Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts
Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest o...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 25; pp. 6519 - 6524 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Sand in the tartan kilt? Inorganic materials assembled with chiral silica hosts and luminescent oxide guests were synthesized by entrapping lanthanide ions into chiral silica loaded with polyethyleneimine/tartaric acid and subsequently calcined at 900 °C. The lanthanide oxide nanoparticles of Eu2O3 and Tb2O3 formed in the restricted space of the chiral d‐ and l‐silica hosts displayed chiral signals both in circular dichroism (CD) and circularly polarized luminescence (CPL). |
---|---|
AbstractList | Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts.
Sand in the tartan kilt? Inorganic materials assembled with chiral silica hosts and luminescent oxide guests were synthesized by entrapping lanthanide ions into chiral silica loaded with polyethyleneimine/tartaric acid and subsequently calcined at 900 °C. The lanthanide oxide nanoparticles of Eu2O3 and Tb2O3 formed in the restricted space of the chiral d‐ and l‐silica hosts displayed chiral signals both in circular dichroism (CD) and circularly polarized luminescence (CPL). Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non‐helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts. Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu O or Tb O ) nanoparticles (guests) were encapsulated into chiral non-helical SiO nanofibres (host) through calcination of chiral SiO hybrid nanofibres, trapping Eu (or Tb ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu and 545 nm for Tb . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The CPL‐active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL‐active system by “luminescent guest–chiral host” strategy is proposed. Luminescent sub‐10 nm lanthanide oxides (Eu2O3 or Tb2O3) nanoparticles (guests) were encapsulated into chiral non‐helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+. This work has implications for inorganic‐based CPL‐active systems by incorporation of various luminescent guests within chiral inorganic hosts. Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu2 O3 or Tb2 O3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts.Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu2 O3 or Tb2 O3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO2 nanofibres (host) through calcination of chiral SiO2 hybrid nanofibres, trapping Eu3+ (or Tb3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu3+ and 545 nm for Tb3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. |
Author | Abe, Shunsuke Tsunega, Seiji Kawai, Tsuyoshi Liu, Xin‐Ling Jin, Ren‐Hua Nakashima, Takuya Sugimoto, Masumi Nakajima, Erika |
Author_xml | – sequence: 1 givenname: Masumi surname: Sugimoto fullname: Sugimoto, Masumi organization: Kanagawa University – sequence: 2 givenname: Xin‐Ling surname: Liu fullname: Liu, Xin‐Ling organization: Kanagawa University – sequence: 3 givenname: Seiji surname: Tsunega fullname: Tsunega, Seiji organization: Kanagawa University – sequence: 4 givenname: Erika surname: Nakajima fullname: Nakajima, Erika organization: Kanagawa University – sequence: 5 givenname: Shunsuke surname: Abe fullname: Abe, Shunsuke organization: Kanagawa University – sequence: 6 givenname: Takuya surname: Nakashima fullname: Nakashima, Takuya organization: Nara Institute of Science and Technology, NAIST, 8916-5, Takayama-cho, Ikoma – sequence: 7 givenname: Tsuyoshi surname: Kawai fullname: Kawai, Tsuyoshi organization: Nara Institute of Science and Technology, NAIST, 8916-5, Takayama-cho, Ikoma – sequence: 8 givenname: Ren‐Hua orcidid: 0000-0003-4995-6380 surname: Jin fullname: Jin, Ren‐Hua email: rhjin@kanagawa-u.ac.jp organization: Kanagawa University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29341293$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEQhkVJaZy01x6LoJde1tH3rnorixsHHBJIe15krRQraCVX2iVxf31lnA8IhF5mLs_zajRzAo5CDAaAzxjNMULkTG_MMCcI14g3grwDM8wJrmgt-BGYIcnqSnAqj8FJzncIISko_QCOiaQMlzIDD61LevIq-R28jqW7v6aHq2lwwWRtgjbQpjjAixDTrQpOw0s1muSUz9_hImi1zcUeXbiF55PJI1ypMG4K2Bt49VBqhi7AduOS8vDGeacVXMY85o_gvS0h5tNjPwW_fy5-tctqdXV-0f5YVZphRCrJsOVNY1FNmdSSGS57LKyQiiFac9VoxZRgXHO7FkqtbWMYamwvatz33DJ6Cr4dcrcp_tlP2A2ufMx7FUyccodlIwUmXMqCfn2F3sUphTJdRxDFlFAs9oFfHqlpPZi-2yY3qLTrnnZagPkB0CnmnIx9RjDq9kfr9kfrno9WBPZK0G4sO41hTMr5tzV50O6dN7v_PNK1y8Xli_sPCUGsOw |
CitedBy_id | crossref_primary_10_1002_adma_201900110 crossref_primary_10_1016_j_ceramint_2023_06_307 crossref_primary_10_1002_ange_202206310 crossref_primary_10_1002_cplu_201900615 crossref_primary_10_1021_acs_chemmater_2c01994 crossref_primary_10_1039_D1CC01112J crossref_primary_10_1021_acs_accounts_0c00112 crossref_primary_10_1038_s41467_022_35699_z crossref_primary_10_1021_acsnano_8b08273 crossref_primary_10_1039_C9QI00583H crossref_primary_10_1002_chem_201805053 crossref_primary_10_1038_s41467_020_19479_1 crossref_primary_10_1039_C9CC06055C crossref_primary_10_1002_anie_202206310 crossref_primary_10_6023_A24030071 crossref_primary_10_1002_ange_202406524 crossref_primary_10_1016_j_dyepig_2022_110362 crossref_primary_10_1002_cjoc_202300645 crossref_primary_10_1002_cptc_202100124 crossref_primary_10_1038_s41570_020_00235_4 crossref_primary_10_1007_s12274_024_6781_4 crossref_primary_10_1021_acs_jpcc_0c06847 crossref_primary_10_1021_acsami_9b11872 crossref_primary_10_1021_acsami_3c17682 crossref_primary_10_1002_advs_202303235 crossref_primary_10_1002_adom_202203068 crossref_primary_10_1002_agt2_148 crossref_primary_10_1002_adom_202200591 crossref_primary_10_1039_D2TC03020A crossref_primary_10_1002_macp_202000436 crossref_primary_10_1016_j_matt_2022_01_001 crossref_primary_10_1016_j_nantod_2024_102197 crossref_primary_10_1039_C9TC01956A crossref_primary_10_1021_acsami_2c05012 crossref_primary_10_1021_acs_jpclett_4c03479 crossref_primary_10_1126_sciadv_adi9944 crossref_primary_10_1007_s12274_021_3594_6 crossref_primary_10_1016_j_eurpolymj_2019_05_061 crossref_primary_10_1039_D1NR07069J crossref_primary_10_1360_SSC_2024_0069 crossref_primary_10_1016_j_cej_2025_159821 crossref_primary_10_1002_anie_202406524 crossref_primary_10_1039_C8NA00159F crossref_primary_10_1039_D3DT00652B crossref_primary_10_1021_acs_jpclett_9b03408 crossref_primary_10_1039_D4NR03178D |
Cites_doi | 10.1002/chem.201502290 10.1038/srep08385 10.1002/adma.201606503 10.1039/c2cs35242g 10.1038/17343 10.1021/ar800211j 10.1021/cr010450p 10.1039/b406082m 10.1002/chir.22382 10.1039/C4DT00662C 10.1039/C6NH00214E 10.1039/C4TC02913E 10.1002/anie.201706308 10.1038/ncomms10701 10.1002/anie.201002552 10.1021/cr010288q 10.1002/anie.201612331 10.1039/C5CC04283F 10.1021/acs.inorgchem.7b00611 10.1002/chem.201400387 10.1002/adma.201202227 10.1002/ange.201108914 10.1002/anie.201507502 10.1039/C1CE05973D 10.1002/ange.201612331 10.1039/C7CC01586K 10.1016/S0022-2313(02)00445-3 10.1002/tcr.201000013 10.1039/C7CP03303F 10.1021/acs.jpclett.5b01452 10.1246/cl.170656 10.1021/cr00071a001 10.1002/anie.201108914 10.1002/ange.201507502 10.1021/cr8003983 10.1002/chem.201501178 10.1039/C5TC00987A 10.1039/c2tc00139j 10.1063/1.3582917 10.1039/C6CC09476G 10.1021/cr400568b 10.1039/C4TC01482K 10.1002/smll.201601455 10.1002/ange.201002552 10.1088/2050-6120/2/2/024007 10.1021/acsomega.7b00120 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201705862 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 6524 |
ExternalDocumentID | 29341293 10_1002_chem_201705862 CHEM201705862 |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4102-941f588f07349c94e59d16f69a40375a8ca4a645c5fb6aabf8e408fd671dd5f43 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Thu Jul 10 23:21:05 EDT 2025 Fri Jul 25 10:38:37 EDT 2025 Wed Feb 19 02:43:50 EST 2025 Tue Jul 01 02:47:57 EDT 2025 Thu Apr 24 23:08:56 EDT 2025 Wed Jan 22 16:24:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | circular dichroism chirality circularly polarized luminescence silica lanthanides |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-941f588f07349c94e59d16f69a40375a8ca4a645c5fb6aabf8e408fd671dd5f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4995-6380 |
PMID | 29341293 |
PQID | 2031323164 |
PQPubID | 986340 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1989612599 proquest_journals_2031323164 pubmed_primary_29341293 crossref_primary_10_1002_chem_201705862 crossref_citationtrail_10_1002_chem_201705862 wiley_primary_10_1002_chem_201705862_CHEM201705862 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2, 2018 |
PublicationDateYYYYMMDD | 2018-05-02 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2, 2018 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2015; 6 2015; 5 2017; 2 2013; 1 2009; 42 2015; 3 2015; 51 2017; 46 2011; 98 2010 2010; 49 122 2017; 29 2017 2017; 56 129 2012; 14 2014; 114 2016; 12 2014; 43 2014; 20 2017; 53 2016; 7 2015; 27 2014; 2 1986; 86 2002; 102 2012 2012; 51 124 2002; 100 2015; 21 2017; 56 2015 2015; 54 127 2017; 19 2016 1999; 397 2012; 24 2009; 109 2005; 34 2012; 41 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_15_2 e_1_2_2_36_1 Govan J. (e_1_2_2_20_1) 2016 e_1_2_2_23_3 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_37_1 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_14_3 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 2 start-page: 147 year: 2017 end-page: 155 publication-title: Nanoscale Horiz. – volume: 56 start-page: 12174 year: 2017 end-page: 12178 publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 7673 year: 2012 end-page: 7686 publication-title: Chem. Soc. Rev. – volume: 86 start-page: 1 year: 1986 end-page: 16 publication-title: Chem. Rev. – volume: 42 start-page: 542 year: 2009 end-page: 552 publication-title: Acc. Chem. Res. – volume: 10 start-page: 394 year: 2010 end-page: 408 publication-title: Chem. Rec. – volume: 5 start-page: 8385 year: 2015 publication-title: Sci. Rep. – volume: 29 start-page: 1606503 year: 2017 publication-title: Adv. Mater. – volume: 53 start-page: 4390 year: 2017 end-page: 4393 publication-title: Chem. Commun. – start-page: 1 year: 2016 end-page: 30 – volume: 102 start-page: 1807 year: 2002 end-page: 1850 publication-title: Chem. Rev. – volume: 34 start-page: 1048 year: 2005 end-page: 1077 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 15667 year: 2015 end-page: 15675 publication-title: Chem. Eur. J. – volume: 114 start-page: 4918 year: 2014 end-page: 4959 publication-title: Chem. Rev. – volume: 98 start-page: 162508 year: 2011 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 3445 year: 2015 end-page: 3452 publication-title: J. Phys. Chem. Lett. – volume: 12 start-page: 6495 year: 2016 end-page: 6512 publication-title: Small – volume: 397 start-page: 506 year: 1999 end-page: 508 publication-title: Nature – volume: 51 start-page: 11903 year: 2015 end-page: 11906 publication-title: Chem. Commun. – volume: 54 127 start-page: 15170 15385 year: 2015 2015 end-page: 15175 15390 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 1269 year: 2017 end-page: 1272 publication-title: Chem. Commun. – volume: 27 start-page: 1 year: 2015 end-page: 13 publication-title: Chirality – volume: 100 start-page: 97 year: 2002 end-page: 106 publication-title: J. Lumin. – volume: 43 start-page: 15321 year: 2014 end-page: 15327 publication-title: Dalton Trans. – volume: 109 start-page: 4283 year: 2009 end-page: 4374 publication-title: Chem. Rev. – volume: 56 start-page: 7010 year: 2017 end-page: 7018 publication-title: Inorg. Chem. – volume: 102 start-page: 2389 year: 2002 end-page: 2404 publication-title: Chem. Rev. – volume: 2 start-page: 9189 year: 2014 end-page: 9195 publication-title: J. Mater. Chem. C – volume: 14 start-page: 579 year: 2012 end-page: 584 publication-title: CrystEngComm – volume: 2 start-page: 024007 year: 2014 publication-title: Methods Appl. Fluoresc. – volume: 51 124 start-page: 5862 5964 year: 2012 2012 end-page: 5865 5967 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 1431 year: 2017 end-page: 1440 publication-title: ACS Omega – volume: 56 129 start-page: 2989 3035 year: 2017 2017 end-page: 2993 3039 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 6997 year: 2015 end-page: 7003 publication-title: J. Mater. Chem. C – volume: 46 start-page: 1518 year: 2017 end-page: 1521 publication-title: Chem. Lett. – volume: 24 start-page: 6216 year: 2012 end-page: 6222 publication-title: Adv. Mater. – volume: 21 start-page: 13488 year: 2015 end-page: 13500 publication-title: Chem. Eur. J. – volume: 19 start-page: 22088 year: 2017 end-page: 22093 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 10701 year: 2016 publication-title: Nat. Commun. – volume: 20 start-page: 7196 year: 2014 end-page: 7214 publication-title: Chem. Eur. J. – volume: 1 start-page: 477 year: 2013 end-page: 483 publication-title: J. Mater. Chem. C – volume: 49 122 start-page: 7006 7160 year: 2010 2010 end-page: 7009 7163 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 3384 year: 2015 end-page: 3390 publication-title: J. Mater. Chem. C – ident: e_1_2_2_39_1 doi: 10.1002/chem.201502290 – ident: e_1_2_2_42_1 doi: 10.1038/srep08385 – ident: e_1_2_2_15_2 doi: 10.1002/adma.201606503 – ident: e_1_2_2_4_1 doi: 10.1039/c2cs35242g – ident: e_1_2_2_6_1 doi: 10.1038/17343 – ident: e_1_2_2_26_1 doi: 10.1021/ar800211j – ident: e_1_2_2_27_1 doi: 10.1021/cr010450p – ident: e_1_2_2_24_1 doi: 10.1039/b406082m – ident: e_1_2_2_2_1 doi: 10.1002/chir.22382 – ident: e_1_2_2_34_1 doi: 10.1039/C4DT00662C – ident: e_1_2_2_43_1 doi: 10.1039/C6NH00214E – ident: e_1_2_2_32_1 doi: 10.1039/C4TC02913E – ident: e_1_2_2_16_2 doi: 10.1002/anie.201706308 – ident: e_1_2_2_22_2 doi: 10.1038/ncomms10701 – ident: e_1_2_2_17_1 doi: 10.1002/anie.201002552 – ident: e_1_2_2_25_1 doi: 10.1021/cr010288q – ident: e_1_2_2_14_2 doi: 10.1002/anie.201612331 – ident: e_1_2_2_29_1 doi: 10.1039/C5CC04283F – ident: e_1_2_2_31_1 doi: 10.1021/acs.inorgchem.7b00611 – ident: e_1_2_2_36_1 doi: 10.1002/chem.201400387 – ident: e_1_2_2_18_1 doi: 10.1002/adma.201202227 – ident: e_1_2_2_37_2 doi: 10.1002/ange.201108914 – ident: e_1_2_2_23_2 doi: 10.1002/anie.201507502 – ident: e_1_2_2_41_1 doi: 10.1039/C1CE05973D – ident: e_1_2_2_14_3 doi: 10.1002/ange.201612331 – ident: e_1_2_2_45_1 doi: 10.1039/C7CC01586K – ident: e_1_2_2_30_1 doi: 10.1016/S0022-2313(02)00445-3 – ident: e_1_2_2_5_1 doi: 10.1002/tcr.201000013 – ident: e_1_2_2_12_1 doi: 10.1039/C7CP03303F – ident: e_1_2_2_11_1 doi: 10.1021/acs.jpclett.5b01452 – ident: e_1_2_2_40_1 doi: 10.1246/cl.170656 – ident: e_1_2_2_1_1 doi: 10.1021/cr00071a001 – ident: e_1_2_2_37_1 doi: 10.1002/anie.201108914 – ident: e_1_2_2_23_3 doi: 10.1002/ange.201507502 – ident: e_1_2_2_35_1 doi: 10.1021/cr8003983 – ident: e_1_2_2_10_1 doi: 10.1002/chem.201501178 – ident: e_1_2_2_28_1 doi: 10.1039/C5TC00987A – ident: e_1_2_2_38_1 doi: 10.1039/c2tc00139j – ident: e_1_2_2_7_1 doi: 10.1063/1.3582917 – ident: e_1_2_2_19_1 doi: 10.1039/C6CC09476G – ident: e_1_2_2_9_1 doi: 10.1021/cr400568b – ident: e_1_2_2_13_1 – ident: e_1_2_2_33_1 doi: 10.1039/C4TC01482K – ident: e_1_2_2_8_1 doi: 10.1002/smll.201601455 – start-page: 1 volume-title: Nanoscience: Volume 3, Vol. 3 year: 2016 ident: e_1_2_2_20_1 – ident: e_1_2_2_21_1 – ident: e_1_2_2_17_2 doi: 10.1002/ange.201002552 – ident: e_1_2_2_3_1 doi: 10.1088/2050-6120/2/2/024007 – ident: e_1_2_2_44_1 doi: 10.1021/acsomega.7b00120 |
SSID | ssj0009633 |
Score | 2.4692833 |
Snippet | Recently, circularly polarized luminescence (CPL)‐active systems have become a very hot and interesting subject in chirality‐ and optics‐related areas. The... Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6519 |
SubjectTerms | Chemistry Chirality Circular dichroism circularly polarized luminescence Dichroism Encapsulation Europium Europium compounds Inorganic materials lanthanides Luminescence Nanofibers Nanoparticles Optical activity Optics Oxides Silica Silicon dioxide |
Title | Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201705862 https://www.ncbi.nlm.nih.gov/pubmed/29341293 https://www.proquest.com/docview/2031323164 https://www.proquest.com/docview/1989612599 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hXuAC5R1YkJGQOKXdJONszA2tWhbUl_qQeotsx-5GLdlqk5XK_no88SZlWyEkuESJ7Ch-zNjfODPfAHwsIq7ioaVzN5WGqDUPFS9kmCYotSUrt43i3z9IJ2f4_Zyf_xbF7_kh-gM30ox2vSYFl6reviUNdX2iSHKig8naRZgctggVHd_yRznp8rnkcRQSB2vH2jiMt9dfX9-V7kHNdeTabj27T0B2jfYeJ5dbi0Zt6eUdPsf_6dUmPF7hUvbFC9JTeGCqZ_Bw3KWDew4343Le-qxe_WRHZA-XS1OwvcUP8pvXtD4wClVh3yqfKEqzfdl48f7MdiotnTlOfnfVBftKvWZ7bk6nrmJh2OGNu9asrNh4Ws5dM05KOktkk1nd1C_gbHfndDwJV2kbQo0OroQCI8uzzLrFA4UWaLgootSmQiIl3JWZlihT5JpblUqpbGZwmNkiHUVFwS0mL2GjmlXmNTBhk3ikrRJ6pJEr67bOOJIiw9gmBhEDCLtpy_WK05xSa1zlno05zmk88348A_jU17_2bB5_rDnopCBfaXXtSonoMnEWZgAf-mI3D_STRVZmtqhz8kEj1ChEAK-89PSfctAKCV8FELcy8Jc25MSK0T-9-ZeX3sIjd5-1HprxADaa-cK8cyiqUe9bTfkF0f4T5g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9QwDLfQeBgvfA1YYbBMmsRTt2vr9Bre0GnjBncbgk3irUrShFWMHrr2pLG_nri5djomNIm9VGqTqvmwHdu1fwbYLSKu4oElv5tKQ9Sah4oXMkwTlNqSldtm8U-P0_EZfvzGu2hCyoXx-BC9w404o5XXxODkkN6_Rg11k6JUcsKDyUgK36ey3q1V9eUaQcrRl68mj8OQUFg73MZBvL_6_uq5dEPZXNVd28Pn8BGobtg-5uTH3qJRe_rqL0THO83rMTxcqqbsvaelJ3DPVE9hfdRVhNuAy1E5b8NWL36zz2QSl1emYJPFTwqd1yQiGGWrsKPK14rSbCobT-Hv2EGlpbPIKfSu-s4-0LTZxG3ruetYGHZy6a41Kys2Oi_nbhhfS3InsvGsbupncHZ4cDoah8vKDaFGp7GEAiPLs8w6-YFCCzRcFFFqUyGRau7KTEuUKXLNrUqlVDYzOMhskQ6jouAWk-ewVs0qswlM2CQeaquEHmrkyrrTM46kyDC2iUHEAMJu33K9hDWn6hoXuQdkjnNaz7xfzwDe9v1_eUCPf_bc6sggXzJ27VoJ6zJxRmYAO32z2wf6zyIrM1vUOYWhkeIoRAAvPPn0n3LaFZKKFUDcEsEtY8gJGKO_e_k_L23D-vh0OsknR8efXsED9zxrAzbjLVhr5gvz2ilVjXrTss0fCWgYAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkYAL70egFCMhcUq7ScZeuze07bKFbamASr1FtmPTiJKtNlmp7a_HE2_SLgghwSVSYkfxY8b-xpn5hpA3RcJ0OnB47qZ5DMawWLNCxTwDZRxauW0U__4BnxzBh2N2fC2KP_BD9AduqBnteo0Kfla4rSvSUN8njCRHOhiBi_BN4AOBcr3z-YpAyotXSCYPwxhJWDvaxkG6tfr-6rb0G9Zcha7t3jO-R1TX6uBy8n1z0ehNc_kLoeP_dOs-ubsEpvRdkKQH5IatHpLboy4f3CNyPirnrdPq6QU9RIO4vLQFnS5-oOO8wQWCYqwK3atCpihD91UT5Hub7lZGeXscHe-qb_Q99ppO_aSe-IqFpZ_O_bWmZUVHJ-XcN-NLiYeJdDKrm_oxORrvfh1N4mXehtiAxyuxhMQxIZxfPUAaCZbJIuGOSwWYcVcJo0BxYIY5zZXSTlgYCFfwYVIUzEH2hKxVs8o-I1S6LB0ap6UZGmDa-b0zTZQUkLrMAkBE4m7acrMkNcfcGqd5oGNOcxzPvB_PiLzt658FOo8_1lzvpCBfqnXtS5HpMvMmZkRe98V-HvAvi6rsbFHn6ISGsFHKiDwN0tN_ymMrQIAVkbSVgb-0IUdajP7u-b-89IrcOtwZ59O9g48vyB3_WLTemuk6WWvmC_vSI6pGb7RK8xPFdxa5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circularly+Polarized+Luminescence+from+Inorganic+Materials%3A+Encapsulating+Guest+Lanthanide+Oxides+in+Chiral+Silica+Hosts&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Sugimoto%2C+Masumi&rft.au=Liu%2C+Xin-Ling&rft.au=Tsunega%2C+Seiji&rft.au=Nakajima%2C+Erika&rft.date=2018-05-02&rft.issn=1521-3765&rft.eissn=1521-3765&rft.volume=24&rft.issue=25&rft.spage=6519&rft_id=info:doi/10.1002%2Fchem.201705862&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |