Stable Conversion Chemistry‐Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near‐Single Ion Conduction

The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electro...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 18; pp. 6001 - 6006
Main Authors Zhou, Dong, Tkacheva, Anastasia, Tang, Xiao, Sun, Bing, Shanmukaraj, Devaraj, Li, Peng, Zhang, Fan, Armand, Michel, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 23.04.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201901582

Cover

Loading…
Abstract The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability. A novel hierarchical multifunctional polymer electrolyte shows near‐single ion conduction for lithium metal batteries. This electrolyte was in situ fabricated by integrating (LiMTFSI‐PETEA)‐based crosslinking gel polymer electrolyte with PDDALi‐coated glass fiber membrane. The as‐prepared multifunctional electrolyte exhibits high ionic conductivity, enhanced safety, suppression on dendrite growth, and stable cycling in lithium‐iodine batteries.
AbstractList The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10  S cm at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10 −3  S cm −1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability. A novel hierarchical multifunctional polymer electrolyte shows near‐single ion conduction for lithium metal batteries. This electrolyte was in situ fabricated by integrating (LiMTFSI‐PETEA)‐based crosslinking gel polymer electrolyte with PDDALi‐coated glass fiber membrane. The as‐prepared multifunctional electrolyte exhibits high ionic conductivity, enhanced safety, suppression on dendrite growth, and stable cycling in lithium‐iodine batteries.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10-3  S cm-1 at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability.The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10-3  S cm-1 at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability.
Author Tkacheva, Anastasia
Shanmukaraj, Devaraj
Armand, Michel
Tang, Xiao
Li, Peng
Wang, Guoxiu
Sun, Bing
Zhang, Fan
Zhou, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0002-2578-7124
  surname: Zhou
  fullname: Zhou, Dong
  organization: University of Technology Sydney
– sequence: 2
  givenname: Anastasia
  surname: Tkacheva
  fullname: Tkacheva, Anastasia
  organization: University of Technology Sydney
– sequence: 3
  givenname: Xiao
  surname: Tang
  fullname: Tang, Xiao
  organization: University of Technology Sydney
– sequence: 4
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  organization: University of Technology Sydney
– sequence: 5
  givenname: Devaraj
  surname: Shanmukaraj
  fullname: Shanmukaraj, Devaraj
  organization: CIC ENERGIGUNE
– sequence: 6
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: Nanjing University of Aeronautics and Astronautics
– sequence: 7
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: University of Technology Sydney
– sequence: 8
  givenname: Michel
  surname: Armand
  fullname: Armand, Michel
  organization: CIC ENERGIGUNE
– sequence: 9
  givenname: Guoxiu
  orcidid: 0000-0003-4295-8578
  surname: Wang
  fullname: Wang, Guoxiu
  email: Guoxiu.Wang@uts.edu.au
  organization: University of Technology Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30830705$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3DAQhq2KqsC21x4rS730ksV24o1zhNUWVlqgEu3ZcpxJ18hxqO2Acusj9Mzj9UnqsFAkpKon29L3_eOZOUR7rneA0HtK5pQQdqScgTkjtCKUC_YKHVDOaJaXZb6X7kWeZ6XgdB8dhnCdeCHI4g3az4nISUn4Abq_iqq2gJe9uwUfTO_wcgudCdGPv3_-OlEBGrwxcWuGDp9DVBafqBjBGwh45Sa3wfWIzwx45fXW6EScDzaadnA6prz0_tLbsQOPVxZ09OkRk3yXQvEFKJ_KXBn3PX1iPVXvXTM8iG_R61bZAO8ezxn69nn1dXmWbS5P18vjTaYLSljGGdNM0zanFeekqAiBptaqFrQQlCvKgC9aVi4q0pYNtEzrqmi0aGvBOGdQ5zP0aZd74_sfA4QoU_sarFUO-iFIRkVZ8bKsFgn9-AK97gefWkwUIwkheZr5DH14pIa6g0beeNMpP8qnqSeg2AHa9yF4aKU2UU09R6-MlZTIablyWq78u9ykzV9oT8n_FKqdcGcsjP-h5fHFevXs_gGy9bsB
CitedBy_id crossref_primary_10_1002_anie_202114024
crossref_primary_10_1021_acsami_0c13520
crossref_primary_10_1016_j_polymer_2024_127977
crossref_primary_10_1021_acsaem_0c01358
crossref_primary_10_1016_j_colsurfa_2023_132046
crossref_primary_10_1021_acsenergylett_0c00542
crossref_primary_10_1016_j_ijbiomac_2025_139560
crossref_primary_10_1016_j_polymer_2023_126402
crossref_primary_10_1016_j_polymer_2024_127576
crossref_primary_10_1016_j_xcrp_2021_100534
crossref_primary_10_1016_j_isci_2020_101417
crossref_primary_10_1021_acsami_3c13883
crossref_primary_10_1016_j_ensm_2022_12_048
crossref_primary_10_1039_D0CC02940H
crossref_primary_10_1038_s41560_023_01339_z
crossref_primary_10_1002_cey2_478
crossref_primary_10_1007_s40820_024_01498_y
crossref_primary_10_1149_1945_7111_abdeeb
crossref_primary_10_1002_ange_201912701
crossref_primary_10_1002_adma_201906739
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1002_advs_202101866
crossref_primary_10_1021_acsaem_9b00534
crossref_primary_10_1016_j_ensm_2024_103683
crossref_primary_10_1016_j_cej_2021_128534
crossref_primary_10_1007_s11426_023_1958_x
crossref_primary_10_1039_D3TA00687E
crossref_primary_10_1149_1945_7111_ab787a
crossref_primary_10_1002_smll_202101881
crossref_primary_10_1002_asia_202000851
crossref_primary_10_1021_acssuschemeng_9b04307
crossref_primary_10_1016_j_jechem_2020_08_026
crossref_primary_10_1016_j_memsci_2022_121275
crossref_primary_10_1002_ange_202316087
crossref_primary_10_1002_ente_201901429
crossref_primary_10_1002_adfm_202203006
crossref_primary_10_1016_j_jpowsour_2020_229186
crossref_primary_10_1002_aenm_202001497
crossref_primary_10_1002_anie_202116586
crossref_primary_10_1016_j_jechem_2022_08_042
crossref_primary_10_1016_j_ensm_2020_07_037
crossref_primary_10_1016_j_memsci_2022_120287
crossref_primary_10_1002_anie_202316087
crossref_primary_10_1007_s11581_020_03549_x
crossref_primary_10_1016_j_chempr_2019_05_009
crossref_primary_10_1021_acsnano_9b07706
crossref_primary_10_1016_j_jcis_2024_02_178
crossref_primary_10_1021_acsami_2c11397
crossref_primary_10_3390_polym14173452
crossref_primary_10_1002_adfm_202008632
crossref_primary_10_1007_s12274_020_2845_2
crossref_primary_10_1016_j_chempr_2020_01_008
crossref_primary_10_1002_anie_202001793
crossref_primary_10_1039_D0TA12437K
crossref_primary_10_1007_s11426_022_1221_4
crossref_primary_10_1021_acs_macromol_2c00193
crossref_primary_10_1002_ange_201916301
crossref_primary_10_1021_acsami_2c13613
crossref_primary_10_1016_j_ensm_2019_06_021
crossref_primary_10_1016_j_jmat_2022_02_009
crossref_primary_10_1039_D1RA02641K
crossref_primary_10_1002_ange_202116586
crossref_primary_10_1002_advs_202104277
crossref_primary_10_1002_celc_201901351
crossref_primary_10_1016_j_memsci_2020_118051
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1021_acsami_2c16174
crossref_primary_10_1002_adfm_202008644
crossref_primary_10_1002_cssc_202301896
crossref_primary_10_1039_D4EE02208D
crossref_primary_10_1149_2_0072007JES
crossref_primary_10_1016_j_cej_2022_135419
crossref_primary_10_1016_j_scib_2024_03_048
crossref_primary_10_1002_smll_202305322
crossref_primary_10_1007_s12613_020_2239_1
crossref_primary_10_1016_j_jpowsour_2021_229861
crossref_primary_10_1021_acs_nanolett_1c00448
crossref_primary_10_1016_j_est_2023_107810
crossref_primary_10_2139_ssrn_4001219
crossref_primary_10_1002_anie_201916301
crossref_primary_10_1002_adfm_202002824
crossref_primary_10_1002_smll_201907163
crossref_primary_10_1016_j_polymer_2021_123695
crossref_primary_10_1039_C9TA13304F
crossref_primary_10_1002_aenm_202001235
crossref_primary_10_1002_aenm_202303834
crossref_primary_10_1039_D3EE03821A
crossref_primary_10_1016_j_jpowsour_2021_229545
crossref_primary_10_1038_s41467_022_30788_5
crossref_primary_10_1002_anie_202007008
crossref_primary_10_1002_admt_201900806
crossref_primary_10_1016_j_polymer_2023_125751
crossref_primary_10_1021_acs_macromol_2c00329
crossref_primary_10_1039_D0RA10280F
crossref_primary_10_1038_s41467_020_18844_4
crossref_primary_10_1039_D0EE04002A
crossref_primary_10_1002_adfm_202006159
crossref_primary_10_1016_j_mtnano_2019_100049
crossref_primary_10_1002_adma_202100793
crossref_primary_10_1016_j_ensm_2020_04_002
crossref_primary_10_1002_adma_202108437
crossref_primary_10_1021_acsami_4c16084
crossref_primary_10_1002_ange_202308397
crossref_primary_10_1007_s10853_020_04634_2
crossref_primary_10_1021_acsami_9b22127
crossref_primary_10_1039_C9TA11178F
crossref_primary_10_1002_ange_202114024
crossref_primary_10_1038_s41467_021_26073_6
crossref_primary_10_1002_anie_201911229
crossref_primary_10_1002_batt_202200338
crossref_primary_10_1021_acsaem_0c00737
crossref_primary_10_1002_adma_202301308
crossref_primary_10_1016_j_ensm_2022_05_052
crossref_primary_10_1021_acsapm_4c00806
crossref_primary_10_1021_acs_chemmater_9b04521
crossref_primary_10_1002_celc_202200984
crossref_primary_10_1021_acsami_3c02155
crossref_primary_10_1021_acsaem_0c02079
crossref_primary_10_1021_acsami_2c01513
crossref_primary_10_1002_ange_202104671
crossref_primary_10_1002_ange_202107389
crossref_primary_10_1016_j_electacta_2021_138632
crossref_primary_10_1021_acsaem_0c02483
crossref_primary_10_1149_1945_7111_ab76a4
crossref_primary_10_1039_C9TA05938E
crossref_primary_10_1002_adma_202100943
crossref_primary_10_1002_adfm_202204778
crossref_primary_10_1007_s12274_023_5584_3
crossref_primary_10_1002_aesr_202100197
crossref_primary_10_1016_j_jpowsour_2025_236369
crossref_primary_10_1016_j_pmatsci_2022_100921
crossref_primary_10_1360_SSC_2024_0082
crossref_primary_10_1021_acsaem_1c00327
crossref_primary_10_1021_acsmacrolett_9b01024
crossref_primary_10_1002_ange_202001793
crossref_primary_10_1002_anie_201912701
crossref_primary_10_1016_j_nanoen_2023_108892
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1002_adfm_202305072
crossref_primary_10_1039_C9TA08795H
crossref_primary_10_1016_j_cej_2020_124708
crossref_primary_10_1016_j_electacta_2023_142496
crossref_primary_10_1039_D3EE04556K
crossref_primary_10_1016_j_matchemphys_2021_124701
crossref_primary_10_1002_anie_202104671
crossref_primary_10_1016_j_electacta_2023_143626
crossref_primary_10_1002_ange_202007008
crossref_primary_10_1002_anie_202107389
crossref_primary_10_1021_acsaem_2c00705
crossref_primary_10_1016_j_nanoen_2019_103989
crossref_primary_10_1039_D1TA06606D
crossref_primary_10_1016_j_electacta_2020_136604
crossref_primary_10_1016_j_electacta_2022_139995
crossref_primary_10_1002_batt_202200231
crossref_primary_10_1021_acsaem_3c01183
crossref_primary_10_1002_adfm_202100891
crossref_primary_10_1016_j_jallcom_2022_165329
crossref_primary_10_1021_acsami_0c10463
crossref_primary_10_1039_D1TA02297K
crossref_primary_10_1016_j_ensm_2021_10_042
crossref_primary_10_1039_D1TA08771A
crossref_primary_10_1002_cssc_202202334
crossref_primary_10_1002_adma_202300998
crossref_primary_10_1002_adma_201905771
crossref_primary_10_1021_acsami_1c17002
crossref_primary_10_1016_j_nanoen_2020_105698
crossref_primary_10_1016_j_electacta_2022_140624
crossref_primary_10_1038_s41467_021_27728_0
crossref_primary_10_1021_acsami_4c11500
crossref_primary_10_1021_acsami_4c04012
crossref_primary_10_1021_acsapm_2c02197
crossref_primary_10_1002_ange_201911229
crossref_primary_10_1002_anie_202308397
crossref_primary_10_1039_C9TA06815E
crossref_primary_10_1002_adfm_202008208
crossref_primary_10_1016_j_apmt_2022_101705
crossref_primary_10_1002_marc_202200865
crossref_primary_10_1002_smll_202005762
crossref_primary_10_1016_j_ensm_2020_04_032
Cites_doi 10.1002/ange.201709774
10.1002/ange.201301250
10.1149/2.0011507jes
10.1002/adma.201703729
10.1002/ange.201810882
10.1038/nnano.2014.152
10.1002/ange.201509299
10.1002/adfm.201800154
10.1021/jacs.6b10088
10.1016/S0167-2738(02)00080-2
10.1002/ange.201808592
10.1039/c3cs60177c
10.1002/aenm.201502214
10.1002/anie.201301250
10.1038/ncomms7362
10.1002/aenm.201402073
10.1002/anie.201808592
10.1002/adma.201804684
10.1073/pnas.1803385115
10.1073/pnas.1809187115
10.1002/anie.201807367
10.1002/adma.201806541
10.1039/C8EE02093K
10.1149/1.3148721
10.1038/nmat3191
10.1016/j.ensm.2017.10.012
10.1038/nmat4041
10.1016/j.joule.2017.08.001
10.1038/ncomms10101
10.1016/j.ensm.2016.07.003
10.1016/j.electacta.2015.04.168
10.1016/j.nanoen.2017.01.027
10.1002/ange.201807367
10.1002/aenm.201500265
10.1021/nl5046318
10.1002/anie.201810882
10.1002/anie.201509299
10.1002/anie.201709774
10.1002/adma.201801328
10.1039/C6CS00491A
10.1038/nmat3602
10.1021/acsenergylett.7b00999
10.1038/srep03815
10.1021/acs.chemmater.6b02190
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201901582
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6006
ExternalDocumentID 30830705
10_1002_anie_201901582
ANIE201901582
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Australian Renewable Energy Agency
  funderid: ARENA 2014/RND106
– fundername: Rail Manufactory CRC projects
  funderid: R1.1.1 and R1.1.2
– fundername: Australian Research Council (ARC) Discovery Project
  funderid: DP160104340 and DP170100436
– fundername: Rail Manufactory CRC projects
  grantid: R1.1.1 and R1.1.2
– fundername: Australian Research Council (ARC) Discovery Project
  grantid: DP160104340 and DP170100436
– fundername: Australian Renewable Energy Agency
  grantid: ARENA 2014/RND106
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4102-522c2c1f3195504900edbcab814815a12e56f27690f7def2cc94dc8fb82552eb3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 06:41:24 EDT 2025
Sun Jul 13 05:16:31 EDT 2025
Mon Jul 21 05:58:24 EDT 2025
Tue Jul 01 02:26:44 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 17:10:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords iodine cathode
lithium metal battery
hierarchical structure
polymer electrolyte
near-single ion conduction
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-522c2c1f3195504900edbcab814815a12e56f27690f7def2cc94dc8fb82552eb3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2578-7124
0000-0003-4295-8578
PMID 30830705
PQID 2207790314
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2187957796
proquest_journals_2207790314
pubmed_primary_30830705
crossref_citationtrail_10_1002_anie_201901582
crossref_primary_10_1002_anie_201901582
wiley_primary_10_1002_anie_201901582_ANIE201901582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 23, 2019
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 04
  year: 2019
  text: April 23, 2019
  day: 23
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2015; 15
2018; 28
2017; 1
2015; 6
2015; 5
2019; 31
2013; 42
2017; 46
2009; 156
2017; 29
2012; 11
2013 2013; 52 125
2016; 5
2016; 6
2018; 3
2014; 4
2015; 170
2016 2016; 55 128
2013; 12
2018 2018; 57 130
2017; 33
2018; 115
2002; 148
2014; 13
2018; 30
2016; 138
2014; 9
2018; 11
2016; 28
e_1_2_2_4_1
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_47_3
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_26_2
e_1_2_2_13_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_34_3
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_25_1
e_1_2_2_46_3
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_7_1
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_46_2
e_1_2_2_37_2
e_1_2_2_12_1
e_1_2_2_37_3
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_39_3
e_1_2_2_31_1
e_1_2_2_18_2
e_1_2_2_33_2
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  publication-title: Nat. Mater.
– volume: 57 130
  start-page: 16131 16363
  year: 2018 2018
  end-page: 16135 16367
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 522
  year: 2017
  end-page: 547
  publication-title: Joule
– volume: 156
  start-page: 694
  year: 2009
  end-page: 702
  publication-title: J. Electrochem. Soc.
– volume: 28
  start-page: 5147
  year: 2016
  end-page: 5154
  publication-title: Chem. Mater.
– volume: 162
  start-page: 1094
  year: 2015
  end-page: 1101
  publication-title: J. Electrochem. Soc.
– volume: 42
  start-page: 9011
  year: 2013
  end-page: 9034
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 139
  year: 2016
  end-page: 164
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 1502214
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1804684
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3298
  year: 2018
  end-page: 3309
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1703729
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6362
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1500265
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 57 130
  start-page: 14796 15012
  year: 2018 2018
  end-page: 14800 15016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 3815
  year: 2014
  publication-title: Sci. Rep.
– volume: 31
  start-page: 1806541
  year: 2019
  publication-title: Adv. Mater.
– volume: 115
  start-page: 6620
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55 128
  start-page: 2521 2567
  year: 2016 2016
  end-page: 2525 2571
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 10101
  year: 2015
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2910
  year: 2015
  end-page: 2916
  publication-title: Nano Lett.
– volume: 5
  start-page: 1402073
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1801328
  year: 2018
  publication-title: Adv. Mater.
– volume: 12
  start-page: 452
  year: 2013
  publication-title: Nat. Mater.
– volume: 115
  start-page: 12389
  year: 2018
  end-page: 12394
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 170
  start-page: 353
  year: 2015
  end-page: 359
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 961
  year: 2014
  end-page: 969
  publication-title: Nat. Mater.
– volume: 3
  start-page: 20
  year: 2018
  end-page: 27
  publication-title: ACS Energy Lett.
– volume: 46
  start-page: 797
  year: 2017
  end-page: 815
  publication-title: Chem. Soc. Rev.
– volume: 28
  start-page: 1800154
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 57 130
  start-page: 1361 1375
  year: 2018 2018
  end-page: 1365 1379
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 148
  start-page: 405
  year: 2002
  end-page: 416
  publication-title: Solid State Ionics
– volume: 138
  start-page: 15825
  year: 2016
  end-page: 15828
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 127
  year: 2018
  end-page: 133
  publication-title: Energy Storage Mater.
– volume: 33
  start-page: 45
  year: 2017
  end-page: 54
  publication-title: Nano Energy
– volume: 57 130
  start-page: 12033 12209
  year: 2018 2018
  end-page: 12036 12212
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52 125
  start-page: 6930 7068
  year: 2013 2013
  end-page: 6935 7073
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– ident: e_1_2_2_37_3
  doi: 10.1002/ange.201709774
– ident: e_1_2_2_7_2
  doi: 10.1002/ange.201301250
– ident: e_1_2_2_20_2
  doi: 10.1149/2.0011507jes
– ident: e_1_2_2_32_1
– ident: e_1_2_2_11_2
  doi: 10.1002/adma.201703729
– ident: e_1_2_2_39_3
  doi: 10.1002/ange.201810882
– ident: e_1_2_2_2_2
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_2_34_3
  doi: 10.1002/ange.201509299
– ident: e_1_2_2_6_1
  doi: 10.1002/adfm.201800154
– ident: e_1_2_2_30_2
  doi: 10.1021/jacs.6b10088
– ident: e_1_2_2_48_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_2_46_3
  doi: 10.1002/ange.201808592
– ident: e_1_2_2_5_1
  doi: 10.1039/c3cs60177c
– ident: e_1_2_2_29_2
  doi: 10.1002/aenm.201502214
– ident: e_1_2_2_45_1
– ident: e_1_2_2_28_1
– ident: e_1_2_2_7_1
  doi: 10.1002/anie.201301250
– ident: e_1_2_2_23_2
  doi: 10.1038/ncomms7362
– ident: e_1_2_2_18_2
  doi: 10.1002/aenm.201402073
– ident: e_1_2_2_25_1
– ident: e_1_2_2_36_1
– ident: e_1_2_2_22_1
– ident: e_1_2_2_46_2
  doi: 10.1002/anie.201808592
– ident: e_1_2_2_14_2
  doi: 10.1002/adma.201804684
– ident: e_1_2_2_49_1
  doi: 10.1073/pnas.1803385115
– ident: e_1_2_2_15_2
  doi: 10.1073/pnas.1809187115
– ident: e_1_2_2_47_2
  doi: 10.1002/anie.201807367
– ident: e_1_2_2_13_2
  doi: 10.1002/adma.201806541
– ident: e_1_2_2_44_1
  doi: 10.1039/C8EE02093K
– ident: e_1_2_2_26_2
  doi: 10.1149/1.3148721
– ident: e_1_2_2_1_1
– ident: e_1_2_2_4_1
  doi: 10.1038/nmat3191
– ident: e_1_2_2_12_1
– ident: e_1_2_2_9_2
  doi: 10.1016/j.ensm.2017.10.012
– ident: e_1_2_2_24_2
  doi: 10.1038/nmat4041
– ident: e_1_2_2_3_2
  doi: 10.1016/j.joule.2017.08.001
– ident: e_1_2_2_38_2
  doi: 10.1038/ncomms10101
– ident: e_1_2_2_31_1
  doi: 10.1016/j.ensm.2016.07.003
– ident: e_1_2_2_27_2
  doi: 10.1016/j.electacta.2015.04.168
– ident: e_1_2_2_42_1
  doi: 10.1016/j.nanoen.2017.01.027
– ident: e_1_2_2_47_3
  doi: 10.1002/ange.201807367
– ident: e_1_2_2_17_2
  doi: 10.1002/aenm.201500265
– ident: e_1_2_2_41_1
  doi: 10.1021/nl5046318
– ident: e_1_2_2_39_2
  doi: 10.1002/anie.201810882
– ident: e_1_2_2_34_2
  doi: 10.1002/anie.201509299
– ident: e_1_2_2_37_2
  doi: 10.1002/anie.201709774
– ident: e_1_2_2_8_1
– ident: e_1_2_2_10_2
  doi: 10.1002/adma.201801328
– ident: e_1_2_2_19_1
– ident: e_1_2_2_16_1
– ident: e_1_2_2_40_1
  doi: 10.1039/C6CS00491A
– ident: e_1_2_2_33_2
  doi: 10.1038/nmat3602
– ident: e_1_2_2_35_2
  doi: 10.1021/acsenergylett.7b00999
– ident: e_1_2_2_21_2
  doi: 10.1038/srep03815
– ident: e_1_2_2_43_1
  doi: 10.1021/acs.chemmater.6b02190
SSID ssj0028806
Score 2.6364052
Snippet The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6001
SubjectTerms Batteries
Conduction
Copolymerization
Dendrites
Dendritic structure
Electrolytes
Glass fibers
hierarchical structure
Iodine
iodine cathode
Ion currents
Ions
Lithium
Lithium batteries
lithium metal battery
Mechanical properties
Monomers
near-single ion conduction
Organic chemistry
polymer electrolyte
Polymers
Title Stable Conversion Chemistry‐Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near‐Single Ion Conduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201901582
https://www.ncbi.nlm.nih.gov/pubmed/30830705
https://www.proquest.com/docview/2207790314
https://www.proquest.com/docview/2187957796
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcCiXvnjULUVbCaknQ7xeO8kxCYlCVaKqBYmbtS-LCONUkBzSU38CZ34ev4SZ3dhtQAiJ3mx5V7vendn5ZnfnG4BdHUcqjXkSahvHobAaVcogkJOJTdO8LRLjgsSORunwRHw9TU7_ieL3_BD1hhtphluvScGlutr_SxpKEdh0NYsMWosWYbqwRajoR80fxVE4fXgR9oOy0FesjQ2-v1x92So9gJrLyNWZnsFrkFWn_Y2T873ZVO3p3_f4HP_nr97AqwUuZR0vSG_hhS3fwctelQ5uHW4QlqrCsh5dU3d7bKz-evvnuovW0LBv4-nZeHbBjixieua5O9EVZ30XoWWYmrPhmEKeXQaWgrnwXzKtfkeSfZ8U8wt7yfo-OU8xRyDMaKuYjVAjsZmfaGmxE4fU-qQ0nvp2A04G_ePeMFwkdgi1QECDzi_XXEc5qj86SKLdaFijtFStiKhjZMRtkua8iY573jQ251q3hdGtXKE7m3B0_zdhpZyU9j0wGRuupETYYixiS94yWufNRORWC6HaJoCwmthML1jPKflGkXm-Zp7RiGf1iAfwpS7_y_N9PFpyu5KTbKH3VxnnDSJwjCMRwOf6M84FHcPI0k5mWMYleMdiaQBbXr7qpmJExLgIJwFwJyVP9CHrjA779duH51T6CGv0TAdkPN6GlenlzH5CnDVVO7Da6R50BztOp-4Ae6Uk0g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6hckgvFCgthha2EhInt_Hu2kmOaUiVQBIh2kq9Wd4fi6iOg0pyCCceoec-Hk_CzG5sFBCqBEfbu9q1d2bnm_HONwBvtIhUIngcaitEKK1GlTII5LLYJknekbFxSWLjSTK4lO-v4uo0IeXCeH6IOuBGmuH2a1JwCkif_GINpRRsOptFFq2Nu_BDKutNuvnuU80gxVE8fYIRzoTq0Fe8jU1-stl_0y79ATY3saszPmc7oKpp-zMn18fLhTrW335jdPyv93oMj9bQlHW9LD2BB7Z8Co1eVRFuF-4QmarCsh6dVHdhNlY__fH99hQNomGj6eLzdDljY4uwnnn6TvTGWd8laRmmVmwwpaxnV4SlYC4DmKyrD0qyj_NiNbM3rO_r8xQrxMKMosVsgkqJw5yjscVJDGn0eWk8--0zuDzrX_QG4bq2Q6glYhr0f7nmOspxB0AfSXaaTWuUzlQ7IvaYLOI2TnLeQt89bxmbc6070uh2rtCjjblVYg-2ynlpnwPLhOEqyxC5GIvwkreN1nkrlrnVUqqOCSCsVjbVa-Jzqr9RpJ6ymaf0xdP6iwfwtm7_xVN-_LXlQSUo6Vr1v6acN4nDUUQygKP6Ma4F_YnJSjtfYhtX4x2bJQHsewGrhxIIinEfjgPgTkzumUPanQz79dWLf-n0GhqDi_EoHQ0nH17CNt2n_2VcHMDW4mZpDxF2LdQrp1g_AWyQJ3k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgGX8g-BQl2pUk9pE8fJZo9lu6vd0q6qlkq9RfGfWJFmq3b3sJx4BM48Hk_CjL0JLBVCgmMSW3bsGc83tucbgG2VxDJLeBoqkyShMApVSiOQK1OTZbYrUu2CxI7H2fBcHF6kF79E8Xt-iHbDjTTDrdek4Ffa7v0kDaUIbLqaRQYtx0X4rsiinNyvg9OWQIqjdPr4IuwIpaFvaBsjvrdaf9Us3cKaq9DV2Z7BQyibXvsrJ5925zO5qz7_Ruj4P7_1CNaXwJTte0l6DHdM_QTu95p8cE_hG-JSWRnWo3vqbpONtV-_f_n6Ds2hZkeT2cfJ_JIdGwT1zJN3oi_O-i5ESzO5YMMJxTy7FCwVc_G_ZFv9liQ7mVaLS3PN-j47T7VAJMxor5iNUSWxmTM0tdiJEbU-rbXnvn0G54P-h94wXGZ2CJVARIPeL1dcxRb1Hz0k0Y0io6UqZR4Td0wZc5NmlnfQc7cdbSxXqiu0yq1Efzbl6P8_h7V6WpuXwMpEc1mWiFu0QXDJc62U7aTCGiWE7OoAwmZiC7WkPafsG1XhCZt5QSNetCMewE5b_soTfvyx5EYjJ8VS8W8KziNicExiEcBW-xnngs5hytpM51jGZXjHYlkAL7x8tU0lCIlxFU4D4E5K_tKHYn886rdPr_6l0ibcOzkYFEej8fvX8IBe02EZTzZgbXY9N28Qc83kW6dWPwD6IiYx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Conversion+Chemistry%E2%80%90Based+Lithium+Metal+Batteries+Enabled+by+Hierarchical+Multifunctional+Polymer+Electrolytes+with+Near%E2%80%90Single+Ion+Conduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Dong&rft.au=Tkacheva%2C+Anastasia&rft.au=Tang%2C+Xiao&rft.au=Sun%2C+Bing&rft.date=2019-04-23&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=18&rft.spage=6001&rft.epage=6006&rft_id=info:doi/10.1002%2Fanie.201901582&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon