Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries

Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to th...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 25; pp. e2000732 - n/a
Main Authors Zhang, Wenli, Yin, Jian, Sun, Minglei, Wang, Wenxi, Chen, Cailing, Altunkaya, Mustafa, Emwas, Abdul‐Hamid, Han, Yu, Schwingenschlögl, Udo, Alshareef, Husam N.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.
AbstractList Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.
Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge-nitrogen doping, which effectively enhances the K-ion adsorption energy. It remains challenging to achieve high edge-nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge-nitrogen doping for high-performance PIBs. Specifically, self-assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid-melamine supermolecule. The obtained 3D nitrogen-doped turbostratic carbon (3D-NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge-nitrogen-doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D-NTCs with remarkable performances as PIB anodes. The 3D-NTC anode displays a high capacity of 473 mAh g-1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali-metal-ion batteries.
Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g −1 , robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries.
Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries. An ultrahigh edge‐nitrogen‐doping strategy is presented. 3D nitrogen‐doped turbostratic carbon (3D‐NTC) with an ultrahigh edge‐nitrogen‐doping level of 16.8 at% is prepared through a novel, general direct supermolecule pyrolysis strategy. Highly edge‐nitrogen‐doped 3D‐NTC shows remarkable performance toward potassium‐ion storage. A high‐performance potassium‐ion full battery is assembled using a 3D‐NTC anode and perylenetetracarboxylic dianhydride as the cathode.
Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is edge‐nitrogen doping, which effectively enhances the K‐ion adsorption energy. It remains challenging to achieve high edge‐nitrogen doping due to the difficulty in controlling the nitrogen dopant configuration. Herein, a new synthesis strategy is proposed to prepare carbon anodes with ultrahigh edge‐nitrogen doping for high‐performance PIBs. Specifically, self‐assembled supermolecule precursors derived from pyromellitic acid and melamine are directly pyrolyzed. During the pyrolysis process, the amidation and imidization reactions between pyromellitic acid and melamine before carbonization enable the successful carbonization of pyromellitic acid–melamine supermolecule. The obtained 3D nitrogen‐doped turbostratic carbon (3D‐NTC) possesses a 3D framework composed of carbon nanosheets, turbostratic crystalline structure, and an ultrahigh edge‐nitrogen‐doping level up to 16.8 at% (73.7% of total 22.8 at% nitrogen doping). These features endow 3D‐NTCs with remarkable performances as PIB anodes. The 3D‐NTC anode displays a high capacity of 473 mAh g−1, robust rate capability, and a long cycle life of 500 cycles with a high capacity retention of 93.1%. This new strategy will boost the development of carbon anodes for rechargeable alkali‐metal‐ion batteries.
Author Yin, Jian
Schwingenschlögl, Udo
Zhang, Wenli
Altunkaya, Mustafa
Chen, Cailing
Emwas, Abdul‐Hamid
Alshareef, Husam N.
Sun, Minglei
Han, Yu
Wang, Wenxi
Author_xml – sequence: 1
  givenname: Wenli
  orcidid: 0000-0002-6781-2826
  surname: Zhang
  fullname: Zhang, Wenli
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Jian
  surname: Yin
  fullname: Yin, Jian
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Minglei
  surname: Sun
  fullname: Sun, Minglei
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Wenxi
  surname: Wang
  fullname: Wang, Wenxi
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Cailing
  surname: Chen
  fullname: Chen, Cailing
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Mustafa
  surname: Altunkaya
  fullname: Altunkaya, Mustafa
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Abdul‐Hamid
  surname: Emwas
  fullname: Emwas, Abdul‐Hamid
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Udo
  surname: Schwingenschlögl
  fullname: Schwingenschlögl, Udo
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  email: husam.alshareef@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32410270$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQhy1URLeFK0dkiQuXLP6TODa3ZbdApQKVSs-W15mkrpJ4sR2hnOAReEaeBK-2BakSQnOYw3zfaDS_E3Q0-hEQek7JkhLCXptmMEtGGCGk5uwRWtCK0aIkqjpCC6J4VShRymN0EuNtZpQg4gk65qykhNVkgb5vXACb8OUcfD9HF7Fv8dW0gzD4HuzUQ3yDVyO-7lMwN667wWdNB79-_PzkUvAdjHjjd27s8FWeJ-jmvb82YevHrPkGIm59wJc-mRjdNGTzPI_empQgOIhP0ePW9BGe3fVTdP3u7Mv6Q3Hx-f35enVR2P2lhbQNs7bksq6UqAzf1qKFEpSQHBi0qmmkJdy2nIiKC1MraipljOWGVKqWip-iV4e9u-C_ThCTHly00PdmBD9FzUqSi0rJM_ryAXrrpzDm6zJFBWVCijpTL-6oaTtAo3fBDSbM-v61GSgPgA0-xgCtti6Z5PyYP-V6TYneJ6j3Ceo_CWZt-UC73_xPQR2Eb66H-T-0Xm0-rv66vwGxfa-i
CitedBy_id crossref_primary_10_1016_j_ces_2021_116709
crossref_primary_10_1002_smll_202203288
crossref_primary_10_1002_aenm_202200113
crossref_primary_10_1016_j_carbon_2022_02_039
crossref_primary_10_1002_smll_202004369
crossref_primary_10_1016_j_jcis_2024_01_021
crossref_primary_10_1002_adfm_202304753
crossref_primary_10_1007_s11431_021_1835_8
crossref_primary_10_1021_acsami_2c04030
crossref_primary_10_1002_ange_202303600
crossref_primary_10_1007_s44246_024_00106_3
crossref_primary_10_1002_er_7633
crossref_primary_10_1002_adfm_202101487
crossref_primary_10_1016_j_cej_2021_131547
crossref_primary_10_1021_acsami_1c15524
crossref_primary_10_1021_acs_iecr_4c03801
crossref_primary_10_1016_j_apsusc_2024_159770
crossref_primary_10_1002_adma_202208873
crossref_primary_10_1002_adma_202407570
crossref_primary_10_1002_anie_202403023
crossref_primary_10_1002_ange_202316116
crossref_primary_10_1002_inf2_12225
crossref_primary_10_1002_smll_202107139
crossref_primary_10_1002_adfm_202406540
crossref_primary_10_1016_j_jcis_2024_04_118
crossref_primary_10_1016_S1872_5805_23_60718_8
crossref_primary_10_1016_j_matt_2021_10_017
crossref_primary_10_1016_j_cej_2020_127697
crossref_primary_10_1002_smll_202207423
crossref_primary_10_1007_s44246_022_00009_1
crossref_primary_10_1021_acsaelm_4c00191
crossref_primary_10_1039_D2QI00695B
crossref_primary_10_1002_bte2_20230009
crossref_primary_10_1002_adfm_202109899
crossref_primary_10_1002_aenm_202401914
crossref_primary_10_1016_j_jpowsour_2022_231043
crossref_primary_10_1016_j_gee_2022_02_013
crossref_primary_10_1002_inf2_12231
crossref_primary_10_1021_acs_energyfuels_2c02416
crossref_primary_10_1002_aenm_202302055
crossref_primary_10_1002_adfm_202208966
crossref_primary_10_1016_j_est_2024_114192
crossref_primary_10_1039_D3TA07207J
crossref_primary_10_1007_s40820_022_01006_0
crossref_primary_10_1016_j_jallcom_2023_172618
crossref_primary_10_1039_D4ME00007B
crossref_primary_10_1021_acsnano_3c01662
crossref_primary_10_1002_cey2_388
crossref_primary_10_1002_adfm_202007158
crossref_primary_10_1063_5_0161658
crossref_primary_10_1016_j_carbon_2024_119200
crossref_primary_10_1088_2053_1583_ac26dc
crossref_primary_10_1002_adma_202406794
crossref_primary_10_1038_s41467_023_36890_6
crossref_primary_10_1039_D2TA00608A
crossref_primary_10_1002_smtd_202101130
crossref_primary_10_1002_adma_202410132
crossref_primary_10_1002_smtd_202101131
crossref_primary_10_1039_D0SE01575J
crossref_primary_10_1016_j_coco_2020_100447
crossref_primary_10_1016_j_apsusc_2023_158491
crossref_primary_10_1039_D0SC06894B
crossref_primary_10_1039_D4CP01415D
crossref_primary_10_1016_j_est_2024_114256
crossref_primary_10_1016_j_nanoen_2023_108913
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1002_smll_202300663
crossref_primary_10_1039_D1TA07350H
crossref_primary_10_1039_D0TA10276H
crossref_primary_10_1002_adfm_202109969
crossref_primary_10_1007_s12274_021_3324_0
crossref_primary_10_1016_j_ccr_2024_215695
crossref_primary_10_1002_ange_202403023
crossref_primary_10_1021_acsami_2c13886
crossref_primary_10_1002_aenm_202101928
crossref_primary_10_1002_anie_202303600
crossref_primary_10_1360_nso_20220032
crossref_primary_10_1007_s10854_023_11075_5
crossref_primary_10_1021_acsnano_0c10624
crossref_primary_10_1002_adfm_202316207
crossref_primary_10_1016_j_jcis_2023_06_069
crossref_primary_10_1039_D0CP04388E
crossref_primary_10_1016_j_carbon_2021_11_021
crossref_primary_10_1016_j_carbon_2022_07_042
crossref_primary_10_1002_smll_202200437
crossref_primary_10_1016_j_nanoen_2020_105345
crossref_primary_10_1002_inf2_12272
crossref_primary_10_1002_smll_202006566
crossref_primary_10_1016_j_marpolbul_2023_116011
crossref_primary_10_1021_acsami_2c13533
crossref_primary_10_1007_s11706_023_0651_y
crossref_primary_10_1002_cssc_202401311
crossref_primary_10_1002_smsc_202200045
crossref_primary_10_1007_s10008_023_05642_3
crossref_primary_10_1002_adma_202403033
crossref_primary_10_1016_j_rser_2021_111161
crossref_primary_10_1016_j_cej_2024_151855
crossref_primary_10_1016_j_jcis_2021_06_158
crossref_primary_10_1002_adma_202208096
crossref_primary_10_1063_5_0086874
crossref_primary_10_1002_adfm_202105145
crossref_primary_10_1016_j_carbon_2024_118825
crossref_primary_10_1016_j_cej_2024_155880
crossref_primary_10_1016_j_jece_2023_110736
crossref_primary_10_1016_j_jelechem_2024_118178
crossref_primary_10_1002_aenm_202100856
crossref_primary_10_1016_j_fuel_2023_128007
crossref_primary_10_1002_cey2_344
crossref_primary_10_1002_celc_202001143
crossref_primary_10_1002_advs_202308040
crossref_primary_10_1002_smll_202108057
crossref_primary_10_1021_acsnano_0c09290
crossref_primary_10_1021_acsami_1c23665
crossref_primary_10_1021_acs_est_3c07254
crossref_primary_10_1002_admt_202202187
crossref_primary_10_1002_eem2_12458
crossref_primary_10_1021_acsanm_3c01262
crossref_primary_10_1073_pnas_2307477120
crossref_primary_10_1016_j_desal_2022_115919
crossref_primary_10_1021_acs_iecr_2c00878
crossref_primary_10_1002_adfm_202305795
crossref_primary_10_1021_acs_nanolett_4c01958
crossref_primary_10_1016_j_cej_2022_134821
crossref_primary_10_1039_D1TA10677E
crossref_primary_10_1039_D3CC02513F
crossref_primary_10_1002_adma_202104148
crossref_primary_10_1002_ange_202301396
crossref_primary_10_1002_smll_202308858
crossref_primary_10_1016_j_matre_2024_100268
crossref_primary_10_3390_en17225768
crossref_primary_10_1016_j_carbon_2021_03_067
crossref_primary_10_1002_anie_202011484
crossref_primary_10_1002_aenm_202101343
crossref_primary_10_1002_anie_202316116
crossref_primary_10_1016_j_cej_2024_154761
crossref_primary_10_1002_smll_202300440
crossref_primary_10_1007_s44246_024_00101_8
crossref_primary_10_3390_batteries9070363
crossref_primary_10_1007_s12274_021_3852_7
crossref_primary_10_1039_D3TA05558B
crossref_primary_10_1038_s41427_021_00327_7
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1002_smll_202406630
crossref_primary_10_1039_D4EE00438H
crossref_primary_10_1016_j_jechem_2020_08_005
crossref_primary_10_1016_j_cej_2021_133215
crossref_primary_10_1039_D4TA08291E
crossref_primary_10_1007_s40843_022_2419_4
crossref_primary_10_1016_j_mtnano_2022_100217
crossref_primary_10_1016_j_jclepro_2023_138201
crossref_primary_10_1016_j_diamond_2022_109481
crossref_primary_10_1016_j_est_2024_111827
crossref_primary_10_1021_acsnano_1c02275
crossref_primary_10_1007_s11705_022_2197_4
crossref_primary_10_1039_D2QM00443G
crossref_primary_10_1002_advs_202401292
crossref_primary_10_1016_j_cej_2021_130882
crossref_primary_10_1002_cey2_390
crossref_primary_10_1039_D1EE03214C
crossref_primary_10_1039_D1TA07310A
crossref_primary_10_1039_D3QI00056G
crossref_primary_10_1002_cey2_157
crossref_primary_10_1021_acsami_1c24275
crossref_primary_10_1021_acsami_2c14206
crossref_primary_10_1002_anie_202301396
crossref_primary_10_1002_bte2_20230031
crossref_primary_10_1002_adma_202405989
crossref_primary_10_1016_j_carbon_2021_08_012
crossref_primary_10_1016_j_carbon_2021_08_015
crossref_primary_10_3390_nano12193530
crossref_primary_10_1002_aenm_202101650
crossref_primary_10_1016_j_jcis_2023_06_210
crossref_primary_10_1016_j_apenergy_2023_120691
crossref_primary_10_34133_research_0209
crossref_primary_10_1016_j_cej_2021_134321
crossref_primary_10_1007_s40820_023_01318_9
crossref_primary_10_1016_j_apsusc_2021_149675
crossref_primary_10_1002_cnl2_118
crossref_primary_10_1007_s40843_022_2073_y
crossref_primary_10_1002_smtd_202300714
crossref_primary_10_3390_nanoenergyadv2040016
crossref_primary_10_1039_D1TA03811G
crossref_primary_10_1007_s12598_024_02788_5
crossref_primary_10_1016_j_jenvman_2024_120823
crossref_primary_10_1002_cssc_202300646
crossref_primary_10_1021_acsaem_2c02965
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1002_aenm_202101413
crossref_primary_10_1002_aenm_202100201
crossref_primary_10_1016_j_carbon_2021_04_078
crossref_primary_10_1016_j_susmat_2023_e00672
crossref_primary_10_1007_s40820_022_00791_y
crossref_primary_10_1021_acsaem_2c03019
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1002_smll_202302537
crossref_primary_10_1007_s11426_022_1442_4
Cites_doi 10.1002/adma.201900429
10.1021/jp056517k
10.1016/j.nanoen.2015.10.015
10.1002/adfm.201903496
10.1002/adma.201800804
10.1021/acs.nanolett.5b03667
10.1016/j.enchem.2019.100012
10.1021/jacs.8b02178
10.1038/nchem.2085
10.1021/jacs.5b06809
10.1038/natrevmats.2018.13
10.1002/aenm.201702545
10.1002/aenm.201903280
10.1126/sciadv.aav7412
10.1002/aenm.201801149
10.1002/adfm.201903641
10.1002/adma.201702268
10.1002/adma.201700104
10.1016/0008-6223(96)00177-7
10.1039/C8TA03340D
10.1002/aenm.201600917
10.1016/j.elecom.2015.09.002
10.1002/aenm.201904045
10.1002/aenm.201501874
10.1038/s41467-018-04190-z
10.1002/aenm.201801840
10.1002/aenm.201803260
10.1016/j.carbon.2018.11.001
10.1002/adma.201505131
10.1021/acs.nanolett.8b03845
10.1002/adma.201805486
10.1039/C8EE03014F
10.1038/s41560-019-0388-0
10.1002/aenm.201702384
10.1002/adfm.201703857
10.1002/aenm.201900579
10.1002/anie.201913368
10.1021/nl3016957
10.1016/j.nanoen.2019.01.009
10.1021/la900923z
10.1021/acs.nanolett.9b01127
10.1016/j.jechem.2019.08.013
10.1039/C8TA06652C
10.1002/anie.201904258
10.1039/C9EE00536F
10.1016/j.nanoen.2019.06.013
10.1002/aenm.201900343
10.1002/anie.201801389
10.1002/adfm.201801989
10.1002/aenm.201802386
10.1002/adfm.201802938
10.1002/aenm.201803894
10.1002/aenm.201802042
10.1002/adma.202000505
10.1016/j.matt.2019.04.003
10.1016/j.mattod.2018.12.040
10.1039/C8TA04694H
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202000732
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 32410270
10_1002_adma_202000732
ADMA202000732
Genre article
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4102-8cd2cc43875965a3b76fe4e9683e2ef9dd8c03cf306536a791a59aac3a0597893
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:23:38 EDT 2025
Mon Jul 14 07:18:53 EDT 2025
Mon Jul 21 05:23:35 EDT 2025
Tue Jul 01 02:32:47 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:34:59 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords active sites
anodes materials
potassium-ion batteries
carbon
nitrogen doping
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-8cd2cc43875965a3b76fe4e9683e2ef9dd8c03cf306536a791a59aac3a0597893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5029-2142
0000-0002-6781-2826
PMID 32410270
PQID 2416126867
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2404041883
proquest_journals_2416126867
pubmed_primary_32410270
crossref_citationtrail_10_1002_adma_202000732
crossref_primary_10_1002_adma_202000732
wiley_primary_10_1002_adma_202000732_ADMA202000732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 15
2009; 25
2018; 28
2019; 9
2019; 4
2018; 140
2019; 5
2015; 18
2019; 31
2019; 1
2019; 57
2019; 12
2019; 58
2019; 19
2020; 59
2006; 110
2017; 29
2020; 10
2012; 12
2015; 7
1996; 34
2019; 143
2018; 6
2016; 6
2018; 9
2018; 18
2018; 8
2018; 3
2019; 62
2015; 60
2015; 137
2020
2019; 23
2019; 29
2018; 30
2020; 43
2016; 28
2018; 57
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_56_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_54_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
Jian Z. (e_1_2_4_9_1) 2016; 6
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_55_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_57_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 43
  start-page: 129
  year: 2020
  publication-title: J. Energy Chem.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 110
  start-page: 6110
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 143
  start-page: 138
  year: 2019
  publication-title: Carbon
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1
  start-page: 893
  year: 2019
  publication-title: Matter
– volume: 140
  start-page: 7127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 25
  year: 2009
  publication-title: Langmuir
– volume: 4
  start-page: 495
  year: 2019
  publication-title: Nat. Energy
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 172
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 18
  start-page: 7407
  year: 2018
  publication-title: Nano Lett.
– year: 2020
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 57
  start-page: 4687
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– year: 2020
  publication-title: Adv. Mater.
– volume: 19
  start-page: 4965
  year: 2019
  publication-title: Nano Lett.
– volume: 34
  start-page: 193
  year: 1996
  publication-title: Carbon
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 205
  year: 2015
  publication-title: Nano Energy
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 3783
  year: 2012
  publication-title: Nano Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 28
  start-page: 1981
  year: 2016
  publication-title: Adv. Mater.
– volume: 15
  start-page: 7671
  year: 2015
  publication-title: Nano Lett.
– volume: 23
  start-page: 87
  year: 2019
  publication-title: Mater. Today
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 7
  start-page: 19
  year: 2015
  publication-title: Nat. Chem.
– volume: 62
  start-page: 853
  year: 2019
  publication-title: Nano Energy
– volume: 57
  start-page: 728
  year: 2019
  publication-title: Nano Energy
– volume: 59
  start-page: 4448
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 2030
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1605
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_4_23_1
  doi: 10.1002/adma.201900429
– ident: e_1_2_4_39_1
  doi: 10.1021/jp056517k
– ident: e_1_2_4_53_1
  doi: 10.1016/j.nanoen.2015.10.015
– ident: e_1_2_4_27_1
  doi: 10.1002/adfm.201903496
– ident: e_1_2_4_48_1
  doi: 10.1002/adma.201800804
– ident: e_1_2_4_13_1
  doi: 10.1021/acs.nanolett.5b03667
– ident: e_1_2_4_3_1
  doi: 10.1016/j.enchem.2019.100012
– ident: e_1_2_4_28_1
  doi: 10.1021/jacs.8b02178
– ident: e_1_2_4_1_1
  doi: 10.1038/nchem.2085
– ident: e_1_2_4_12_1
  doi: 10.1021/jacs.5b06809
– ident: e_1_2_4_2_1
  doi: 10.1038/natrevmats.2018.13
– ident: e_1_2_4_43_1
  doi: 10.1002/aenm.201702545
– ident: e_1_2_4_51_1
  doi: 10.1002/aenm.201903280
– ident: e_1_2_4_6_1
  doi: 10.1126/sciadv.aav7412
– ident: e_1_2_4_18_1
  doi: 10.1002/aenm.201801149
– ident: e_1_2_4_14_1
  doi: 10.1002/adfm.201903641
– ident: e_1_2_4_33_1
  doi: 10.1002/adma.201702268
– ident: e_1_2_4_24_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_4_45_1
  doi: 10.1016/0008-6223(96)00177-7
– ident: e_1_2_4_36_1
  doi: 10.1039/C8TA03340D
– ident: e_1_2_4_41_1
  doi: 10.1002/aenm.201600917
– ident: e_1_2_4_11_1
  doi: 10.1016/j.elecom.2015.09.002
– ident: e_1_2_4_29_1
  doi: 10.1002/aenm.201904045
– volume: 6
  start-page: 1501847
  year: 2016
  ident: e_1_2_4_9_1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501874
– ident: e_1_2_4_31_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_4_46_1
  doi: 10.1002/aenm.201801840
– ident: e_1_2_4_10_1
  doi: 10.1002/aenm.201803260
– ident: e_1_2_4_22_1
  doi: 10.1016/j.carbon.2018.11.001
– ident: e_1_2_4_42_1
  doi: 10.1002/adma.201505131
– ident: e_1_2_4_47_1
  doi: 10.1021/acs.nanolett.8b03845
– ident: e_1_2_4_52_1
  doi: 10.1002/adma.201805486
– ident: e_1_2_4_17_1
  doi: 10.1039/C8EE03014F
– ident: e_1_2_4_5_1
  doi: 10.1038/s41560-019-0388-0
– ident: e_1_2_4_7_1
  doi: 10.1002/aenm.201702384
– ident: e_1_2_4_8_1
  doi: 10.1002/adfm.201703857
– ident: e_1_2_4_19_1
  doi: 10.1002/aenm.201900579
– ident: e_1_2_4_32_1
  doi: 10.1002/anie.201913368
– ident: e_1_2_4_15_1
  doi: 10.1021/nl3016957
– ident: e_1_2_4_21_1
  doi: 10.1016/j.nanoen.2019.01.009
– ident: e_1_2_4_40_1
  doi: 10.1021/la900923z
– ident: e_1_2_4_25_1
  doi: 10.1021/acs.nanolett.9b01127
– ident: e_1_2_4_56_1
  doi: 10.1016/j.jechem.2019.08.013
– ident: e_1_2_4_37_1
  doi: 10.1039/C8TA06652C
– ident: e_1_2_4_49_1
  doi: 10.1002/anie.201904258
– ident: e_1_2_4_30_1
  doi: 10.1039/C9EE00536F
– ident: e_1_2_4_55_1
  doi: 10.1016/j.nanoen.2019.06.013
– ident: e_1_2_4_16_1
  doi: 10.1002/aenm.201900343
– ident: e_1_2_4_54_1
  doi: 10.1002/anie.201801389
– ident: e_1_2_4_26_1
  doi: 10.1002/adfm.201801989
– ident: e_1_2_4_35_1
  doi: 10.1002/aenm.201802386
– ident: e_1_2_4_4_1
  doi: 10.1002/adfm.201802938
– ident: e_1_2_4_20_1
  doi: 10.1002/aenm.201803894
– ident: e_1_2_4_38_1
  doi: 10.1002/aenm.201802042
– ident: e_1_2_4_50_1
  doi: 10.1002/adma.202000505
– ident: e_1_2_4_57_1
  doi: 10.1016/j.matt.2019.04.003
– ident: e_1_2_4_44_1
  doi: 10.1016/j.mattod.2018.12.040
– ident: e_1_2_4_34_1
  doi: 10.1039/C8TA04694H
SSID ssj0009606
Score 2.6691759
Snippet Most reported carbonaceous anodes of potassium‐ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is...
Most reported carbonaceous anodes of potassium-ion batteries (PIBs) have limited capacities. One approach to improve the performance of carbon anodes is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000732
SubjectTerms active sites
Alkali metals
Anode effect
anodes materials
Carbon
Carbonization
Doping
Ion adsorption
Materials science
Melamine
Nitrogen
nitrogen doping
Performance enhancement
Potassium
potassium‐ion batteries
Pyrolysis
Rechargeable batteries
Strategy
Title Direct Pyrolysis of Supermolecules: An Ultrahigh Edge‐Nitrogen Doping Strategy of Carbon Anodes for Potassium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202000732
https://www.ncbi.nlm.nih.gov/pubmed/32410270
https://www.proquest.com/docview/2416126867
https://www.proquest.com/docview/2404041883
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4hTnBoofQnQCtXqtRTIGs7js1txY9oJRBquxK3yHGcCpUmaDc5wAUegWfsk3RsZwPbqqrU3pLYkzjOzPibePwZ4J1brikYF7GsaBpzzmxcSM1iVeksMTSRSvtsi1NxPOEfz9PzR6v4Az_E8MPNWYb3187AdTHbfSAN1aXnDaJ-ssk5YZew5VDRpwf-KAfPPdkeS2MluJyzNiZ0d1F8cVT6DWouIlc_9Bw9BT1vdMg4-bbTtcWOufmFz_F_3moNnvS4lIyDIq3Dkq2fweojtsINuA3ukZxdTxtPZEKainzurtC3hz127WyPjGsyuWzRg2HQTw7Lr_bH3f3pRTttUFHJgV-dRXpG3Gsnv6-nRVOjWFPaGUEETc6aFgH9RfcdJT9gUWAAxYD-OUyODr_sH8f9_g2x4SPnaE1JjeEMQyIlUs2KTFSWWyUks9RWqiylSZip3Ob1TOhMjXSqtDZMI-bLEEi9gOW6qe0rIFlBs4JRYw3eQSCks7SsJC-tknhdyAji-ffLTU9u7vbYuMwDLTPNXcfmQ8dG8H6ofxVoPf5Yc3uuDnlv3rOcurCQCimyCN4OxWiYbrZF17bpXB30j3wkJYvgZVCj4VGIYrGDsiQC6pXhL23Ixwcn4-Fs81-EtmDFHYckt21YbqedfY1wqi3eeJP5CWYnF1s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcgAO_FMCBYyExClt1nYcp7dVt9UW2lUFXYlb5DgOqihJtZscygUeoc_YJ-nYTlIWhJDgGMeTOM7M-Bv_fAPwxh7XFIyLUJY0DjlnJsylYmFaqiTSNJKpcrstZmI65-8-xf1uQnsWxvNDDBNu1jKcv7YGbiekt65ZQ1XhiIOoW21CL3zTpvW29PmTD9cMUhagO7o9Foep4LLnbYzo1qr86rj0G9hcxa5u8Nm7B3nfbL_n5Mtm2-Sb-tsvjI7_9V334W4HTcnY69IDuGGqh3DnJ8LCR_Dde0hydL6oHZcJqUvysT1D9-7T7JrlNhlXZH7aoBPDuJ_sFp_N5Y-L2UmzqFFXycQd0CIdKe65ld9Ri7yuUKwuzJIgiCZHdYOY_qT9ipL7eMuTgGJM_xjme7vHO9OwS-EQaj6yvlYXVGvOMCpKRaxYnojScJMKyQw1ZVoUUkdMlzZ_PRMqSUcqTpXSTCHsSxBLPYG1qq7MUyBJTpOcUW00PkEgqjO0KCUvTCqxXMgAwv4HZrrjN7dpNk4zz8xMM9ux2dCxAbwd6p95Zo8_1tzo9SHrLHyZURsZUiFFEsDr4Tbapl1wUZWpW1sHXSQfSckCWPd6NLwKgSx2UBIFQJ02_KUN2XhyOB6unv2L0Cu4NT0-PMgO9mfvn8NtW-73vG3AWrNozQtEV03-0tnPFdLjG3c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQKyE4lH8IFDASEqe0WdtxbG6rblctP6sVsFJvkWM7qKJNVrvJob20j8Az8iSM7WzaBSEkOMb2JI4zM_4mtr9B6LU7rskp47EoSRozRm1cCEVjWaos0SQRUvndFhN-MGPvjtKja6f4Az9E_8PNWYb3187A56bcvSINVcbzBhG_2AROeJPxRLrkDaNPVwRSDp97tj2axpIzsaJtTMjuuvz6tPQb1lyHrn7uGd9BatXrsOXk207bFDv6_BdCx_95rbtoqwOmeBg06R66Yav76PY1usIH6CL4Rzw9W9SeyQTXJf7czsG5hyS7dvkWDys8O2nAhUHUj_fNV_vj8vvkuFnUoKl45I9n4Y4S98zJ76lFUVcgVhu7xACh8bRuANEft6cgeQhVgQIUIvqHaDbe_7J3EHcJHGLNBs7TakO0ZhRiIslTRYuMl5ZZyQW1xJbSGKETqkuXvZ5ylcmBSqVSmioAfRkgqUdoo6or-wThrCBZQYm2Gu7AAdNZYkrBjJUCyrmIULz6frnu2M1dko2TPPAyk9wNbN4PbITe9O3ngdfjjy23V-qQd_a9zImLCwkXPIvQq74aLNMtt6jK1q1rAw6SDYSgEXoc1Kh_FMBYGKAsiRDxyvCXPuTD0cdhf_X0X4ReopvT0Tj_cDh5_wzdcsVhw9s22mgWrX0O0KopXnjr-Qlnahom
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Pyrolysis+of+Supermolecules%3A+An+Ultrahigh+Edge%E2%80%90Nitrogen+Doping+Strategy+of+Carbon+Anodes+for+Potassium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Wenli&rft.au=Yin%2C+Jian&rft.au=Sun%2C+Minglei&rft.au=Wang%2C+Wenxi&rft.date=2020-06-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=25&rft_id=info:doi/10.1002%2Fadma.202000732&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202000732
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon