Programmable Construction of Peptide‐Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics

Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctio...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 45; pp. e1804971 - n/a
Main Authors Li, Li‐Li, Qiao, Zeng‐Ying, Wang, Lei, Wang, Hao
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded. Taking inspiration from self‐assembly systems in nature, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects. This concept, from the modular molecular design, assembly driving forces, morphology control, and biological effects to biomedical applications, is discussed.
AbstractList Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded.
Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures of pre-assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self-assembly and biomedicine, a new strategy of "in vivo self-assembly" is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide-based nanomaterials constructed by the in vivo self-assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self-assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self-assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation-induced retention (AIR), are introduced, followed by their applications in high-performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self-assembled peptide-based nanomaterials for translational medicine are concluded.Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures of pre-assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self-assembly and biomedicine, a new strategy of "in vivo self-assembly" is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide-based nanomaterials constructed by the in vivo self-assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self-assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self-assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation-induced retention (AIR), are introduced, followed by their applications in high-performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self-assembled peptide-based nanomaterials for translational medicine are concluded.
Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded. Taking inspiration from self‐assembly systems in nature, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects. This concept, from the modular molecular design, assembly driving forces, morphology control, and biological effects to biomedical applications, is discussed.
Author Wang, Lei
Qiao, Zeng‐Ying
Li, Li‐Li
Wang, Hao
Author_xml – sequence: 1
  givenname: Li‐Li
  orcidid: 0000-0002-9793-3995
  surname: Li
  fullname: Li, Li‐Li
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 2
  givenname: Zeng‐Ying
  surname: Qiao
  fullname: Qiao, Zeng‐Ying
  email: qiaozy@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 3
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
  email: wanglei@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
– sequence: 4
  givenname: Hao
  orcidid: 0000-0002-1961-0787
  surname: Wang
  fullname: Wang, Hao
  email: wanghao@nanoctr.cn
  organization: National Center for Nanoscience and Technology (NCNST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30450607$$D View this record in MEDLINE/PubMed
BookMark eNqFkb9vEzEYhi1URNPAyogssbBc8I_z5cyWphSQElGJMls--0vqyGcH2wfqxsjI38hfwkVpQaqEmLw8z_tZ73uGTkIMgNBzSmaUEPZa217PGKEtqeWcPkITKhitaiLFCZoQyUUlm7o9RWc57wghsiHNE3TKSS1IQ-YT9OMqxW3Sfa87D3gZQy5pMMXFgOMGX8G-OAu_vv881xksXusCyWmfsQt45b66sMWfhm4HpuQ3-DLFHq-jHbxO-AKy2wasw2jFtL-JPm6d0f5wo6TocYn4-gaSDjEXZ_JT9HgzBsOzu3eKPl--vV6-r1Yf331YLlaVqSmh1YZrJsFYQzrOqTXWCirNvNU15YJtGG9ZLZtG8oZKEA0H3rZ2bEZwJjtmOj5Fr465-xS_DJCL6l024L0OEIes2JjT1JyO7hS9fIDu4pDC-DvFOGWUSSHFSL24o4auB6v2yfU63ar7jkegPgImxZwTbJRxRR8qLkk7ryhRhynVYUr1Z8pRmz3Q7pP_Kcij8M15uP0PrRYX68Vf9zenX7IQ
CitedBy_id crossref_primary_10_1002_ange_202313139
crossref_primary_10_1021_acs_nanolett_9b03136
crossref_primary_10_1021_jacsau_4c00392
crossref_primary_10_1021_acsabm_0c00707
crossref_primary_10_3390_pharmaceutics15020482
crossref_primary_10_1002_anie_202415735
crossref_primary_10_1039_D3TB02559D
crossref_primary_10_1002_smll_202101139
crossref_primary_10_1002_smtd_201900403
crossref_primary_10_1002_anie_201908185
crossref_primary_10_3390_bios12090683
crossref_primary_10_12677_MS_2023_135042
crossref_primary_10_1039_D2CS00999D
crossref_primary_10_1002_adma_202312153
crossref_primary_10_1002_EXP_20210153
crossref_primary_10_2147_IJN_S291285
crossref_primary_10_1021_jacs_2c01323
crossref_primary_10_1002_adma_202007293
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1039_C9TB01227C
crossref_primary_10_1126_sciadv_adq2072
crossref_primary_10_1039_D4TB00365A
crossref_primary_10_1002_adma_202203518
crossref_primary_10_3389_fbioe_2020_00504
crossref_primary_10_1002_adma_202200048
crossref_primary_10_1002_agt2_25
crossref_primary_10_1016_j_jcis_2024_02_163
crossref_primary_10_1021_acs_analchem_9b05704
crossref_primary_10_1002_ange_202314531
crossref_primary_10_1021_acsanm_4c06261
crossref_primary_10_1039_D4SC08633C
crossref_primary_10_1063_5_0045945
crossref_primary_10_1021_jacs_1c06435
crossref_primary_10_1039_D1BM00782C
crossref_primary_10_1002_cnma_202100532
crossref_primary_10_1021_acsabm_0c00758
crossref_primary_10_3389_fchem_2020_00824
crossref_primary_10_3390_molecules27196557
crossref_primary_10_1002_cbic_202200497
crossref_primary_10_1016_j_ccr_2023_215600
crossref_primary_10_1016_j_msec_2020_111261
crossref_primary_10_1002_cjoc_202200459
crossref_primary_10_1002_smll_202309054
crossref_primary_10_3390_ijms252111497
crossref_primary_10_1002_anie_202015126
crossref_primary_10_1002_VIW_20200020
crossref_primary_10_3390_ijms24010456
crossref_primary_10_1021_acs_analchem_4c00051
crossref_primary_10_1002_anie_202314531
crossref_primary_10_1186_s12951_024_02896_5
crossref_primary_10_1360_TB_2023_0802
crossref_primary_10_1002_adhm_202001211
crossref_primary_10_3389_fbioe_2021_782234
crossref_primary_10_1007_s41061_020_00311_9
crossref_primary_10_1007_s11426_021_1091_x
crossref_primary_10_1360_SSV_2022_0067
crossref_primary_10_1007_s40242_023_2356_2
crossref_primary_10_1002_ange_202415735
crossref_primary_10_1016_j_cis_2023_102880
crossref_primary_10_1002_anie_202306427
crossref_primary_10_1002_adma_202306246
crossref_primary_10_6023_cjoc202104020
crossref_primary_10_1021_jacs_2c00697
crossref_primary_10_1039_D2BM01604D
crossref_primary_10_1002_ange_202015126
crossref_primary_10_1002_advs_202203351
crossref_primary_10_1111_cpr_13279
crossref_primary_10_1002_ange_201908185
crossref_primary_10_1016_j_isci_2023_106620
crossref_primary_10_6023_A21120602
crossref_primary_10_1080_10717544_2022_2058647
crossref_primary_10_1002_anie_202313139
crossref_primary_10_1039_D2SM00153E
crossref_primary_10_1016_j_bioorg_2024_108065
crossref_primary_10_1039_D1CC06355C
crossref_primary_10_3390_molecules28237750
crossref_primary_10_1021_jacs_2c13214
crossref_primary_10_1002_cmdc_202100254
crossref_primary_10_1039_D0CC03682J
crossref_primary_10_1021_acs_nanolett_1c03112
crossref_primary_10_1002_adhm_202300473
crossref_primary_10_1039_D2CC01457B
crossref_primary_10_1002_ange_202306427
crossref_primary_10_1021_acsnano_4c10119
crossref_primary_10_1039_D0BM00895H
crossref_primary_10_1063_5_0035731
crossref_primary_10_1088_2632_959X_ac2a8e
Cites_doi 10.1021/jacs.7b13307
10.1038/natrevmats.2016.14
10.1002/anie.201710237
10.1021/ar3003464
10.1039/b105159h
10.1021/nl302638g
10.1038/nature24655
10.1038/ncomms15982
10.1021/ja411811w
10.1038/ncomms2040
10.1002/adma.201605869
10.1038/nnano.2008.378
10.1002/adhm.201300491
10.1039/C0CC04135A
10.1002/adma.201502598
10.1021/acsnano.6b07843
10.1126/science.1235038
10.1038/nchem.2887
10.1073/pnas.1106634108
10.1002/anie.201400735
10.1021/jacs.6b06903
10.1021/acsnano.7b00781
10.1088/0957-4484/27/40/402002
10.1021/acsnano.6b01370
10.1021/ja056549l
10.1038/s41467-017-02020-2
10.1126/science.1259680
10.1021/acs.biomac.6b01922
10.1002/adma.201502003
10.1007/s12274-016-0991-3
10.1039/C6NR03580A
10.1002/smll.201703321
10.1021/ja3064588
10.1038/nchem.861
10.1039/C6CS00656F
10.1038/nature02388
10.1002/adma.201300823
10.1002/adma.201703461
10.1016/j.cclet.2018.01.056
10.1021/jacs.8b04400
10.1038/s41467-018-03705-y
10.1038/s41467-017-01296-8
10.1016/j.addr.2017.07.021
10.1038/nchem.1920
10.1002/adma.201501803
10.1002/adhm.201500402
10.1038/natrevmats.2016.73
10.1038/s41551-016-0002
10.1021/jacs.7b10513
10.1021/acsami.6b05795
10.1039/C8CC01759J
10.1021/ja2004736
10.1002/adma.201503437
10.1038/nmat3074
10.1016/j.biomaterials.2017.06.042
10.1002/smll.201801865
10.1038/282680a0
10.1021/acsnano.7b03375
10.1016/j.biomaterials.2016.06.055
10.1126/science.1060066
10.1039/C4CS00444B
10.1021/ja4010078
10.1021/jacs.5b13541
10.1002/anie.201104389
10.1038/nchem.480
10.1038/440163a
10.1038/nature19791
10.1021/nn501040h
10.1021/acs.biomac.6b01816
10.1002/adma.201504564
10.1021/ja057412y
10.1039/C8NR01604F
10.1021/acsnano.7b02025
10.1021/ja408182p
10.1002/adfm.201702122
10.1038/s41467-017-00047-z
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201804971
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30450607
10_1002_adma_201804971
ADMA201804971
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Science Fund for Creative Research Groups
– fundername: Chinese Academy of Sciences
  funderid: GJHZ1541
– fundername: CAS Interdisciplinary Innovation Team
– fundername: Youth Innovation Promotion Association, CAS
– fundername: National Natural Science Foundation of China
  funderid: 51725302; 51873045; 31671028; 51573032; 51573031; 11621505
– fundername: CAS Key Research Program for Frontier Sciences
  funderid: QYZDJ‐SSW‐SLH022
– fundername: National Natural Science Foundation of China
  grantid: 11621505
– fundername: CAS Key Research Program for Frontier Sciences
  grantid: QYZDJ-SSW-SLH022
– fundername: National Natural Science Foundation of China
  grantid: 51725302
– fundername: National Natural Science Foundation of China
  grantid: 51873045
– fundername: National Natural Science Foundation of China
  grantid: 31671028
– fundername: Key Project of Chinese Academy of Sciences in Cooperation with Foreign Enterprises
  grantid: GJHZ1541
– fundername: Youth Innovation Promotion, CAS
– fundername: National Natural Science Foundation of China
  grantid: 51573032
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4101-f3a29ecdc0b331dcdd519c78a41352f2382496693619e563e388d9715329b2cb3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:37:50 EDT 2025
Sun Jul 13 04:57:55 EDT 2025
Mon Jul 21 06:01:41 EDT 2025
Tue Jul 01 00:44:47 EDT 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Jan 22 16:37:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords self-assembly
peptides
programmable
drug delivery
bioimaging
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-f3a29ecdc0b331dcdd519c78a41352f2382496693619e563e388d9715329b2cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1961-0787
0000-0002-9793-3995
PMID 30450607
PQID 2312129595
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2135643156
proquest_journals_2312129595
pubmed_primary_30450607
crossref_citationtrail_10_1002_adma_201804971
crossref_primary_10_1002_adma_201804971
wiley_primary_10_1002_adma_201804971_ADMA201804971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2013; 25
2018; 140
2017; 46
2017 2018; 11 29
2006 2001; 440 291
2011; 10
2014 2016 2015 2014; 346 27 4 3
2017; 29
2017 2017; 10 8
2013; 340
2016; 103
2004; 428
2017; 552
2016 2017; 10 115
2014; 136
2017 2018 2017; 11 10 11
2011; 133
2018; 9
2015; 27
2012; 3
2016; 1
2012; 134
2016; 538
2012 2016 2016; 12 1 9
2017; 11
2017 2016 2018; 8 138 140
2015; 44
2011 2014; 108 8
2013; 135
2012 2018 2017 2014 2018; 51 14 27 53 14
2017; 141
2017; 18
2016; 138
2011; 47
1979; 282
2017 2017; 8 18
2010; 2
2016; 28
2018; 54
2006; 128
2014; 6
2006 2010 2009; 128 2 4
2016; 8
2013 2001; 46
2018; 57
e_1_2_8_28_1
e_1_2_8_22_3
e_1_2_8_24_1
e_1_2_8_45_3
e_1_2_8_47_1
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_47_2
e_1_2_8_7_5
e_1_2_8_7_4
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_12_2
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_2
e_1_2_8_50_3
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 11 10 11
  start-page: 7301 9987 6881
  year: 2017 2018 2017
  publication-title: ACS Nano Nanoscale ACS Nano
– volume: 108 8
  start-page: 4975
  year: 2011 2014
  publication-title: Proc. Natl. Acad. Sci. USA ACS Nano
– volume: 8 138 140
  start-page: 1850 8005
  year: 2017 2016 2018
  publication-title: Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 103
  start-page: 67
  year: 2016
  publication-title: Biomaterials
– volume: 552
  start-page: 67
  year: 2017
  publication-title: Nature
– volume: 2
  start-page: 54
  year: 2010
  publication-title: Nat. Chem.
– volume: 128 2 4
  start-page: 1070 1089 19
  year: 2006 2010 2009
  publication-title: J. Am. Chem. Soc. Nat. Chem. Nat. Nanotechnol.
– volume: 133
  start-page: 8392
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1276
  year: 2017
  publication-title: Nat. Commun.
– volume: 47
  start-page: 1619
  year: 2011
  publication-title: Chem. Commun.
– volume: 11 29
  start-page: 1826 1645
  year: 2017 2018
  publication-title: ACS Nano Chin. Chem. Lett.
– volume: 136
  start-page: 2546
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 10 8
  start-page: 132
  year: 2017 2017
  publication-title: Nat. Chem. Nat. Commun.
– volume: 346 27 4 3
  start-page: 1525 2557 1357
  year: 2014 2016 2015 2014
  publication-title: Science Nanotechnology Adv. Healthcare Mater. Adv. Healthcare Mater.
– volume: 340
  start-page: 864
  year: 2013
  publication-title: Science
– volume: 46
  start-page: 2421
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 4611
  year: 2015
  publication-title: Adv. Mater.
– volume: 128
  start-page: 3038
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 558
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 8 18
  start-page: 26 943
  year: 2017 2017
  publication-title: Nat. Commun. Biomacromolecules
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 44
  start-page: 2798
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 3599
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1859
  year: 2016
  publication-title: Adv. Mater.
– volume: 538
  start-page: 329
  year: 2016
  publication-title: Nature
– volume: 282
  start-page: 680
  year: 1979
  publication-title: Nature
– volume: 46
  start-page: 2441 1740
  year: 2013 2001
  publication-title: Acc. Chem. Res. Chem. Commun.
– volume: 440 291
  start-page: 163 2331
  year: 2006 2001
  publication-title: Nature Science
– volume: 138
  start-page: 3813
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 54
  start-page: 3460
  year: 2018
  publication-title: Chem. Commun.
– volume: 11
  start-page: 4086
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 1410
  year: 2018
  publication-title: Nat. Commun.
– volume: 10 115
  start-page: 4779 115
  year: 2016 2017
  publication-title: ACS Nano Adv. Drug Delivery Rev.
– volume: 57
  start-page: 1813
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 3505
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 199
  year: 2017
  publication-title: Biomaterials
– volume: 27
  start-page: 6125
  year: 2015
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1033
  year: 2012
  publication-title: Nat. Commun.
– volume: 10
  start-page: 602
  year: 2011
  publication-title: Nat. Mater.
– volume: 428
  start-page: 487
  year: 2004
  publication-title: Nature
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 5547
  year: 2015
  publication-title: Adv. Mater.
– volume: 51 14 27 53 14
  start-page: 920 8985
  year: 2012 2018 2017 2014 2018
  publication-title: Angew. Chem., Int. Ed. Small Adv. Funct. Mater. Angew. Chem., Int. Ed. Small
– volume: 18
  start-page: 1249
  year: 2017
  publication-title: Biomacromolecules
– volume: 6
  start-page: 519
  year: 2014
  publication-title: Nat. Chem.
– volume: 28
  start-page: 254
  year: 2016
  publication-title: Adv. Mater.
– volume: 12 1 9
  start-page: 5304 0002 1022
  year: 2012 2016 2016
  publication-title: Nano Lett. Nat. Biomed. Eng. Nano Res.
– ident: e_1_2_8_36_1
  doi: 10.1021/jacs.7b13307
– ident: e_1_2_8_43_1
  doi: 10.1038/natrevmats.2016.14
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.201710237
– ident: e_1_2_8_14_1
  doi: 10.1021/ar3003464
– ident: e_1_2_8_14_2
  doi: 10.1039/b105159h
– ident: e_1_2_8_45_1
  doi: 10.1021/nl302638g
– ident: e_1_2_8_2_1
  doi: 10.1038/nature24655
– ident: e_1_2_8_10_2
  doi: 10.1038/ncomms15982
– ident: e_1_2_8_16_1
  doi: 10.1021/ja411811w
– ident: e_1_2_8_33_1
  doi: 10.1038/ncomms2040
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.201605869
– ident: e_1_2_8_12_3
  doi: 10.1038/nnano.2008.378
– ident: e_1_2_8_6_4
  doi: 10.1002/adhm.201300491
– ident: e_1_2_8_17_1
  doi: 10.1039/C0CC04135A
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201502598
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.6b07843
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1235038
– ident: e_1_2_8_10_1
  doi: 10.1038/nchem.2887
– ident: e_1_2_8_46_1
  doi: 10.1073/pnas.1106634108
– ident: e_1_2_8_7_4
  doi: 10.1002/anie.201400735
– ident: e_1_2_8_50_2
  doi: 10.1021/jacs.6b06903
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.7b00781
– ident: e_1_2_8_6_2
  doi: 10.1088/0957-4484/27/40/402002
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.6b01370
– ident: e_1_2_8_12_1
  doi: 10.1021/ja056549l
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-017-02020-2
– ident: e_1_2_8_6_1
  doi: 10.1126/science.1259680
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.biomac.6b01922
– ident: e_1_2_8_42_1
  doi: 10.1002/adma.201502003
– ident: e_1_2_8_45_3
  doi: 10.1007/s12274-016-0991-3
– ident: e_1_2_8_24_1
  doi: 10.1039/C6NR03580A
– ident: e_1_2_8_7_2
  doi: 10.1002/smll.201703321
– ident: e_1_2_8_15_1
  doi: 10.1021/ja3064588
– ident: e_1_2_8_12_2
  doi: 10.1038/nchem.861
– ident: e_1_2_8_34_1
  doi: 10.1039/C6CS00656F
– ident: e_1_2_8_9_1
  doi: 10.1038/nature02388
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201300823
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201703461
– ident: e_1_2_8_37_2
  doi: 10.1016/j.cclet.2018.01.056
– ident: e_1_2_8_50_3
  doi: 10.1021/jacs.8b04400
– ident: e_1_2_8_44_1
  doi: 10.1038/s41467-018-03705-y
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-017-01296-8
– ident: e_1_2_8_47_2
  doi: 10.1016/j.addr.2017.07.021
– ident: e_1_2_8_29_1
  doi: 10.1038/nchem.1920
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201501803
– ident: e_1_2_8_6_3
  doi: 10.1002/adhm.201500402
– ident: e_1_2_8_49_1
  doi: 10.1038/natrevmats.2016.73
– ident: e_1_2_8_45_2
  doi: 10.1038/s41551-016-0002
– ident: e_1_2_8_5_1
  doi: 10.1021/jacs.7b10513
– ident: e_1_2_8_18_1
  doi: 10.1021/acsami.6b05795
– ident: e_1_2_8_53_1
  doi: 10.1039/C8CC01759J
– ident: e_1_2_8_13_1
  doi: 10.1021/ja2004736
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201503437
– ident: e_1_2_8_54_1
  doi: 10.1038/nmat3074
– ident: e_1_2_8_20_1
  doi: 10.1016/j.biomaterials.2017.06.042
– ident: e_1_2_8_7_5
  doi: 10.1002/smll.201801865
– ident: e_1_2_8_3_1
  doi: 10.1038/282680a0
– ident: e_1_2_8_22_1
  doi: 10.1021/acsnano.7b03375
– ident: e_1_2_8_52_1
  doi: 10.1016/j.biomaterials.2016.06.055
– ident: e_1_2_8_1_2
  doi: 10.1126/science.1060066
– ident: e_1_2_8_32_1
  doi: 10.1039/C4CS00444B
– ident: e_1_2_8_30_1
  doi: 10.1021/ja4010078
– ident: e_1_2_8_51_1
  doi: 10.1021/jacs.5b13541
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201104389
– ident: e_1_2_8_28_1
  doi: 10.1038/nchem.480
– ident: e_1_2_8_1_1
  doi: 10.1038/440163a
– ident: e_1_2_8_8_1
  doi: 10.1038/nature19791
– ident: e_1_2_8_46_2
  doi: 10.1021/nn501040h
– ident: e_1_2_8_23_2
  doi: 10.1021/acs.biomac.6b01816
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201504564
– ident: e_1_2_8_11_1
  doi: 10.1021/ja057412y
– ident: e_1_2_8_22_2
  doi: 10.1039/C8NR01604F
– ident: e_1_2_8_22_3
  doi: 10.1021/acsnano.7b02025
– ident: e_1_2_8_41_1
  doi: 10.1021/ja408182p
– ident: e_1_2_8_7_3
  doi: 10.1002/adfm.201702122
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-017-00047-z
SSID ssj0009606
Score 2.5857234
SecondaryResourceType review_article
Snippet Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures...
Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804971
SubjectTerms Assembly
bioimaging
Biological effects
Biomedical materials
drug delivery
Drug delivery systems
Functional materials
Humans
Medical imaging
Modular construction
Modular design
Morphology
Nanomaterials
Nanostructures - chemistry
Nanostructures - therapeutic use
Organic chemistry
Peptides
Peptides - chemistry
Peptides - therapeutic use
programmable
self‐assembly
Superstructures
Theranostic Nanomedicine - methods
Title Programmable Construction of Peptide‐Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804971
https://www.ncbi.nlm.nih.gov/pubmed/30450607
https://www.proquest.com/docview/2312129595
https://www.proquest.com/docview/2135643156
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTnBoy6NtWkBGQuopEOI4G3NbHiuE2AohkLhFfkVCLQlilwsnjj3yG_klzNibwIIqpPaWKLYc2zOeb-yZzwAbCKJTo4WOXW566KBkuA5W1sS5SjJnU6Gton3I4c_88Dw7uhAXL7L4Az9Et-FGmuHXa1JwpUdbz6ShynreoO0CMa5PIqeALUJFp8_8UQTPPdkeF7HMs6JlbUzSrenq01bpDdScRq7e9Aw-gmp_OkSc_Nq8HetNc_eKz_F_evUJPkxwKesHQVqAGVcvwvwLtsIl-HMSYrmuKNuK0U2fLfcsayp2QuEx1j3eP-yiYbRsqMZBuNllzY4vad-C4SpF2z6jHTa4aa7YsLEUBMv2fRQJUzXWanDe2_WY2qA4ejZu2BnlidWNZ5VehvPBwdneYTy5yCE2Gap8XHGVSmesSTTn29ZYi7jR9AqFFlSkFaIGdALzXHL05pzIueNFYbH7gqdSoyjxzzBbN7X7CkyhVlcyE4oXOJ-9SmWmSjTiqko6lRUqgridyNJMWM7pso3fZeBnTksa4bIb4Qh-dOWvA7_HX0uutHJRTvR8VCI6RtsvhRQRrHefUUPp2EXVrrnFMthJxH3oKEfwJchT1xSdUyd50osg9VLxzj-U_f1hv3v79i-VvsMcPsuQTrkCsygpbhVx1Vived15AhDEGtc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_EMDBYwE4pQ2a8dOgsRhYVlt6aaq0FbqLXVsR6poE8RuheDEkSOvwqvwCDwJM_krC0JISD1w3F1nndjz881k5jPAIwTR3OQy950yEQYoIdrBwhpf6SB0lsvcaspDpjtqshe-2pf7K_C164Vp-CH6hBtpRm2vScEpIb15yhqqbU0cNIgR5EaDtq5y2314j1Hb_NnWCLf4Mefjl7MXE789WMA3IYqgXwjNE2esCXIhBtZYizjGRLFGiy55gV4MgxKlEoHRhZNKOBHHFueQgic5PprA_z0H5-kYcaLrH70-ZayigKCm9xPST1QYdzyRAd9cvt9lP_gbuF3GyrWzG1-Bb90yNTUubzZOFvmG-fgLg-R_tY5X4XILvdmw0ZVrsOLK63DpJ0LGG_B5tylXO6aGMkaHmXb0uqwq2C5VAFn3_dOX5-j7LUv1otFfdliy6SGlZhgaYspszZ-y8bvqmKWVpTpfNqoLZZgu8aoKRbtzOTQHtQqwRcVm1ApXVjVx9k3YO5OluAWrZVW6NWAaDVeRhFKLGAUoKnRoiiBH6FgkToex9sDvJCczLZE7nSdylDUU1DyjHc36HfXgST_-bUNh8seR650gZq0pm2cYACC8SWQiPXjY_4xGiN4s6dJVJzgGHxKh7UAqD243AtxPRa_iAxVEHvBaDP9yD9lwlA77T3f-5aIHcGEyS6fZdGtn-y5cxO-Tpnt0HVZRatw9hJGL_H6tuAwOzlrCfwDXY3Xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KP8lUMBIIE5ps3bsxEgcFsKqpd1qhVqpt-DYjlS1TSp2qwpOHDnyKLwKr8CTMI6TlAUhJKQeOCZx4sSen2-cmc8ATxBEU13wIrRCJxigxGgHS6NDoaLYGsoLo9w65HhHbOzFb_b5_gJ87WphPD9Ev-DmNKOx107BT0y5fk4aqkzDGzRIEeMmgzatcst-OMOgbfpiM8MZfkrp6PXuq42w3Vcg1DFKYFgyRaXVRkcFYwOjjUEYo5NUoUHntEQnhjGJEJJhcGG5YJalqcE-OKOywC9j-NxLcDkWkXSbRWRvzwmrXDzQsPsxHkoRpx1NZETX59933g3-hm3noXLj60bX4Fs3Sj7F5XDtdFas6Y-_EEj-T8N4HZZb4E2GXlNuwIKtbsLST3SMt-DzxCerHbtyMuK2Mu3IdUldkonL_zH2-6cvL9HzGzJWM6-95KAi2wduYYagGXbrWtPnZPS-Pibj2rgsX5I1aTJEVXhXjYLdORzXhysUILOa7LpCuKpuaLNvw96FDMUdWKzqyt4FotBslTLmiqUoP0mpYl1GBQLHUloVpyqAsBOcXLc07m43kaPcE1DT3M1o3s9oAM_69ieewOSPLVc7OcxbQzbNEf4juJFc8gAe95fRBLn_Sqqy9Sm2wY9EYDvgIoAVL799V-5HfCSiJADaSOFf3iEfZuNhf3TvX256BFcm2Sjf3tzZug9X8bT0paOrsIhCYx8ghpwVDxu1JfDuogX8B9x1dI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programmable+Construction+of+Peptide%E2%80%90Based+Materials+in+Living+Subjects%3A+From+Modular+Design+and+Morphological+Control+to+Theranostics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Li%E2%80%90Li&rft.au=Qiao%2C+Zeng%E2%80%90Ying&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Hao&rft.date=2019-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.201804971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon