Porous Cobalt–Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotential...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 8; pp. e1804832 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.
An ecofriendly technique, laser ablation in liquid, is adopted to produce porous Co0.75Ni0.25(OH)2 nanosheets with numerous Co3+ ions on the pore wall. These Co3+ ions possess moderate adsorption for the intermediates of both hydrogen evolution and oxygen evolution reactions, thus accelerating electrochemical overall water splitting. |
---|---|
AbstractList | Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co
Ni
(OH)
nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm
) and oxygen evolution reaction (235 mV@10 mA cm
). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm
at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co
ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co
ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. An ecofriendly technique, laser ablation in liquid, is adopted to produce porous Co0.75Ni0.25(OH)2 nanosheets with numerous Co3+ ions on the pore wall. These Co3+ ions possess moderate adsorption for the intermediates of both hydrogen evolution and oxygen evolution reactions, thus accelerating electrochemical overall water splitting. Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co0.75 Ni0.25 (OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm-2 ) and oxygen evolution reaction (235 mV@10 mA cm-2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm-2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co0.75 Ni0.25 (OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm-2 ) and oxygen evolution reaction (235 mV@10 mA cm-2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm-2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co 0.75 Ni 0.25 (OH) 2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm −2 ) and oxygen evolution reaction (235 mV@10 mA cm −2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm −2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co 3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co 3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. |
Author | Feng, Yi Li, Zhe Shen, Gu‐Rong Zou, Chengqin Liu, Hui Du, Xi‐Wen Dong, Cun‐Ku Wang, Xiao Wu, De‐Yao |
Author_xml | – sequence: 1 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Tianjin University – sequence: 2 givenname: Zhe surname: Li fullname: Li, Zhe organization: Tianjin University – sequence: 3 givenname: De‐Yao surname: Wu fullname: Wu, De‐Yao organization: Tianjin University – sequence: 4 givenname: Gu‐Rong surname: Shen fullname: Shen, Gu‐Rong organization: Tianjin University – sequence: 5 givenname: Chengqin surname: Zou fullname: Zou, Chengqin organization: Tianjin University – sequence: 6 givenname: Yi surname: Feng fullname: Feng, Yi organization: Tianjin University – sequence: 7 givenname: Hui surname: Liu fullname: Liu, Hui email: cry5501@163.com organization: Tianjin University – sequence: 8 givenname: Cun‐Ku surname: Dong fullname: Dong, Cun‐Ku email: ckdong@tju.edu.cn organization: Tianjin University – sequence: 9 givenname: Xi‐Wen orcidid: 0000-0002-2811-147X surname: Du fullname: Du, Xi‐Wen email: xwdu@tju.edu.cn organization: Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30714319$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEQhkVJyFdz7bEIesnFzmgl72qPxiRNwPmANOQoZO1sI1deuZLs1Lf-h_7D_pIq2EnAUHIaDTzPMKP3kOx0vkNCPjHoM4DiNM6c6xfAJAjJiw_kgJWM90pZ1Duvbwb75DDGKQBnhaj2yD6HignO6gOibn3wi0hHfqJd-vv7z7U1P9DRi1UT_C_bIL3WnY-PiCnSJ5se6dAku8SNQC99F2nrA71ZYtDO0QedMNC7ubMp2e77R7LbahfxeFOPyP352bfRRW988_VyNBz3jGBQ9ERryknN2QC5rIyu6wqElhqhMu2AgyiaXAdtKUTDBw1vda1LnptJAwyMNPyInKznzoP_ucCY1MxGg87pDvN9qmBVLWQlJGT0yxY69YvQ5e0yJUVGRCky9XlDLSYzbNQ82JkOK_XydRkQa8AEH2PAVhmbdLK-S0Fbpxio54TUc0LqNaGs9be0l8n_Feq18GQdrt6h1d3VePzm_gNDxqQX |
CitedBy_id | crossref_primary_10_1039_D0CY00181C crossref_primary_10_1016_j_mseb_2023_117143 crossref_primary_10_1002_smll_202401034 crossref_primary_10_1039_D3SE00942D crossref_primary_10_1002_smll_202105588 crossref_primary_10_1002_ente_202100264 crossref_primary_10_1002_ange_202002650 crossref_primary_10_1039_C9TA05282H crossref_primary_10_1039_D1EE02538D crossref_primary_10_1007_s12274_020_2727_7 crossref_primary_10_1016_j_scib_2020_08_037 crossref_primary_10_1002_smll_201906564 crossref_primary_10_1007_s41403_023_00429_4 crossref_primary_10_1016_j_cej_2021_131662 crossref_primary_10_1002_advs_202201311 crossref_primary_10_1039_D0TA10429A crossref_primary_10_1002_adma_202100745 crossref_primary_10_1016_j_jece_2022_107457 crossref_primary_10_1002_cssc_202000932 crossref_primary_10_1002_sus2_32 crossref_primary_10_1016_j_jcat_2021_04_003 crossref_primary_10_1039_D0CY01109F crossref_primary_10_1016_j_jechem_2021_01_002 crossref_primary_10_3390_nano13020237 crossref_primary_10_1002_er_6934 crossref_primary_10_1016_j_cogsc_2021_100566 crossref_primary_10_1016_j_jcis_2019_11_104 crossref_primary_10_1002_smll_202201094 crossref_primary_10_1007_s40843_021_1926_9 crossref_primary_10_1039_D0DT01469A crossref_primary_10_1039_D1CP00701G crossref_primary_10_1002_smll_202101312 crossref_primary_10_1007_s40820_020_00577_0 crossref_primary_10_1002_cctc_201901904 crossref_primary_10_1039_D2CP04600H crossref_primary_10_1039_D0CY01241F crossref_primary_10_1002_adfm_202002533 crossref_primary_10_1016_j_jelechem_2024_118826 crossref_primary_10_1021_acs_inorgchem_4c01109 crossref_primary_10_1002_chem_201904510 crossref_primary_10_1063_5_0221098 crossref_primary_10_1016_j_ijhydene_2019_10_130 crossref_primary_10_1016_j_jechem_2021_10_009 crossref_primary_10_1039_D4TA05895J crossref_primary_10_1016_j_cej_2024_151695 crossref_primary_10_1002_smll_202202403 crossref_primary_10_1016_j_checat_2022_100499 crossref_primary_10_1016_j_electacta_2021_139345 crossref_primary_10_1002_anie_202002650 crossref_primary_10_1002_er_5103 |
Cites_doi | 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.59.1758 10.1007/s12274-015-0950-4 10.1016/j.apsusc.2010.10.051 10.1007/s12274-015-0965-x 10.1126/science.aad4998 10.1002/chem.201800022 10.1039/C8TA01677A 10.1038/nmat4834 10.1007/s12274-018-2050-8 10.1038/nmat4465 10.1021/acsami.7b07793 10.1002/adma.201604765 10.1016/j.jpowsour.2014.12.085 10.1039/C6TA07482K 10.1002/smll.201502322 10.1126/science.1212858 10.1016/j.ijhydene.2016.06.056 10.1126/science.1211934 10.1039/C7TA09412D 10.1021/acscatal.8b01076 10.1021/acscatal.6b00965 10.1038/440295a 10.1002/adma.201804653 10.1002/anie.201502023 10.1002/ange.201007731 10.1038/ncomms5695 10.1021/cm902787u 10.1103/PhysRevLett.77.3865 10.1002/ange.201306166 10.1021/acsami.7b18403 10.1021/ja510442p 10.1038/nchem.1634 10.1021/acscatal.7b02079 10.1002/smll.201603903 10.1021/ja4027715 10.1021/jacs.8b01548 10.1021/acscatal.6b02416 10.1038/ncomms2637 10.1002/adfm.201600566 10.1021/acscatal.7b03594 10.1039/C7DT00906B 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.73.195107 10.1002/adfm.201102295 10.1002/anie.201502836 10.1021/acscatal.8b01567 10.1002/adfm.201703363 10.1088/0953-8984/9/4/002 10.1002/smll.201800195 10.1038/nmat1752 10.1002/ange.201502226 10.1002/anie.201510642 10.1038/ncomms4949 10.1103/PhysRevB.44.943 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201804832 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 30714319 10_1002_smll_201804832 SMLL201804832 |
Genre | article Journal Article |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AANHP AAYOK AAYXX ACBWZ ACRPL ACYXJ ADNMO AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION FEDTE GODZA HVGLF AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4102-4fc6b9315e387ca99704a8ae07cf53042dcf55f644d35d3fa9a6344dbd010c8c3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 11:41:41 EDT 2025 Sun Jul 20 15:11:37 EDT 2025 Mon Jul 21 05:58:22 EDT 2025 Tue Jul 01 02:10:40 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Wed Jan 22 16:20:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | porous nanosheets trivalent cobalt ions cobalt-nickel hydroxide overall water splitting |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4102-4fc6b9315e387ca99704a8ae07cf53042dcf55f644d35d3fa9a6344dbd010c8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2811-147X |
PMID | 30714319 |
PQID | 2184480464 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2179487480 proquest_journals_2184480464 pubmed_primary_30714319 crossref_citationtrail_10_1002_smll_201804832 crossref_primary_10_1002_smll_201804832 wiley_primary_10_1002_smll_201804832_SMLL201804832 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Feb |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 42 2011; 257 2011; 334 2018; 28 2013; 4 2018; 140 2006; 73 2015; 127 2017; 46 2015; 11 2015; 54 2006; 5 2013; 125 2017; 29 2013; 5 2017; 355 2016; 15 2017; 9 1996; 54 1997; 9 2018; 24 2016; 55 1996; 77 2010; 22 2018; 6 2016; 6 2018; 8 2014; 5 2012; 2 2015; 137 2017; 16 2015; 278 1991; 44 2017; 13 1999; 59 2006; 440 2013; 135 2018; 30 2018; 11 2018; 10 2016; 26 2012; 22 2011; 123 2016; 9 2018; 14 1996; 6 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Grimaud A. (e_1_2_8_44_1) 2012; 2 Bajdich M. (e_1_2_8_58_1) 2013; 135 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 8 start-page: 5621 year: 2018 publication-title: ACS Catal. – volume: 9 start-page: 767 year: 1997 publication-title: J. Phys.: Condens. Matter. – volume: 137 start-page: 4347 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1603903 year: 2017 publication-title: Small – volume: 5 start-page: 909 year: 2006 publication-title: Nat. Mater. – volume: 5 start-page: 362 year: 2013 publication-title: Nat. Chem. – volume: 54 start-page: 8722 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 42 start-page: 5560 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 15 start-page: 48 year: 2016 publication-title: Nat. Mater. – volume: 8 start-page: 2236 year: 2018 publication-title: ACS Catal. – volume: 127 start-page: 7507 year: 2015 publication-title: Angew. Chem. – volume: 24 start-page: 4724 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 73 start-page: 195107 year: 2006 publication-title: Phys. Rev. B – volume: 16 start-page: 16 year: 2017 publication-title: Nat. Mater. – volume: 46 start-page: 8372 year: 2017 publication-title: Dalton Trans. – volume: 6 start-page: 3202 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 6699 year: 2016 publication-title: ACS Catal. – volume: 5 start-page: 4695 year: 2014 publication-title: Nat. Commun. – volume: 9 start-page: 713 year: 2016 publication-title: Nano Res. – volume: 6 start-page: 9373 year: 2018 publication-title: J. Mater. Chem. A – volume: 55 start-page: 2137 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1804653 year: 2018 publication-title: Adv. Mater. – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 29 start-page: 1604765 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 3949 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 7087 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 257 start-page: 2717 year: 2011 publication-title: Appl. Surf. Sci. – volume: 123 start-page: 4185 year: 2011 publication-title: Angew. Chem. – volume: 11 start-page: 5833 year: 2015 publication-title: Small – volume: 26 start-page: 4661 year: 2016 publication-title: Adv. Funct. Mater. – volume: 135 start-page: 36 year: 2013 publication-title: J. Phys. Chem. Sol. – volume: 22 start-page: 371 year: 2010 publication-title: Chem. Mater. – volume: 125 start-page: 13812 year: 2013 publication-title: Angew. Chem. – volume: 278 start-page: 445 year: 2015 publication-title: J. Power Sources – volume: 22 start-page: 1333 year: 2012 publication-title: Adv. Funct. Mater. – volume: 14 start-page: 1800195 year: 2018 publication-title: Small – volume: 54 start-page: 7051 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 943 year: 1991 publication-title: Phys. Rev. B – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1256 year: 2011 publication-title: Science – volume: 4 start-page: 1695 year: 2013 publication-title: Nat. Commun. – volume: 140 start-page: 5241 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 842 year: 2017 publication-title: J. Mater. Chem. A – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 440 start-page: 295 year: 2006 publication-title: Nature – volume: 355 start-page: eaad4998 year: 2017 publication-title: Science – volume: 7 start-page: 6394 year: 2017 publication-title: ACS Catal. – volume: 8 start-page: 5200 year: 2018 publication-title: ACS Catal. – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 2 start-page: 2439 year: 2012 publication-title: Nat. Commun. – volume: 9 start-page: 28 year: 2016 publication-title: Nano Res. – volume: 28 start-page: 1703363 year: 2018 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 4660 year: 2016 publication-title: ACS Catal. – volume: 9 start-page: 27736 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 334 start-page: 1383 year: 2011 publication-title: Science – volume: 11 start-page: 3509 year: 2018 publication-title: Nano Res. – ident: e_1_2_8_52_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_45_1 doi: 10.1007/s12274-015-0950-4 – ident: e_1_2_8_36_1 doi: 10.1016/j.apsusc.2010.10.051 – ident: e_1_2_8_43_1 doi: 10.1007/s12274-015-0965-x – ident: e_1_2_8_4_1 doi: 10.1126/science.aad4998 – ident: e_1_2_8_22_1 doi: 10.1002/chem.201800022 – ident: e_1_2_8_48_1 doi: 10.1039/C8TA01677A – ident: e_1_2_8_2_1 doi: 10.1038/nmat4834 – ident: e_1_2_8_37_1 doi: 10.1007/s12274-018-2050-8 – ident: e_1_2_8_50_1 doi: 10.1038/nmat4465 – ident: e_1_2_8_40_1 doi: 10.1021/acsami.7b07793 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201604765 – ident: e_1_2_8_16_1 doi: 10.1016/j.jpowsour.2014.12.085 – ident: e_1_2_8_35_1 doi: 10.1039/C6TA07482K – ident: e_1_2_8_38_1 doi: 10.1002/smll.201502322 – ident: e_1_2_8_46_1 doi: 10.1126/science.1212858 – ident: e_1_2_8_20_1 doi: 10.1016/j.ijhydene.2016.06.056 – ident: e_1_2_8_42_1 doi: 10.1126/science.1211934 – ident: e_1_2_8_47_1 doi: 10.1039/C7TA09412D – ident: e_1_2_8_18_1 doi: 10.1021/acscatal.8b01076 – ident: e_1_2_8_7_1 doi: 10.1021/acscatal.6b00965 – ident: e_1_2_8_1_1 doi: 10.1038/440295a – ident: e_1_2_8_39_1 doi: 10.1002/adma.201804653 – ident: e_1_2_8_33_1 doi: 10.1002/anie.201502023 – ident: e_1_2_8_30_1 doi: 10.1002/ange.201007731 – ident: e_1_2_8_41_1 doi: 10.1038/ncomms5695 – ident: e_1_2_8_34_1 doi: 10.1021/cm902787u – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevLett.77.3865 – volume: 135 start-page: 36 year: 2013 ident: e_1_2_8_58_1 publication-title: J. Phys. Chem. Sol. – ident: e_1_2_8_14_1 doi: 10.1002/ange.201306166 – ident: e_1_2_8_10_1 doi: 10.1021/acsami.7b18403 – ident: e_1_2_8_8_1 doi: 10.1021/ja510442p – ident: e_1_2_8_3_1 doi: 10.1038/nchem.1634 – ident: e_1_2_8_15_1 doi: 10.1021/acscatal.7b02079 – ident: e_1_2_8_29_1 doi: 10.1002/smll.201603903 – ident: e_1_2_8_49_1 doi: 10.1021/ja4027715 – ident: e_1_2_8_11_1 doi: 10.1021/jacs.8b01548 – ident: e_1_2_8_27_1 doi: 10.1021/acscatal.6b02416 – ident: e_1_2_8_31_1 doi: 10.1038/ncomms2637 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201600566 – ident: e_1_2_8_21_1 doi: 10.1021/acscatal.7b03594 – ident: e_1_2_8_19_1 doi: 10.1039/C7DT00906B – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_8_55_1 doi: 10.1103/PhysRevB.73.195107 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201102295 – ident: e_1_2_8_24_1 doi: 10.1002/anie.201502836 – ident: e_1_2_8_13_1 doi: 10.1021/acscatal.8b01567 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201703363 – ident: e_1_2_8_53_1 doi: 10.1088/0953-8984/9/4/002 – ident: e_1_2_8_28_1 doi: 10.1002/smll.201800195 – ident: e_1_2_8_5_1 doi: 10.1007/s12274-015-0965-x – ident: e_1_2_8_6_1 doi: 10.1038/nmat1752 – ident: e_1_2_8_12_1 doi: 10.1002/ange.201502226 – ident: e_1_2_8_25_1 doi: 10.1002/anie.201510642 – ident: e_1_2_8_23_1 doi: 10.1038/ncomms4949 – volume: 2 start-page: 2439 year: 2012 ident: e_1_2_8_44_1 publication-title: Nat. Commun. – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevB.44.943 |
SSID | ssj0031247 |
Score | 2.5182955 |
Snippet | Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst,... Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804832 |
SubjectTerms | Atomic structure Catalysis Catalysts Chemical synthesis Cobalt cobalt–nickel hydroxide Electronic structure Hydrogen evolution reactions Iridium Nanosheets Nanotechnology overall water splitting Oxygen evolution reactions porous nanosheets trivalent cobalt ions Water splitting |
Title | Porous Cobalt–Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804832 https://www.ncbi.nlm.nih.gov/pubmed/30714319 https://www.proquest.com/docview/2184480464 https://www.proquest.com/docview/2179487480 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6UPrUP62U3t9nQYLAnJ7Elx_ZjKCvpSNqxLCxvRjfTES8psVPonvYf-g_7S3aO7XjJxhisT7axhGWd26cj6RPAW6NDiXECvZ_SqSu48lyZokCk9pQMUoyZJe3i6LI3mIgP02C6sYu_4odoEm5kGaW_JgOXKu_8Ig3Nv2U0deBFRIpOTpgWbBEq-tTwR3EMXuXpKhizXCLeWrM2dv3OdvXtqPQH1NxGrmXoOT8AuW50teJk1l4Vqq2__8bn-Ji_OoQnNS5l_UqRjmDHzo9hf4Ot8CkkHxfLxSpnZ0QhUjz8uEctmtmMDe4MtuyrsQxd9SK_trbIGeV3Wb90pnUFdoEKzhAjs6tbSoRl7Avi3CUbIwwuF18_g8n5-89nA7c-n8HVAnGJK1LdUzH3AsujUMs4DrtCRtJ2Q50GlCYxeEV5C2F4YHgqY9nj-KAMDgJ1pPlz2J0v5vYlMFSPgE7jlT3fE0bgKMdo4fvaekL50vMdcNfySXRNXk5naGRJRbvsJ9RxSdNxDrxryt9UtB1_LdlaizupzTdPaNwrIpr1deBN8xoNj2ZT5NxiZ2MZdGVRiMUceFGpSfMpTtvC0Lk54JfC_kcbkvFoOGyeTv6n0ins4X1crSdvwW6xXNlXCJcK9bo0iZ_rJAy5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcqAceBQohkK3EhInt7F3HdvHqqJKIAkVbQW31b6sooQExQ4SnPgP_EN-CTPrB4QKIbUna-1deb3znl1_A_DCmlShnUDtp00RCq6jUBVIEGUirZICbaaHXRxP-oNz8fpD0p4mpH9hanyILuFGkuH1NQk4JaQPfqOGlp9mtHcQZYSKjlr4JpX19lHVuw5BiqP58vVV0GqFBL3V4jb24oP18et26ZKzue67euNzfBd0O-36zMl0f1XpffPtL0THa33XPbjTuKbssOal-3DDzbfg9h-AhQ9AniyWi1XJjghFpPr5_Qcy0tTN2OCrxal9tI6htl6UF85VJaMULzv0-rQZwIbI4wzdZPb2C-XCZuw9urpLdoqesD9__RDOj1-dHQ3CpkRDaAS6JqEoTF_nPEocz1Kj8jztCZUp10tNkVCmxOIVSS6E5YnlhcpVn2NDW4wDTWb4I9iYL-buMTDkkIQK8qp-HAkrMNCxRsSxcZHQsYriAMKWQNI0-OVURmMma-TlWNLCyW7hAnjZ9f9cI3f8s-dOS2_ZSHApKfQVGW38BrDXPUbZow0VNXe42NgHtVmWYrcAtms-6V7F6c8w1G8BxJ7a_5mDPB2PRl3ryVUG7cKtwdl4JEfDyZunsIn38_p4-Q5sVMuVe4beU6Wfe_n4BbJ2ENQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aQJq2B9gVwmV40qQ9pTSxc3tEsKqwwqp11XizHNvRJkqLmhQJnvgP_EN-CeckaaCbpknbU-TkWHF8rj52vgPwwehIoZ9A65fqzBU89VyVIUOU9lIVZOgzS9jF45OwOxRHp8Hpo7_4K3yIJuFGmlHaa1LwC5PtPoCG5ucj2jrwYgJFRyO8LMJ2THJ98LUBkOLovcryKui0XELemsM2tv3dxf6Lbum3WHMxdC19T2cV1HzU1ZGTs9asSFv6-hdAx__5rBewUgembK-SpJfwxI5fwfNHcIWvQfYn08ksZ_uEIVLc3dyiGJ3ZEeteGRzZT2MZ2upJ_sPaImeU4GV7pTWtO7BDlHCGQTL7ckmZsBH7joHulA0wDi5PX7-BYefTt_2uWxdocLXAwMQVmQ7ThHuB5XGkVZJEbaFiZduRzgLKkxi8IsOFMDwwPFOJCjk2UoOrQB1r_haWxpOxXQeG8hFQOV4V-p4wApc5Rgvf19YTqa883wF3zh-pa_RyKqIxkhXusi9p4mQzcQ58bOgvKtyOP1Juzdkta_3NJS18RUzbvg68bx6j5tF2ihpbnGykQVsWR0jmwFolJs2rOP0XhtbNAb9k9l_GIAfHvV7T2viXTjvwtH_Qkb3Dk8-b8AxvJ9XZ8i1YKqYzu42hU5G-K7XjHooVD4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Cobalt%E2%80%93Nickel+Hydroxide+Nanosheets+with+Active+Cobalt+Ions+for+Overall+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xiao&rft.au=Li%2C+Zhe&rft.au=Wu%2C+De%E2%80%90Yao&rft.au=Shen%2C+Gu%E2%80%90Rong&rft.date=2019-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.201804832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201804832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |