Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries
Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to th...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 25; pp. e2000732 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries.
An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode. |
---|---|
AbstractList | Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g
, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries. Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries. Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g −1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode. Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. |
Author | Yin, Jian Schwingenschlögl, Udo Zhang, Wenli Altunkaya, Mustafa Chen, Cailing Emwas, Abdul‐Hamid Alshareef, Husam N. Sun, Minglei Han, Yu Wang, Wenxi |
Author_xml | – sequence: 1 givenname: Wenli orcidid: 0000-0002-6781-2826 surname: Zhang fullname: Zhang, Wenli organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Jian surname: Yin fullname: Yin, Jian organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Minglei surname: Sun fullname: Sun, Minglei organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Wenxi surname: Wang fullname: Wang, Wenxi organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Cailing surname: Chen fullname: Chen, Cailing organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Mustafa surname: Altunkaya fullname: Altunkaya, Mustafa organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Abdul‐Hamid surname: Emwas fullname: Emwas, Abdul‐Hamid organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Yu surname: Han fullname: Han, Yu organization: King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Udo surname: Schwingenschlögl fullname: Schwingenschlögl, Udo organization: King Abdullah University of Science and Technology (KAUST) – sequence: 10 givenname: Husam N. orcidid: 0000-0001-5029-2142 surname: Alshareef fullname: Alshareef, Husam N. email: husam.alshareef@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32410270$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQhy1URLeFK0dkiQuXLP6TODa3ZbdApQKVSs-W15mkrpJ4sR2hnOAReEaeBK-2BakSQnOYw3zfaDS_E3Q0-hEQek7JkhLCXptmMEtGGCGk5uwRWtCK0aIkqjpCC6J4VShRymN0EuNtZpQg4gk65qykhNVkgb5vXACb8OUcfD9HF7Fv8dW0gzD4HuzUQ3yDVyO-7lMwN667wWdNB79-_PzkUvAdjHjjd27s8FWeJ-jmvb82YevHrPkGIm59wJc-mRjdNGTzPI_empQgOIhP0ePW9BGe3fVTdP3u7Mv6Q3Hx-f35enVR2P2lhbQNs7bksq6UqAzf1qKFEpSQHBi0qmmkJdy2nIiKC1MraipljOWGVKqWip-iV4e9u-C_ThCTHly00PdmBD9FzUqSi0rJM_ryAXrrpzDm6zJFBWVCijpTL-6oaTtAo3fBDSbM-v61GSgPgA0-xgCtti6Z5PyYP-V6TYneJ6j3Ceo_CWZt-UC73_xPQR2Eb66H-T-0Xm0-rv66vwGxfa-i |
CitedBy_id | crossref_primary_10_1016_j_ces_2021_116709 crossref_primary_10_1002_smll_202203288 crossref_primary_10_1002_aenm_202200113 crossref_primary_10_1016_j_carbon_2022_02_039 crossref_primary_10_1002_smll_202004369 crossref_primary_10_1016_j_jcis_2024_01_021 crossref_primary_10_1002_adfm_202304753 crossref_primary_10_1007_s11431_021_1835_8 crossref_primary_10_1021_acsami_2c04030 crossref_primary_10_1002_ange_202303600 crossref_primary_10_1007_s44246_024_00106_3 crossref_primary_10_1002_er_7633 crossref_primary_10_1002_adfm_202101487 crossref_primary_10_1016_j_cej_2021_131547 crossref_primary_10_1021_acsami_1c15524 crossref_primary_10_1021_acs_iecr_4c03801 crossref_primary_10_1016_j_apsusc_2024_159770 crossref_primary_10_1002_adma_202208873 crossref_primary_10_1002_adma_202407570 crossref_primary_10_1002_anie_202403023 crossref_primary_10_1002_ange_202316116 crossref_primary_10_1002_inf2_12225 crossref_primary_10_1002_smll_202107139 crossref_primary_10_1002_adfm_202406540 crossref_primary_10_1016_j_jcis_2024_04_118 crossref_primary_10_1016_S1872_5805_23_60718_8 crossref_primary_10_1016_j_matt_2021_10_017 crossref_primary_10_1016_j_cej_2020_127697 crossref_primary_10_1002_smll_202207423 crossref_primary_10_1007_s44246_022_00009_1 crossref_primary_10_1021_acsaelm_4c00191 crossref_primary_10_1039_D2QI00695B crossref_primary_10_1002_bte2_20230009 crossref_primary_10_1002_adfm_202109899 crossref_primary_10_1002_aenm_202401914 crossref_primary_10_1016_j_jpowsour_2022_231043 crossref_primary_10_1016_j_gee_2022_02_013 crossref_primary_10_1002_inf2_12231 crossref_primary_10_1021_acs_energyfuels_2c02416 crossref_primary_10_1002_aenm_202302055 crossref_primary_10_1002_adfm_202208966 crossref_primary_10_1016_j_est_2024_114192 crossref_primary_10_1039_D3TA07207J crossref_primary_10_1007_s40820_022_01006_0 crossref_primary_10_1016_j_jallcom_2023_172618 crossref_primary_10_1039_D4ME00007B crossref_primary_10_1021_acsnano_3c01662 crossref_primary_10_1002_cey2_388 crossref_primary_10_1002_adfm_202007158 crossref_primary_10_1063_5_0161658 crossref_primary_10_1016_j_carbon_2024_119200 crossref_primary_10_1088_2053_1583_ac26dc crossref_primary_10_1002_adma_202406794 crossref_primary_10_1038_s41467_023_36890_6 crossref_primary_10_1039_D2TA00608A crossref_primary_10_1002_smtd_202101130 crossref_primary_10_1002_adma_202410132 crossref_primary_10_1002_smtd_202101131 crossref_primary_10_1039_D0SE01575J crossref_primary_10_1016_j_coco_2020_100447 crossref_primary_10_1016_j_apsusc_2023_158491 crossref_primary_10_1039_D0SC06894B crossref_primary_10_1039_D4CP01415D crossref_primary_10_1016_j_est_2024_114256 crossref_primary_10_1016_j_nanoen_2023_108913 crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1002_smll_202300663 crossref_primary_10_1039_D1TA07350H crossref_primary_10_1039_D0TA10276H crossref_primary_10_1002_adfm_202109969 crossref_primary_10_1007_s12274_021_3324_0 crossref_primary_10_1016_j_ccr_2024_215695 crossref_primary_10_1002_ange_202403023 crossref_primary_10_1021_acsami_2c13886 crossref_primary_10_1002_aenm_202101928 crossref_primary_10_1002_anie_202303600 crossref_primary_10_1360_nso_20220032 crossref_primary_10_1007_s10854_023_11075_5 crossref_primary_10_1021_acsnano_0c10624 crossref_primary_10_1002_adfm_202316207 crossref_primary_10_1016_j_jcis_2023_06_069 crossref_primary_10_1039_D0CP04388E crossref_primary_10_1016_j_carbon_2021_11_021 crossref_primary_10_1016_j_carbon_2022_07_042 crossref_primary_10_1002_smll_202200437 crossref_primary_10_1016_j_nanoen_2020_105345 crossref_primary_10_1002_inf2_12272 crossref_primary_10_1002_smll_202006566 crossref_primary_10_1016_j_marpolbul_2023_116011 crossref_primary_10_1021_acsami_2c13533 crossref_primary_10_1007_s11706_023_0651_y crossref_primary_10_1002_cssc_202401311 crossref_primary_10_1002_smsc_202200045 crossref_primary_10_1007_s10008_023_05642_3 crossref_primary_10_1002_adma_202403033 crossref_primary_10_1016_j_rser_2021_111161 crossref_primary_10_1016_j_cej_2024_151855 crossref_primary_10_1016_j_jcis_2021_06_158 crossref_primary_10_1002_adma_202208096 crossref_primary_10_1063_5_0086874 crossref_primary_10_1002_adfm_202105145 crossref_primary_10_1016_j_carbon_2024_118825 crossref_primary_10_1016_j_cej_2024_155880 crossref_primary_10_1016_j_jece_2023_110736 crossref_primary_10_1016_j_jelechem_2024_118178 crossref_primary_10_1002_aenm_202100856 crossref_primary_10_1016_j_fuel_2023_128007 crossref_primary_10_1002_cey2_344 crossref_primary_10_1002_celc_202001143 crossref_primary_10_1002_advs_202308040 crossref_primary_10_1002_smll_202108057 crossref_primary_10_1021_acsnano_0c09290 crossref_primary_10_1021_acsami_1c23665 crossref_primary_10_1021_acs_est_3c07254 crossref_primary_10_1002_admt_202202187 crossref_primary_10_1002_eem2_12458 crossref_primary_10_1021_acsanm_3c01262 crossref_primary_10_1073_pnas_2307477120 crossref_primary_10_1016_j_desal_2022_115919 crossref_primary_10_1021_acs_iecr_2c00878 crossref_primary_10_1002_adfm_202305795 crossref_primary_10_1021_acs_nanolett_4c01958 crossref_primary_10_1016_j_cej_2022_134821 crossref_primary_10_1039_D1TA10677E crossref_primary_10_1039_D3CC02513F crossref_primary_10_1002_adma_202104148 crossref_primary_10_1002_ange_202301396 crossref_primary_10_1002_smll_202308858 crossref_primary_10_1016_j_matre_2024_100268 crossref_primary_10_3390_en17225768 crossref_primary_10_1016_j_carbon_2021_03_067 crossref_primary_10_1002_anie_202011484 crossref_primary_10_1002_aenm_202101343 crossref_primary_10_1002_anie_202316116 crossref_primary_10_1016_j_cej_2024_154761 crossref_primary_10_1002_smll_202300440 crossref_primary_10_1007_s44246_024_00101_8 crossref_primary_10_3390_batteries9070363 crossref_primary_10_1007_s12274_021_3852_7 crossref_primary_10_1039_D3TA05558B crossref_primary_10_1038_s41427_021_00327_7 crossref_primary_10_1002_ange_202011484 crossref_primary_10_1002_smll_202406630 crossref_primary_10_1039_D4EE00438H crossref_primary_10_1016_j_jechem_2020_08_005 crossref_primary_10_1016_j_cej_2021_133215 crossref_primary_10_1039_D4TA08291E crossref_primary_10_1007_s40843_022_2419_4 crossref_primary_10_1016_j_mtnano_2022_100217 crossref_primary_10_1016_j_jclepro_2023_138201 crossref_primary_10_1016_j_diamond_2022_109481 crossref_primary_10_1016_j_est_2024_111827 crossref_primary_10_1021_acsnano_1c02275 crossref_primary_10_1007_s11705_022_2197_4 crossref_primary_10_1039_D2QM00443G crossref_primary_10_1002_advs_202401292 crossref_primary_10_1016_j_cej_2021_130882 crossref_primary_10_1002_cey2_390 crossref_primary_10_1039_D1EE03214C crossref_primary_10_1039_D1TA07310A crossref_primary_10_1039_D3QI00056G crossref_primary_10_1002_cey2_157 crossref_primary_10_1021_acsami_1c24275 crossref_primary_10_1021_acsami_2c14206 crossref_primary_10_1002_anie_202301396 crossref_primary_10_1002_bte2_20230031 crossref_primary_10_1002_adma_202405989 crossref_primary_10_1016_j_carbon_2021_08_012 crossref_primary_10_1016_j_carbon_2021_08_015 crossref_primary_10_3390_nano12193530 crossref_primary_10_1002_aenm_202101650 crossref_primary_10_1016_j_jcis_2023_06_210 crossref_primary_10_1016_j_apenergy_2023_120691 crossref_primary_10_34133_research_0209 crossref_primary_10_1016_j_cej_2021_134321 crossref_primary_10_1007_s40820_023_01318_9 crossref_primary_10_1016_j_apsusc_2021_149675 crossref_primary_10_1002_cnl2_118 crossref_primary_10_1007_s40843_022_2073_y crossref_primary_10_1002_smtd_202300714 crossref_primary_10_3390_nanoenergyadv2040016 crossref_primary_10_1039_D1TA03811G crossref_primary_10_1007_s12598_024_02788_5 crossref_primary_10_1016_j_jenvman_2024_120823 crossref_primary_10_1002_cssc_202300646 crossref_primary_10_1021_acsaem_2c02965 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1002_aenm_202101413 crossref_primary_10_1002_aenm_202100201 crossref_primary_10_1016_j_carbon_2021_04_078 crossref_primary_10_1016_j_susmat_2023_e00672 crossref_primary_10_1007_s40820_022_00791_y crossref_primary_10_1021_acsaem_2c03019 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1002_smll_202302537 crossref_primary_10_1007_s11426_022_1442_4 |
Cites_doi | 10.1002/adma.201900429 10.1021/jp056517k 10.1016/j.nanoen.2015.10.015 10.1002/adfm.201903496 10.1002/adma.201800804 10.1021/acs.nanolett.5b03667 10.1016/j.enchem.2019.100012 10.1021/jacs.8b02178 10.1038/nchem.2085 10.1021/jacs.5b06809 10.1038/natrevmats.2018.13 10.1002/aenm.201702545 10.1002/aenm.201903280 10.1126/sciadv.aav7412 10.1002/aenm.201801149 10.1002/adfm.201903641 10.1002/adma.201702268 10.1002/adma.201700104 10.1016/0008-6223(96)00177-7 10.1039/C8TA03340D 10.1002/aenm.201600917 10.1016/j.elecom.2015.09.002 10.1002/aenm.201904045 10.1002/aenm.201501874 10.1038/s41467-018-04190-z 10.1002/aenm.201801840 10.1002/aenm.201803260 10.1016/j.carbon.2018.11.001 10.1002/adma.201505131 10.1021/acs.nanolett.8b03845 10.1002/adma.201805486 10.1039/C8EE03014F 10.1038/s41560-019-0388-0 10.1002/aenm.201702384 10.1002/adfm.201703857 10.1002/aenm.201900579 10.1002/anie.201913368 10.1021/nl3016957 10.1016/j.nanoen.2019.01.009 10.1021/la900923z 10.1021/acs.nanolett.9b01127 10.1016/j.jechem.2019.08.013 10.1039/C8TA06652C 10.1002/anie.201904258 10.1039/C9EE00536F 10.1016/j.nanoen.2019.06.013 10.1002/aenm.201900343 10.1002/anie.201801389 10.1002/adfm.201801989 10.1002/aenm.201802386 10.1002/adfm.201802938 10.1002/aenm.201803894 10.1002/aenm.201802042 10.1002/adma.202000505 10.1016/j.matt.2019.04.003 10.1016/j.mattod.2018.12.040 10.1039/C8TA04694H |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202000732 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 32410270 10_1002_adma_202000732 ADMA202000732 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4102-8cd2cc43875965a3b76fe4e9683e2ef9dd8c03cf306536a791a59aac3a0597893 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 06:23:38 EDT 2025 Mon Jul 14 07:18:53 EDT 2025 Mon Jul 21 05:23:35 EDT 2025 Tue Jul 01 02:32:47 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:34:59 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Keywords | active sites anodes materials potassium-ion batteries carbon nitrogen doping |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-8cd2cc43875965a3b76fe4e9683e2ef9dd8c03cf306536a791a59aac3a0597893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5029-2142 0000-0002-6781-2826 |
PMID | 32410270 |
PQID | 2416126867 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2404041883 proquest_journals_2416126867 pubmed_primary_32410270 crossref_citationtrail_10_1002_adma_202000732 crossref_primary_10_1002_adma_202000732 wiley_primary_10_1002_adma_202000732_ADMA202000732 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2009; 25 2018; 28 2019; 9 2019; 4 2018; 140 2019; 5 2015; 18 2019; 31 2019; 1 2019; 57 2019; 12 2019; 58 2019; 19 2020; 59 2006; 110 2017; 29 2020; 10 2012; 12 2015; 7 1996; 34 2019; 143 2018; 6 2016; 6 2018; 9 2018; 18 2018; 8 2018; 3 2019; 62 2015; 60 2015; 137 2020 2019; 23 2019; 29 2018; 30 2020; 43 2016; 28 2018; 57 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_56_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_54_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 Jian Z. (e_1_2_4_9_1) 2016; 6 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_55_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_57_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – volume: 43 start-page: 129 year: 2020 publication-title: J. Energy Chem. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 110 start-page: 6110 year: 2006 publication-title: J. Phys. Chem. B – volume: 143 start-page: 138 year: 2019 publication-title: Carbon – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 start-page: 893 year: 2019 publication-title: Matter – volume: 140 start-page: 7127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 25 year: 2009 publication-title: Langmuir – volume: 4 start-page: 495 year: 2019 publication-title: Nat. Energy – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 172 year: 2015 publication-title: Electrochem. Commun. – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 18 start-page: 7407 year: 2018 publication-title: Nano Lett. – year: 2020 publication-title: Adv. Energy Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 57 start-page: 4687 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 3 year: 2018 publication-title: Nat. Rev. Mater. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – year: 2020 publication-title: Adv. Mater. – volume: 19 start-page: 4965 year: 2019 publication-title: Nano Lett. – volume: 34 start-page: 193 year: 1996 publication-title: Carbon – volume: 1 year: 2019 publication-title: EnergyChem – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 205 year: 2015 publication-title: Nano Energy – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 12 start-page: 3783 year: 2012 publication-title: Nano Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 28 start-page: 1981 year: 2016 publication-title: Adv. Mater. – volume: 15 start-page: 7671 year: 2015 publication-title: Nano Lett. – volume: 23 start-page: 87 year: 2019 publication-title: Mater. Today – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 7 start-page: 19 year: 2015 publication-title: Nat. Chem. – volume: 62 start-page: 853 year: 2019 publication-title: Nano Energy – volume: 57 start-page: 728 year: 2019 publication-title: Nano Energy – volume: 59 start-page: 4448 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 2030 year: 2019 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1605 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_4_23_1 doi: 10.1002/adma.201900429 – ident: e_1_2_4_39_1 doi: 10.1021/jp056517k – ident: e_1_2_4_53_1 doi: 10.1016/j.nanoen.2015.10.015 – ident: e_1_2_4_27_1 doi: 10.1002/adfm.201903496 – ident: e_1_2_4_48_1 doi: 10.1002/adma.201800804 – ident: e_1_2_4_13_1 doi: 10.1021/acs.nanolett.5b03667 – ident: e_1_2_4_3_1 doi: 10.1016/j.enchem.2019.100012 – ident: e_1_2_4_28_1 doi: 10.1021/jacs.8b02178 – ident: e_1_2_4_1_1 doi: 10.1038/nchem.2085 – ident: e_1_2_4_12_1 doi: 10.1021/jacs.5b06809 – ident: e_1_2_4_2_1 doi: 10.1038/natrevmats.2018.13 – ident: e_1_2_4_43_1 doi: 10.1002/aenm.201702545 – ident: e_1_2_4_51_1 doi: 10.1002/aenm.201903280 – ident: e_1_2_4_6_1 doi: 10.1126/sciadv.aav7412 – ident: e_1_2_4_18_1 doi: 10.1002/aenm.201801149 – ident: e_1_2_4_14_1 doi: 10.1002/adfm.201903641 – ident: e_1_2_4_33_1 doi: 10.1002/adma.201702268 – ident: e_1_2_4_24_1 doi: 10.1002/adma.201700104 – ident: e_1_2_4_45_1 doi: 10.1016/0008-6223(96)00177-7 – ident: e_1_2_4_36_1 doi: 10.1039/C8TA03340D – ident: e_1_2_4_41_1 doi: 10.1002/aenm.201600917 – ident: e_1_2_4_11_1 doi: 10.1016/j.elecom.2015.09.002 – ident: e_1_2_4_29_1 doi: 10.1002/aenm.201904045 – volume: 6 start-page: 1501847 year: 2016 ident: e_1_2_4_9_1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501874 – ident: e_1_2_4_31_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_4_46_1 doi: 10.1002/aenm.201801840 – ident: e_1_2_4_10_1 doi: 10.1002/aenm.201803260 – ident: e_1_2_4_22_1 doi: 10.1016/j.carbon.2018.11.001 – ident: e_1_2_4_42_1 doi: 10.1002/adma.201505131 – ident: e_1_2_4_47_1 doi: 10.1021/acs.nanolett.8b03845 – ident: e_1_2_4_52_1 doi: 10.1002/adma.201805486 – ident: e_1_2_4_17_1 doi: 10.1039/C8EE03014F – ident: e_1_2_4_5_1 doi: 10.1038/s41560-019-0388-0 – ident: e_1_2_4_7_1 doi: 10.1002/aenm.201702384 – ident: e_1_2_4_8_1 doi: 10.1002/adfm.201703857 – ident: e_1_2_4_19_1 doi: 10.1002/aenm.201900579 – ident: e_1_2_4_32_1 doi: 10.1002/anie.201913368 – ident: e_1_2_4_15_1 doi: 10.1021/nl3016957 – ident: e_1_2_4_21_1 doi: 10.1016/j.nanoen.2019.01.009 – ident: e_1_2_4_40_1 doi: 10.1021/la900923z – ident: e_1_2_4_25_1 doi: 10.1021/acs.nanolett.9b01127 – ident: e_1_2_4_56_1 doi: 10.1016/j.jechem.2019.08.013 – ident: e_1_2_4_37_1 doi: 10.1039/C8TA06652C – ident: e_1_2_4_49_1 doi: 10.1002/anie.201904258 – ident: e_1_2_4_30_1 doi: 10.1039/C9EE00536F – ident: e_1_2_4_55_1 doi: 10.1016/j.nanoen.2019.06.013 – ident: e_1_2_4_16_1 doi: 10.1002/aenm.201900343 – ident: e_1_2_4_54_1 doi: 10.1002/anie.201801389 – ident: e_1_2_4_26_1 doi: 10.1002/adfm.201801989 – ident: e_1_2_4_35_1 doi: 10.1002/aenm.201802386 – ident: e_1_2_4_4_1 doi: 10.1002/adfm.201802938 – ident: e_1_2_4_20_1 doi: 10.1002/aenm.201803894 – ident: e_1_2_4_38_1 doi: 10.1002/aenm.201802042 – ident: e_1_2_4_50_1 doi: 10.1002/adma.202000505 – ident: e_1_2_4_57_1 doi: 10.1016/j.matt.2019.04.003 – ident: e_1_2_4_44_1 doi: 10.1016/j.mattod.2018.12.040 – ident: e_1_2_4_34_1 doi: 10.1039/C8TA04694H |
SSID | ssj0009606 |
Score | 2.6691759 |
Snippet | Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is... Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2000732 |
SubjectTerms | active sites Alkali metals Anode effect anodes materials Carbon Carbonization Doping Ion adsorption Materials science Melamine Nitrogen nitrogen doping Performance enhancement Potassium potassium‐ion batteries Pyrolysis Rechargeable batteries Strategy |
Title | Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000732 https://www.ncbi.nlm.nih.gov/pubmed/32410270 https://www.proquest.com/docview/2416126867 https://www.proquest.com/docview/2404041883 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTnBoofQnQCtXqtRTIGs7js1txY9oJRBquxK3yHGcCpUmaDc5wAUegWfsk3RsZwPbqqrU3pLYkzjOzPibePwZ4J1brikYF7GsaBpzzmxcSM1iVeksMTSRSvtsi1NxPOEfz9PzR6v4Az_E8MPNWYb3187AdTHbfSAN1aXnDaJ-ssk5YZew5VDRpwf-KAfPPdkeS2MluJyzNiZ0d1F8cVT6DWouIlc_9Bw9BT1vdMg4-bbTtcWOufmFz_F_3moNnvS4lIyDIq3Dkq2fweojtsINuA3ukZxdTxtPZEKainzurtC3hz127WyPjGsyuWzRg2HQTw7Lr_bH3f3pRTttUFHJgV-dRXpG3Gsnv6-nRVOjWFPaGUEETc6aFgH9RfcdJT9gUWAAxYD-OUyODr_sH8f9_g2x4SPnaE1JjeEMQyIlUs2KTFSWWyUks9RWqiylSZip3Ob1TOhMjXSqtDZMI-bLEEi9gOW6qe0rIFlBs4JRYw3eQSCks7SsJC-tknhdyAji-ffLTU9u7vbYuMwDLTPNXcfmQ8dG8H6ofxVoPf5Yc3uuDnlv3rOcurCQCimyCN4OxWiYbrZF17bpXB30j3wkJYvgZVCj4VGIYrGDsiQC6pXhL23Ixwcn4-Fs81-EtmDFHYckt21YbqedfY1wqi3eeJP5CWYnF1s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMCBYyExClt1nYcp7dVt9UW2lUFXYlb5DgOqihJtZscygUeoc_YJ-nYTlIWhJDgGMeTOM7M-Bv_fAPwxh7XFIyLUJY0DjlnJsylYmFaqiTSNJKpcrstZmI65-8-xf1uQnsWxvNDDBNu1jKcv7YGbiekt65ZQ1XhiIOoW21CL3zTpvW29PmTD9cMUhagO7o9Foep4LLnbYzo1qr86rj0G9hcxa5u8Nm7B3nfbL_n5Mtm2-Sb-tsvjI7_9V334W4HTcnY69IDuGGqh3DnJ8LCR_Dde0hydL6oHZcJqUvysT1D9-7T7JrlNhlXZH7aoBPDuJ_sFp_N5Y-L2UmzqFFXycQd0CIdKe65ld9Ri7yuUKwuzJIgiCZHdYOY_qT9ipL7eMuTgGJM_xjme7vHO9OwS-EQaj6yvlYXVGvOMCpKRaxYnojScJMKyQw1ZVoUUkdMlzZ_PRMqSUcqTpXSTCHsSxBLPYG1qq7MUyBJTpOcUW00PkEgqjO0KCUvTCqxXMgAwv4HZrrjN7dpNk4zz8xMM9ux2dCxAbwd6p95Zo8_1tzo9SHrLHyZURsZUiFFEsDr4Tbapl1wUZWpW1sHXSQfSckCWPd6NLwKgSx2UBIFQJ02_KUN2XhyOB6unv2L0Cu4NT0-PMgO9mfvn8NtW-73vG3AWrNozQtEV03-0tnPFdLjG3c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQKyE4lH8IFDASEqe0WdtxbG6rblctP6sVsFJvkWM7qKJNVrvJob20j8Az8iSM7WzaBSEkOMb2JI4zM_4mtr9B6LU7rskp47EoSRozRm1cCEVjWaos0SQRUvndFhN-MGPvjtKja6f4Az9E_8PNWYb3187A56bcvSINVcbzBhG_2AROeJPxRLrkDaNPVwRSDp97tj2axpIzsaJtTMjuuvz6tPQb1lyHrn7uGd9BatXrsOXk207bFDv6_BdCx_95rbtoqwOmeBg06R66Yav76PY1usIH6CL4Rzw9W9SeyQTXJf7czsG5hyS7dvkWDys8O2nAhUHUj_fNV_vj8vvkuFnUoKl45I9n4Y4S98zJ76lFUVcgVhu7xACh8bRuANEft6cgeQhVgQIUIvqHaDbe_7J3EHcJHGLNBs7TakO0ZhRiIslTRYuMl5ZZyQW1xJbSGKETqkuXvZ5ylcmBSqVSmioAfRkgqUdoo6or-wThrCBZQYm2Gu7AAdNZYkrBjJUCyrmIULz6frnu2M1dko2TPPAyk9wNbN4PbITe9O3ngdfjjy23V-qQd_a9zImLCwkXPIvQq74aLNMtt6jK1q1rAw6SDYSgEXoc1Kh_FMBYGKAsiRDxyvCXPuTD0cdhf_X0X4ReopvT0Tj_cDh5_wzdcsVhw9s22mgWrX0O0KopXnjr-Qlnahom |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Pyrolysis+of+Supermolecules%3A+An+Ultrahigh+Edge%E2%80%90Nitrogen+Doping+Strategy+of+Carbon+Anodes+for+Potassium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Wenli&rft.au=Yin%2C+Jian&rft.au=Sun%2C+Minglei&rft.au=Wang%2C+Wenxi&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202000732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000732 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |