral silica loaded with polyethyleneimine/tartaric acid and subsequently calcined at 900 °C. The lanthanide oxide nanoparticles of Eu2O3 and Tb2O3 formed in the restricted space of the chiral d‐ and l‐silica hosts displayed chiral signals both in circular dichroism (CD) and circularly polarized luminescence (CPL).
AbstractList Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts. Sand in the tartan kilt? Inorganic materials assembled with chiral silica hosts and luminescent oxide guests were synthesized by entrapping lanthanide ions into chiral silica loaded with polyethyleneimine/tartaric acid and subsequently calcined at 900 °C. The lanthanide oxide nanoparticles of Eu2O3 and Tb2O3 formed in the restricted space of the chiral d‐ and l‐silica hosts displayed chiral signals both in circular dichroism (CD) and circularly polarized luminescence (CPL).
Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non‐helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu O or Tb O ) nanoparticles (guests) were encapsulated into chiral non-helical SiO nanofibres (host) through calcination of chiral SiO hybrid nanofibres, trapping Eu (or Tb ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu and 545 nm for Tb . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu2 O3 or Tb2 O3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu2 O3 or Tb2 O3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Author Abe, Shunsuke
Tsunega, Seiji
Kawai, Tsuyoshi
Liu, Xin‐Ling
Jin, Ren‐Hua
Nakashima, Takuya
Sugimoto, Masumi
Nakajima, Erika
Author_xml – sequence: 1
  givenname: Masumi
  surname: Sugimoto
  fullname: Sugimoto, Masumi
  organization: Kanagawa University
– sequence: 2
  givenname: Xin‐Ling
  surname: Liu
  fullname: Liu, Xin‐Ling
  organization: Kanagawa University
– sequence: 3
  givenname: Seiji
  surname: Tsunega
  fullname: Tsunega, Seiji
  organization: Kanagawa University
– sequence: 4
  givenname: Erika
  surname: Nakajima
  fullname: Nakajima, Erika
  organization: Kanagawa University
– sequence: 5
  givenname: Shunsuke
  surname: Abe
  fullname: Abe, Shunsuke
  organization: Kanagawa University
– sequence: 6
  givenname: Takuya
  surname: Nakashima
  fullname: Nakashima, Takuya
  organization: Nara Institute of Science and Technology, NAIST, 8916-5, Takayama-cho, Ikoma
– sequence: 7
  givenname: Tsuyoshi
  surname: Kawai
  fullname: Kawai, Tsuyoshi
  organization: Nara Institute of Science and Technology, NAIST, 8916-5, Takayama-cho, Ikoma
– sequence: 8
  givenname: Ren‐Hua
  orcidid: 0000-0003-4995-6380
  surname: Jin
  fullname: Jin, Ren‐Hua
  email: rhjin@kanagawa-u.ac.jp
  organization: Kanagawa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29341293$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJaZy01x6LoJde1tH3rnorixsHHBJIe15krRQraCVX2iVxf31lnA8IhF5mLs_zajRzAo5CDAaAzxjNMULkTG_MMCcI14g3grwDM8wJrmgt-BGYIcnqSnAqj8FJzncIISko_QCOiaQMlzIDD61LevIq-R28jqW7v6aHq2lwwWRtgjbQpjjAixDTrQpOw0s1muSUz9_hImi1zcUeXbiF55PJI1ypMG4K2Bt49VBqhi7AduOS8vDGeacVXMY85o_gvS0h5tNjPwW_fy5-tctqdXV-0f5YVZphRCrJsOVNY1FNmdSSGS57LKyQiiFac9VoxZRgXHO7FkqtbWMYamwvatz33DJ6Cr4dcrcp_tlP2A2ufMx7FUyccodlIwUmXMqCfn2F3sUphTJdRxDFlFAs9oFfHqlpPZi-2yY3qLTrnnZagPkB0CnmnIx9RjDq9kfr9kfrno9WBPZK0G4sO41hTMr5tzV50O6dN7v_PNK1y8Xli_sPCUGsOw
CitedBy_id crossref_primary_10_1002_adma_201900110
crossref_primary_10_1016_j_ceramint_2023_06_307
crossref_primary_10_1002_ange_202206310
crossref_primary_10_1002_cplu_201900615
crossref_primary_10_1021_acs_chemmater_2c01994
crossref_primary_10_1039_D1CC01112J
crossref_primary_10_1021_acs_accounts_0c00112
crossref_primary_10_1038_s41467_022_35699_z
crossref_primary_10_1021_acsnano_8b08273
crossref_primary_10_1039_C9QI00583H
crossref_primary_10_1002_chem_201805053
crossref_primary_10_1038_s41467_020_19479_1
crossref_primary_10_1039_C9CC06055C
crossref_primary_10_1002_anie_202206310
crossref_primary_10_6023_A24030071
crossref_primary_10_1002_ange_202406524
crossref_primary_10_1016_j_dyepig_2022_110362
crossref_primary_10_1002_cjoc_202300645
crossref_primary_10_1002_cptc_202100124
crossref_primary_10_1038_s41570_020_00235_4
crossref_primary_10_1007_s12274_024_6781_4
crossref_primary_10_1021_acs_jpcc_0c06847
crossref_primary_10_1021_acsami_9b11872
crossref_primary_10_1021_acsami_3c17682
crossref_primary_10_1002_advs_202303235
crossref_primary_10_1002_adom_202203068
crossref_primary_10_1002_agt2_148
crossref_primary_10_1002_adom_202200591
crossref_primary_10_1039_D2TC03020A
crossref_primary_10_1002_macp_202000436
crossref_primary_10_1016_j_matt_2022_01_001
crossref_primary_10_1016_j_nantod_2024_102197
crossref_primary_10_1039_C9TC01956A
crossref_primary_10_1021_acsami_2c05012
crossref_primary_10_1021_acs_jpclett_4c03479
crossref_primary_10_1126_sciadv_adi9944
crossref_primary_10_1007_s12274_021_3594_6
crossref_primary_10_1016_j_eurpolymj_2019_05_061
crossref_primary_10_1039_D1NR07069J
crossref_primary_10_1360_SSC_2024_0069
crossref_primary_10_1016_j_cej_2025_159821
crossref_primary_10_1002_anie_202406524
crossref_primary_10_1039_C8NA00159F
crossref_primary_10_1039_D3DT00652B
crossref_primary_10_1021_acs_jpclett_9b03408
crossref_primary_10_1039_D4NR03178D
Cites_doi 10.1002/chem.201502290
10.1038/srep08385
10.1002/adma.201606503
10.1039/c2cs35242g
10.1038/17343
10.1021/ar800211j
10.1021/cr010450p
10.1039/b406082m
10.1002/chir.22382
10.1039/C4DT00662C
10.1039/C6NH00214E
10.1039/C4TC02913E
10.1002/anie.201706308
10.1038/ncomms10701
10.1002/anie.201002552
10.1021/cr010288q
10.1002/anie.201612331
10.1039/C5CC04283F
10.1021/acs.inorgchem.7b00611
10.1002/chem.201400387
10.1002/adma.201202227
10.1002/ange.201108914
10.1002/anie.201507502
10.1039/C1CE05973D
10.1002/ange.201612331
10.1039/C7CC01586K
10.1016/S0022-2313(02)00445-3
10.1002/tcr.201000013
10.1039/C7CP03303F
10.1021/acs.jpclett.5b01452
10.1246/cl.170656
10.1021/cr00071a001
10.1002/anie.201108914
10.1002/ange.201507502
10.1021/cr8003983
10.1002/chem.201501178
10.1039/C5TC00987A
10.1039/c2tc00139j
10.1063/1.3582917
10.1039/C6CC09476G
10.1021/cr400568b
10.1039/C4TC01482K
10.1002/smll.201601455
10.1002/ange.201002552
10.1088/2050-6120/2/2/024007
10.1021/acsomega.7b00120
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201705862
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 6524
ExternalDocumentID 29341293
10_1002_chem_201705862
CHEM201705862
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4102-941f588f07349c94e59d16f69a40375a8ca4a645c5fb6aabf8e408fd671dd5f43
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 23:21:05 EDT 2025
Fri Jul 25 10:38:37 EDT 2025
Wed Feb 19 02:43:50 EST 2025
Tue Jul 01 02:47:57 EDT 2025
Thu Apr 24 23:08:56 EDT 2025
Wed Jan 22 16:24:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords circular dichroism
chirality
circularly polarized luminescence
silica
lanthanides
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-941f588f07349c94e59d16f69a40375a8ca4a645c5fb6aabf8e408fd671dd5f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4995-6380
PMID 29341293
PQID 2031323164
PQPubID 986340
PageCount 6
ParticipantIDs proquest_miscellaneous_1989612599
proquest_journals_2031323164
pubmed_primary_29341293
crossref_primary_10_1002_chem_201705862
crossref_citationtrail_10_1002_chem_201705862
wiley_primary_10_1002_chem_201705862_CHEM201705862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2, 2018
PublicationDateYYYYMMDD 2018-05-02
PublicationDate_xml – month: 05
  year: 2018
  text: May 2, 2018
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2015; 6
2015; 5
2017; 2
2013; 1
2009; 42
2015; 3
2015; 51
2017; 46
2011; 98
2010 2010; 49 122
2017; 29
2017 2017; 56 129
2012; 14
2014; 114
2016; 12
2014; 43
2014; 20
2017; 53
2016; 7
2015; 27
2014; 2
1986; 86
2002; 102
2012 2012; 51 124
2002; 100
2015; 21
2017; 56
2015 2015; 54 127
2017; 19
2016
1999; 397
2012; 24
2009; 109
2005; 34
2012; 41
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_2
e_1_2_2_36_1
Govan J. (e_1_2_2_20_1) 2016
e_1_2_2_23_3
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_37_1
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_14_3
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 2
  start-page: 147
  year: 2017
  end-page: 155
  publication-title: Nanoscale Horiz.
– volume: 56
  start-page: 12174
  year: 2017
  end-page: 12178
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 7673
  year: 2012
  end-page: 7686
  publication-title: Chem. Soc. Rev.
– volume: 86
  start-page: 1
  year: 1986
  end-page: 16
  publication-title: Chem. Rev.
– volume: 42
  start-page: 542
  year: 2009
  end-page: 552
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 394
  year: 2010
  end-page: 408
  publication-title: Chem. Rec.
– volume: 5
  start-page: 8385
  year: 2015
  publication-title: Sci. Rep.
– volume: 29
  start-page: 1606503
  year: 2017
  publication-title: Adv. Mater.
– volume: 53
  start-page: 4390
  year: 2017
  end-page: 4393
  publication-title: Chem. Commun.
– start-page: 1
  year: 2016
  end-page: 30
– volume: 102
  start-page: 1807
  year: 2002
  end-page: 1850
  publication-title: Chem. Rev.
– volume: 34
  start-page: 1048
  year: 2005
  end-page: 1077
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 15667
  year: 2015
  end-page: 15675
  publication-title: Chem. Eur. J.
– volume: 114
  start-page: 4918
  year: 2014
  end-page: 4959
  publication-title: Chem. Rev.
– volume: 98
  start-page: 162508
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 3445
  year: 2015
  end-page: 3452
  publication-title: J. Phys. Chem. Lett.
– volume: 12
  start-page: 6495
  year: 2016
  end-page: 6512
  publication-title: Small
– volume: 397
  start-page: 506
  year: 1999
  end-page: 508
  publication-title: Nature
– volume: 51
  start-page: 11903
  year: 2015
  end-page: 11906
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 15170 15385
  year: 2015 2015
  end-page: 15175 15390
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 1269
  year: 2017
  end-page: 1272
  publication-title: Chem. Commun.
– volume: 27
  start-page: 1
  year: 2015
  end-page: 13
  publication-title: Chirality
– volume: 100
  start-page: 97
  year: 2002
  end-page: 106
  publication-title: J. Lumin.
– volume: 43
  start-page: 15321
  year: 2014
  end-page: 15327
  publication-title: Dalton Trans.
– volume: 109
  start-page: 4283
  year: 2009
  end-page: 4374
  publication-title: Chem. Rev.
– volume: 56
  start-page: 7010
  year: 2017
  end-page: 7018
  publication-title: Inorg. Chem.
– volume: 102
  start-page: 2389
  year: 2002
  end-page: 2404
  publication-title: Chem. Rev.
– volume: 2
  start-page: 9189
  year: 2014
  end-page: 9195
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 579
  year: 2012
  end-page: 584
  publication-title: CrystEngComm
– volume: 2
  start-page: 024007
  year: 2014
  publication-title: Methods Appl. Fluoresc.
– volume: 51 124
  start-page: 5862 5964
  year: 2012 2012
  end-page: 5865 5967
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 1431
  year: 2017
  end-page: 1440
  publication-title: ACS Omega
– volume: 56 129
  start-page: 2989 3035
  year: 2017 2017
  end-page: 2993 3039
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 6997
  year: 2015
  end-page: 7003
  publication-title: J. Mater. Chem. C
– volume: 46
  start-page: 1518
  year: 2017
  end-page: 1521
  publication-title: Chem. Lett.
– volume: 24
  start-page: 6216
  year: 2012
  end-page: 6222
  publication-title: Adv. Mater.
– volume: 21
  start-page: 13488
  year: 2015
  end-page: 13500
  publication-title: Chem. Eur. J.
– volume: 19
  start-page: 22088
  year: 2017
  end-page: 22093
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 10701
  year: 2016
  publication-title: Nat. Commun.
– volume: 20
  start-page: 7196
  year: 2014
  end-page: 7214
  publication-title: Chem. Eur. J.
– volume: 1
  start-page: 477
  year: 2013
  end-page: 483
  publication-title: J. Mater. Chem. C
– volume: 49 122
  start-page: 7006 7160
  year: 2010 2010
  end-page: 7009 7163
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 3384
  year: 2015
  end-page: 3390
  publication-title: J. Mater. Chem. C
– ident: e_1_2_2_39_1
  doi: 10.1002/chem.201502290
– ident: e_1_2_2_42_1
  doi: 10.1038/srep08385
– ident: e_1_2_2_15_2
  doi: 10.1002/adma.201606503
– ident: e_1_2_2_4_1
  doi: 10.1039/c2cs35242g
– ident: e_1_2_2_6_1
  doi: 10.1038/17343
– ident: e_1_2_2_26_1
  doi: 10.1021/ar800211j
– ident: e_1_2_2_27_1
  doi: 10.1021/cr010450p
– ident: e_1_2_2_24_1
  doi: 10.1039/b406082m
– ident: e_1_2_2_2_1
  doi: 10.1002/chir.22382
– ident: e_1_2_2_34_1
  doi: 10.1039/C4DT00662C
– ident: e_1_2_2_43_1
  doi: 10.1039/C6NH00214E
– ident: e_1_2_2_32_1
  doi: 10.1039/C4TC02913E
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.201706308
– ident: e_1_2_2_22_2
  doi: 10.1038/ncomms10701
– ident: e_1_2_2_17_1
  doi: 10.1002/anie.201002552
– ident: e_1_2_2_25_1
  doi: 10.1021/cr010288q
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.201612331
– ident: e_1_2_2_29_1
  doi: 10.1039/C5CC04283F
– ident: e_1_2_2_31_1
  doi: 10.1021/acs.inorgchem.7b00611
– ident: e_1_2_2_36_1
  doi: 10.1002/chem.201400387
– ident: e_1_2_2_18_1
  doi: 10.1002/adma.201202227
– ident: e_1_2_2_37_2
  doi: 10.1002/ange.201108914
– ident: e_1_2_2_23_2
  doi: 10.1002/anie.201507502
– ident: e_1_2_2_41_1
  doi: 10.1039/C1CE05973D
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.201612331
– ident: e_1_2_2_45_1
  doi: 10.1039/C7CC01586K
– ident: e_1_2_2_30_1
  doi: 10.1016/S0022-2313(02)00445-3
– ident: e_1_2_2_5_1
  doi: 10.1002/tcr.201000013
– ident: e_1_2_2_12_1
  doi: 10.1039/C7CP03303F
– ident: e_1_2_2_11_1
  doi: 10.1021/acs.jpclett.5b01452
– ident: e_1_2_2_40_1
  doi: 10.1246/cl.170656
– ident: e_1_2_2_1_1
  doi: 10.1021/cr00071a001
– ident: e_1_2_2_37_1
  doi: 10.1002/anie.201108914
– ident: e_1_2_2_23_3
  doi: 10.1002/ange.201507502
– ident: e_1_2_2_35_1
  doi: 10.1021/cr8003983
– ident: e_1_2_2_10_1
  doi: 10.1002/chem.201501178
– ident: e_1_2_2_28_1
  doi: 10.1039/C5TC00987A
– ident: e_1_2_2_38_1
  doi: 10.1039/c2tc00139j
– ident: e_1_2_2_7_1
  doi: 10.1063/1.3582917
– ident: e_1_2_2_19_1
  doi: 10.1039/C6CC09476G
– ident: e_1_2_2_9_1
  doi: 10.1021/cr400568b
– ident: e_1_2_2_13_1
– ident: e_1_2_2_33_1
  doi: 10.1039/C4TC01482K
– ident: e_1_2_2_8_1
  doi: 10.1002/smll.201601455
– start-page: 1
  volume-title: Nanoscience: Volume 3, Vol. 3
  year: 2016
  ident: e_1_2_2_20_1
– ident: e_1_2_2_21_1
– ident: e_1_2_2_17_2
  doi: 10.1002/ange.201002552
– ident: e_1_2_2_3_1
  doi: 10.1088/2050-6120/2/2/024007
– ident: e_1_2_2_44_1
  doi: 10.1021/acsomega.7b00120
SSID ssj0009633
Score 2.4692833
Snippet Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The...
Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6519
SubjectTerms Chemistry
Chirality
Circular dichroism
circularly polarized luminescence
Dichroism
Encapsulation
Europium
Europium compounds
Inorganic materials
lanthanides
Luminescence
Nanofibers
Nanoparticles
Optical activity
Optics
Oxides
Silica
Silicon dioxide
Title Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201705862
https://www.ncbi.nlm.nih.gov/pubmed/29341293
https://www.proquest.com/docview/2031323164
https://www.proquest.com/docview/1989612599
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuAC5R1YkJGQOKXdJONszA2tWhbUl_qQeotsx-5GLdlqk5XK_no88SZlWyEkuESJ7Ch-zNjfODPfAHwsIq7ioaVzN5WGqDUPFS9kmCYotSUrt43i3z9IJ2f4_Zyf_xbF7_kh-gM30ox2vSYFl6reviUNdX2iSHKig8naRZgctggVHd_yRznp8rnkcRQSB2vH2jiMt9dfX9-V7kHNdeTabj27T0B2jfYeJ5dbi0Zt6eUdPsf_6dUmPF7hUvbFC9JTeGCqZ_Bw3KWDew4343Le-qxe_WRHZA-XS1OwvcUP8pvXtD4wClVh3yqfKEqzfdl48f7MdiotnTlOfnfVBftKvWZ7bk6nrmJh2OGNu9asrNh4Ws5dM05KOktkk1nd1C_gbHfndDwJV2kbQo0OroQCI8uzzLrFA4UWaLgootSmQiIl3JWZlihT5JpblUqpbGZwmNkiHUVFwS0mL2GjmlXmNTBhk3ikrRJ6pJEr67bOOJIiw9gmBhEDCLtpy_WK05xSa1zlno05zmk88348A_jU17_2bB5_rDnopCBfaXXtSonoMnEWZgAf-mI3D_STRVZmtqhz8kEj1ChEAK-89PSfctAKCV8FELcy8Jc25MSK0T-9-ZeX3sIjd5-1HprxADaa-cK8cyiqUe9bTfkF0f4T5g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfQeBgvfA1YYbBMmsRTt2vr9Bre0GnjBncbgk3irUrShFWMHrr2pLG_nri5djomNIm9VGqTqvmwHdu1fwbYLSKu4oElv5tKQ9Sah4oXMkwTlNqSldtm8U-P0_EZfvzGu2hCyoXx-BC9w404o5XXxODkkN6_Rg11k6JUcsKDyUgK36ey3q1V9eUaQcrRl68mj8OQUFg73MZBvL_6_uq5dEPZXNVd28Pn8BGobtg-5uTH3qJRe_rqL0THO83rMTxcqqbsvaelJ3DPVE9hfdRVhNuAy1E5b8NWL36zz2QSl1emYJPFTwqd1yQiGGWrsKPK14rSbCobT-Hv2EGlpbPIKfSu-s4-0LTZxG3ruetYGHZy6a41Kys2Oi_nbhhfS3InsvGsbupncHZ4cDoah8vKDaFGp7GEAiPLs8w6-YFCCzRcFFFqUyGRau7KTEuUKXLNrUqlVDYzOMhskQ6jouAWk-ewVs0qswlM2CQeaquEHmrkyrrTM46kyDC2iUHEAMJu33K9hDWn6hoXuQdkjnNaz7xfzwDe9v1_eUCPf_bc6sggXzJ27VoJ6zJxRmYAO32z2wf6zyIrM1vUOYWhkeIoRAAvPPn0n3LaFZKKFUDcEsEtY8gJGKO_e_k_L23D-vh0OsknR8efXsED9zxrAzbjLVhr5gvz2ilVjXrTss0fCWgYAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYAL70egFCMhcUq7ScZeuze07bKFbamASr1FtmPTiJKtNlmp7a_HE2_SLgghwSVSYkfxY8b-xpn5hpA3RcJ0OnB47qZ5DMawWLNCxTwDZRxauW0U__4BnxzBh2N2fC2KP_BD9AduqBnteo0Kfla4rSvSUN8njCRHOhiBi_BN4AOBcr3z-YpAyotXSCYPwxhJWDvaxkG6tfr-6rb0G9Zcha7t3jO-R1TX6uBy8n1z0ehNc_kLoeP_dOs-ubsEpvRdkKQH5IatHpLboy4f3CNyPirnrdPq6QU9RIO4vLQFnS5-oOO8wQWCYqwK3atCpihD91UT5Hub7lZGeXscHe-qb_Q99ppO_aSe-IqFpZ_O_bWmZUVHJ-XcN-NLiYeJdDKrm_oxORrvfh1N4mXehtiAxyuxhMQxIZxfPUAaCZbJIuGOSwWYcVcJo0BxYIY5zZXSTlgYCFfwYVIUzEH2hKxVs8o-I1S6LB0ap6UZGmDa-b0zTZQUkLrMAkBE4m7acrMkNcfcGqd5oGNOcxzPvB_PiLzt658FOo8_1lzvpCBfqnXtS5HpMvMmZkRe98V-HvAvi6rsbFHn6ISGsFHKiDwN0tN_ymMrQIAVkbSVgb-0IUdajP7u-b-89IrcOtwZ59O9g48vyB3_WLTemuk6WWvmC_vSI6pGb7RK8xPFdxa5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circularly+Polarized+Luminescence+from+Inorganic+Materials%3A+Encapsulating+Guest+Lanthanide+Oxides+in+Chiral+Silica+Hosts&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sugimoto%2C+Masumi&rft.au=Liu%2C+Xin-Ling&rft.au=Tsunega%2C+Seiji&rft.au=Nakajima%2C+Erika&rft.date=2018-05-02&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=24&rft.issue=25&rft.spage=6519&rft_id=info:doi/10.1002%2Fchem.201705862&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon