Programmable Construction of Peptide‐Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics
Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctio...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 45; pp. e1804971 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded.
Taking inspiration from self‐assembly systems in nature, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects. This concept, from the modular molecular design, assembly driving forces, morphology control, and biological effects to biomedical applications, is discussed. |
---|---|
AbstractList | Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded. Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures of pre-assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self-assembly and biomedicine, a new strategy of "in vivo self-assembly" is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide-based nanomaterials constructed by the in vivo self-assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self-assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self-assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation-induced retention (AIR), are introduced, followed by their applications in high-performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self-assembled peptide-based nanomaterials for translational medicine are concluded.Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures of pre-assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self-assembly and biomedicine, a new strategy of "in vivo self-assembly" is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide-based nanomaterials constructed by the in vivo self-assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self-assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self-assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation-induced retention (AIR), are introduced, followed by their applications in high-performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self-assembled peptide-based nanomaterials for translational medicine are concluded. Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures of pre‐assembled nanomaterials may change in the complicated physiological conditions, resulting in compromised properties and/or biofunctions. Taking advantage of chemical self‐assembly and biomedicine, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects to explore new biological effects. Herein, recent advances on peptide‐based nanomaterials constructed by the in vivo self‐assembly strategy are summarized. Modular peptide building blocks with various functions, such as targeting, self‐assembly, tailoring, and biofunctional motifs, are employed for the construction of nanomaterials. Then, self‐assembly of these building blocks in living systems to construct various morphologies of nanostructures and corresponding unique biological effects, such as assembly/aggregation‐induced retention (AIR), are introduced, followed by their applications in high‐performance drug delivery and bioimaging. Finally, an outlook and perspective toward future developments of in vivo self‐assembled peptide‐based nanomaterials for translational medicine are concluded. Taking inspiration from self‐assembly systems in nature, a new strategy of “in vivo self‐assembly” is proposed to in situ construct functional nanomaterials in living subjects. This concept, from the modular molecular design, assembly driving forces, morphology control, and biological effects to biomedical applications, is discussed. |
Author | Wang, Lei Qiao, Zeng‐Ying Li, Li‐Li Wang, Hao |
Author_xml | – sequence: 1 givenname: Li‐Li orcidid: 0000-0002-9793-3995 surname: Li fullname: Li, Li‐Li organization: National Center for Nanoscience and Technology (NCNST) – sequence: 2 givenname: Zeng‐Ying surname: Qiao fullname: Qiao, Zeng‐Ying email: qiaozy@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) – sequence: 3 givenname: Lei surname: Wang fullname: Wang, Lei email: wanglei@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) – sequence: 4 givenname: Hao orcidid: 0000-0002-1961-0787 surname: Wang fullname: Wang, Hao email: wanghao@nanoctr.cn organization: National Center for Nanoscience and Technology (NCNST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30450607$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb9vEzEYhi1URNPAyogssbBc8I_z5cyWphSQElGJMls--0vqyGcH2wfqxsjI38hfwkVpQaqEmLw8z_tZ73uGTkIMgNBzSmaUEPZa217PGKEtqeWcPkITKhitaiLFCZoQyUUlm7o9RWc57wghsiHNE3TKSS1IQ-YT9OMqxW3Sfa87D3gZQy5pMMXFgOMGX8G-OAu_vv881xksXusCyWmfsQt45b66sMWfhm4HpuQ3-DLFHq-jHbxO-AKy2wasw2jFtL-JPm6d0f5wo6TocYn4-gaSDjEXZ_JT9HgzBsOzu3eKPl--vV6-r1Yf331YLlaVqSmh1YZrJsFYQzrOqTXWCirNvNU15YJtGG9ZLZtG8oZKEA0H3rZ2bEZwJjtmOj5Fr465-xS_DJCL6l024L0OEIes2JjT1JyO7hS9fIDu4pDC-DvFOGWUSSHFSL24o4auB6v2yfU63ar7jkegPgImxZwTbJRxRR8qLkk7ryhRhynVYUr1Z8pRmz3Q7pP_Kcij8M15uP0PrRYX68Vf9zenX7IQ |
CitedBy_id | crossref_primary_10_1002_ange_202313139 crossref_primary_10_1021_acs_nanolett_9b03136 crossref_primary_10_1021_jacsau_4c00392 crossref_primary_10_1021_acsabm_0c00707 crossref_primary_10_3390_pharmaceutics15020482 crossref_primary_10_1002_anie_202415735 crossref_primary_10_1039_D3TB02559D crossref_primary_10_1002_smll_202101139 crossref_primary_10_1002_smtd_201900403 crossref_primary_10_1002_anie_201908185 crossref_primary_10_3390_bios12090683 crossref_primary_10_12677_MS_2023_135042 crossref_primary_10_1039_D2CS00999D crossref_primary_10_1002_adma_202312153 crossref_primary_10_1002_EXP_20210153 crossref_primary_10_2147_IJN_S291285 crossref_primary_10_1021_jacs_2c01323 crossref_primary_10_1002_adma_202007293 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1039_C9TB01227C crossref_primary_10_1126_sciadv_adq2072 crossref_primary_10_1039_D4TB00365A crossref_primary_10_1002_adma_202203518 crossref_primary_10_3389_fbioe_2020_00504 crossref_primary_10_1002_adma_202200048 crossref_primary_10_1002_agt2_25 crossref_primary_10_1016_j_jcis_2024_02_163 crossref_primary_10_1021_acs_analchem_9b05704 crossref_primary_10_1002_ange_202314531 crossref_primary_10_1021_acsanm_4c06261 crossref_primary_10_1039_D4SC08633C crossref_primary_10_1063_5_0045945 crossref_primary_10_1021_jacs_1c06435 crossref_primary_10_1039_D1BM00782C crossref_primary_10_1002_cnma_202100532 crossref_primary_10_1021_acsabm_0c00758 crossref_primary_10_3389_fchem_2020_00824 crossref_primary_10_3390_molecules27196557 crossref_primary_10_1002_cbic_202200497 crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1016_j_msec_2020_111261 crossref_primary_10_1002_cjoc_202200459 crossref_primary_10_1002_smll_202309054 crossref_primary_10_3390_ijms252111497 crossref_primary_10_1002_anie_202015126 crossref_primary_10_1002_VIW_20200020 crossref_primary_10_3390_ijms24010456 crossref_primary_10_1021_acs_analchem_4c00051 crossref_primary_10_1002_anie_202314531 crossref_primary_10_1186_s12951_024_02896_5 crossref_primary_10_1360_TB_2023_0802 crossref_primary_10_1002_adhm_202001211 crossref_primary_10_3389_fbioe_2021_782234 crossref_primary_10_1007_s41061_020_00311_9 crossref_primary_10_1007_s11426_021_1091_x crossref_primary_10_1360_SSV_2022_0067 crossref_primary_10_1007_s40242_023_2356_2 crossref_primary_10_1002_ange_202415735 crossref_primary_10_1016_j_cis_2023_102880 crossref_primary_10_1002_anie_202306427 crossref_primary_10_1002_adma_202306246 crossref_primary_10_6023_cjoc202104020 crossref_primary_10_1021_jacs_2c00697 crossref_primary_10_1039_D2BM01604D crossref_primary_10_1002_ange_202015126 crossref_primary_10_1002_advs_202203351 crossref_primary_10_1111_cpr_13279 crossref_primary_10_1002_ange_201908185 crossref_primary_10_1016_j_isci_2023_106620 crossref_primary_10_6023_A21120602 crossref_primary_10_1080_10717544_2022_2058647 crossref_primary_10_1002_anie_202313139 crossref_primary_10_1039_D2SM00153E crossref_primary_10_1016_j_bioorg_2024_108065 crossref_primary_10_1039_D1CC06355C crossref_primary_10_3390_molecules28237750 crossref_primary_10_1021_jacs_2c13214 crossref_primary_10_1002_cmdc_202100254 crossref_primary_10_1039_D0CC03682J crossref_primary_10_1021_acs_nanolett_1c03112 crossref_primary_10_1002_adhm_202300473 crossref_primary_10_1039_D2CC01457B crossref_primary_10_1002_ange_202306427 crossref_primary_10_1021_acsnano_4c10119 crossref_primary_10_1039_D0BM00895H crossref_primary_10_1063_5_0035731 crossref_primary_10_1088_2632_959X_ac2a8e |
Cites_doi | 10.1021/jacs.7b13307 10.1038/natrevmats.2016.14 10.1002/anie.201710237 10.1021/ar3003464 10.1039/b105159h 10.1021/nl302638g 10.1038/nature24655 10.1038/ncomms15982 10.1021/ja411811w 10.1038/ncomms2040 10.1002/adma.201605869 10.1038/nnano.2008.378 10.1002/adhm.201300491 10.1039/C0CC04135A 10.1002/adma.201502598 10.1021/acsnano.6b07843 10.1126/science.1235038 10.1038/nchem.2887 10.1073/pnas.1106634108 10.1002/anie.201400735 10.1021/jacs.6b06903 10.1021/acsnano.7b00781 10.1088/0957-4484/27/40/402002 10.1021/acsnano.6b01370 10.1021/ja056549l 10.1038/s41467-017-02020-2 10.1126/science.1259680 10.1021/acs.biomac.6b01922 10.1002/adma.201502003 10.1007/s12274-016-0991-3 10.1039/C6NR03580A 10.1002/smll.201703321 10.1021/ja3064588 10.1038/nchem.861 10.1039/C6CS00656F 10.1038/nature02388 10.1002/adma.201300823 10.1002/adma.201703461 10.1016/j.cclet.2018.01.056 10.1021/jacs.8b04400 10.1038/s41467-018-03705-y 10.1038/s41467-017-01296-8 10.1016/j.addr.2017.07.021 10.1038/nchem.1920 10.1002/adma.201501803 10.1002/adhm.201500402 10.1038/natrevmats.2016.73 10.1038/s41551-016-0002 10.1021/jacs.7b10513 10.1021/acsami.6b05795 10.1039/C8CC01759J 10.1021/ja2004736 10.1002/adma.201503437 10.1038/nmat3074 10.1016/j.biomaterials.2017.06.042 10.1002/smll.201801865 10.1038/282680a0 10.1021/acsnano.7b03375 10.1016/j.biomaterials.2016.06.055 10.1126/science.1060066 10.1039/C4CS00444B 10.1021/ja4010078 10.1021/jacs.5b13541 10.1002/anie.201104389 10.1038/nchem.480 10.1038/440163a 10.1038/nature19791 10.1021/nn501040h 10.1021/acs.biomac.6b01816 10.1002/adma.201504564 10.1021/ja057412y 10.1039/C8NR01604F 10.1021/acsnano.7b02025 10.1021/ja408182p 10.1002/adfm.201702122 10.1038/s41467-017-00047-z |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201804971 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30450607 10_1002_adma_201804971 ADMA201804971 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Science Fund for Creative Research Groups – fundername: Chinese Academy of Sciences funderid: GJHZ1541 – fundername: CAS Interdisciplinary Innovation Team – fundername: Youth Innovation Promotion Association, CAS – fundername: National Natural Science Foundation of China funderid: 51725302; 51873045; 31671028; 51573032; 51573031; 11621505 – fundername: CAS Key Research Program for Frontier Sciences funderid: QYZDJ‐SSW‐SLH022 – fundername: National Natural Science Foundation of China grantid: 11621505 – fundername: CAS Key Research Program for Frontier Sciences grantid: QYZDJ-SSW-SLH022 – fundername: National Natural Science Foundation of China grantid: 51725302 – fundername: National Natural Science Foundation of China grantid: 51873045 – fundername: National Natural Science Foundation of China grantid: 31671028 – fundername: Key Project of Chinese Academy of Sciences in Cooperation with Foreign Enterprises grantid: GJHZ1541 – fundername: Youth Innovation Promotion, CAS – fundername: National Natural Science Foundation of China grantid: 51573032 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4101-f3a29ecdc0b331dcdd519c78a41352f2382496693619e563e388d9715329b2cb3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:37:50 EDT 2025 Sun Jul 13 04:57:55 EDT 2025 Mon Jul 21 06:01:41 EDT 2025 Tue Jul 01 00:44:47 EDT 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Jan 22 16:37:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | self-assembly peptides programmable drug delivery bioimaging |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-f3a29ecdc0b331dcdd519c78a41352f2382496693619e563e388d9715329b2cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1961-0787 0000-0002-9793-3995 |
PMID | 30450607 |
PQID | 2312129595 |
PQPubID | 2045203 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2135643156 proquest_journals_2312129595 pubmed_primary_30450607 crossref_citationtrail_10_1002_adma_201804971 crossref_primary_10_1002_adma_201804971 wiley_primary_10_1002_adma_201804971_ADMA201804971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 25 2018; 140 2017; 46 2017 2018; 11 29 2006 2001; 440 291 2011; 10 2014 2016 2015 2014; 346 27 4 3 2017; 29 2017 2017; 10 8 2013; 340 2016; 103 2004; 428 2017; 552 2016 2017; 10 115 2014; 136 2017 2018 2017; 11 10 11 2011; 133 2018; 9 2015; 27 2012; 3 2016; 1 2012; 134 2016; 538 2012 2016 2016; 12 1 9 2017; 11 2017 2016 2018; 8 138 140 2015; 44 2011 2014; 108 8 2013; 135 2012 2018 2017 2014 2018; 51 14 27 53 14 2017; 141 2017; 18 2016; 138 2011; 47 1979; 282 2017 2017; 8 18 2010; 2 2016; 28 2018; 54 2006; 128 2014; 6 2006 2010 2009; 128 2 4 2016; 8 2013 2001; 46 2018; 57 e_1_2_8_28_1 e_1_2_8_22_3 e_1_2_8_24_1 e_1_2_8_45_3 e_1_2_8_47_1 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_47_2 e_1_2_8_7_5 e_1_2_8_7_4 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_9_1 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_6_4 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_12_2 e_1_2_8_12_3 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_10_2 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_50_2 e_1_2_8_50_3 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 11 10 11 start-page: 7301 9987 6881 year: 2017 2018 2017 publication-title: ACS Nano Nanoscale ACS Nano – volume: 108 8 start-page: 4975 year: 2011 2014 publication-title: Proc. Natl. Acad. Sci. USA ACS Nano – volume: 8 138 140 start-page: 1850 8005 year: 2017 2016 2018 publication-title: Nat. Commun. J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 103 start-page: 67 year: 2016 publication-title: Biomaterials – volume: 552 start-page: 67 year: 2017 publication-title: Nature – volume: 2 start-page: 54 year: 2010 publication-title: Nat. Chem. – volume: 128 2 4 start-page: 1070 1089 19 year: 2006 2010 2009 publication-title: J. Am. Chem. Soc. Nat. Chem. Nat. Nanotechnol. – volume: 133 start-page: 8392 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1276 year: 2017 publication-title: Nat. Commun. – volume: 47 start-page: 1619 year: 2011 publication-title: Chem. Commun. – volume: 11 29 start-page: 1826 1645 year: 2017 2018 publication-title: ACS Nano Chin. Chem. Lett. – volume: 136 start-page: 2546 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 10 8 start-page: 132 year: 2017 2017 publication-title: Nat. Chem. Nat. Commun. – volume: 346 27 4 3 start-page: 1525 2557 1357 year: 2014 2016 2015 2014 publication-title: Science Nanotechnology Adv. Healthcare Mater. Adv. Healthcare Mater. – volume: 340 start-page: 864 year: 2013 publication-title: Science – volume: 46 start-page: 2421 year: 2017 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 4611 year: 2015 publication-title: Adv. Mater. – volume: 128 start-page: 3038 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 558 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 8 18 start-page: 26 943 year: 2017 2017 publication-title: Nat. Commun. Biomacromolecules – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 44 start-page: 2798 year: 2015 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 3599 year: 2013 publication-title: Adv. Mater. – volume: 28 start-page: 1859 year: 2016 publication-title: Adv. Mater. – volume: 538 start-page: 329 year: 2016 publication-title: Nature – volume: 282 start-page: 680 year: 1979 publication-title: Nature – volume: 46 start-page: 2441 1740 year: 2013 2001 publication-title: Acc. Chem. Res. Chem. Commun. – volume: 440 291 start-page: 163 2331 year: 2006 2001 publication-title: Nature Science – volume: 138 start-page: 3813 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 54 start-page: 3460 year: 2018 publication-title: Chem. Commun. – volume: 11 start-page: 4086 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 1410 year: 2018 publication-title: Nat. Commun. – volume: 10 115 start-page: 4779 115 year: 2016 2017 publication-title: ACS Nano Adv. Drug Delivery Rev. – volume: 57 start-page: 1813 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 3505 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 199 year: 2017 publication-title: Biomaterials – volume: 27 start-page: 6125 year: 2015 publication-title: Adv. Mater. – volume: 3 start-page: 1033 year: 2012 publication-title: Nat. Commun. – volume: 10 start-page: 602 year: 2011 publication-title: Nat. Mater. – volume: 428 start-page: 487 year: 2004 publication-title: Nature – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 5547 year: 2015 publication-title: Adv. Mater. – volume: 51 14 27 53 14 start-page: 920 8985 year: 2012 2018 2017 2014 2018 publication-title: Angew. Chem., Int. Ed. Small Adv. Funct. Mater. Angew. Chem., Int. Ed. Small – volume: 18 start-page: 1249 year: 2017 publication-title: Biomacromolecules – volume: 6 start-page: 519 year: 2014 publication-title: Nat. Chem. – volume: 28 start-page: 254 year: 2016 publication-title: Adv. Mater. – volume: 12 1 9 start-page: 5304 0002 1022 year: 2012 2016 2016 publication-title: Nano Lett. Nat. Biomed. Eng. Nano Res. – ident: e_1_2_8_36_1 doi: 10.1021/jacs.7b13307 – ident: e_1_2_8_43_1 doi: 10.1038/natrevmats.2016.14 – ident: e_1_2_8_35_1 doi: 10.1002/anie.201710237 – ident: e_1_2_8_14_1 doi: 10.1021/ar3003464 – ident: e_1_2_8_14_2 doi: 10.1039/b105159h – ident: e_1_2_8_45_1 doi: 10.1021/nl302638g – ident: e_1_2_8_2_1 doi: 10.1038/nature24655 – ident: e_1_2_8_10_2 doi: 10.1038/ncomms15982 – ident: e_1_2_8_16_1 doi: 10.1021/ja411811w – ident: e_1_2_8_33_1 doi: 10.1038/ncomms2040 – ident: e_1_2_8_26_1 doi: 10.1002/adma.201605869 – ident: e_1_2_8_12_3 doi: 10.1038/nnano.2008.378 – ident: e_1_2_8_6_4 doi: 10.1002/adhm.201300491 – ident: e_1_2_8_17_1 doi: 10.1039/C0CC04135A – ident: e_1_2_8_19_1 doi: 10.1002/adma.201502598 – ident: e_1_2_8_37_1 doi: 10.1021/acsnano.6b07843 – ident: e_1_2_8_4_1 doi: 10.1126/science.1235038 – ident: e_1_2_8_10_1 doi: 10.1038/nchem.2887 – ident: e_1_2_8_46_1 doi: 10.1073/pnas.1106634108 – ident: e_1_2_8_7_4 doi: 10.1002/anie.201400735 – ident: e_1_2_8_50_2 doi: 10.1021/jacs.6b06903 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.7b00781 – ident: e_1_2_8_6_2 doi: 10.1088/0957-4484/27/40/402002 – ident: e_1_2_8_47_1 doi: 10.1021/acsnano.6b01370 – ident: e_1_2_8_12_1 doi: 10.1021/ja056549l – ident: e_1_2_8_50_1 doi: 10.1038/s41467-017-02020-2 – ident: e_1_2_8_6_1 doi: 10.1126/science.1259680 – ident: e_1_2_8_21_1 doi: 10.1021/acs.biomac.6b01922 – ident: e_1_2_8_42_1 doi: 10.1002/adma.201502003 – ident: e_1_2_8_45_3 doi: 10.1007/s12274-016-0991-3 – ident: e_1_2_8_24_1 doi: 10.1039/C6NR03580A – ident: e_1_2_8_7_2 doi: 10.1002/smll.201703321 – ident: e_1_2_8_15_1 doi: 10.1021/ja3064588 – ident: e_1_2_8_12_2 doi: 10.1038/nchem.861 – ident: e_1_2_8_34_1 doi: 10.1039/C6CS00656F – ident: e_1_2_8_9_1 doi: 10.1038/nature02388 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201300823 – ident: e_1_2_8_27_1 doi: 10.1002/adma.201703461 – ident: e_1_2_8_37_2 doi: 10.1016/j.cclet.2018.01.056 – ident: e_1_2_8_50_3 doi: 10.1021/jacs.8b04400 – ident: e_1_2_8_44_1 doi: 10.1038/s41467-018-03705-y – ident: e_1_2_8_31_1 doi: 10.1038/s41467-017-01296-8 – ident: e_1_2_8_47_2 doi: 10.1016/j.addr.2017.07.021 – ident: e_1_2_8_29_1 doi: 10.1038/nchem.1920 – ident: e_1_2_8_39_1 doi: 10.1002/adma.201501803 – ident: e_1_2_8_6_3 doi: 10.1002/adhm.201500402 – ident: e_1_2_8_49_1 doi: 10.1038/natrevmats.2016.73 – ident: e_1_2_8_45_2 doi: 10.1038/s41551-016-0002 – ident: e_1_2_8_5_1 doi: 10.1021/jacs.7b10513 – ident: e_1_2_8_18_1 doi: 10.1021/acsami.6b05795 – ident: e_1_2_8_53_1 doi: 10.1039/C8CC01759J – ident: e_1_2_8_13_1 doi: 10.1021/ja2004736 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201503437 – ident: e_1_2_8_54_1 doi: 10.1038/nmat3074 – ident: e_1_2_8_20_1 doi: 10.1016/j.biomaterials.2017.06.042 – ident: e_1_2_8_7_5 doi: 10.1002/smll.201801865 – ident: e_1_2_8_3_1 doi: 10.1038/282680a0 – ident: e_1_2_8_22_1 doi: 10.1021/acsnano.7b03375 – ident: e_1_2_8_52_1 doi: 10.1016/j.biomaterials.2016.06.055 – ident: e_1_2_8_1_2 doi: 10.1126/science.1060066 – ident: e_1_2_8_32_1 doi: 10.1039/C4CS00444B – ident: e_1_2_8_30_1 doi: 10.1021/ja4010078 – ident: e_1_2_8_51_1 doi: 10.1021/jacs.5b13541 – ident: e_1_2_8_7_1 doi: 10.1002/anie.201104389 – ident: e_1_2_8_28_1 doi: 10.1038/nchem.480 – ident: e_1_2_8_1_1 doi: 10.1038/440163a – ident: e_1_2_8_8_1 doi: 10.1038/nature19791 – ident: e_1_2_8_46_2 doi: 10.1021/nn501040h – ident: e_1_2_8_23_2 doi: 10.1021/acs.biomac.6b01816 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201504564 – ident: e_1_2_8_11_1 doi: 10.1021/ja057412y – ident: e_1_2_8_22_2 doi: 10.1039/C8NR01604F – ident: e_1_2_8_22_3 doi: 10.1021/acsnano.7b02025 – ident: e_1_2_8_41_1 doi: 10.1021/ja408182p – ident: e_1_2_8_7_3 doi: 10.1002/adfm.201702122 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-017-00047-z |
SSID | ssj0009606 |
Score | 2.5857234 |
SecondaryResourceType | review_article |
Snippet | Self‐assembled nanomaterials show potential high efficiency as theranostics for high‐performance bioimaging and disease treatment. However, the superstructures... Self-assembled nanomaterials show potential high efficiency as theranostics for high-performance bioimaging and disease treatment. However, the superstructures... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804971 |
SubjectTerms | Assembly bioimaging Biological effects Biomedical materials drug delivery Drug delivery systems Functional materials Humans Medical imaging Modular construction Modular design Morphology Nanomaterials Nanostructures - chemistry Nanostructures - therapeutic use Organic chemistry Peptides Peptides - chemistry Peptides - therapeutic use programmable self‐assembly Superstructures Theranostic Nanomedicine - methods |
Title | Programmable Construction of Peptide‐Based Materials in Living Subjects: From Modular Design and Morphological Control to Theranostics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804971 https://www.ncbi.nlm.nih.gov/pubmed/30450607 https://www.proquest.com/docview/2312129595 https://www.proquest.com/docview/2135643156 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hTnBoy6NtWkBGQuopEOI4G3NbHiuE2AohkLhFfkVCLQlilwsnjj3yG_klzNibwIIqpPaWKLYc2zOeb-yZzwAbCKJTo4WOXW566KBkuA5W1sS5SjJnU6Gton3I4c_88Dw7uhAXL7L4Az9Et-FGmuHXa1JwpUdbz6ShynreoO0CMa5PIqeALUJFp8_8UQTPPdkeF7HMs6JlbUzSrenq01bpDdScRq7e9Aw-gmp_OkSc_Nq8HetNc_eKz_F_evUJPkxwKesHQVqAGVcvwvwLtsIl-HMSYrmuKNuK0U2fLfcsayp2QuEx1j3eP-yiYbRsqMZBuNllzY4vad-C4SpF2z6jHTa4aa7YsLEUBMv2fRQJUzXWanDe2_WY2qA4ejZu2BnlidWNZ5VehvPBwdneYTy5yCE2Gap8XHGVSmesSTTn29ZYi7jR9AqFFlSkFaIGdALzXHL05pzIueNFYbH7gqdSoyjxzzBbN7X7CkyhVlcyE4oXOJ-9SmWmSjTiqko6lRUqgridyNJMWM7pso3fZeBnTksa4bIb4Qh-dOWvA7_HX0uutHJRTvR8VCI6RtsvhRQRrHefUUPp2EXVrrnFMthJxH3oKEfwJchT1xSdUyd50osg9VLxzj-U_f1hv3v79i-VvsMcPsuQTrkCsygpbhVx1Vived15AhDEGtc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_EMDBYwE4pQ2a8dOgsRhYVlt6aaq0FbqLXVsR6poE8RuheDEkSOvwqvwCDwJM_krC0JISD1w3F1nndjz881k5jPAIwTR3OQy950yEQYoIdrBwhpf6SB0lsvcaspDpjtqshe-2pf7K_C164Vp-CH6hBtpRm2vScEpIb15yhqqbU0cNIgR5EaDtq5y2314j1Hb_NnWCLf4Mefjl7MXE789WMA3IYqgXwjNE2esCXIhBtZYizjGRLFGiy55gV4MgxKlEoHRhZNKOBHHFueQgic5PprA_z0H5-kYcaLrH70-ZayigKCm9xPST1QYdzyRAd9cvt9lP_gbuF3GyrWzG1-Bb90yNTUubzZOFvmG-fgLg-R_tY5X4XILvdmw0ZVrsOLK63DpJ0LGG_B5tylXO6aGMkaHmXb0uqwq2C5VAFn3_dOX5-j7LUv1otFfdliy6SGlZhgaYspszZ-y8bvqmKWVpTpfNqoLZZgu8aoKRbtzOTQHtQqwRcVm1ApXVjVx9k3YO5OluAWrZVW6NWAaDVeRhFKLGAUoKnRoiiBH6FgkToex9sDvJCczLZE7nSdylDUU1DyjHc36HfXgST_-bUNh8seR650gZq0pm2cYACC8SWQiPXjY_4xGiN4s6dJVJzgGHxKh7UAqD243AtxPRa_iAxVEHvBaDP9yD9lwlA77T3f-5aIHcGEyS6fZdGtn-y5cxO-Tpnt0HVZRatw9hJGL_H6tuAwOzlrCfwDXY3Xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF6KP8lUMBIIE5ps3bsxEgcFsKqpd1qhVqpt-DYjlS1TSp2qwpOHDnyKLwKr8CTMI6TlAUhJKQeOCZx4sSen2-cmc8ATxBEU13wIrRCJxigxGgHS6NDoaLYGsoLo9w65HhHbOzFb_b5_gJ87WphPD9Ev-DmNKOx107BT0y5fk4aqkzDGzRIEeMmgzatcst-OMOgbfpiM8MZfkrp6PXuq42w3Vcg1DFKYFgyRaXVRkcFYwOjjUEYo5NUoUHntEQnhjGJEJJhcGG5YJalqcE-OKOywC9j-NxLcDkWkXSbRWRvzwmrXDzQsPsxHkoRpx1NZETX59933g3-hm3noXLj60bX4Fs3Sj7F5XDtdFas6Y-_EEj-T8N4HZZb4E2GXlNuwIKtbsLST3SMt-DzxCerHbtyMuK2Mu3IdUldkonL_zH2-6cvL9HzGzJWM6-95KAi2wduYYagGXbrWtPnZPS-Pibj2rgsX5I1aTJEVXhXjYLdORzXhysUILOa7LpCuKpuaLNvw96FDMUdWKzqyt4FotBslTLmiqUoP0mpYl1GBQLHUloVpyqAsBOcXLc07m43kaPcE1DT3M1o3s9oAM_69ieewOSPLVc7OcxbQzbNEf4juJFc8gAe95fRBLn_Sqqy9Sm2wY9EYDvgIoAVL799V-5HfCSiJADaSOFf3iEfZuNhf3TvX256BFcm2Sjf3tzZug9X8bT0paOrsIhCYx8ghpwVDxu1JfDuogX8B9x1dI8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programmable+Construction+of+Peptide%E2%80%90Based+Materials+in+Living+Subjects%3A+From+Modular+Design+and+Morphological+Control+to+Theranostics&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Li%2C+Li%E2%80%90Li&rft.au=Qiao%2C+Zeng%E2%80%90Ying&rft.au=Wang%2C+Lei&rft.au=Wang%2C+Hao&rft.date=2019-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=45&rft_id=info:doi/10.1002%2Fadma.201804971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |