Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation
The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 57; no. 51; pp. 16754 - 16759 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
17.12.2018
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high‐performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface‐enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs.
COF chirality: A general and efficient strategy has been developed to introduce chirality into covalent organic frameworks (COFs) by covalently immobilizing biomolecules into achiral COFs. The biomolecules⊂COFs can serve as chiral stationary phases for efficient chiral separation of a broad range of racemates. |
---|---|
AbstractList | The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs. The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high‐performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface‐enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs. COF chirality: A general and efficient strategy has been developed to introduce chirality into covalent organic frameworks (COFs) by covalently immobilizing biomolecules into achiral COFs. The biomolecules⊂COFs can serve as chiral stationary phases for efficient chiral separation of a broad range of racemates. The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs.The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral environment and specific interactions featured by biomolecules, here we contribute a general strategy is developed to enrich chirality into covalent organic frameworks (COFs) by covalently immobilizing a series of biomolecules (amino acids, peptides, enzymes) into achiral COFs. Inheriting the strong chirality and specific interactions from the immobilized biomolecules, the afforded biomolecules⊂COFs serve as versatile and highly efficient chiral stationary phases towards various racemates in both normal and reverse phase of high-performance liquid chromatography (HPLC). The different interactions between enzyme secondary structure and racemates were revealed by surface-enhanced Raman scattering studies, accounting for the observed chiral separation capacity of enzymes⊂COFs. |
Author | Zhang, Sainan Dong, Yueyue Yang, Cheng‐Xiong An, Hongde Zhang, Zhenjie Xie, Wei Cheng, Peng Zheng, Yunlong Aguila, Briana Chen, Yao Ma, Shengqian |
Author_xml | – sequence: 1 givenname: Sainan surname: Zhang fullname: Zhang, Sainan organization: Nankai University – sequence: 2 givenname: Yunlong surname: Zheng fullname: Zheng, Yunlong organization: Nankai University – sequence: 3 givenname: Hongde surname: An fullname: An, Hongde organization: Nankai University – sequence: 4 givenname: Briana surname: Aguila fullname: Aguila, Briana organization: University of South Florida – sequence: 5 givenname: Cheng‐Xiong surname: Yang fullname: Yang, Cheng‐Xiong organization: Nankai University – sequence: 6 givenname: Yueyue surname: Dong fullname: Dong, Yueyue organization: Nankai University – sequence: 7 givenname: Wei surname: Xie fullname: Xie, Wei organization: Nankai University – sequence: 8 givenname: Peng surname: Cheng fullname: Cheng, Peng organization: Nankai University – sequence: 9 givenname: Zhenjie surname: Zhang fullname: Zhang, Zhenjie email: zhangzhenjie@nankai.edu.cn organization: Nankai University – sequence: 10 givenname: Yao surname: Chen fullname: Chen, Yao email: chenyao@nankai.edu.cn organization: Nankai University – sequence: 11 givenname: Shengqian orcidid: 0000-0002-1897-7069 surname: Ma fullname: Ma, Shengqian email: sqma@usf.edu organization: University of South Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30359485$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URD9gyxJZYsMm0_diO4mXZTSFSlW7ANaR49iMixMPdtLR_Hs8nVKkShUre3HOtd-7p-RoDKMh5D3CAgHKczU6sygBGwRR4ytygqLEgtU1O8p3zlhRNwKPyWlKd5lvGqjekGMGTEjeiBOil-FeeTNO9Db-zGGaXkY1mG2IvxLdumlNl2sXlXfTjq7G6PTa9LTb0c8uDMEbPXuTqA2Rrqx12u2DDgL9ZjYqqsmF8S15bZVP5t3jeUZ-XK6-L78W17dfrpYX14XmCFhYK7tO1xwrWQnsBTS9lD0oZZF1ddnZTMmO2aayEozStUVR5UmannOlpGVn5NMhdxPD79mkqR1c0sZ7NZowp7bEspIADDCjH5-hd2GOY_5dpgQHXnMoM_XhkZq7wfTtJrpBxV37d30ZWBwAHUNK0dgnBKHd99Pu-2mf-skCfyZoNz0saYrK-Zc1edC2zpvdfx5pL26uVv_cP6Z3pFA |
CitedBy_id | crossref_primary_10_1016_j_bios_2019_111699 crossref_primary_10_1039_D3NR05586H crossref_primary_10_1021_acsami_0c12399 crossref_primary_10_1021_acsami_8b19352 crossref_primary_10_1002_asia_202400753 crossref_primary_10_1002_ange_202319876 crossref_primary_10_1039_D1TB00041A crossref_primary_10_1021_jacs_0c00285 crossref_primary_10_1016_j_cej_2022_140531 crossref_primary_10_1039_D3GC00721A crossref_primary_10_1002_bmc_6008 crossref_primary_10_1016_j_snb_2024_137224 crossref_primary_10_1039_D2CC04420J crossref_primary_10_1002_ange_202201378 crossref_primary_10_1016_j_chempr_2023_03_026 crossref_primary_10_1039_C9NR07525A crossref_primary_10_1038_s41596_023_00868_x crossref_primary_10_3390_ma15207215 crossref_primary_10_1002_ange_202013926 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1021_acsanm_0c00884 crossref_primary_10_1002_anie_201915234 crossref_primary_10_1016_j_ccr_2024_215965 crossref_primary_10_3724_SP_J_1123_2023_04021 crossref_primary_10_1039_D1TA04621G crossref_primary_10_1002_anie_202420269 crossref_primary_10_1007_s11426_024_2452_x crossref_primary_10_1039_D3SC01367G crossref_primary_10_1016_j_polymer_2024_127991 crossref_primary_10_1021_acssensors_0c00495 crossref_primary_10_1002_adfm_202312912 crossref_primary_10_1002_ange_201903534 crossref_primary_10_1021_acsami_4c12069 crossref_primary_10_1016_j_xcrp_2021_100519 crossref_primary_10_1016_j_trac_2021_116182 crossref_primary_10_1002_jssc_202400073 crossref_primary_10_1039_D2AY00108J crossref_primary_10_1002_slct_202301828 crossref_primary_10_1016_j_trac_2019_06_002 crossref_primary_10_1016_j_chroma_2022_463155 crossref_primary_10_3724_SP_J_1123_2023_05002 crossref_primary_10_1002_ange_202200261 crossref_primary_10_1002_adtp_202200053 crossref_primary_10_1021_jacs_4c09259 crossref_primary_10_1002_cjoc_202401094 crossref_primary_10_1039_D1CS00808K crossref_primary_10_1016_j_cej_2022_136624 crossref_primary_10_1016_j_chemosphere_2022_136581 crossref_primary_10_1002_cplu_202000549 crossref_primary_10_3390_polym16162319 crossref_primary_10_1021_acsami_0c11022 crossref_primary_10_1002_jssc_202100593 crossref_primary_10_1016_j_trac_2021_116516 crossref_primary_10_1039_C9CS00827F crossref_primary_10_1002_anie_202208744 crossref_primary_10_1002_elps_202100116 crossref_primary_10_1021_acs_chemmater_3c02095 crossref_primary_10_1016_j_jcoa_2021_100002 crossref_primary_10_1002_sscp_202200104 crossref_primary_10_1039_D1CC03182A crossref_primary_10_1002_anie_202417088 crossref_primary_10_1016_j_chroma_2019_460847 crossref_primary_10_1016_j_jpha_2022_06_005 crossref_primary_10_1002_marc_202000404 crossref_primary_10_1002_ange_201915234 crossref_primary_10_1002_anie_202013926 crossref_primary_10_1039_D0CS00049C crossref_primary_10_1002_ange_202420269 crossref_primary_10_1039_D2NJ05811A crossref_primary_10_1002_adma_202419515 crossref_primary_10_1016_j_chempr_2019_10_002 crossref_primary_10_1002_adsc_202001086 crossref_primary_10_1021_jacs_3c13692 crossref_primary_10_1016_j_chroma_2021_462239 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1002_anie_202413171 crossref_primary_10_1016_j_chroma_2024_464799 crossref_primary_10_1002_ange_202113780 crossref_primary_10_1021_jacs_0c11276 crossref_primary_10_1007_s00604_024_06347_8 crossref_primary_10_1002_ange_202417088 crossref_primary_10_1016_j_cej_2020_127136 crossref_primary_10_1016_j_envres_2023_116353 crossref_primary_10_1021_acsapm_0c00750 crossref_primary_10_1021_acsami_1c16386 crossref_primary_10_1021_acs_analchem_2c01999 crossref_primary_10_1002_ange_202319732 crossref_primary_10_1021_jacs_9b10007 crossref_primary_10_1002_adfm_202101335 crossref_primary_10_1016_j_aca_2020_03_003 crossref_primary_10_1021_acs_analchem_3c01178 crossref_primary_10_1002_chem_202303827 crossref_primary_10_1021_jacs_3c04183 crossref_primary_10_1002_admi_202200874 crossref_primary_10_1021_acs_analchem_2c04592 crossref_primary_10_1021_acsami_4c14161 crossref_primary_10_1021_jacs_1c11051 crossref_primary_10_1038_s41467_022_33501_8 crossref_primary_10_1002_ange_202413171 crossref_primary_10_1021_acsmaterialslett_2c00669 crossref_primary_10_1002_anie_202113780 crossref_primary_10_1002_cbic_202400339 crossref_primary_10_1016_j_snb_2023_134262 crossref_primary_10_1021_acsami_4c21385 crossref_primary_10_1021_acsami_9b14144 crossref_primary_10_1007_s12010_023_04725_1 crossref_primary_10_1039_D1CC04465F crossref_primary_10_1002_ange_202208744 crossref_primary_10_1016_j_apmt_2022_101381 crossref_primary_10_1039_D4DT03227F crossref_primary_10_1016_j_trac_2024_117603 crossref_primary_10_1016_j_saa_2021_120534 crossref_primary_10_1016_j_eurpolymj_2023_111939 crossref_primary_10_1016_j_ccr_2021_213989 crossref_primary_10_1021_acs_chemmater_9b02286 crossref_primary_10_1016_j_trac_2019_07_011 crossref_primary_10_1021_acsomega_0c02382 crossref_primary_10_1021_acsami_9b16438 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1039_D0RA02647F crossref_primary_10_1021_acsami_4c06556 crossref_primary_10_3390_membranes11040279 crossref_primary_10_1039_C8CS00978C crossref_primary_10_1021_jacs_3c05973 crossref_primary_10_1016_j_ccr_2020_213481 crossref_primary_10_1021_acsami_1c09238 crossref_primary_10_1002_adfm_202404522 crossref_primary_10_1002_anie_202200261 crossref_primary_10_1016_j_advmem_2024_100113 crossref_primary_10_1002_anie_201903534 crossref_primary_10_1002_anie_202113979 crossref_primary_10_1021_acsnano_2c12774 crossref_primary_10_4155_bio_2023_0256 crossref_primary_10_1021_acs_analchem_3c05227 crossref_primary_10_1016_j_chroma_2022_463415 crossref_primary_10_1016_j_jpba_2022_114777 crossref_primary_10_1002_cssc_202301045 crossref_primary_10_1007_s00604_019_3741_x crossref_primary_10_1002_smll_202303059 crossref_primary_10_1016_j_cclet_2024_110791 crossref_primary_10_1021_acsami_3c17048 crossref_primary_10_1021_acscatal_2c01114 crossref_primary_10_1016_j_aca_2024_343541 crossref_primary_10_1016_j_ijbiomac_2023_125729 crossref_primary_10_1002_anie_202319732 crossref_primary_10_1016_j_molliq_2022_120818 crossref_primary_10_1021_acsami_0c09816 crossref_primary_10_1021_acs_iecr_9b03138 crossref_primary_10_1021_acssuschemeng_8b05373 crossref_primary_10_1016_j_chroma_2019_06_018 crossref_primary_10_1007_s12274_022_4078_z crossref_primary_10_1016_j_chroma_2024_465014 crossref_primary_10_1016_j_talanta_2023_124589 crossref_primary_10_1016_j_aca_2023_341992 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1039_D0AY01831G crossref_primary_10_1021_acsami_3c10074 crossref_primary_10_1021_jacs_9b08017 crossref_primary_10_1021_jacs_9b02153 crossref_primary_10_1007_s40242_022_1490_6 crossref_primary_10_1021_acsapm_2c00543 crossref_primary_10_1016_j_chroma_2021_462186 crossref_primary_10_1002_tcr_202200143 crossref_primary_10_1016_j_chroma_2023_464444 crossref_primary_10_1021_acsami_1c21264 crossref_primary_10_1021_acs_chemmater_2c03140 crossref_primary_10_1021_jacs_2c08468 crossref_primary_10_1021_acsami_1c13408 crossref_primary_10_1002_chir_23405 crossref_primary_10_1002_jssc_202100987 crossref_primary_10_3724_SP_J_1123_2023_07021 crossref_primary_10_1007_s11426_022_1391_0 crossref_primary_10_1016_j_ccr_2024_216087 crossref_primary_10_1002_anie_202319876 crossref_primary_10_1016_j_chempr_2023_05_041 crossref_primary_10_1093_nsr_nwae256 crossref_primary_10_1002_cssc_201900570 crossref_primary_10_1016_j_chroma_2020_461341 crossref_primary_10_1016_j_chroma_2021_462731 crossref_primary_10_1039_D1QM00314C crossref_primary_10_1002_anie_202413675 crossref_primary_10_1021_acsami_3c02025 crossref_primary_10_1016_j_mattod_2023_05_023 crossref_primary_10_1016_j_aca_2024_343477 crossref_primary_10_1016_j_chroma_2021_462082 crossref_primary_10_1021_acs_analchem_1c03626 crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1039_D1CS00871D crossref_primary_10_1021_acsami_3c09459 crossref_primary_10_1021_acsapm_4c00658 crossref_primary_10_1021_jacs_9b11401 crossref_primary_10_1021_acsami_9b22023 crossref_primary_10_1007_s11426_022_1224_3 crossref_primary_10_1039_D0CS00009D crossref_primary_10_1007_s40843_023_2806_8 crossref_primary_10_1021_jacs_3c07393 crossref_primary_10_1016_j_cej_2020_127991 crossref_primary_10_1021_acsami_1c02120 crossref_primary_10_1021_accountsmr_3c00141 crossref_primary_10_1039_D4SC00277F crossref_primary_10_1016_j_ccr_2024_215859 crossref_primary_10_1016_j_xcrp_2022_101153 crossref_primary_10_1016_j_talanta_2021_122754 crossref_primary_10_1016_j_talanta_2019_04_010 crossref_primary_10_1016_j_nanoen_2025_110682 crossref_primary_10_1016_j_chroma_2019_06_059 crossref_primary_10_1039_D1CC04786H crossref_primary_10_1039_D3CS00053B crossref_primary_10_3390_foods14030475 crossref_primary_10_1016_j_chroma_2022_463341 crossref_primary_10_1016_j_trac_2019_06_035 crossref_primary_10_1039_D1TA06867A crossref_primary_10_1016_j_xcrp_2024_101845 crossref_primary_10_1002_adma_202406256 crossref_primary_10_1016_j_jpha_2023_01_003 crossref_primary_10_1002_jssc_70101 crossref_primary_10_1021_acs_accounts_3c00565 crossref_primary_10_1186_s13068_021_02001_0 crossref_primary_10_1002_anie_202201378 crossref_primary_10_1007_s41664_024_00340_z crossref_primary_10_1016_j_saa_2023_122370 crossref_primary_10_1021_acsami_3c01154 crossref_primary_10_1002_ange_202113979 crossref_primary_10_3390_molecules28020662 crossref_primary_10_1002_jssc_202201039 crossref_primary_10_1146_annurev_chembioeng_112019_084830 crossref_primary_10_1002_chem_201900857 crossref_primary_10_1002_adfm_202113153 crossref_primary_10_1002_ange_202403878 crossref_primary_10_1002_tcr_202200062 crossref_primary_10_1002_ange_202413675 crossref_primary_10_1016_j_chroma_2024_465334 crossref_primary_10_1021_acscatal_4c01456 crossref_primary_10_1016_j_ccr_2023_215572 crossref_primary_10_1039_D1CS01011E crossref_primary_10_1016_j_aca_2019_10_002 crossref_primary_10_3390_catal13071042 crossref_primary_10_1002_anie_202403878 crossref_primary_10_1016_j_ijbiomac_2020_12_002 crossref_primary_10_1002_jssc_202200637 crossref_primary_10_1039_D1CS00804H crossref_primary_10_1016_j_seppur_2024_129804 crossref_primary_10_1039_D2SC02436E crossref_primary_10_3390_molecules29215006 crossref_primary_10_1007_s00216_021_03574_3 crossref_primary_10_1016_j_cej_2022_141058 crossref_primary_10_1002_jssc_202400140 crossref_primary_10_1016_j_vibspec_2022_103411 crossref_primary_10_1016_j_jelechem_2020_114931 crossref_primary_10_1039_D3MH01492D |
Cites_doi | 10.1002/adma.201602782 10.1021/ja057484p 10.1002/anie.201804383 10.1021/jacs.7b02303 10.1002/anie.201712246 10.1016/j.chempr.2017.07.004 10.1021/jacs.6b07516 10.1038/ncomms12104 10.1021/ma960161g 10.1021/ja2038003 10.1038/natrevmats.2016.68 10.1021/ma991010r 10.1002/ange.201200758 10.1016/j.chroma.2018.02.023 10.1021/jacs.7b04008 10.1016/j.chempr.2018.03.001 10.1016/j.chempr.2018.05.020 10.1366/0003702042336073 10.1038/372159a0 10.1038/ncomms10007 10.1002/jssc.201500825 10.3390/separations3030027 10.1021/jacs.6b03263 10.1021/ic501062r 10.1002/anie.201200758 10.1016/j.talanta.2012.01.039 10.1016/j.chroma.2003.10.090 10.1038/srep45777 10.1021/ja9015765 10.1021/ac403974n 10.1038/ncomms5503 10.1002/jssc.201600808 10.1016/j.chroma.2012.10.006 10.1002/adma.201705479 10.1021/jacs.7b10642 10.1002/ange.201804383 10.1038/206757a0 10.1021/jacs.7b12110 10.1021/jacs.5b04147 10.1002/ange.201712246 10.1021/acs.chemrev.5b00317 10.1126/science.aan0202 10.2174/156802612801784407 10.1038/nchem.2352 10.1021/ac00032a009 10.1039/c0cs00056f |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201810571 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 16759 |
ExternalDocumentID | 30359485 10_1002_anie_201810571 ANIE201810571 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Tianjin Natural Science Foundation of China funderid: 17JCZDJC37200; 18JCZDJC37300 – fundername: Division of Materials Research funderid: DMR-1352065 – fundername: National Natural Science Foundation of China funderid: 21601093 – fundername: Division of Materials Research grantid: DMR-1352065 – fundername: Tianjin Natural Science Foundation of China grantid: 17JCZDJC37200 – fundername: Tianjin Natural Science Foundation of China grantid: 18JCZDJC37300 – fundername: National Natural Science Foundation of China-Yunnan Joint Fund grantid: 21601093 – fundername: National Natural Science Foundation of China grantid: 21601093 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4101-ff9bbc74169651d508d99d0aaf13b72bf4109b3f86f90eac7f1563038d44aa9f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 04:30:43 EDT 2025 Fri Jul 25 10:27:21 EDT 2025 Mon Jul 21 06:18:12 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Tue Jul 01 02:26:36 EDT 2025 Wed Jan 22 16:28:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | covalent organic frameworks chiral separation chirality biomolecules chiral stationary phases |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-ff9bbc74169651d508d99d0aaf13b72bf4109b3f86f90eac7f1563038d44aa9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1897-7069 |
PMID | 30359485 |
PQID | 2154047402 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2126900301 proquest_journals_2154047402 pubmed_primary_30359485 crossref_primary_10_1002_anie_201810571 crossref_citationtrail_10_1002_anie_201810571 wiley_primary_10_1002_anie_201810571_ANIE201810571 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 17, 2018 |
PublicationDateYYYYMMDD | 2018-12-17 |
PublicationDate_xml | – month: 12 year: 2018 text: December 17, 2018 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 40 1965; 206 2017; 7 2015; 6 2017; 3 2018; 140 2012 1994; 372 2012; 1269 2011; 40 1975 2017; 29 1992 2009; 131 2016; 39 2012; 12 2015; 7 2017; 357 2011; 133 2017; 139 2014; 86 2016; 7 2012; 91 2014; 5 1996; 29 2016; 1 2016; 3 2018; 4 2018; 1542 2015; 137 2018 2018; 57 130 2012 2012; 51 124 2004; 58 2018 1999; 32 2018; 30 2016; 116 2004; 1031 2016; 138 1992; 64 2006; 128 2014; 53 e_1_2_2_4_1 e_1_2_2_4_2 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_43_1 e_1_2_2_8_1 Messing R. (e_1_2_2_28_1) 1975 e_1_2_2_45_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_13_1 e_1_2_2_38_1 Song Y. (e_1_2_2_12_1) 2018 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_34_2 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_9_1 e_1_2_2_44_1 e_1_2_2_46_1 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_39_1 e_1_2_2_10_1 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 Hermanson G. T. (e_1_2_2_27_1) 1992 Weetall H. (e_1_2_2_29_1) 2012 |
References_xml | – volume: 1031 start-page: 143 year: 2004 end-page: 158 publication-title: J. Chromatogr. A – volume: 7 start-page: 45777 year: 2017 publication-title: Sci. Rep. – volume: 57 130 start-page: 6042 6150 year: 2018 2018 end-page: 6048 6156 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 1022 year: 2018 end-page: 1034 publication-title: Chem – volume: 131 start-page: 8875 year: 2009 end-page: 8883 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 2567 year: 2011 end-page: 2592 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 11489 year: 2016 end-page: 11492 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 8693 year: 2017 end-page: 8697 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 8352 year: 2015 end-page: 8355 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 8678 year: 1999 end-page: 8680 publication-title: Macromolecules – volume: 128 start-page: 7492 year: 2006 end-page: 7496 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 83 year: 2016 end-page: 92 publication-title: J. Sep. Sci. – volume: 57 130 start-page: 8629 8765 year: 2018 2018 end-page: 8633 8769 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 5192 5282 year: 2012 2012 end-page: 5195 5285 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 1975 – volume: 206 start-page: 757 year: 1965 end-page: 761 publication-title: Nature – volume: 139 start-page: 6736 year: 2017 end-page: 6743 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4503 year: 2014 publication-title: Nat. Commun. – year: 2018 publication-title: Adv. Sci. – year: 1992 – volume: 6 start-page: 10007 year: 2015 publication-title: Nat. Commun. – volume: 30 start-page: 1705479 year: 2018 publication-title: Adv. Mater. – volume: 40 start-page: 124 year: 2017 end-page: 137 publication-title: J. Sep. Sci. – year: 2012 – volume: 357 start-page: 673 year: 2017 end-page: 676 publication-title: Science – volume: 7 start-page: 12104 year: 2016 publication-title: Nat. Commun. – volume: 12 start-page: 1436 year: 2012 end-page: 1455 publication-title: Curr. Top. Med. Chem. – volume: 4 start-page: 1726 year: 2018 end-page: 1739 publication-title: Chem – volume: 1542 start-page: 1 year: 2018 end-page: 18 publication-title: J. Chromatogr. A – volume: 140 start-page: 984 year: 2018 end-page: 992 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 6872 year: 1996 end-page: 6879 publication-title: Macromolecules – volume: 29 start-page: 1602782 year: 2017 publication-title: Adv. Mater. – volume: 3 start-page: 27 year: 2016 publication-title: Separations – volume: 3 start-page: 281 year: 2017 end-page: 289 publication-title: Chem – volume: 372 start-page: 159 year: 1994 end-page: 162 publication-title: Nature – volume: 7 start-page: 905 year: 2015 end-page: 912 publication-title: Nat. Chem. – volume: 53 start-page: 10006 year: 2014 end-page: 10008 publication-title: Inorg. Chem. – volume: 86 start-page: 2238 year: 2014 end-page: 2245 publication-title: Anal. Chem. – volume: 58 start-page: 1147 year: 2004 end-page: 1156 publication-title: Appl. Spectrosc. – volume: 1269 start-page: 270 year: 2012 end-page: 278 publication-title: J. Chromatogr. A – volume: 64 start-page: 873 year: 1992 end-page: 879 publication-title: Anal. Chem. – volume: 140 start-page: 892 year: 2018 end-page: 895 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 1094 year: 2016 end-page: 1138 publication-title: Chem. Rev. – volume: 91 start-page: 7 year: 2012 end-page: 17 publication-title: Talanta – volume: 1 start-page: 16068 year: 2016 publication-title: Nat. Rev. Mater. – volume: 138 start-page: 6636 year: 2016 end-page: 6642 publication-title: J. Am. Chem. Soc. – volume: 133 start-page: 10382 year: 2011 end-page: 10385 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_37_1 doi: 10.1002/adma.201602782 – ident: e_1_2_2_42_1 doi: 10.1021/ja057484p – ident: e_1_2_2_4_1 doi: 10.1002/anie.201804383 – ident: e_1_2_2_13_1 doi: 10.1021/jacs.7b02303 – ident: e_1_2_2_34_1 doi: 10.1002/anie.201712246 – ident: e_1_2_2_3_1 doi: 10.1016/j.chempr.2017.07.004 – ident: e_1_2_2_17_1 doi: 10.1021/jacs.6b07516 – ident: e_1_2_2_23_1 doi: 10.1038/ncomms12104 – ident: e_1_2_2_33_1 doi: 10.1021/ma960161g – ident: e_1_2_2_39_1 doi: 10.1021/ja2038003 – ident: e_1_2_2_14_1 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_2_32_1 doi: 10.1021/ma991010r – ident: e_1_2_2_5_2 doi: 10.1002/ange.201200758 – ident: e_1_2_2_25_1 doi: 10.1016/j.chroma.2018.02.023 – ident: e_1_2_2_18_1 doi: 10.1021/jacs.7b04008 – ident: e_1_2_2_38_1 doi: 10.1016/j.chempr.2018.03.001 – ident: e_1_2_2_22_1 doi: 10.1016/j.chempr.2018.05.020 – ident: e_1_2_2_46_1 doi: 10.1366/0003702042336073 – ident: e_1_2_2_35_1 doi: 10.1038/372159a0 – volume-title: Immobilized affinity ligand techniques year: 1992 ident: e_1_2_2_27_1 – ident: e_1_2_2_6_1 doi: 10.1038/ncomms10007 – ident: e_1_2_2_44_1 doi: 10.1002/jssc.201500825 – ident: e_1_2_2_11_1 doi: 10.3390/separations3030027 – year: 2018 ident: e_1_2_2_12_1 publication-title: Adv. Sci. – ident: e_1_2_2_40_1 doi: 10.1021/jacs.6b03263 – ident: e_1_2_2_41_1 doi: 10.1021/ic501062r – ident: e_1_2_2_5_1 doi: 10.1002/anie.201200758 – ident: e_1_2_2_47_1 doi: 10.1016/j.talanta.2012.01.039 – ident: e_1_2_2_10_1 doi: 10.1016/j.chroma.2003.10.090 – volume-title: Immobilized Enzymes For Industrial Reactors year: 1975 ident: e_1_2_2_28_1 – volume-title: Immobilized Enzyme Technology: Research and Applications year: 2012 ident: e_1_2_2_29_1 – ident: e_1_2_2_43_1 doi: 10.1038/srep45777 – ident: e_1_2_2_15_1 doi: 10.1021/ja9015765 – ident: e_1_2_2_45_1 doi: 10.1021/ac403974n – ident: e_1_2_2_31_1 doi: 10.1038/ncomms5503 – ident: e_1_2_2_2_1 doi: 10.1002/jssc.201600808 – ident: e_1_2_2_8_1 doi: 10.1016/j.chroma.2012.10.006 – ident: e_1_2_2_20_1 doi: 10.1002/adma.201705479 – ident: e_1_2_2_26_1 doi: 10.1021/jacs.7b10642 – ident: e_1_2_2_4_2 doi: 10.1002/ange.201804383 – ident: e_1_2_2_30_1 doi: 10.1038/206757a0 – ident: e_1_2_2_24_1 doi: 10.1021/jacs.7b12110 – ident: e_1_2_2_21_1 doi: 10.1021/jacs.5b04147 – ident: e_1_2_2_34_2 doi: 10.1002/ange.201712246 – ident: e_1_2_2_7_1 doi: 10.1021/acs.chemrev.5b00317 – ident: e_1_2_2_16_1 doi: 10.1126/science.aan0202 – ident: e_1_2_2_1_1 doi: 10.2174/156802612801784407 – ident: e_1_2_2_19_1 doi: 10.1038/nchem.2352 – ident: e_1_2_2_9_1 doi: 10.1021/ac00032a009 – ident: e_1_2_2_36_1 doi: 10.1039/c0cs00056f |
SSID | ssj0028806 |
Score | 2.6537275 |
Snippet | The separation of racemic compounds is important in many fields, such as pharmacology and biology. Taking advantage of the intrinsically strong chiral... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16754 |
SubjectTerms | Amino acids Biomolecules chiral separation chiral stationary phases Chirality Covalence covalent organic frameworks Enzymes High performance liquid chromatography Liquid chromatography Peptides Pharmacology Protein structure Raman spectra Secondary structure Separation |
Title | Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201810571 https://www.ncbi.nlm.nih.gov/pubmed/30359485 https://www.proquest.com/docview/2154047402 https://www.proquest.com/docview/2126900301 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iRS--H6urRBA8VdM0feS4Lruo4B58gLeSpA2K2so-DvrrnWm21VVE0FtLkzbNzDTfpDPfEHIoldQxLBReKEwIDgqTnlIJ86TWsQ01OEUZJjhfDqKzW3FxF959yuJ3_BDNhhtaRvW9RgNXenTyQRqKGdgYmpVgpVr0fzBgC1HRVcMfxUE5XXpREHhYhb5mbWT8ZLb77Kr0DWrOItdq6ekvE1UP2kWcPB5PxvrYvH3hc_zPW62QpSkupR2nSKtkLi_WyEK3Lge3Tky3BKWEJYq69E1D-3Vc14jibi7t3j8MK1RPe8UQI0wzql_p6UP57Erw5iMKCJn2KtIKvJHrQK9zxz9eFhvktt-76Z550woNnhFgy561IFODoE5GoZ8B2MukzJhS1g90zLWFVlIHNomsZPCJj62PfGSgAEIoJW2wSeaLssi3Cc2jKONKJ9w3VuSMqTC0SaZYpmNtALa2iFdLKDVT-nKsovGUOuJlnuLUpc3UtchR0_7FEXf82LJdCzydGvAoBSQkmAAt5i1y0FyGKcf_KarIywm24ZGsfMoW2XKK0jwqQGpEkcCweSXuX8aQdgbnveZs5y-ddskiHmOojR-3yfx4OMn3ADCN9X5lFO9JOwxX |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VcigX3pSFAkYCcUrrOE8fOJTtrnZpuwdopd6C7diiAhK0D6Hyr_gr_CJm4iRoQQgJqQeOScbOxJ6xZ5yZbwCeSSV1hhtFkMQmQQeFy0CpnAdS68wlGp2ikhKcj2fp5DR-fZacbcC3LhfG40P0B26kGc16TQpOB9J7P1FDKQWbYrNyKlUbtnGVh_biC3pti5fTA5zi50KMRyfDSdAWFghMjCIYOIesGLJFZJqEJdoopZQlV8qFkc6EdkgldeTy1EmOK1PmQoLRQr7jWCnpIuz3ClylMuIE13_wpkesEqgOPqEpigKqe9_hRHKxt87v-j74m3G7bis3m934BnzvhsnHuHzYXS31rvn6C4LkfzWON-F6a3qzfa8rt2DDVrdha9hVvLsDZlij3uEuzHyGqmHjLnRtwejAmg3fn88bx4WNqjkF0ZZMX7BX5_UnX2XYLhg6AWzU4HJQR74Be2s9xHpd3YXTS_nGe7BZ1ZW9D8ymaSmUzkVoXGw5V0ni8lLxUmfaoGU-gKATicK0CO1UKORj4bGlRUFTVfRTNYAXPf1nj03yR8qdTsKKdo1aFGjsxTxGRRUDeNo_xiGnX0aqsvWKaEQqG7d5ANteMvtXRYT-GOfItmjk6y88FPuz6ai_evAvjZ7A1uTk-Kg4ms4OH8I1uk-RRWG2A5vL-co-QvtwqR83Gsng3WWL7g8Romon |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3o-FAkYCcUrrOM7DBw5lH-pSWCGgUm_BjmO1KiTVPoTKr-Kv8I-YiZOgBSEkpB44Jhk7E3vGnnFmvgF4qrQyKW4UQSyLGB0UrgKtMx4oY1IXG3SKLCU4v5klewfy1WF8uAHfulwYjw_RH7iRZjTrNSn4qXU7P0FDKQObQrMyqlQbtmGV--XZF3TaFi-mI5zhZ0JMxh-Ge0FbVyAoJEpg4BxyUpApopI4tGiiWKUs19qFkUmFcUilTOSyxCmOC1PqQkLRQral1Fq5CPu9ABdlwhUVixi96wGrBGqDz2eKooDK3ncwkVzsrPO7vg3-Ztuum8rNXje5Bt-7UfIhLifbq6XZLr7-AiD5Pw3jdbjaGt5s12vKDdgoq5twedjVu7sFxbBGrcM9mPn81IJNusC1BaPjajY8Op43bgsbV3MKobXMnLGXx_VnX2O4XDB0Adi4QeWgjnwD9r70AOt1dRsOzuUb78BmVVflPWBlklihTSbCwsmScx3HLrOaW5OaAu3yAQSdRORFi89OZUI-5R5ZWuQ0VXk_VQN43tOfemSSP1JudQKWtyvUIkdTT3KJaioG8KR_jENOP4x0VdYrohGJapzmAdz1gtm_KiLsR5kh26IRr7_wkO_OpuP-6v6_NHoMl96OJvnr6Wz_AVyh2xRWFKZbsLmcr8qHaBwuzaNGHxl8PG_J_QFI4mjW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Organic+Frameworks+with+Chirality+Enriched+by+Biomolecules+for+Efficient+Chiral+Separation&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Sainan&rft.au=Zheng%2C+Yunlong&rft.au=An%2C+Hongde&rft.au=Aguila%2C+Briana&rft.date=2018-12-17&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=57&rft.issue=51&rft.spage=16754&rft.epage=16759&rft_id=info:doi/10.1002%2Fanie.201810571&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201810571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |