Stable Conversion Chemistry‐Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near‐Single Ion Conduction
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electro...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 18; pp. 6001 - 6006 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
23.04.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201901582 |
Cover
Loading…
Abstract | The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.
A novel hierarchical multifunctional polymer electrolyte shows near‐single ion conduction for lithium metal batteries. This electrolyte was in situ fabricated by integrating (LiMTFSI‐PETEA)‐based crosslinking gel polymer electrolyte with PDDALi‐coated glass fiber membrane. The as‐prepared multifunctional electrolyte exhibits high ionic conductivity, enhanced safety, suppression on dendrite growth, and stable cycling in lithium‐iodine batteries. |
---|---|
AbstractList | The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10
S cm
at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability. The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10 −3 S cm −1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability. The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability. The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10−3 S cm−1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability. A novel hierarchical multifunctional polymer electrolyte shows near‐single ion conduction for lithium metal batteries. This electrolyte was in situ fabricated by integrating (LiMTFSI‐PETEA)‐based crosslinking gel polymer electrolyte with PDDALi‐coated glass fiber membrane. The as‐prepared multifunctional electrolyte exhibits high ionic conductivity, enhanced safety, suppression on dendrite growth, and stable cycling in lithium‐iodine batteries. The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10-3 S cm-1 at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability.The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi-solid-state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3-dimethylacrylic acid lithium) (PDAALi)-coated glass fiber membrane. The well-designed HMPE simultaneously exhibits high ionic conductivity (2.24×10-3 S cm-1 at 25 °C), near-single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as-developed Li-I batteries with high capacity and long cycling stability. |
Author | Tkacheva, Anastasia Shanmukaraj, Devaraj Armand, Michel Tang, Xiao Li, Peng Wang, Guoxiu Sun, Bing Zhang, Fan Zhou, Dong |
Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0002-2578-7124 surname: Zhou fullname: Zhou, Dong organization: University of Technology Sydney – sequence: 2 givenname: Anastasia surname: Tkacheva fullname: Tkacheva, Anastasia organization: University of Technology Sydney – sequence: 3 givenname: Xiao surname: Tang fullname: Tang, Xiao organization: University of Technology Sydney – sequence: 4 givenname: Bing surname: Sun fullname: Sun, Bing organization: University of Technology Sydney – sequence: 5 givenname: Devaraj surname: Shanmukaraj fullname: Shanmukaraj, Devaraj organization: CIC ENERGIGUNE – sequence: 6 givenname: Peng surname: Li fullname: Li, Peng organization: Nanjing University of Aeronautics and Astronautics – sequence: 7 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: University of Technology Sydney – sequence: 8 givenname: Michel surname: Armand fullname: Armand, Michel organization: CIC ENERGIGUNE – sequence: 9 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: Guoxiu.Wang@uts.edu.au organization: University of Technology Sydney |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30830705$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFO3DAQhq2KqsC21x4rS730ksV24o1zhNUWVlqgEu3ZcpxJ18hxqO2Acusj9Mzj9UnqsFAkpKon29L3_eOZOUR7rneA0HtK5pQQdqScgTkjtCKUC_YKHVDOaJaXZb6X7kWeZ6XgdB8dhnCdeCHI4g3az4nISUn4Abq_iqq2gJe9uwUfTO_wcgudCdGPv3_-OlEBGrwxcWuGDp9DVBafqBjBGwh45Sa3wfWIzwx45fXW6EScDzaadnA6prz0_tLbsQOPVxZ09OkRk3yXQvEFKJ_KXBn3PX1iPVXvXTM8iG_R61bZAO8ezxn69nn1dXmWbS5P18vjTaYLSljGGdNM0zanFeekqAiBptaqFrQQlCvKgC9aVi4q0pYNtEzrqmi0aGvBOGdQ5zP0aZd74_sfA4QoU_sarFUO-iFIRkVZ8bKsFgn9-AK97gefWkwUIwkheZr5DH14pIa6g0beeNMpP8qnqSeg2AHa9yF4aKU2UU09R6-MlZTIablyWq78u9ykzV9oT8n_FKqdcGcsjP-h5fHFevXs_gGy9bsB |
CitedBy_id | crossref_primary_10_1002_anie_202114024 crossref_primary_10_1021_acsami_0c13520 crossref_primary_10_1016_j_polymer_2024_127977 crossref_primary_10_1021_acsaem_0c01358 crossref_primary_10_1016_j_colsurfa_2023_132046 crossref_primary_10_1021_acsenergylett_0c00542 crossref_primary_10_1016_j_ijbiomac_2025_139560 crossref_primary_10_1016_j_polymer_2023_126402 crossref_primary_10_1016_j_polymer_2024_127576 crossref_primary_10_1016_j_xcrp_2021_100534 crossref_primary_10_1016_j_isci_2020_101417 crossref_primary_10_1021_acsami_3c13883 crossref_primary_10_1016_j_ensm_2022_12_048 crossref_primary_10_1039_D0CC02940H crossref_primary_10_1038_s41560_023_01339_z crossref_primary_10_1002_cey2_478 crossref_primary_10_1007_s40820_024_01498_y crossref_primary_10_1149_1945_7111_abdeeb crossref_primary_10_1002_ange_201912701 crossref_primary_10_1002_adma_201906739 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1002_advs_202101866 crossref_primary_10_1021_acsaem_9b00534 crossref_primary_10_1016_j_ensm_2024_103683 crossref_primary_10_1016_j_cej_2021_128534 crossref_primary_10_1007_s11426_023_1958_x crossref_primary_10_1039_D3TA00687E crossref_primary_10_1149_1945_7111_ab787a crossref_primary_10_1002_smll_202101881 crossref_primary_10_1002_asia_202000851 crossref_primary_10_1021_acssuschemeng_9b04307 crossref_primary_10_1016_j_jechem_2020_08_026 crossref_primary_10_1016_j_memsci_2022_121275 crossref_primary_10_1002_ange_202316087 crossref_primary_10_1002_ente_201901429 crossref_primary_10_1002_adfm_202203006 crossref_primary_10_1016_j_jpowsour_2020_229186 crossref_primary_10_1002_aenm_202001497 crossref_primary_10_1002_anie_202116586 crossref_primary_10_1016_j_jechem_2022_08_042 crossref_primary_10_1016_j_ensm_2020_07_037 crossref_primary_10_1016_j_memsci_2022_120287 crossref_primary_10_1002_anie_202316087 crossref_primary_10_1007_s11581_020_03549_x crossref_primary_10_1016_j_chempr_2019_05_009 crossref_primary_10_1021_acsnano_9b07706 crossref_primary_10_1016_j_jcis_2024_02_178 crossref_primary_10_1021_acsami_2c11397 crossref_primary_10_3390_polym14173452 crossref_primary_10_1002_adfm_202008632 crossref_primary_10_1007_s12274_020_2845_2 crossref_primary_10_1016_j_chempr_2020_01_008 crossref_primary_10_1002_anie_202001793 crossref_primary_10_1039_D0TA12437K crossref_primary_10_1007_s11426_022_1221_4 crossref_primary_10_1021_acs_macromol_2c00193 crossref_primary_10_1002_ange_201916301 crossref_primary_10_1021_acsami_2c13613 crossref_primary_10_1016_j_ensm_2019_06_021 crossref_primary_10_1016_j_jmat_2022_02_009 crossref_primary_10_1039_D1RA02641K crossref_primary_10_1002_ange_202116586 crossref_primary_10_1002_advs_202104277 crossref_primary_10_1002_celc_201901351 crossref_primary_10_1016_j_memsci_2020_118051 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1021_acsami_2c16174 crossref_primary_10_1002_adfm_202008644 crossref_primary_10_1002_cssc_202301896 crossref_primary_10_1039_D4EE02208D crossref_primary_10_1149_2_0072007JES crossref_primary_10_1016_j_cej_2022_135419 crossref_primary_10_1016_j_scib_2024_03_048 crossref_primary_10_1002_smll_202305322 crossref_primary_10_1007_s12613_020_2239_1 crossref_primary_10_1016_j_jpowsour_2021_229861 crossref_primary_10_1021_acs_nanolett_1c00448 crossref_primary_10_1016_j_est_2023_107810 crossref_primary_10_2139_ssrn_4001219 crossref_primary_10_1002_anie_201916301 crossref_primary_10_1002_adfm_202002824 crossref_primary_10_1002_smll_201907163 crossref_primary_10_1016_j_polymer_2021_123695 crossref_primary_10_1039_C9TA13304F crossref_primary_10_1002_aenm_202001235 crossref_primary_10_1002_aenm_202303834 crossref_primary_10_1039_D3EE03821A crossref_primary_10_1016_j_jpowsour_2021_229545 crossref_primary_10_1038_s41467_022_30788_5 crossref_primary_10_1002_anie_202007008 crossref_primary_10_1002_admt_201900806 crossref_primary_10_1016_j_polymer_2023_125751 crossref_primary_10_1021_acs_macromol_2c00329 crossref_primary_10_1039_D0RA10280F crossref_primary_10_1038_s41467_020_18844_4 crossref_primary_10_1039_D0EE04002A crossref_primary_10_1002_adfm_202006159 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1002_adma_202100793 crossref_primary_10_1016_j_ensm_2020_04_002 crossref_primary_10_1002_adma_202108437 crossref_primary_10_1021_acsami_4c16084 crossref_primary_10_1002_ange_202308397 crossref_primary_10_1007_s10853_020_04634_2 crossref_primary_10_1021_acsami_9b22127 crossref_primary_10_1039_C9TA11178F crossref_primary_10_1002_ange_202114024 crossref_primary_10_1038_s41467_021_26073_6 crossref_primary_10_1002_anie_201911229 crossref_primary_10_1002_batt_202200338 crossref_primary_10_1021_acsaem_0c00737 crossref_primary_10_1002_adma_202301308 crossref_primary_10_1016_j_ensm_2022_05_052 crossref_primary_10_1021_acsapm_4c00806 crossref_primary_10_1021_acs_chemmater_9b04521 crossref_primary_10_1002_celc_202200984 crossref_primary_10_1021_acsami_3c02155 crossref_primary_10_1021_acsaem_0c02079 crossref_primary_10_1021_acsami_2c01513 crossref_primary_10_1002_ange_202104671 crossref_primary_10_1002_ange_202107389 crossref_primary_10_1016_j_electacta_2021_138632 crossref_primary_10_1021_acsaem_0c02483 crossref_primary_10_1149_1945_7111_ab76a4 crossref_primary_10_1039_C9TA05938E crossref_primary_10_1002_adma_202100943 crossref_primary_10_1002_adfm_202204778 crossref_primary_10_1007_s12274_023_5584_3 crossref_primary_10_1002_aesr_202100197 crossref_primary_10_1016_j_jpowsour_2025_236369 crossref_primary_10_1016_j_pmatsci_2022_100921 crossref_primary_10_1360_SSC_2024_0082 crossref_primary_10_1021_acsaem_1c00327 crossref_primary_10_1021_acsmacrolett_9b01024 crossref_primary_10_1002_ange_202001793 crossref_primary_10_1002_anie_201912701 crossref_primary_10_1016_j_nanoen_2023_108892 crossref_primary_10_1002_adfm_202105253 crossref_primary_10_1002_adfm_202305072 crossref_primary_10_1039_C9TA08795H crossref_primary_10_1016_j_cej_2020_124708 crossref_primary_10_1016_j_electacta_2023_142496 crossref_primary_10_1039_D3EE04556K crossref_primary_10_1016_j_matchemphys_2021_124701 crossref_primary_10_1002_anie_202104671 crossref_primary_10_1016_j_electacta_2023_143626 crossref_primary_10_1002_ange_202007008 crossref_primary_10_1002_anie_202107389 crossref_primary_10_1021_acsaem_2c00705 crossref_primary_10_1016_j_nanoen_2019_103989 crossref_primary_10_1039_D1TA06606D crossref_primary_10_1016_j_electacta_2020_136604 crossref_primary_10_1016_j_electacta_2022_139995 crossref_primary_10_1002_batt_202200231 crossref_primary_10_1021_acsaem_3c01183 crossref_primary_10_1002_adfm_202100891 crossref_primary_10_1016_j_jallcom_2022_165329 crossref_primary_10_1021_acsami_0c10463 crossref_primary_10_1039_D1TA02297K crossref_primary_10_1016_j_ensm_2021_10_042 crossref_primary_10_1039_D1TA08771A crossref_primary_10_1002_cssc_202202334 crossref_primary_10_1002_adma_202300998 crossref_primary_10_1002_adma_201905771 crossref_primary_10_1021_acsami_1c17002 crossref_primary_10_1016_j_nanoen_2020_105698 crossref_primary_10_1016_j_electacta_2022_140624 crossref_primary_10_1038_s41467_021_27728_0 crossref_primary_10_1021_acsami_4c11500 crossref_primary_10_1021_acsami_4c04012 crossref_primary_10_1021_acsapm_2c02197 crossref_primary_10_1002_ange_201911229 crossref_primary_10_1002_anie_202308397 crossref_primary_10_1039_C9TA06815E crossref_primary_10_1002_adfm_202008208 crossref_primary_10_1016_j_apmt_2022_101705 crossref_primary_10_1002_marc_202200865 crossref_primary_10_1002_smll_202005762 crossref_primary_10_1016_j_ensm_2020_04_032 |
Cites_doi | 10.1002/ange.201709774 10.1002/ange.201301250 10.1149/2.0011507jes 10.1002/adma.201703729 10.1002/ange.201810882 10.1038/nnano.2014.152 10.1002/ange.201509299 10.1002/adfm.201800154 10.1021/jacs.6b10088 10.1016/S0167-2738(02)00080-2 10.1002/ange.201808592 10.1039/c3cs60177c 10.1002/aenm.201502214 10.1002/anie.201301250 10.1038/ncomms7362 10.1002/aenm.201402073 10.1002/anie.201808592 10.1002/adma.201804684 10.1073/pnas.1803385115 10.1073/pnas.1809187115 10.1002/anie.201807367 10.1002/adma.201806541 10.1039/C8EE02093K 10.1149/1.3148721 10.1038/nmat3191 10.1016/j.ensm.2017.10.012 10.1038/nmat4041 10.1016/j.joule.2017.08.001 10.1038/ncomms10101 10.1016/j.ensm.2016.07.003 10.1016/j.electacta.2015.04.168 10.1016/j.nanoen.2017.01.027 10.1002/ange.201807367 10.1002/aenm.201500265 10.1021/nl5046318 10.1002/anie.201810882 10.1002/anie.201509299 10.1002/anie.201709774 10.1002/adma.201801328 10.1039/C6CS00491A 10.1038/nmat3602 10.1021/acsenergylett.7b00999 10.1038/srep03815 10.1021/acs.chemmater.6b02190 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201901582 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6006 |
ExternalDocumentID | 30830705 10_1002_anie_201901582 ANIE201901582 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Australian Renewable Energy Agency funderid: ARENA 2014/RND106 – fundername: Rail Manufactory CRC projects funderid: R1.1.1 and R1.1.2 – fundername: Australian Research Council (ARC) Discovery Project funderid: DP160104340 and DP170100436 – fundername: Rail Manufactory CRC projects grantid: R1.1.1 and R1.1.2 – fundername: Australian Research Council (ARC) Discovery Project grantid: DP160104340 and DP170100436 – fundername: Australian Renewable Energy Agency grantid: ARENA 2014/RND106 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4102-522c2c1f3195504900edbcab814815a12e56f27690f7def2cc94dc8fb82552eb3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 06:41:24 EDT 2025 Sun Jul 13 05:16:31 EDT 2025 Mon Jul 21 05:58:24 EDT 2025 Tue Jul 01 02:26:44 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 17:10:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | iodine cathode lithium metal battery hierarchical structure polymer electrolyte near-single ion conduction |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-522c2c1f3195504900edbcab814815a12e56f27690f7def2cc94dc8fb82552eb3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2578-7124 0000-0003-4295-8578 |
PMID | 30830705 |
PQID | 2207790314 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2187957796 proquest_journals_2207790314 pubmed_primary_30830705 crossref_citationtrail_10_1002_anie_201901582 crossref_primary_10_1002_anie_201901582 wiley_primary_10_1002_anie_201901582_ANIE201901582 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 23, 2019 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: April 23, 2019 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2015; 15 2018; 28 2017; 1 2015; 6 2015; 5 2019; 31 2013; 42 2017; 46 2009; 156 2017; 29 2012; 11 2013 2013; 52 125 2016; 5 2016; 6 2018; 3 2014; 4 2015; 170 2016 2016; 55 128 2013; 12 2018 2018; 57 130 2017; 33 2018; 115 2002; 148 2014; 13 2018; 30 2016; 138 2014; 9 2018; 11 2016; 28 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_47_3 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 e_1_2_2_26_2 e_1_2_2_13_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_34_3 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_25_1 e_1_2_2_46_3 e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_46_2 e_1_2_2_37_2 e_1_2_2_12_1 e_1_2_2_37_3 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_39_3 e_1_2_2_31_1 e_1_2_2_18_2 e_1_2_2_33_2 e_1_2_2_16_1 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 11 start-page: 19 year: 2012 end-page: 29 publication-title: Nat. Mater. – volume: 57 130 start-page: 16131 16363 year: 2018 2018 end-page: 16135 16367 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 522 year: 2017 end-page: 547 publication-title: Joule – volume: 156 start-page: 694 year: 2009 end-page: 702 publication-title: J. Electrochem. Soc. – volume: 28 start-page: 5147 year: 2016 end-page: 5154 publication-title: Chem. Mater. – volume: 162 start-page: 1094 year: 2015 end-page: 1101 publication-title: J. Electrochem. Soc. – volume: 42 start-page: 9011 year: 2013 end-page: 9034 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 139 year: 2016 end-page: 164 publication-title: Energy Storage Mater. – volume: 6 start-page: 1502214 year: 2016 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1804684 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 3298 year: 2018 end-page: 3309 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1703729 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 6362 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 1500265 year: 2015 publication-title: Adv. Energy Mater. – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 57 130 start-page: 14796 15012 year: 2018 2018 end-page: 14800 15016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 3815 year: 2014 publication-title: Sci. Rep. – volume: 31 start-page: 1806541 year: 2019 publication-title: Adv. Mater. – volume: 115 start-page: 6620 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 128 start-page: 2521 2567 year: 2016 2016 end-page: 2525 2571 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 10101 year: 2015 publication-title: Nat. Commun. – volume: 15 start-page: 2910 year: 2015 end-page: 2916 publication-title: Nano Lett. – volume: 5 start-page: 1402073 year: 2015 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1801328 year: 2018 publication-title: Adv. Mater. – volume: 12 start-page: 452 year: 2013 publication-title: Nat. Mater. – volume: 115 start-page: 12389 year: 2018 end-page: 12394 publication-title: Proc. Natl. Acad. Sci. USA – volume: 170 start-page: 353 year: 2015 end-page: 359 publication-title: Electrochim. Acta – volume: 13 start-page: 961 year: 2014 end-page: 969 publication-title: Nat. Mater. – volume: 3 start-page: 20 year: 2018 end-page: 27 publication-title: ACS Energy Lett. – volume: 46 start-page: 797 year: 2017 end-page: 815 publication-title: Chem. Soc. Rev. – volume: 28 start-page: 1800154 year: 2018 publication-title: Adv. Funct. Mater. – volume: 57 130 start-page: 1361 1375 year: 2018 2018 end-page: 1365 1379 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 148 start-page: 405 year: 2002 end-page: 416 publication-title: Solid State Ionics – volume: 138 start-page: 15825 year: 2016 end-page: 15828 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 127 year: 2018 end-page: 133 publication-title: Energy Storage Mater. – volume: 33 start-page: 45 year: 2017 end-page: 54 publication-title: Nano Energy – volume: 57 130 start-page: 12033 12209 year: 2018 2018 end-page: 12036 12212 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 125 start-page: 6930 7068 year: 2013 2013 end-page: 6935 7073 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_37_3 doi: 10.1002/ange.201709774 – ident: e_1_2_2_7_2 doi: 10.1002/ange.201301250 – ident: e_1_2_2_20_2 doi: 10.1149/2.0011507jes – ident: e_1_2_2_32_1 – ident: e_1_2_2_11_2 doi: 10.1002/adma.201703729 – ident: e_1_2_2_39_3 doi: 10.1002/ange.201810882 – ident: e_1_2_2_2_2 doi: 10.1038/nnano.2014.152 – ident: e_1_2_2_34_3 doi: 10.1002/ange.201509299 – ident: e_1_2_2_6_1 doi: 10.1002/adfm.201800154 – ident: e_1_2_2_30_2 doi: 10.1021/jacs.6b10088 – ident: e_1_2_2_48_1 doi: 10.1016/S0167-2738(02)00080-2 – ident: e_1_2_2_46_3 doi: 10.1002/ange.201808592 – ident: e_1_2_2_5_1 doi: 10.1039/c3cs60177c – ident: e_1_2_2_29_2 doi: 10.1002/aenm.201502214 – ident: e_1_2_2_45_1 – ident: e_1_2_2_28_1 – ident: e_1_2_2_7_1 doi: 10.1002/anie.201301250 – ident: e_1_2_2_23_2 doi: 10.1038/ncomms7362 – ident: e_1_2_2_18_2 doi: 10.1002/aenm.201402073 – ident: e_1_2_2_25_1 – ident: e_1_2_2_36_1 – ident: e_1_2_2_22_1 – ident: e_1_2_2_46_2 doi: 10.1002/anie.201808592 – ident: e_1_2_2_14_2 doi: 10.1002/adma.201804684 – ident: e_1_2_2_49_1 doi: 10.1073/pnas.1803385115 – ident: e_1_2_2_15_2 doi: 10.1073/pnas.1809187115 – ident: e_1_2_2_47_2 doi: 10.1002/anie.201807367 – ident: e_1_2_2_13_2 doi: 10.1002/adma.201806541 – ident: e_1_2_2_44_1 doi: 10.1039/C8EE02093K – ident: e_1_2_2_26_2 doi: 10.1149/1.3148721 – ident: e_1_2_2_1_1 – ident: e_1_2_2_4_1 doi: 10.1038/nmat3191 – ident: e_1_2_2_12_1 – ident: e_1_2_2_9_2 doi: 10.1016/j.ensm.2017.10.012 – ident: e_1_2_2_24_2 doi: 10.1038/nmat4041 – ident: e_1_2_2_3_2 doi: 10.1016/j.joule.2017.08.001 – ident: e_1_2_2_38_2 doi: 10.1038/ncomms10101 – ident: e_1_2_2_31_1 doi: 10.1016/j.ensm.2016.07.003 – ident: e_1_2_2_27_2 doi: 10.1016/j.electacta.2015.04.168 – ident: e_1_2_2_42_1 doi: 10.1016/j.nanoen.2017.01.027 – ident: e_1_2_2_47_3 doi: 10.1002/ange.201807367 – ident: e_1_2_2_17_2 doi: 10.1002/aenm.201500265 – ident: e_1_2_2_41_1 doi: 10.1021/nl5046318 – ident: e_1_2_2_39_2 doi: 10.1002/anie.201810882 – ident: e_1_2_2_34_2 doi: 10.1002/anie.201509299 – ident: e_1_2_2_37_2 doi: 10.1002/anie.201709774 – ident: e_1_2_2_8_1 – ident: e_1_2_2_10_2 doi: 10.1002/adma.201801328 – ident: e_1_2_2_19_1 – ident: e_1_2_2_16_1 – ident: e_1_2_2_40_1 doi: 10.1039/C6CS00491A – ident: e_1_2_2_33_2 doi: 10.1038/nmat3602 – ident: e_1_2_2_35_2 doi: 10.1021/acsenergylett.7b00999 – ident: e_1_2_2_21_2 doi: 10.1038/srep03815 – ident: e_1_2_2_43_1 doi: 10.1021/acs.chemmater.6b02190 |
SSID | ssj0028806 |
Score | 2.6364052 |
Snippet | The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6001 |
SubjectTerms | Batteries Conduction Copolymerization Dendrites Dendritic structure Electrolytes Glass fibers hierarchical structure Iodine iodine cathode Ion currents Ions Lithium Lithium batteries lithium metal battery Mechanical properties Monomers near-single ion conduction Organic chemistry polymer electrolyte Polymers |
Title | Stable Conversion Chemistry‐Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near‐Single Ion Conduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201901582 https://www.ncbi.nlm.nih.gov/pubmed/30830705 https://www.proquest.com/docview/2207790314 https://www.proquest.com/docview/2187957796 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5VcCiXvnjULUVbCaknQ7xeO8kxCYlCVaKqBYmbtS-LCONUkBzSU38CZ34ev4SZ3dhtQAiJ3mx5V7vendn5ZnfnG4BdHUcqjXkSahvHobAaVcogkJOJTdO8LRLjgsSORunwRHw9TU7_ieL3_BD1hhtphluvScGlutr_SxpKEdh0NYsMWosWYbqwRajoR80fxVE4fXgR9oOy0FesjQ2-v1x92So9gJrLyNWZnsFrkFWn_Y2T873ZVO3p3_f4HP_nr97AqwUuZR0vSG_hhS3fwctelQ5uHW4QlqrCsh5dU3d7bKz-evvnuovW0LBv4-nZeHbBjixieua5O9EVZ30XoWWYmrPhmEKeXQaWgrnwXzKtfkeSfZ8U8wt7yfo-OU8xRyDMaKuYjVAjsZmfaGmxE4fU-qQ0nvp2A04G_ePeMFwkdgi1QECDzi_XXEc5qj86SKLdaFijtFStiKhjZMRtkua8iY573jQ251q3hdGtXKE7m3B0_zdhpZyU9j0wGRuupETYYixiS94yWufNRORWC6HaJoCwmthML1jPKflGkXm-Zp7RiGf1iAfwpS7_y_N9PFpyu5KTbKH3VxnnDSJwjCMRwOf6M84FHcPI0k5mWMYleMdiaQBbXr7qpmJExLgIJwFwJyVP9CHrjA779duH51T6CGv0TAdkPN6GlenlzH5CnDVVO7Da6R50BztOp-4Ae6Uk0g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEB6hckgvFCgthha2EhInt_Hu2kmOaUiVQBIh2kq9Wd4fi6iOg0pyCCceoec-Hk_CzG5sFBCqBEfbu9q1d2bnm_HONwBvtIhUIngcaitEKK1GlTII5LLYJknekbFxSWLjSTK4lO-v4uo0IeXCeH6IOuBGmuH2a1JwCkif_GINpRRsOptFFq2Nu_BDKutNuvnuU80gxVE8fYIRzoTq0Fe8jU1-stl_0y79ATY3saszPmc7oKpp-zMn18fLhTrW335jdPyv93oMj9bQlHW9LD2BB7Z8Co1eVRFuF-4QmarCsh6dVHdhNlY__fH99hQNomGj6eLzdDljY4uwnnn6TvTGWd8laRmmVmwwpaxnV4SlYC4DmKyrD0qyj_NiNbM3rO_r8xQrxMKMosVsgkqJw5yjscVJDGn0eWk8--0zuDzrX_QG4bq2Q6glYhr0f7nmOspxB0AfSXaaTWuUzlQ7IvaYLOI2TnLeQt89bxmbc6070uh2rtCjjblVYg-2ynlpnwPLhOEqyxC5GIvwkreN1nkrlrnVUqqOCSCsVjbVa-Jzqr9RpJ6ymaf0xdP6iwfwtm7_xVN-_LXlQSUo6Vr1v6acN4nDUUQygKP6Ma4F_YnJSjtfYhtX4x2bJQHsewGrhxIIinEfjgPgTkzumUPanQz79dWLf-n0GhqDi_EoHQ0nH17CNt2n_2VcHMDW4mZpDxF2LdQrp1g_AWyQJ3k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hIgGX8g-BQl2pUk9pE8fJZo9lu6vd0q6qlkq9RfGfWJFmq3b3sJx4BM48Hk_CjL0JLBVCgmMSW3bsGc83tucbgG2VxDJLeBoqkyShMApVSiOQK1OTZbYrUu2CxI7H2fBcHF6kF79E8Xt-iHbDjTTDrdek4Ffa7v0kDaUIbLqaRQYtx0X4rsiinNyvg9OWQIqjdPr4IuwIpaFvaBsjvrdaf9Us3cKaq9DV2Z7BQyibXvsrJ5925zO5qz7_Ruj4P7_1CNaXwJTte0l6DHdM_QTu95p8cE_hG-JSWRnWo3vqbpONtV-_f_n6Ds2hZkeT2cfJ_JIdGwT1zJN3oi_O-i5ESzO5YMMJxTy7FCwVc_G_ZFv9liQ7mVaLS3PN-j47T7VAJMxor5iNUSWxmTM0tdiJEbU-rbXnvn0G54P-h94wXGZ2CJVARIPeL1dcxRb1Hz0k0Y0io6UqZR4Td0wZc5NmlnfQc7cdbSxXqiu0yq1Efzbl6P8_h7V6WpuXwMpEc1mWiFu0QXDJc62U7aTCGiWE7OoAwmZiC7WkPafsG1XhCZt5QSNetCMewE5b_soTfvyx5EYjJ8VS8W8KziNicExiEcBW-xnngs5hytpM51jGZXjHYlkAL7x8tU0lCIlxFU4D4E5K_tKHYn886rdPr_6l0ibcOzkYFEej8fvX8IBe02EZTzZgbXY9N28Qc83kW6dWPwD6IiYx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Conversion+Chemistry%E2%80%90Based+Lithium+Metal+Batteries+Enabled+by+Hierarchical+Multifunctional+Polymer+Electrolytes+with+Near%E2%80%90Single+Ion+Conduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Dong&rft.au=Tkacheva%2C+Anastasia&rft.au=Tang%2C+Xiao&rft.au=Sun%2C+Bing&rft.date=2019-04-23&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=18&rft.spage=6001&rft.epage=6006&rft_id=info:doi/10.1002%2Fanie.201901582&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |