Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation

The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 51; pp. 16754 - 16759
Main Authors Zhang, Sainan, Zheng, Yunlong, An, Hongde, Aguila, Briana, Yang, Cheng‐Xiong, Dong, Yueyue, Xie, Wei, Cheng, Peng, Zhang, Zhenjie, Chen, Yao, Ma, Shengqian
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 17.12.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high‐performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface‐enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs. COF chirality: A general and efficient strategy has been developed to introduce chirality into covalent organic frameworks (COFs) by covalently immobilizing biomolecules into achiral COFs. The biomolecules⊂COFs can serve as chiral stationary phases for efficient chiral separation of a broad range of racemates.
AbstractList The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs.
The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high‐performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface‐enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs. COF chirality: A general and efficient strategy has been developed to introduce chirality into covalent organic frameworks (COFs) by covalently immobilizing biomolecules into achiral COFs. The biomolecules⊂COFs can serve as chiral stationary phases for efficient chiral separation of a broad range of racemates.
The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs.The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs.
Author Zhang, Sainan
Dong, Yueyue
Yang, Cheng‐Xiong
An, Hongde
Zhang, Zhenjie
Xie, Wei
Cheng, Peng
Zheng, Yunlong
Aguila, Briana
Chen, Yao
Ma, Shengqian
Author_xml – sequence: 1
  givenname: Sainan
  surname: Zhang
  fullname: Zhang, Sainan
  organization: Nankai University
– sequence: 2
  givenname: Yunlong
  surname: Zheng
  fullname: Zheng, Yunlong
  organization: Nankai University
– sequence: 3
  givenname: Hongde
  surname: An
  fullname: An, Hongde
  organization: Nankai University
– sequence: 4
  givenname: Briana
  surname: Aguila
  fullname: Aguila, Briana
  organization: University of South Florida
– sequence: 5
  givenname: Cheng‐Xiong
  surname: Yang
  fullname: Yang, Cheng‐Xiong
  organization: Nankai University
– sequence: 6
  givenname: Yueyue
  surname: Dong
  fullname: Dong, Yueyue
  organization: Nankai University
– sequence: 7
  givenname: Wei
  surname: Xie
  fullname: Xie, Wei
  organization: Nankai University
– sequence: 8
  givenname: Peng
  surname: Cheng
  fullname: Cheng, Peng
  organization: Nankai University
– sequence: 9
  givenname: Zhenjie
  surname: Zhang
  fullname: Zhang, Zhenjie
  email: zhangzhenjie@nankai.edu.cn
  organization: Nankai University
– sequence: 10
  givenname: Yao
  surname: Chen
  fullname: Chen, Yao
  email: chenyao@nankai.edu.cn
  organization: Nankai University
– sequence: 11
  givenname: Shengqian
  orcidid: 0000-0002-1897-7069
  surname: Ma
  fullname: Ma, Shengqian
  email: sqma@usf.edu
  organization: University of South Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30359485$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URD9gyxJZYsMm0_diO4mXZTSFSlW7ANaR49iMixMPdtLR_Hs8nVKkShUre3HOtd-7p-RoDKMh5D3CAgHKczU6sygBGwRR4ytygqLEgtU1O8p3zlhRNwKPyWlKd5lvGqjekGMGTEjeiBOil-FeeTNO9Db-zGGaXkY1mG2IvxLdumlNl2sXlXfTjq7G6PTa9LTb0c8uDMEbPXuTqA2Rrqx12u2DDgL9ZjYqqsmF8S15bZVP5t3jeUZ-XK6-L78W17dfrpYX14XmCFhYK7tO1xwrWQnsBTS9lD0oZZF1ddnZTMmO2aayEozStUVR5UmannOlpGVn5NMhdxPD79mkqR1c0sZ7NZowp7bEspIADDCjH5-hd2GOY_5dpgQHXnMoM_XhkZq7wfTtJrpBxV37d30ZWBwAHUNK0dgnBKHd99Pu-2mf-skCfyZoNz0saYrK-Zc1edC2zpvdfx5pL26uVv_cP6Z3pFA
CitedBy_id crossref_primary_10_1016_j_bios_2019_111699
crossref_primary_10_1039_D3NR05586H
crossref_primary_10_1021_acsami_0c12399
crossref_primary_10_1021_acsami_8b19352
crossref_primary_10_1002_asia_202400753
crossref_primary_10_1002_ange_202319876
crossref_primary_10_1039_D1TB00041A
crossref_primary_10_1021_jacs_0c00285
crossref_primary_10_1016_j_cej_2022_140531
crossref_primary_10_1039_D3GC00721A
crossref_primary_10_1002_bmc_6008
crossref_primary_10_1016_j_snb_2024_137224
crossref_primary_10_1039_D2CC04420J
crossref_primary_10_1002_ange_202201378
crossref_primary_10_1016_j_chempr_2023_03_026
crossref_primary_10_1039_C9NR07525A
crossref_primary_10_1038_s41596_023_00868_x
crossref_primary_10_3390_ma15207215
crossref_primary_10_1002_ange_202013926
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1021_acsanm_0c00884
crossref_primary_10_1002_anie_201915234
crossref_primary_10_1016_j_ccr_2024_215965
crossref_primary_10_3724_SP_J_1123_2023_04021
crossref_primary_10_1039_D1TA04621G
crossref_primary_10_1002_anie_202420269
crossref_primary_10_1007_s11426_024_2452_x
crossref_primary_10_1039_D3SC01367G
crossref_primary_10_1016_j_polymer_2024_127991
crossref_primary_10_1021_acssensors_0c00495
crossref_primary_10_1002_adfm_202312912
crossref_primary_10_1002_ange_201903534
crossref_primary_10_1021_acsami_4c12069
crossref_primary_10_1016_j_xcrp_2021_100519
crossref_primary_10_1016_j_trac_2021_116182
crossref_primary_10_1002_jssc_202400073
crossref_primary_10_1039_D2AY00108J
crossref_primary_10_1002_slct_202301828
crossref_primary_10_1016_j_trac_2019_06_002
crossref_primary_10_1016_j_chroma_2022_463155
crossref_primary_10_3724_SP_J_1123_2023_05002
crossref_primary_10_1002_ange_202200261
crossref_primary_10_1002_adtp_202200053
crossref_primary_10_1021_jacs_4c09259
crossref_primary_10_1002_cjoc_202401094
crossref_primary_10_1039_D1CS00808K
crossref_primary_10_1016_j_cej_2022_136624
crossref_primary_10_1016_j_chemosphere_2022_136581
crossref_primary_10_1002_cplu_202000549
crossref_primary_10_3390_polym16162319
crossref_primary_10_1021_acsami_0c11022
crossref_primary_10_1002_jssc_202100593
crossref_primary_10_1016_j_trac_2021_116516
crossref_primary_10_1039_C9CS00827F
crossref_primary_10_1002_anie_202208744
crossref_primary_10_1002_elps_202100116
crossref_primary_10_1021_acs_chemmater_3c02095
crossref_primary_10_1016_j_jcoa_2021_100002
crossref_primary_10_1002_sscp_202200104
crossref_primary_10_1039_D1CC03182A
crossref_primary_10_1002_anie_202417088
crossref_primary_10_1016_j_chroma_2019_460847
crossref_primary_10_1016_j_jpha_2022_06_005
crossref_primary_10_1002_marc_202000404
crossref_primary_10_1002_ange_201915234
crossref_primary_10_1002_anie_202013926
crossref_primary_10_1039_D0CS00049C
crossref_primary_10_1002_ange_202420269
crossref_primary_10_1039_D2NJ05811A
crossref_primary_10_1002_adma_202419515
crossref_primary_10_1016_j_chempr_2019_10_002
crossref_primary_10_1002_adsc_202001086
crossref_primary_10_1021_jacs_3c13692
crossref_primary_10_1016_j_chroma_2021_462239
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_anie_202413171
crossref_primary_10_1016_j_chroma_2024_464799
crossref_primary_10_1002_ange_202113780
crossref_primary_10_1021_jacs_0c11276
crossref_primary_10_1007_s00604_024_06347_8
crossref_primary_10_1002_ange_202417088
crossref_primary_10_1016_j_cej_2020_127136
crossref_primary_10_1016_j_envres_2023_116353
crossref_primary_10_1021_acsapm_0c00750
crossref_primary_10_1021_acsami_1c16386
crossref_primary_10_1021_acs_analchem_2c01999
crossref_primary_10_1002_ange_202319732
crossref_primary_10_1021_jacs_9b10007
crossref_primary_10_1002_adfm_202101335
crossref_primary_10_1016_j_aca_2020_03_003
crossref_primary_10_1021_acs_analchem_3c01178
crossref_primary_10_1002_chem_202303827
crossref_primary_10_1021_jacs_3c04183
crossref_primary_10_1002_admi_202200874
crossref_primary_10_1021_acs_analchem_2c04592
crossref_primary_10_1021_acsami_4c14161
crossref_primary_10_1021_jacs_1c11051
crossref_primary_10_1038_s41467_022_33501_8
crossref_primary_10_1002_ange_202413171
crossref_primary_10_1021_acsmaterialslett_2c00669
crossref_primary_10_1002_anie_202113780
crossref_primary_10_1002_cbic_202400339
crossref_primary_10_1016_j_snb_2023_134262
crossref_primary_10_1021_acsami_4c21385
crossref_primary_10_1021_acsami_9b14144
crossref_primary_10_1007_s12010_023_04725_1
crossref_primary_10_1039_D1CC04465F
crossref_primary_10_1002_ange_202208744
crossref_primary_10_1016_j_apmt_2022_101381
crossref_primary_10_1039_D4DT03227F
crossref_primary_10_1016_j_trac_2024_117603
crossref_primary_10_1016_j_saa_2021_120534
crossref_primary_10_1016_j_eurpolymj_2023_111939
crossref_primary_10_1016_j_ccr_2021_213989
crossref_primary_10_1021_acs_chemmater_9b02286
crossref_primary_10_1016_j_trac_2019_07_011
crossref_primary_10_1021_acsomega_0c02382
crossref_primary_10_1021_acsami_9b16438
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1039_D0RA02647F
crossref_primary_10_1021_acsami_4c06556
crossref_primary_10_3390_membranes11040279
crossref_primary_10_1039_C8CS00978C
crossref_primary_10_1021_jacs_3c05973
crossref_primary_10_1016_j_ccr_2020_213481
crossref_primary_10_1021_acsami_1c09238
crossref_primary_10_1002_adfm_202404522
crossref_primary_10_1002_anie_202200261
crossref_primary_10_1016_j_advmem_2024_100113
crossref_primary_10_1002_anie_201903534
crossref_primary_10_1002_anie_202113979
crossref_primary_10_1021_acsnano_2c12774
crossref_primary_10_4155_bio_2023_0256
crossref_primary_10_1021_acs_analchem_3c05227
crossref_primary_10_1016_j_chroma_2022_463415
crossref_primary_10_1016_j_jpba_2022_114777
crossref_primary_10_1002_cssc_202301045
crossref_primary_10_1007_s00604_019_3741_x
crossref_primary_10_1002_smll_202303059
crossref_primary_10_1016_j_cclet_2024_110791
crossref_primary_10_1021_acsami_3c17048
crossref_primary_10_1021_acscatal_2c01114
crossref_primary_10_1016_j_aca_2024_343541
crossref_primary_10_1016_j_ijbiomac_2023_125729
crossref_primary_10_1002_anie_202319732
crossref_primary_10_1016_j_molliq_2022_120818
crossref_primary_10_1021_acsami_0c09816
crossref_primary_10_1021_acs_iecr_9b03138
crossref_primary_10_1021_acssuschemeng_8b05373
crossref_primary_10_1016_j_chroma_2019_06_018
crossref_primary_10_1007_s12274_022_4078_z
crossref_primary_10_1016_j_chroma_2024_465014
crossref_primary_10_1016_j_talanta_2023_124589
crossref_primary_10_1016_j_aca_2023_341992
crossref_primary_10_1016_j_mser_2024_100771
crossref_primary_10_1039_D0AY01831G
crossref_primary_10_1021_acsami_3c10074
crossref_primary_10_1021_jacs_9b08017
crossref_primary_10_1021_jacs_9b02153
crossref_primary_10_1007_s40242_022_1490_6
crossref_primary_10_1021_acsapm_2c00543
crossref_primary_10_1016_j_chroma_2021_462186
crossref_primary_10_1002_tcr_202200143
crossref_primary_10_1016_j_chroma_2023_464444
crossref_primary_10_1021_acsami_1c21264
crossref_primary_10_1021_acs_chemmater_2c03140
crossref_primary_10_1021_jacs_2c08468
crossref_primary_10_1021_acsami_1c13408
crossref_primary_10_1002_chir_23405
crossref_primary_10_1002_jssc_202100987
crossref_primary_10_3724_SP_J_1123_2023_07021
crossref_primary_10_1007_s11426_022_1391_0
crossref_primary_10_1016_j_ccr_2024_216087
crossref_primary_10_1002_anie_202319876
crossref_primary_10_1016_j_chempr_2023_05_041
crossref_primary_10_1093_nsr_nwae256
crossref_primary_10_1002_cssc_201900570
crossref_primary_10_1016_j_chroma_2020_461341
crossref_primary_10_1016_j_chroma_2021_462731
crossref_primary_10_1039_D1QM00314C
crossref_primary_10_1002_anie_202413675
crossref_primary_10_1021_acsami_3c02025
crossref_primary_10_1016_j_mattod_2023_05_023
crossref_primary_10_1016_j_aca_2024_343477
crossref_primary_10_1016_j_chroma_2021_462082
crossref_primary_10_1021_acs_analchem_1c03626
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1021_acsami_3c09459
crossref_primary_10_1021_acsapm_4c00658
crossref_primary_10_1021_jacs_9b11401
crossref_primary_10_1021_acsami_9b22023
crossref_primary_10_1007_s11426_022_1224_3
crossref_primary_10_1039_D0CS00009D
crossref_primary_10_1007_s40843_023_2806_8
crossref_primary_10_1021_jacs_3c07393
crossref_primary_10_1016_j_cej_2020_127991
crossref_primary_10_1021_acsami_1c02120
crossref_primary_10_1021_accountsmr_3c00141
crossref_primary_10_1039_D4SC00277F
crossref_primary_10_1016_j_ccr_2024_215859
crossref_primary_10_1016_j_xcrp_2022_101153
crossref_primary_10_1016_j_talanta_2021_122754
crossref_primary_10_1016_j_talanta_2019_04_010
crossref_primary_10_1016_j_nanoen_2025_110682
crossref_primary_10_1016_j_chroma_2019_06_059
crossref_primary_10_1039_D1CC04786H
crossref_primary_10_1039_D3CS00053B
crossref_primary_10_3390_foods14030475
crossref_primary_10_1016_j_chroma_2022_463341
crossref_primary_10_1016_j_trac_2019_06_035
crossref_primary_10_1039_D1TA06867A
crossref_primary_10_1016_j_xcrp_2024_101845
crossref_primary_10_1002_adma_202406256
crossref_primary_10_1016_j_jpha_2023_01_003
crossref_primary_10_1002_jssc_70101
crossref_primary_10_1021_acs_accounts_3c00565
crossref_primary_10_1186_s13068_021_02001_0
crossref_primary_10_1002_anie_202201378
crossref_primary_10_1007_s41664_024_00340_z
crossref_primary_10_1016_j_saa_2023_122370
crossref_primary_10_1021_acsami_3c01154
crossref_primary_10_1002_ange_202113979
crossref_primary_10_3390_molecules28020662
crossref_primary_10_1002_jssc_202201039
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1002_chem_201900857
crossref_primary_10_1002_adfm_202113153
crossref_primary_10_1002_ange_202403878
crossref_primary_10_1002_tcr_202200062
crossref_primary_10_1002_ange_202413675
crossref_primary_10_1016_j_chroma_2024_465334
crossref_primary_10_1021_acscatal_4c01456
crossref_primary_10_1016_j_ccr_2023_215572
crossref_primary_10_1039_D1CS01011E
crossref_primary_10_1016_j_aca_2019_10_002
crossref_primary_10_3390_catal13071042
crossref_primary_10_1002_anie_202403878
crossref_primary_10_1016_j_ijbiomac_2020_12_002
crossref_primary_10_1002_jssc_202200637
crossref_primary_10_1039_D1CS00804H
crossref_primary_10_1016_j_seppur_2024_129804
crossref_primary_10_1039_D2SC02436E
crossref_primary_10_3390_molecules29215006
crossref_primary_10_1007_s00216_021_03574_3
crossref_primary_10_1016_j_cej_2022_141058
crossref_primary_10_1002_jssc_202400140
crossref_primary_10_1016_j_vibspec_2022_103411
crossref_primary_10_1016_j_jelechem_2020_114931
crossref_primary_10_1039_D3MH01492D
Cites_doi 10.1002/adma.201602782
10.1021/ja057484p
10.1002/anie.201804383
10.1021/jacs.7b02303
10.1002/anie.201712246
10.1016/j.chempr.2017.07.004
10.1021/jacs.6b07516
10.1038/ncomms12104
10.1021/ma960161g
10.1021/ja2038003
10.1038/natrevmats.2016.68
10.1021/ma991010r
10.1002/ange.201200758
10.1016/j.chroma.2018.02.023
10.1021/jacs.7b04008
10.1016/j.chempr.2018.03.001
10.1016/j.chempr.2018.05.020
10.1366/0003702042336073
10.1038/372159a0
10.1038/ncomms10007
10.1002/jssc.201500825
10.3390/separations3030027
10.1021/jacs.6b03263
10.1021/ic501062r
10.1002/anie.201200758
10.1016/j.talanta.2012.01.039
10.1016/j.chroma.2003.10.090
10.1038/srep45777
10.1021/ja9015765
10.1021/ac403974n
10.1038/ncomms5503
10.1002/jssc.201600808
10.1016/j.chroma.2012.10.006
10.1002/adma.201705479
10.1021/jacs.7b10642
10.1002/ange.201804383
10.1038/206757a0
10.1021/jacs.7b12110
10.1021/jacs.5b04147
10.1002/ange.201712246
10.1021/acs.chemrev.5b00317
10.1126/science.aan0202
10.2174/156802612801784407
10.1038/nchem.2352
10.1021/ac00032a009
10.1039/c0cs00056f
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201810571
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 16759
ExternalDocumentID 30359485
10_1002_anie_201810571
ANIE201810571
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Tianjin Natural Science Foundation of China
  funderid: 17JCZDJC37200; 18JCZDJC37300
– fundername: Division of Materials Research
  funderid: DMR-1352065
– fundername: National Natural Science Foundation of China
  funderid: 21601093
– fundername: Division of Materials Research
  grantid: DMR-1352065
– fundername: Tianjin Natural Science Foundation of China
  grantid: 17JCZDJC37200
– fundername: Tianjin Natural Science Foundation of China
  grantid: 18JCZDJC37300
– fundername: National Natural Science Foundation of China-Yunnan Joint Fund
  grantid: 21601093
– fundername: National Natural Science Foundation of China
  grantid: 21601093
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4101-ff9bbc74169651d508d99d0aaf13b72bf4109b3f86f90eac7f1563038d44aa9f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 04:30:43 EDT 2025
Fri Jul 25 10:27:21 EDT 2025
Mon Jul 21 06:18:12 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Tue Jul 01 02:26:36 EDT 2025
Wed Jan 22 16:28:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords covalent organic frameworks
chiral separation
chirality
biomolecules
chiral stationary phases
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-ff9bbc74169651d508d99d0aaf13b72bf4109b3f86f90eac7f1563038d44aa9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1897-7069
PMID 30359485
PQID 2154047402
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2126900301
proquest_journals_2154047402
pubmed_primary_30359485
crossref_primary_10_1002_anie_201810571
crossref_citationtrail_10_1002_anie_201810571
wiley_primary_10_1002_anie_201810571_ANIE201810571
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 17, 2018
PublicationDateYYYYMMDD 2018-12-17
PublicationDate_xml – month: 12
  year: 2018
  text: December 17, 2018
  day: 17
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 40
1965; 206
2017; 7
2015; 6
2017; 3
2018; 140
2012
1994; 372
2012; 1269
2011; 40
1975
2017; 29
1992
2009; 131
2016; 39
2012; 12
2015; 7
2017; 357
2011; 133
2017; 139
2014; 86
2016; 7
2012; 91
2014; 5
1996; 29
2016; 1
2016; 3
2018; 4
2018; 1542
2015; 137
2018 2018; 57 130
2012 2012; 51 124
2004; 58
2018
1999; 32
2018; 30
2016; 116
2004; 1031
2016; 138
1992; 64
2006; 128
2014; 53
e_1_2_2_4_1
e_1_2_2_4_2
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_8_1
Messing R. (e_1_2_2_28_1) 1975
e_1_2_2_45_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_13_1
e_1_2_2_38_1
Song Y. (e_1_2_2_12_1) 2018
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_34_2
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_5_2
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_9_1
e_1_2_2_44_1
e_1_2_2_46_1
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_39_1
e_1_2_2_10_1
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
Hermanson G. T. (e_1_2_2_27_1) 1992
Weetall H. (e_1_2_2_29_1) 2012
References_xml – volume: 1031
  start-page: 143
  year: 2004
  end-page: 158
  publication-title: J. Chromatogr. A
– volume: 7
  start-page: 45777
  year: 2017
  publication-title: Sci. Rep.
– volume: 57 130
  start-page: 6042 6150
  year: 2018 2018
  end-page: 6048 6156
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 1022
  year: 2018
  end-page: 1034
  publication-title: Chem
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 2567
  year: 2011
  end-page: 2592
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 11489
  year: 2016
  end-page: 11492
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 8693
  year: 2017
  end-page: 8697
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 8352
  year: 2015
  end-page: 8355
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 8678
  year: 1999
  end-page: 8680
  publication-title: Macromolecules
– volume: 128
  start-page: 7492
  year: 2006
  end-page: 7496
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 83
  year: 2016
  end-page: 92
  publication-title: J. Sep. Sci.
– volume: 57 130
  start-page: 8629 8765
  year: 2018 2018
  end-page: 8633 8769
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 5192 5282
  year: 2012 2012
  end-page: 5195 5285
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 1975
– volume: 206
  start-page: 757
  year: 1965
  end-page: 761
  publication-title: Nature
– volume: 139
  start-page: 6736
  year: 2017
  end-page: 6743
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4503
  year: 2014
  publication-title: Nat. Commun.
– year: 2018
  publication-title: Adv. Sci.
– year: 1992
– volume: 6
  start-page: 10007
  year: 2015
  publication-title: Nat. Commun.
– volume: 30
  start-page: 1705479
  year: 2018
  publication-title: Adv. Mater.
– volume: 40
  start-page: 124
  year: 2017
  end-page: 137
  publication-title: J. Sep. Sci.
– year: 2012
– volume: 357
  start-page: 673
  year: 2017
  end-page: 676
  publication-title: Science
– volume: 7
  start-page: 12104
  year: 2016
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1436
  year: 2012
  end-page: 1455
  publication-title: Curr. Top. Med. Chem.
– volume: 4
  start-page: 1726
  year: 2018
  end-page: 1739
  publication-title: Chem
– volume: 1542
  start-page: 1
  year: 2018
  end-page: 18
  publication-title: J. Chromatogr. A
– volume: 140
  start-page: 984
  year: 2018
  end-page: 992
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 6872
  year: 1996
  end-page: 6879
  publication-title: Macromolecules
– volume: 29
  start-page: 1602782
  year: 2017
  publication-title: Adv. Mater.
– volume: 3
  start-page: 27
  year: 2016
  publication-title: Separations
– volume: 3
  start-page: 281
  year: 2017
  end-page: 289
  publication-title: Chem
– volume: 372
  start-page: 159
  year: 1994
  end-page: 162
  publication-title: Nature
– volume: 7
  start-page: 905
  year: 2015
  end-page: 912
  publication-title: Nat. Chem.
– volume: 53
  start-page: 10006
  year: 2014
  end-page: 10008
  publication-title: Inorg. Chem.
– volume: 86
  start-page: 2238
  year: 2014
  end-page: 2245
  publication-title: Anal. Chem.
– volume: 58
  start-page: 1147
  year: 2004
  end-page: 1156
  publication-title: Appl. Spectrosc.
– volume: 1269
  start-page: 270
  year: 2012
  end-page: 278
  publication-title: J. Chromatogr. A
– volume: 64
  start-page: 873
  year: 1992
  end-page: 879
  publication-title: Anal. Chem.
– volume: 140
  start-page: 892
  year: 2018
  end-page: 895
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 1094
  year: 2016
  end-page: 1138
  publication-title: Chem. Rev.
– volume: 91
  start-page: 7
  year: 2012
  end-page: 17
  publication-title: Talanta
– volume: 1
  start-page: 16068
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 138
  start-page: 6636
  year: 2016
  end-page: 6642
  publication-title: J. Am. Chem. Soc.
– volume: 133
  start-page: 10382
  year: 2011
  end-page: 10385
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_37_1
  doi: 10.1002/adma.201602782
– ident: e_1_2_2_42_1
  doi: 10.1021/ja057484p
– ident: e_1_2_2_4_1
  doi: 10.1002/anie.201804383
– ident: e_1_2_2_13_1
  doi: 10.1021/jacs.7b02303
– ident: e_1_2_2_34_1
  doi: 10.1002/anie.201712246
– ident: e_1_2_2_3_1
  doi: 10.1016/j.chempr.2017.07.004
– ident: e_1_2_2_17_1
  doi: 10.1021/jacs.6b07516
– ident: e_1_2_2_23_1
  doi: 10.1038/ncomms12104
– ident: e_1_2_2_33_1
  doi: 10.1021/ma960161g
– ident: e_1_2_2_39_1
  doi: 10.1021/ja2038003
– ident: e_1_2_2_14_1
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_2_32_1
  doi: 10.1021/ma991010r
– ident: e_1_2_2_5_2
  doi: 10.1002/ange.201200758
– ident: e_1_2_2_25_1
  doi: 10.1016/j.chroma.2018.02.023
– ident: e_1_2_2_18_1
  doi: 10.1021/jacs.7b04008
– ident: e_1_2_2_38_1
  doi: 10.1016/j.chempr.2018.03.001
– ident: e_1_2_2_22_1
  doi: 10.1016/j.chempr.2018.05.020
– ident: e_1_2_2_46_1
  doi: 10.1366/0003702042336073
– ident: e_1_2_2_35_1
  doi: 10.1038/372159a0
– volume-title: Immobilized affinity ligand techniques
  year: 1992
  ident: e_1_2_2_27_1
– ident: e_1_2_2_6_1
  doi: 10.1038/ncomms10007
– ident: e_1_2_2_44_1
  doi: 10.1002/jssc.201500825
– ident: e_1_2_2_11_1
  doi: 10.3390/separations3030027
– year: 2018
  ident: e_1_2_2_12_1
  publication-title: Adv. Sci.
– ident: e_1_2_2_40_1
  doi: 10.1021/jacs.6b03263
– ident: e_1_2_2_41_1
  doi: 10.1021/ic501062r
– ident: e_1_2_2_5_1
  doi: 10.1002/anie.201200758
– ident: e_1_2_2_47_1
  doi: 10.1016/j.talanta.2012.01.039
– ident: e_1_2_2_10_1
  doi: 10.1016/j.chroma.2003.10.090
– volume-title: Immobilized Enzymes For Industrial Reactors
  year: 1975
  ident: e_1_2_2_28_1
– volume-title: Immobilized Enzyme Technology: Research and Applications
  year: 2012
  ident: e_1_2_2_29_1
– ident: e_1_2_2_43_1
  doi: 10.1038/srep45777
– ident: e_1_2_2_15_1
  doi: 10.1021/ja9015765
– ident: e_1_2_2_45_1
  doi: 10.1021/ac403974n
– ident: e_1_2_2_31_1
  doi: 10.1038/ncomms5503
– ident: e_1_2_2_2_1
  doi: 10.1002/jssc.201600808
– ident: e_1_2_2_8_1
  doi: 10.1016/j.chroma.2012.10.006
– ident: e_1_2_2_20_1
  doi: 10.1002/adma.201705479
– ident: e_1_2_2_26_1
  doi: 10.1021/jacs.7b10642
– ident: e_1_2_2_4_2
  doi: 10.1002/ange.201804383
– ident: e_1_2_2_30_1
  doi: 10.1038/206757a0
– ident: e_1_2_2_24_1
  doi: 10.1021/jacs.7b12110
– ident: e_1_2_2_21_1
  doi: 10.1021/jacs.5b04147
– ident: e_1_2_2_34_2
  doi: 10.1002/ange.201712246
– ident: e_1_2_2_7_1
  doi: 10.1021/acs.chemrev.5b00317
– ident: e_1_2_2_16_1
  doi: 10.1126/science.aan0202
– ident: e_1_2_2_1_1
  doi: 10.2174/156802612801784407
– ident: e_1_2_2_19_1
  doi: 10.1038/nchem.2352
– ident: e_1_2_2_9_1
  doi: 10.1021/ac00032a009
– ident: e_1_2_2_36_1
  doi: 10.1039/c0cs00056f
SSID ssj0028806
Score 2.6537275
Snippet The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16754
SubjectTerms Amino acids
Biomolecules
chiral separation
chiral stationary phases
Chirality
Covalence
covalent organic frameworks
Enzymes
High performance liquid chromatography
Liquid chromatography
Peptides
Pharmacology
Protein structure
Raman spectra
Secondary structure
Separation
Title Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201810571
https://www.ncbi.nlm.nih.gov/pubmed/30359485
https://www.proquest.com/docview/2154047402
https://www.proquest.com/docview/2126900301
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H6urRBA8VdM0feS4Lruo4B58gLeSpA2K2so-DvrrnWm21VVE0FtLkzbNzDTfpDPfEHIoldQxLBReKEwIDgqTnlIJ86TWsQ01OEUZJjhfDqKzW3FxF959yuJ3_BDNhhtaRvW9RgNXenTyQRqKGdgYmpVgpVr0fzBgC1HRVcMfxUE5XXpREHhYhb5mbWT8ZLb77Kr0DWrOItdq6ekvE1UP2kWcPB5PxvrYvH3hc_zPW62QpSkupR2nSKtkLi_WyEK3Lge3Tky3BKWEJYq69E1D-3Vc14jibi7t3j8MK1RPe8UQI0wzql_p6UP57Erw5iMKCJn2KtIKvJHrQK9zxz9eFhvktt-76Z550woNnhFgy561IFODoE5GoZ8B2MukzJhS1g90zLWFVlIHNomsZPCJj62PfGSgAEIoJW2wSeaLssi3Cc2jKONKJ9w3VuSMqTC0SaZYpmNtALa2iFdLKDVT-nKsovGUOuJlnuLUpc3UtchR0_7FEXf82LJdCzydGvAoBSQkmAAt5i1y0FyGKcf_KarIywm24ZGsfMoW2XKK0jwqQGpEkcCweSXuX8aQdgbnveZs5y-ddskiHmOojR-3yfx4OMn3ADCN9X5lFO9JOwxX
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3pSFAkYCcUrrOE8fOJTtrnZpuwdopd6C7diiAhK0D6Hyr_gr_CJm4iRoQQgJqQeOScbOxJ6xZ5yZbwCeSSV1hhtFkMQmQQeFy0CpnAdS68wlGp2ikhKcj2fp5DR-fZacbcC3LhfG40P0B26kGc16TQpOB9J7P1FDKQWbYrNyKlUbtnGVh_biC3pti5fTA5zi50KMRyfDSdAWFghMjCIYOIesGLJFZJqEJdoopZQlV8qFkc6EdkgldeTy1EmOK1PmQoLRQr7jWCnpIuz3ClylMuIE13_wpkesEqgOPqEpigKqe9_hRHKxt87v-j74m3G7bis3m934BnzvhsnHuHzYXS31rvn6C4LkfzWON-F6a3qzfa8rt2DDVrdha9hVvLsDZlij3uEuzHyGqmHjLnRtwejAmg3fn88bx4WNqjkF0ZZMX7BX5_UnX2XYLhg6AWzU4HJQR74Be2s9xHpd3YXTS_nGe7BZ1ZW9D8ymaSmUzkVoXGw5V0ni8lLxUmfaoGU-gKATicK0CO1UKORj4bGlRUFTVfRTNYAXPf1nj03yR8qdTsKKdo1aFGjsxTxGRRUDeNo_xiGnX0aqsvWKaEQqG7d5ANteMvtXRYT-GOfItmjk6y88FPuz6ai_evAvjZ7A1uTk-Kg4ms4OH8I1uk-RRWG2A5vL-co-QvtwqR83Gsng3WWL7g8Romon
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o-FAkYCcUrrOM7DBw5lH-pSWCGgUm_BjmO1KiTVPoTKr-Kv8I-YiZOgBSEkpB44Jhk7E3vGnnFmvgF4qrQyKW4UQSyLGB0UrgKtMx4oY1IXG3SKLCU4v5klewfy1WF8uAHfulwYjw_RH7iRZjTrNSn4qXU7P0FDKQObQrMyqlQbtmGV--XZF3TaFi-mI5zhZ0JMxh-Ge0FbVyAoJEpg4BxyUpApopI4tGiiWKUs19qFkUmFcUilTOSyxCmOC1PqQkLRQral1Fq5CPu9ABdlwhUVixi96wGrBGqDz2eKooDK3ncwkVzsrPO7vg3-Ztuum8rNXje5Bt-7UfIhLifbq6XZLr7-AiD5Pw3jdbjaGt5s12vKDdgoq5twedjVu7sFxbBGrcM9mPn81IJNusC1BaPjajY8Op43bgsbV3MKobXMnLGXx_VnX2O4XDB0Adi4QeWgjnwD9r70AOt1dRsOzuUb78BmVVflPWBlklihTSbCwsmScx3HLrOaW5OaAu3yAQSdRORFi89OZUI-5R5ZWuQ0VXk_VQN43tOfemSSP1JudQKWtyvUIkdTT3KJaioG8KR_jENOP4x0VdYrohGJapzmAdz1gtm_KiLsR5kh26IRr7_wkO_OpuP-6v6_NHoMl96OJvnr6Wz_AVyh2xRWFKZbsLmcr8qHaBwuzaNGHxl8PG_J_QFI4mjW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+with+Chirality+Enriched+by+Biomolecules+for+Efficient+Chiral+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Sainan&rft.au=Zheng%2C+Yunlong&rft.au=An%2C+Hongde&rft.au=Aguila%2C+Briana&rft.date=2018-12-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=51&rft.spage=16754&rft.epage=16759&rft_id=info:doi/10.1002%2Fanie.201810571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201810571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon