Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cath...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 16; pp. 6585 - 6589 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
16.04.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries.
The CEI's advantage: An amorphous cathode electrolyte interphase (CEI) with superior chemical compatibility and plasticity was formed via in situ LiDFOB conversion. It endows high‐voltage hybrid solid/liquid batteries with significantly enhanced interfacial stability, durability, and dynamics. |
---|---|
AbstractList | A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries. A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries. The CEI's advantage: An amorphous cathode electrolyte interphase (CEI) with superior chemical compatibility and plasticity was formed via in situ LiDFOB conversion. It endows high‐voltage hybrid solid/liquid batteries with significantly enhanced interfacial stability, durability, and dynamics. A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries. |
Author | Liang, Jia‐Yan Wan, Li‐Jun Yin, Ya‐Xia Wang, Wen‐Peng Zeng, Xian‐Xiang Guo, Yu‐Guo Shi, Ji‐Lei Zhang, Xu‐Dong Yan, Min Xin, Sen Wu, Xiong‐Wei |
Author_xml | – sequence: 1 givenname: Jia‐Yan surname: Liang fullname: Liang, Jia‐Yan organization: University of Chinese Academy of Sciences (UCAS) – sequence: 2 givenname: Xu‐Dong surname: Zhang fullname: Zhang, Xu‐Dong organization: Chinese Academy of Sciences (CAS) – sequence: 3 givenname: Xian‐Xiang surname: Zeng fullname: Zeng, Xian‐Xiang organization: Hunan Agricultural University – sequence: 4 givenname: Min surname: Yan fullname: Yan, Min organization: Chinese Academy of Sciences (CAS) – sequence: 5 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences (UCAS) – sequence: 6 givenname: Sen surname: Xin fullname: Xin, Sen organization: University of Chinese Academy of Sciences (UCAS) – sequence: 7 givenname: Wen‐Peng surname: Wang fullname: Wang, Wen‐Peng organization: University of Chinese Academy of Sciences (UCAS) – sequence: 8 givenname: Xiong‐Wei surname: Wu fullname: Wu, Xiong‐Wei organization: Hunan Agricultural University – sequence: 9 givenname: Ji‐Lei surname: Shi fullname: Shi, Ji‐Lei email: jileishi@iccas.ac.cn organization: Chinese Academy of Sciences (CAS) – sequence: 10 givenname: Li‐Jun surname: Wan fullname: Wan, Li‐Jun email: wanlijun@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) – sequence: 11 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences (UCAS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32017343$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URNuFK0dkiQuXbO3YSZzjsix0pQUOwDmaOBPiyom3tgPaG4_AldfjSXC1bZEqIU4e29_3y545JyeTm5CQ55wtOWP5BUwGlznjNS8F44_IGS9ynomqEieplkJklSr4KTkP4SrxSrHyCTkVyaiEFGfk12aC1prpKwX6ZvapRrqxqKN3esDRaLB0O0X0PWik3wxQmOjKR9MbbdLdanR-P7g50DXEwXX3tj1EPJr7AQLS3nl6eWi96egnZ013sTPXc9rsTBzMPP7-8fM9xhT4GmJyDIan5HEPNuCz23VBvrzdfF5fZruP77br1S7TkjOeIS8BOqwr6HOtWi1lWUmhhaxyiSAAFOdKd5Jh0ddlzpCLdNLLvhIaRSvFgrw65u69u54xxGY0QaO1MGH6V5OLgqlaqdTLBXn5AL1ys5_S6xKlyqoQJeOJenFLze2IXbP3ZgR_aO6angB5BLR3IXjsG20iROOm6MHYhrPmZrbNzWyb-9kmbflAu0v-p1Afhe_G4uE_dLP6sN38df8A03-4_g |
CitedBy_id | crossref_primary_10_1002_admi_202300254 crossref_primary_10_1016_j_jechem_2024_01_031 crossref_primary_10_1039_D4TA05468G crossref_primary_10_1002_adma_202204835 crossref_primary_10_1016_j_ensm_2021_02_039 crossref_primary_10_1021_jacs_1c08425 crossref_primary_10_1002_smtd_202100920 crossref_primary_10_1016_j_cclet_2023_108242 crossref_primary_10_1016_j_jechem_2022_06_014 crossref_primary_10_1021_jacs_1c06003 crossref_primary_10_1016_j_scib_2022_10_007 crossref_primary_10_1002_adfm_202010611 crossref_primary_10_1016_j_cej_2022_135101 crossref_primary_10_1002_ange_202410825 crossref_primary_10_1002_idm2_12090 crossref_primary_10_1002_cssc_202402028 crossref_primary_10_1002_ange_202211626 crossref_primary_10_1002_anie_202300384 crossref_primary_10_1002_adma_202104557 crossref_primary_10_1021_acsami_0c05623 crossref_primary_10_1002_adma_202004898 crossref_primary_10_1039_D0TA11170H crossref_primary_10_1002_eem2_12573 crossref_primary_10_1016_j_coelec_2022_100962 crossref_primary_10_1039_D0NR03833D crossref_primary_10_1002_ange_202408246 crossref_primary_10_1039_D4TA04857A crossref_primary_10_20517_energymater_2023_130 crossref_primary_10_3390_batteries10040135 crossref_primary_10_3866_PKU_WHXB202306039 crossref_primary_10_1021_jacs_0c12965 crossref_primary_10_1002_advs_202404307 crossref_primary_10_1021_acs_chemrev_3c00728 crossref_primary_10_1021_jacs_0c09602 crossref_primary_10_1002_adfm_202102347 crossref_primary_10_1039_D1EE03466A crossref_primary_10_1002_batt_202400636 crossref_primary_10_1039_D2TA02315F crossref_primary_10_1002_adfm_202008632 crossref_primary_10_1016_j_cej_2021_133589 crossref_primary_10_1021_acsenergylett_3c01047 crossref_primary_10_7498_aps_70_20210180 crossref_primary_10_1007_s11426_022_1221_4 crossref_primary_10_1016_j_ensm_2022_08_006 crossref_primary_10_1039_D1QM00004G crossref_primary_10_1002_anie_202009575 crossref_primary_10_1002_adfm_202210465 crossref_primary_10_1002_idm2_12045 crossref_primary_10_1016_j_jechem_2024_06_023 crossref_primary_10_1007_s12274_023_5960_z crossref_primary_10_1016_j_ensm_2022_02_045 crossref_primary_10_1002_adma_202209140 crossref_primary_10_1021_acs_nanolett_1c04492 crossref_primary_10_1016_j_nanoen_2020_105015 crossref_primary_10_1002_ange_202314480 crossref_primary_10_1021_acsami_4c02031 crossref_primary_10_1016_j_scib_2022_08_023 crossref_primary_10_1021_acs_nanolett_4c06471 crossref_primary_10_1002_smll_202304234 crossref_primary_10_1002_ange_202009575 crossref_primary_10_1002_smll_202309871 crossref_primary_10_1002_anie_202408246 crossref_primary_10_1039_D4EE02827A crossref_primary_10_1016_j_jechem_2024_04_044 crossref_primary_10_1016_j_xcrp_2021_100731 crossref_primary_10_1021_acsami_1c24831 crossref_primary_10_1039_D3QM01263H crossref_primary_10_1002_anie_202314480 crossref_primary_10_1002_cssc_202301242 crossref_primary_10_1016_j_nanoen_2022_107027 crossref_primary_10_1021_acsami_3c00636 crossref_primary_10_1016_j_memsci_2021_119840 crossref_primary_10_1021_acs_langmuir_2c03205 crossref_primary_10_2139_ssrn_3995084 crossref_primary_10_1002_sstr_202000042 crossref_primary_10_1007_s40820_024_01340_5 crossref_primary_10_1002_adfm_202104395 crossref_primary_10_1016_j_cej_2022_135030 crossref_primary_10_1038_s41467_023_35857_x crossref_primary_10_1016_j_ensm_2021_05_035 crossref_primary_10_1021_acsenergylett_1c00265 crossref_primary_10_1038_s41467_025_57579_y crossref_primary_10_1002_adfm_202204778 crossref_primary_10_1021_acsenergylett_4c02458 crossref_primary_10_1016_j_ensm_2023_103018 crossref_primary_10_1002_adma_202211047 crossref_primary_10_1016_j_nanoen_2022_107499 crossref_primary_10_1002_ange_202300384 crossref_primary_10_1021_acs_energyfuels_2c00724 crossref_primary_10_1002_adma_202300982 crossref_primary_10_2139_ssrn_3994258 crossref_primary_10_1021_acsami_2c09103 crossref_primary_10_1002_adfm_202423742 crossref_primary_10_1002_adfm_202105253 crossref_primary_10_1002_anie_202410825 crossref_primary_10_1002_adfm_202109184 crossref_primary_10_1007_s11426_023_1778_6 crossref_primary_10_1002_adfm_202406770 crossref_primary_10_2139_ssrn_4105380 crossref_primary_10_1002_adfm_202003945 crossref_primary_10_1038_s41467_025_56324_9 crossref_primary_10_1002_adma_202304951 crossref_primary_10_1002_advs_202201297 crossref_primary_10_1002_adma_202100726 crossref_primary_10_1016_j_jpowsour_2023_233717 crossref_primary_10_1002_anie_202211626 |
Cites_doi | 10.1002/adma.201808393 10.1002/anie.201712702 10.1002/aenm.201702028 10.1016/j.jpowsour.2017.04.094 10.1016/j.electacta.2014.05.136 10.1002/ange.201901582 10.1002/anie.200907319 10.1002/ange.201712702 10.1038/natrevmats.2016.103 10.1016/j.joule.2019.02.006 10.1039/C6EE00123H 10.1002/ange.201908874 10.1002/ange.200907319 10.1016/j.enchem.2019.100002 10.1021/acsami.9b02440 10.1007/s12274-017-1526-2 10.1021/acs.nanolett.7b03498 10.1002/adma.201604549 10.1016/j.chempr.2018.12.002 10.1021/jacs.9b03517 10.1039/C9EE00515C 10.1002/advs.201901036 10.1016/j.electacta.2018.11.172 10.1002/adma.201807789 10.1002/ange.201814669 10.1002/anie.201908874 10.1002/aenm.201900626 10.1021/acs.jpcc.6b01207 10.1002/aenm.201702675 10.1016/j.joule.2019.08.004 10.1002/aenm.201800721 10.1021/jacs.8b03319 10.1126/sciadv.aat5383 10.1038/s41560-018-0312-z 10.1002/anie.201814669 10.1002/anie.201901582 10.1002/smll.201902813 10.1002/aenm.201601196 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201916301 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6589 |
ExternalDocumentID | 32017343 10_1002_anie_201916301 ANIE201916301 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Basic Science Center Project of Natural Science Foundation of China funderid: 51788104 – fundername: National Natural Science Foundation of China funderid: 21773264; 51803054; 51902314 – fundername: National Key R&D Program of China funderid: 2016YFA0202500 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA21070300 – fundername: Beijing Natural Science Foundation funderid: L172023; L182051 – fundername: Youth Innovation Promotion Association CAS funderid: 2019033 – fundername: National Key R&D Program of China grantid: 2016YFA0202500 – fundername: National Natural Science Foundation of China grantid: 21773264 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA21070300 – fundername: Basic Science Center Project of Natural Science Foundation of China grantid: 51788104 – fundername: National Natural Science Foundation of China grantid: 51803054 – fundername: National Natural Science Foundation of China grantid: 51902314 – fundername: Beijing Natural Science Foundation grantid: L182051 – fundername: Beijing Natural Science Foundation grantid: L172023 – fundername: Youth Innovation Promotion Association CAS grantid: 2019033 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4101-e16aade97af2c8bc446743c34724ea3aa8118cd40e5f9620e13811f4f73ce3b43 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 15:17:19 EDT 2025 Sun Jul 13 04:43:13 EDT 2025 Wed Feb 19 02:31:10 EST 2025 Tue Jul 01 02:27:08 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Jan 22 16:36:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | interfacial stability amorphous phases interfacial electrochemistry cathode electrolyte interphase hybrid solid/liquid batteries |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-e16aade97af2c8bc446743c34724ea3aa8118cd40e5f9620e13811f4f73ce3b43 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0322-8476 |
PMID | 32017343 |
PQID | 2386753601 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2350898843 proquest_journals_2386753601 pubmed_primary_32017343 crossref_citationtrail_10_1002_anie_201916301 crossref_primary_10_1002_anie_201916301 wiley_primary_10_1002_anie_201916301_ANIE201916301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 16, 2020 |
PublicationDateYYYYMMDD | 2020-04-16 |
PublicationDate_xml | – month: 04 year: 2020 text: April 16, 2020 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2019; 9 2019; 4 2017; 2 2019; 3 2019; 6 2018; 140 2019; 5 2019; 31 2019; 11 2019; 1 2019; 12 2019; 15 2010 2010; 49 122 2017; 29 2019; 141 2016; 120 2017; 357 2019 2019; 58 131 2014; 137 2018; 8 2018; 4 2017; 17 2018 2018; 57 130 2017; 10 2019 2016; 9 2019; 297 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_1 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_45_2 e_1_2_2_26_1 Cao D. (e_1_2_2_32_1) 2019 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 Chen R. (e_1_2_2_11_2) 2019 e_1_2_2_30_1 e_1_2_2_19_2 e_1_2_2_17_2 e_1_2_2_34_1 e_1_2_2_15_1 e_1_2_2_3_2 e_1_2_2_3_3 e_1_2_2_23_2 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_27_3 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_25_2 e_1_2_2_46_2 Zhang Y. (e_1_2_2_5_2) 2019 e_1_2_2_37_2 e_1_2_2_10_3 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_31_1 e_1_2_2_18_1 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_14_3 e_1_2_2_35_1 e_1_2_2_14_2 |
References_xml | – volume: 17 start-page: 6974 year: 2017 end-page: 6982 publication-title: Nano Lett. – volume: 10 start-page: 3092 year: 2017 end-page: 3102 publication-title: Nano Res. – volume: 31 start-page: 1808393 year: 2019 publication-title: Adv. Mater. – volume: 58 131 start-page: 6001 6062 year: 2019 2019 end-page: 6006 6067 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 15 start-page: 1902813 year: 2019 publication-title: Small – volume: 58 131 start-page: 5292 5346 year: 2019 2019 end-page: 5296 5350 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 15002 15220 year: 2018 2018 end-page: 15027 15246 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 12 start-page: 1780 year: 2019 end-page: 1804 publication-title: Energy Environ. Sci. – volume: 49 122 start-page: 4414 4516 year: 2010 2010 end-page: 4417 4519 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 6767 year: 2018 end-page: 6770 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 74 year: 2019 end-page: 96 publication-title: Chem – volume: 9 start-page: 1900626 year: 2019 publication-title: Adv. Energy Mater. – year: 2019 publication-title: Chem. Rev. – volume: 8 start-page: 1702675 year: 2018 publication-title: Adv. Energy Mater. – volume: 120 start-page: 13332 year: 2016 end-page: 13339 publication-title: J. Phys. Chem. C – volume: 9 start-page: 1955 year: 2016 end-page: 1988 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1800721 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1601196 year: 2017 publication-title: Adv. Energy Mater. – volume: 141 start-page: 9165 year: 2019 end-page: 9169 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 14830 year: 2019 end-page: 14839 publication-title: ACS Appl. Mater. Interfaces – year: 2019 publication-title: Mater. Today – volume: 1 start-page: 100002 year: 2019 publication-title: EnergyChem – volume: 2 start-page: 16103 year: 2017 publication-title: Nat. Rev. Mater. – year: 2019 publication-title: Nano Lett. – volume: 8 start-page: 1702028 year: 2018 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1807789 year: 2019 publication-title: Adv. Mater. – volume: 4 start-page: 187 year: 2019 end-page: 196 publication-title: Nat. Energy – volume: 58 131 start-page: 15235 15379 year: 2019 2019 end-page: 15238 15382 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 1 year: 2014 end-page: 8 publication-title: Electrochim. Acta – volume: 3 start-page: 1252 year: 2019 end-page: 1275 publication-title: Joule – volume: 297 start-page: 258 year: 2019 end-page: 266 publication-title: Electrochim. Acta – volume: 6 start-page: 1901036 year: 2019 publication-title: Adv. Sci. – volume: 3 start-page: 2550 year: 2019 end-page: 2564 publication-title: Joule – volume: 29 start-page: 1604549 year: 2017 publication-title: Adv. Mater. – volume: 357 start-page: 97 year: 2017 end-page: 106 publication-title: J. Power Sources – volume: 4 start-page: 5383 year: 2018 publication-title: Sci. Adv. – ident: e_1_2_2_19_2 doi: 10.1002/adma.201808393 – ident: e_1_2_2_3_2 doi: 10.1002/anie.201712702 – ident: e_1_2_2_46_2 doi: 10.1002/aenm.201702028 – ident: e_1_2_2_39_1 doi: 10.1016/j.jpowsour.2017.04.094 – year: 2019 ident: e_1_2_2_11_2 publication-title: Chem. Rev. – ident: e_1_2_2_43_1 doi: 10.1016/j.electacta.2014.05.136 – ident: e_1_2_2_10_3 doi: 10.1002/ange.201901582 – ident: e_1_2_2_15_1 – ident: e_1_2_2_41_1 doi: 10.1002/anie.200907319 – ident: e_1_2_2_3_3 doi: 10.1002/ange.201712702 – ident: e_1_2_2_2_2 doi: 10.1038/natrevmats.2016.103 – ident: e_1_2_2_31_1 doi: 10.1016/j.joule.2019.02.006 – ident: e_1_2_2_34_1 doi: 10.1039/C6EE00123H – ident: e_1_2_2_22_1 – ident: e_1_2_2_14_3 doi: 10.1002/ange.201908874 – ident: e_1_2_2_41_2 doi: 10.1002/ange.200907319 – ident: e_1_2_2_44_1 – year: 2019 ident: e_1_2_2_5_2 publication-title: Mater. Today – ident: e_1_2_2_6_1 – ident: e_1_2_2_9_1 – ident: e_1_2_2_4_2 doi: 10.1016/j.enchem.2019.100002 – ident: e_1_2_2_21_1 doi: 10.1021/acsami.9b02440 – ident: e_1_2_2_24_2 doi: 10.1007/s12274-017-1526-2 – ident: e_1_2_2_40_1 doi: 10.1021/acs.nanolett.7b03498 – ident: e_1_2_2_1_1 – ident: e_1_2_2_42_1 doi: 10.1002/adma.201604549 – ident: e_1_2_2_7_2 doi: 10.1016/j.chempr.2018.12.002 – ident: e_1_2_2_12_1 – ident: e_1_2_2_17_2 doi: 10.1021/jacs.9b03517 – ident: e_1_2_2_29_1 doi: 10.1039/C9EE00515C – ident: e_1_2_2_33_1 doi: 10.1002/advs.201901036 – ident: e_1_2_2_35_1 – ident: e_1_2_2_45_2 doi: 10.1016/j.electacta.2018.11.172 – ident: e_1_2_2_8_2 doi: 10.1002/adma.201807789 – ident: e_1_2_2_27_3 doi: 10.1002/ange.201814669 – ident: e_1_2_2_14_2 doi: 10.1002/anie.201908874 – year: 2019 ident: e_1_2_2_32_1 publication-title: Nano Lett. – ident: e_1_2_2_30_1 doi: 10.1002/aenm.201900626 – ident: e_1_2_2_28_2 doi: 10.1021/acs.jpcc.6b01207 – ident: e_1_2_2_18_1 – ident: e_1_2_2_23_2 doi: 10.1002/aenm.201702675 – ident: e_1_2_2_26_1 – ident: e_1_2_2_36_2 doi: 10.1016/j.joule.2019.08.004 – ident: e_1_2_2_37_2 doi: 10.1002/aenm.201800721 – ident: e_1_2_2_38_1 doi: 10.1021/jacs.8b03319 – ident: e_1_2_2_13_2 doi: 10.1126/sciadv.aat5383 – ident: e_1_2_2_16_2 doi: 10.1038/s41560-018-0312-z – ident: e_1_2_2_27_2 doi: 10.1002/anie.201814669 – ident: e_1_2_2_10_2 doi: 10.1002/anie.201901582 – ident: e_1_2_2_25_2 doi: 10.1002/smll.201902813 – ident: e_1_2_2_20_2 doi: 10.1002/aenm.201601196 |
SSID | ssj0028806 |
Score | 2.6148427 |
Snippet | A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior... A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6585 |
SubjectTerms | amorphous phases cathode electrolyte interphase Cathodes Chemical compatibility Density Electrochemistry Electrolytes Energy storage hybrid solid/liquid batteries Interface stability interfacial electrochemistry interfacial stability Interphase Liquid lithium Lithium Surface structure |
Title | Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201916301 https://www.ncbi.nlm.nih.gov/pubmed/32017343 https://www.proquest.com/docview/2386753601 https://www.proquest.com/docview/2350898843 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VhoK1dC4pR21-N1kuOqbLWt2h6ASr1FtmOrq26T0k2QyomfwJW_xy9hJk4CC6qQ2mNkTx72TOYb2_MNY281unHa7opMPBaRHGGckuapihRY7UAp6XIKFI-O1exEHpyOT__I4g_8EP2CG1lG878mA9dmufObNJQysOloFuIbaBK46MAWoaIPPX-UQOUM6UUAEVWh71gbh2JnVXzVK_0DNVeRa-N69h4x3b10OHFyvl1XZtt-_YvP8S5f9Zg9bHEpnwRFesLuueIpu7_blYN7xn5MKcsKHR3X_H19RRlXfBpq6NiWdIA3y4teW8e_zDXXRXO7QFHBJxclTmlZLzklHZZ5L724rlyQvDxDl8oRRfPZNSWS8Y_lAm3lcP65xovDeXU2ry9-fvt-5DBi4IEZFAP95-xkb_ppdxa1dR0iK_EPELmR0jp3aay9sImxkiqegAUZC-k0aJ1g1GNzOXRjnyoxdCOEFSMvfQzWgZHwgq0VZeFeMa7HJONFmrhYuqHXSeoTgNykRngDyYBF3bxmtiU9p9obiyzQNYuMBjzrB3zA3vX9LwPdx4091zs1yVqzX2aIfzAAA0XNW30zThTtwujC4SBjH8TEaZJIGLCXQb36RwHePgZqEY2S_Ocdssnx_rS_en0boTfsgaAVBGKvVOtsrbqq3QbCrMpsNqb0C8vhIEU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQL78dCASMhcUq76_E6yXFVttrC7h6glbhFtmOrq26T0iZI5cRP4Mrf45cwEydBC0JIcIzsycOeyXxje75h7KVGN07bXZGJxyKSI4xT0jxVkQKrHSglXU6B4mKpZsfyzYdxd5qQcmECP0S_4EaW0fyvycBpQXrvJ2sopWDT2SwEOEAZXNeprHcTVb3rGaQEqmdIMAKIqA59x9s4FHub8pt-6TewuYldG-dzcIuZ7rXDmZPT3boyu_bzL4yO__Vdt9nNFprySdClO-yaK-6y7f2uItw99m1KiVbo67jmr-sLSrri01BGx7a8A7xZYfTaOv5ppbkumtsFlgo-OStxVsv6klPeYZn30uurygXJ8xP0qhyBNJ9dUS4Zf1-u0Vzmq481XsxX1cmqPvv-5evCYdDAAzkoxvr32fHB9Gh_FrWlHSIr8ScQuZHSOndprL2wibGSip6ABRkL6TRonWDgY3M5dGOfKjF0I0QWIy99DNaBkfCAbRVl4R4xrsck40WauFi6oddJ6hOA3KRGeAPJgEXdxGa25T2n8hvrLDA2i4wGPOsHfMBe9f3PA-PHH3vudHqStZZ_mSEEwhgMFDW_6JtxomgjRhcOBxn7ICxOk0TCgD0M-tU_CvD2MVCLaLTkL--QTZaH0_7q8b8IPWfbs6PFPJsfLt8-YTcELSgQmaXaYVvVRe2eIuqqzLPGrn4AvQQkYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkYBL-adbChgJiVParO11nOOqu6stbFcIqNRb5Di2umKbbNsEqZx4hF77ejwJM3ESWBBCgmNkT37smcw3tucbQl5pcOO43RWk0YAFog9xSpzFMpDcaMulFDbDQPFwLqdH4s3x4PinLH7PD9EtuKFl1P9rNPBV5vZ-kIZiBjYezQJ8wzGB66aQoUK9Hr3vCKQYaKfPL-I8wDL0LW1jyPbW5dfd0m9Ycx261r5ncpfo9q39kZNPu1WZ7povvxA6_s9n3SObDTClQ69J98kNmz8gt_fbenAPyfUY06zA01FNR9U5plzRsS-iYxrWAVqvLzptLP280FTn9e08RwUdnhYwp0V1QTHrsMg66eVlab3k6gR8KgUYTaeXmElGPxRLMJbZ4qyCi9miPFlUp9--Xh1aCBmopwaFSP8ROZqMP-5Pg6awQ2AE_AIC25daZzaOtGNGpUZgyRNuuIiYsJprrSDsMZkI7cDFkoW2D7ii74SLuLE8Ffwx2ciL3G4Rqgco41isbCRs6LSKneI8S-OUuZSrHgnaeU1Mw3qOxTeWiedrZgkOeNINeI-87vqvPN_HH3vutGqSNHZ_kQAAggiMS2x-2TXDROE2jM4tDDL0AVAcKyV4jzzx6tU9isPtI44trFaSv7xDMpwfjLur7X8RekFuvRtNktnB_O1TcofhagIyWcodslGeV_YZQK4yfV5b1XdPzCMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+a+Durable+Electrochemical+Interface+via+an+Artificial+Amorphous+Cathode+Electrolyte+Interphase+for+Hybrid+Solid%2FLiquid+Lithium-Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Jia-Yan&rft.au=Zhang%2C+Xu-Dong&rft.au=Zeng%2C+Xian-Xiang&rft.au=Yan%2C+Min&rft.date=2020-04-16&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=16&rft.spage=6585&rft_id=info:doi/10.1002%2Fanie.201916301&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |