Porous Cobalt–Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting

Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotential...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 15; no. 8; pp. e1804832 - n/a
Main Authors Wang, Xiao, Li, Zhe, Wu, De‐Yao, Shen, Gu‐Rong, Zou, Chengqin, Feng, Yi, Liu, Hui, Dong, Cun‐Ku, Du, Xi‐Wen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. An ecofriendly technique, laser ablation in liquid, is adopted to produce porous Co0.75Ni0.25(OH)2 nanosheets with numerous Co3+ ions on the pore wall. These Co3+ ions possess moderate adsorption for the intermediates of both hydrogen evolution and oxygen evolution reactions, thus accelerating electrochemical overall water splitting.
AbstractList Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co Ni (OH) nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm ) and oxygen evolution reaction (235 mV@10 mA cm ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution. An ecofriendly technique, laser ablation in liquid, is adopted to produce porous Co0.75Ni0.25(OH)2 nanosheets with numerous Co3+ ions on the pore wall. These Co3+ ions possess moderate adsorption for the intermediates of both hydrogen evolution and oxygen evolution reactions, thus accelerating electrochemical overall water splitting.
Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co0.75 Ni0.25 (OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm-2 ) and oxygen evolution reaction (235 mV@10 mA cm-2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm-2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst, porous Co0.75 Ni0.25 (OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm-2 ) and oxygen evolution reaction (235 mV@10 mA cm-2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm-2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C-Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co0.75Ni0.25(OH)2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm−2) and oxygen evolution reaction (235 mV@10 mA cm−2). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm−2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.
Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst, porous Co 0.75 Ni 0.25 (OH) 2 nanosheets, is highly active for catalyzing overall water splitting. The porous nanosheets exhibit low overpotentials for hydrogen evolution reaction (95 mV@10 mA cm −2 ) and oxygen evolution reaction (235 mV@10 mA cm −2 ). As both anode and cathode catalysts, the porous nanosheets achieve a current density of 10 mA cm −2 at an external voltage of 1.56 V, which is much lower than that of commercial Ir/C‐Pt/C couple (1.62 V). Experimental and theoretical investigations reveal that numerous Co 3+ ions are generated on the pore wall of nanosheets, and the unique atomic structure around Co 3+ ions leads to appropriate electronic structure and adsorption energy of intermediates, thus accelerating hydrogen and oxygen evolution.
Author Feng, Yi
Li, Zhe
Shen, Gu‐Rong
Zou, Chengqin
Liu, Hui
Du, Xi‐Wen
Dong, Cun‐Ku
Wang, Xiao
Wu, De‐Yao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Tianjin University
– sequence: 2
  givenname: Zhe
  surname: Li
  fullname: Li, Zhe
  organization: Tianjin University
– sequence: 3
  givenname: De‐Yao
  surname: Wu
  fullname: Wu, De‐Yao
  organization: Tianjin University
– sequence: 4
  givenname: Gu‐Rong
  surname: Shen
  fullname: Shen, Gu‐Rong
  organization: Tianjin University
– sequence: 5
  givenname: Chengqin
  surname: Zou
  fullname: Zou, Chengqin
  organization: Tianjin University
– sequence: 6
  givenname: Yi
  surname: Feng
  fullname: Feng, Yi
  organization: Tianjin University
– sequence: 7
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: cry5501@163.com
  organization: Tianjin University
– sequence: 8
  givenname: Cun‐Ku
  surname: Dong
  fullname: Dong, Cun‐Ku
  email: ckdong@tju.edu.cn
  organization: Tianjin University
– sequence: 9
  givenname: Xi‐Wen
  orcidid: 0000-0002-2811-147X
  surname: Du
  fullname: Du, Xi‐Wen
  email: xwdu@tju.edu.cn
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30714319$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rGzEQhkVJyFdz7bEIesnFzmgl72qPxiRNwPmANOQoZO1sI1deuZLs1Lf-h_7D_pIq2EnAUHIaDTzPMKP3kOx0vkNCPjHoM4DiNM6c6xfAJAjJiw_kgJWM90pZ1Duvbwb75DDGKQBnhaj2yD6HignO6gOibn3wi0hHfqJd-vv7z7U1P9DRi1UT_C_bIL3WnY-PiCnSJ5se6dAku8SNQC99F2nrA71ZYtDO0QedMNC7ubMp2e77R7LbahfxeFOPyP352bfRRW988_VyNBz3jGBQ9ERryknN2QC5rIyu6wqElhqhMu2AgyiaXAdtKUTDBw1vda1LnptJAwyMNPyInKznzoP_ucCY1MxGg87pDvN9qmBVLWQlJGT0yxY69YvQ5e0yJUVGRCky9XlDLSYzbNQ82JkOK_XydRkQa8AEH2PAVhmbdLK-S0Fbpxio54TUc0LqNaGs9be0l8n_Feq18GQdrt6h1d3VePzm_gNDxqQX
CitedBy_id crossref_primary_10_1039_D0CY00181C
crossref_primary_10_1016_j_mseb_2023_117143
crossref_primary_10_1002_smll_202401034
crossref_primary_10_1039_D3SE00942D
crossref_primary_10_1002_smll_202105588
crossref_primary_10_1002_ente_202100264
crossref_primary_10_1002_ange_202002650
crossref_primary_10_1039_C9TA05282H
crossref_primary_10_1039_D1EE02538D
crossref_primary_10_1007_s12274_020_2727_7
crossref_primary_10_1016_j_scib_2020_08_037
crossref_primary_10_1002_smll_201906564
crossref_primary_10_1007_s41403_023_00429_4
crossref_primary_10_1016_j_cej_2021_131662
crossref_primary_10_1002_advs_202201311
crossref_primary_10_1039_D0TA10429A
crossref_primary_10_1002_adma_202100745
crossref_primary_10_1016_j_jece_2022_107457
crossref_primary_10_1002_cssc_202000932
crossref_primary_10_1002_sus2_32
crossref_primary_10_1016_j_jcat_2021_04_003
crossref_primary_10_1039_D0CY01109F
crossref_primary_10_1016_j_jechem_2021_01_002
crossref_primary_10_3390_nano13020237
crossref_primary_10_1002_er_6934
crossref_primary_10_1016_j_cogsc_2021_100566
crossref_primary_10_1016_j_jcis_2019_11_104
crossref_primary_10_1002_smll_202201094
crossref_primary_10_1007_s40843_021_1926_9
crossref_primary_10_1039_D0DT01469A
crossref_primary_10_1039_D1CP00701G
crossref_primary_10_1002_smll_202101312
crossref_primary_10_1007_s40820_020_00577_0
crossref_primary_10_1002_cctc_201901904
crossref_primary_10_1039_D2CP04600H
crossref_primary_10_1039_D0CY01241F
crossref_primary_10_1002_adfm_202002533
crossref_primary_10_1016_j_jelechem_2024_118826
crossref_primary_10_1021_acs_inorgchem_4c01109
crossref_primary_10_1002_chem_201904510
crossref_primary_10_1063_5_0221098
crossref_primary_10_1016_j_ijhydene_2019_10_130
crossref_primary_10_1016_j_jechem_2021_10_009
crossref_primary_10_1039_D4TA05895J
crossref_primary_10_1016_j_cej_2024_151695
crossref_primary_10_1002_smll_202202403
crossref_primary_10_1016_j_checat_2022_100499
crossref_primary_10_1016_j_electacta_2021_139345
crossref_primary_10_1002_anie_202002650
crossref_primary_10_1002_er_5103
Cites_doi 10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.59.1758
10.1007/s12274-015-0950-4
10.1016/j.apsusc.2010.10.051
10.1007/s12274-015-0965-x
10.1126/science.aad4998
10.1002/chem.201800022
10.1039/C8TA01677A
10.1038/nmat4834
10.1007/s12274-018-2050-8
10.1038/nmat4465
10.1021/acsami.7b07793
10.1002/adma.201604765
10.1016/j.jpowsour.2014.12.085
10.1039/C6TA07482K
10.1002/smll.201502322
10.1126/science.1212858
10.1016/j.ijhydene.2016.06.056
10.1126/science.1211934
10.1039/C7TA09412D
10.1021/acscatal.8b01076
10.1021/acscatal.6b00965
10.1038/440295a
10.1002/adma.201804653
10.1002/anie.201502023
10.1002/ange.201007731
10.1038/ncomms5695
10.1021/cm902787u
10.1103/PhysRevLett.77.3865
10.1002/ange.201306166
10.1021/acsami.7b18403
10.1021/ja510442p
10.1038/nchem.1634
10.1021/acscatal.7b02079
10.1002/smll.201603903
10.1021/ja4027715
10.1021/jacs.8b01548
10.1021/acscatal.6b02416
10.1038/ncomms2637
10.1002/adfm.201600566
10.1021/acscatal.7b03594
10.1039/C7DT00906B
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.73.195107
10.1002/adfm.201102295
10.1002/anie.201502836
10.1021/acscatal.8b01567
10.1002/adfm.201703363
10.1088/0953-8984/9/4/002
10.1002/smll.201800195
10.1038/nmat1752
10.1002/ange.201502226
10.1002/anie.201510642
10.1038/ncomms4949
10.1103/PhysRevB.44.943
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201804832
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 30714319
10_1002_smll_201804832
SMLL201804832
Genre article
Journal Article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AANHP
AAYOK
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
FEDTE
GODZA
HVGLF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4102-4fc6b9315e387ca99704a8ae07cf53042dcf55f644d35d3fa9a6344dbd010c8c3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 11:41:41 EDT 2025
Sun Jul 20 15:11:37 EDT 2025
Mon Jul 21 05:58:22 EDT 2025
Tue Jul 01 02:10:40 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Wed Jan 22 16:20:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords porous nanosheets
trivalent cobalt ions
cobalt-nickel hydroxide
overall water splitting
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4102-4fc6b9315e387ca99704a8ae07cf53042dcf55f644d35d3fa9a6344dbd010c8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2811-147X
PMID 30714319
PQID 2184480464
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_2179487480
proquest_journals_2184480464
pubmed_primary_30714319
crossref_citationtrail_10_1002_smll_201804832
crossref_primary_10_1002_smll_201804832
wiley_primary_10_1002_smll_201804832_SMLL201804832
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 42
2011; 257
2011; 334
2018; 28
2013; 4
2018; 140
2006; 73
2015; 127
2017; 46
2015; 11
2015; 54
2006; 5
2013; 125
2017; 29
2013; 5
2017; 355
2016; 15
2017; 9
1996; 54
1997; 9
2018; 24
2016; 55
1996; 77
2010; 22
2018; 6
2016; 6
2018; 8
2014; 5
2012; 2
2015; 137
2017; 16
2015; 278
1991; 44
2017; 13
1999; 59
2006; 440
2013; 135
2018; 30
2018; 11
2018; 10
2016; 26
2012; 22
2011; 123
2016; 9
2018; 14
1996; 6
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Grimaud A. (e_1_2_8_44_1) 2012; 2
Bajdich M. (e_1_2_8_58_1) 2013; 135
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 8
  start-page: 5621
  year: 2018
  publication-title: ACS Catal.
– volume: 9
  start-page: 767
  year: 1997
  publication-title: J. Phys.: Condens. Matter.
– volume: 137
  start-page: 4347
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1603903
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 909
  year: 2006
  publication-title: Nat. Mater.
– volume: 5
  start-page: 362
  year: 2013
  publication-title: Nat. Chem.
– volume: 54
  start-page: 8722
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 42
  start-page: 5560
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 15
  start-page: 48
  year: 2016
  publication-title: Nat. Mater.
– volume: 8
  start-page: 2236
  year: 2018
  publication-title: ACS Catal.
– volume: 127
  start-page: 7507
  year: 2015
  publication-title: Angew. Chem.
– volume: 24
  start-page: 4724
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 73
  start-page: 195107
  year: 2006
  publication-title: Phys. Rev. B
– volume: 16
  start-page: 16
  year: 2017
  publication-title: Nat. Mater.
– volume: 46
  start-page: 8372
  year: 2017
  publication-title: Dalton Trans.
– volume: 6
  start-page: 3202
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 6699
  year: 2016
  publication-title: ACS Catal.
– volume: 5
  start-page: 4695
  year: 2014
  publication-title: Nat. Commun.
– volume: 9
  start-page: 713
  year: 2016
  publication-title: Nano Res.
– volume: 6
  start-page: 9373
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 2137
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 1804653
  year: 2018
  publication-title: Adv. Mater.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 29
  start-page: 1604765
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 3949
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 7087
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 257
  start-page: 2717
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 123
  start-page: 4185
  year: 2011
  publication-title: Angew. Chem.
– volume: 11
  start-page: 5833
  year: 2015
  publication-title: Small
– volume: 26
  start-page: 4661
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 135
  start-page: 36
  year: 2013
  publication-title: J. Phys. Chem. Sol.
– volume: 22
  start-page: 371
  year: 2010
  publication-title: Chem. Mater.
– volume: 125
  start-page: 13812
  year: 2013
  publication-title: Angew. Chem.
– volume: 278
  start-page: 445
  year: 2015
  publication-title: J. Power Sources
– volume: 22
  start-page: 1333
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 1800195
  year: 2018
  publication-title: Small
– volume: 54
  start-page: 7051
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 943
  year: 1991
  publication-title: Phys. Rev. B
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1256
  year: 2011
  publication-title: Science
– volume: 4
  start-page: 1695
  year: 2013
  publication-title: Nat. Commun.
– volume: 140
  start-page: 5241
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 842
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 440
  start-page: 295
  year: 2006
  publication-title: Nature
– volume: 355
  start-page: eaad4998
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 6394
  year: 2017
  publication-title: ACS Catal.
– volume: 8
  start-page: 5200
  year: 2018
  publication-title: ACS Catal.
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 2
  start-page: 2439
  year: 2012
  publication-title: Nat. Commun.
– volume: 9
  start-page: 28
  year: 2016
  publication-title: Nano Res.
– volume: 28
  start-page: 1703363
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 4660
  year: 2016
  publication-title: ACS Catal.
– volume: 9
  start-page: 27736
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 334
  start-page: 1383
  year: 2011
  publication-title: Science
– volume: 11
  start-page: 3509
  year: 2018
  publication-title: Nano Res.
– ident: e_1_2_8_52_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_45_1
  doi: 10.1007/s12274-015-0950-4
– ident: e_1_2_8_36_1
  doi: 10.1016/j.apsusc.2010.10.051
– ident: e_1_2_8_43_1
  doi: 10.1007/s12274-015-0965-x
– ident: e_1_2_8_4_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_8_22_1
  doi: 10.1002/chem.201800022
– ident: e_1_2_8_48_1
  doi: 10.1039/C8TA01677A
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat4834
– ident: e_1_2_8_37_1
  doi: 10.1007/s12274-018-2050-8
– ident: e_1_2_8_50_1
  doi: 10.1038/nmat4465
– ident: e_1_2_8_40_1
  doi: 10.1021/acsami.7b07793
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201604765
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jpowsour.2014.12.085
– ident: e_1_2_8_35_1
  doi: 10.1039/C6TA07482K
– ident: e_1_2_8_38_1
  doi: 10.1002/smll.201502322
– ident: e_1_2_8_46_1
  doi: 10.1126/science.1212858
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ijhydene.2016.06.056
– ident: e_1_2_8_42_1
  doi: 10.1126/science.1211934
– ident: e_1_2_8_47_1
  doi: 10.1039/C7TA09412D
– ident: e_1_2_8_18_1
  doi: 10.1021/acscatal.8b01076
– ident: e_1_2_8_7_1
  doi: 10.1021/acscatal.6b00965
– ident: e_1_2_8_1_1
  doi: 10.1038/440295a
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201804653
– ident: e_1_2_8_33_1
  doi: 10.1002/anie.201502023
– ident: e_1_2_8_30_1
  doi: 10.1002/ange.201007731
– ident: e_1_2_8_41_1
  doi: 10.1038/ncomms5695
– ident: e_1_2_8_34_1
  doi: 10.1021/cm902787u
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevLett.77.3865
– volume: 135
  start-page: 36
  year: 2013
  ident: e_1_2_8_58_1
  publication-title: J. Phys. Chem. Sol.
– ident: e_1_2_8_14_1
  doi: 10.1002/ange.201306166
– ident: e_1_2_8_10_1
  doi: 10.1021/acsami.7b18403
– ident: e_1_2_8_8_1
  doi: 10.1021/ja510442p
– ident: e_1_2_8_3_1
  doi: 10.1038/nchem.1634
– ident: e_1_2_8_15_1
  doi: 10.1021/acscatal.7b02079
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201603903
– ident: e_1_2_8_49_1
  doi: 10.1021/ja4027715
– ident: e_1_2_8_11_1
  doi: 10.1021/jacs.8b01548
– ident: e_1_2_8_27_1
  doi: 10.1021/acscatal.6b02416
– ident: e_1_2_8_31_1
  doi: 10.1038/ncomms2637
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201600566
– ident: e_1_2_8_21_1
  doi: 10.1021/acscatal.7b03594
– ident: e_1_2_8_19_1
  doi: 10.1039/C7DT00906B
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_8_55_1
  doi: 10.1103/PhysRevB.73.195107
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201102295
– ident: e_1_2_8_24_1
  doi: 10.1002/anie.201502836
– ident: e_1_2_8_13_1
  doi: 10.1021/acscatal.8b01567
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.201703363
– ident: e_1_2_8_53_1
  doi: 10.1088/0953-8984/9/4/002
– ident: e_1_2_8_28_1
  doi: 10.1002/smll.201800195
– ident: e_1_2_8_5_1
  doi: 10.1007/s12274-015-0965-x
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat1752
– ident: e_1_2_8_12_1
  doi: 10.1002/ange.201502226
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.201510642
– ident: e_1_2_8_23_1
  doi: 10.1038/ncomms4949
– volume: 2
  start-page: 2439
  year: 2012
  ident: e_1_2_8_44_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevB.44.943
SSID ssj0031247
Score 2.5182955
Snippet Low‐cost and high‐performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser‐synthesized catalyst,...
Low-cost and high-performance catalysts are of great significance for electrochemical water splitting. Here, it is reported that a laser-synthesized catalyst,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804832
SubjectTerms Atomic structure
Catalysis
Catalysts
Chemical synthesis
Cobalt
cobalt–nickel hydroxide
Electronic structure
Hydrogen evolution reactions
Iridium
Nanosheets
Nanotechnology
overall water splitting
Oxygen evolution reactions
porous nanosheets
trivalent cobalt ions
Water splitting
Title Porous Cobalt–Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201804832
https://www.ncbi.nlm.nih.gov/pubmed/30714319
https://www.proquest.com/docview/2184480464
https://www.proquest.com/docview/2179487480
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6UPrUP62U3t9nQYLAnJ7Elx_ZjKCvpSNqxLCxvRjfTES8psVPonvYf-g_7S3aO7XjJxhisT7axhGWd26cj6RPAW6NDiXECvZ_SqSu48lyZokCk9pQMUoyZJe3i6LI3mIgP02C6sYu_4odoEm5kGaW_JgOXKu_8Ig3Nv2U0deBFRIpOTpgWbBEq-tTwR3EMXuXpKhizXCLeWrM2dv3OdvXtqPQH1NxGrmXoOT8AuW50teJk1l4Vqq2__8bn-Ji_OoQnNS5l_UqRjmDHzo9hf4Ot8CkkHxfLxSpnZ0QhUjz8uEctmtmMDe4MtuyrsQxd9SK_trbIGeV3Wb90pnUFdoEKzhAjs6tbSoRl7Avi3CUbIwwuF18_g8n5-89nA7c-n8HVAnGJK1LdUzH3AsujUMs4DrtCRtJ2Q50GlCYxeEV5C2F4YHgqY9nj-KAMDgJ1pPlz2J0v5vYlMFSPgE7jlT3fE0bgKMdo4fvaekL50vMdcNfySXRNXk5naGRJRbvsJ9RxSdNxDrxryt9UtB1_LdlaizupzTdPaNwrIpr1deBN8xoNj2ZT5NxiZ2MZdGVRiMUceFGpSfMpTtvC0Lk54JfC_kcbkvFoOGyeTv6n0ins4X1crSdvwW6xXNlXCJcK9bo0iZ_rJAy5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6hcqAceBQohkK3EhInt7F3HdvHqqJKIAkVbQW31b6sooQExQ4SnPgP_EN-CTPrB4QKIbUna-1deb3znl1_A_DCmlShnUDtp00RCq6jUBVIEGUirZICbaaHXRxP-oNz8fpD0p4mpH9hanyILuFGkuH1NQk4JaQPfqOGlp9mtHcQZYSKjlr4JpX19lHVuw5BiqP58vVV0GqFBL3V4jb24oP18et26ZKzue67euNzfBd0O-36zMl0f1XpffPtL0THa33XPbjTuKbssOal-3DDzbfg9h-AhQ9AniyWi1XJjghFpPr5_Qcy0tTN2OCrxal9tI6htl6UF85VJaMULzv0-rQZwIbI4wzdZPb2C-XCZuw9urpLdoqesD9__RDOj1-dHQ3CpkRDaAS6JqEoTF_nPEocz1Kj8jztCZUp10tNkVCmxOIVSS6E5YnlhcpVn2NDW4wDTWb4I9iYL-buMTDkkIQK8qp-HAkrMNCxRsSxcZHQsYriAMKWQNI0-OVURmMma-TlWNLCyW7hAnjZ9f9cI3f8s-dOS2_ZSHApKfQVGW38BrDXPUbZow0VNXe42NgHtVmWYrcAtms-6V7F6c8w1G8BxJ7a_5mDPB2PRl3ryVUG7cKtwdl4JEfDyZunsIn38_p4-Q5sVMuVe4beU6Wfe_n4BbJ2ENQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD6aQJq2B9gVwmV40qQ9pTSxc3tEsKqwwqp11XizHNvRJkqLmhQJnvgP_EN-CeckaaCbpknbU-TkWHF8rj52vgPwwehIoZ9A65fqzBU89VyVIUOU9lIVZOgzS9jF45OwOxRHp8Hpo7_4K3yIJuFGmlHaa1LwC5PtPoCG5ucj2jrwYgJFRyO8LMJ2THJ98LUBkOLovcryKui0XELemsM2tv3dxf6Lbum3WHMxdC19T2cV1HzU1ZGTs9asSFv6-hdAx__5rBewUgembK-SpJfwxI5fwfNHcIWvQfYn08ksZ_uEIVLc3dyiGJ3ZEeteGRzZT2MZ2upJ_sPaImeU4GV7pTWtO7BDlHCGQTL7ckmZsBH7joHulA0wDi5PX7-BYefTt_2uWxdocLXAwMQVmQ7ThHuB5XGkVZJEbaFiZduRzgLKkxi8IsOFMDwwPFOJCjk2UoOrQB1r_haWxpOxXQeG8hFQOV4V-p4wApc5Rgvf19YTqa883wF3zh-pa_RyKqIxkhXusi9p4mQzcQ58bOgvKtyOP1Juzdkta_3NJS18RUzbvg68bx6j5tF2ihpbnGykQVsWR0jmwFolJs2rOP0XhtbNAb9k9l_GIAfHvV7T2viXTjvwtH_Qkb3Dk8-b8AxvJ9XZ8i1YKqYzu42hU5G-K7XjHooVD4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porous+Cobalt%E2%80%93Nickel+Hydroxide+Nanosheets+with+Active+Cobalt+Ions+for+Overall+Water+Splitting&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Wang%2C+Xiao&rft.au=Li%2C+Zhe&rft.au=Wu%2C+De%E2%80%90Yao&rft.au=Shen%2C+Gu%E2%80%90Rong&rft.date=2019-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=15&rft.issue=8&rft_id=info:doi/10.1002%2Fsmll.201804832&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_201804832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon