Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries

A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cath...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 16; pp. 6585 - 6589
Main Authors Liang, Jia‐Yan, Zhang, Xu‐Dong, Zeng, Xian‐Xiang, Yan, Min, Yin, Ya‐Xia, Xin, Sen, Wang, Wen‐Peng, Wu, Xiong‐Wei, Shi, Ji‐Lei, Wan, Li‐Jun, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 16.04.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries. The CEI's advantage: An amorphous cathode electrolyte interphase (CEI) with superior chemical compatibility and plasticity was formed via in situ LiDFOB conversion. It endows high‐voltage hybrid solid/liquid batteries with significantly enhanced interfacial stability, durability, and dynamics.
AbstractList A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni-rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space-charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high-voltage Li-metal batteries, innovating the design philosophy of functional CEI strategy for future high-energy-density batteries.
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries. The CEI's advantage: An amorphous cathode electrolyte interphase (CEI) with superior chemical compatibility and plasticity was formed via in situ LiDFOB conversion. It endows high‐voltage hybrid solid/liquid batteries with significantly enhanced interfacial stability, durability, and dynamics.
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior chemical compatibility with cathodes. Herein, an optimal lithium difluoro(oxalato)borate salt was introduced to build in situ an amorphous cathode electrolyte interphase (CEI) between Ni‐rich cathodes and hybrid electrolyte. The CEI preserves the surface structure with high compatibility, leading to enhanced interfacial stability. Meanwhile, the space‐charge layer can be prominently mitigated at the solid/solid interface via harmonized chemical potentials, acquiring promoted interfacial dynamics as revealed by COMSOL simulation. Consequently, the amorphous CEI integrates the bifunctionality to provide an excellent cycling stability, high Coulombic efficiency, and favorable rate capability in high‐voltage Li‐metal batteries, innovating the design philosophy of functional CEI strategy for future high‐energy‐density batteries.
Author Liang, Jia‐Yan
Wan, Li‐Jun
Yin, Ya‐Xia
Wang, Wen‐Peng
Zeng, Xian‐Xiang
Guo, Yu‐Guo
Shi, Ji‐Lei
Zhang, Xu‐Dong
Yan, Min
Xin, Sen
Wu, Xiong‐Wei
Author_xml – sequence: 1
  givenname: Jia‐Yan
  surname: Liang
  fullname: Liang, Jia‐Yan
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 2
  givenname: Xu‐Dong
  surname: Zhang
  fullname: Zhang, Xu‐Dong
  organization: Chinese Academy of Sciences (CAS)
– sequence: 3
  givenname: Xian‐Xiang
  surname: Zeng
  fullname: Zeng, Xian‐Xiang
  organization: Hunan Agricultural University
– sequence: 4
  givenname: Min
  surname: Yan
  fullname: Yan, Min
  organization: Chinese Academy of Sciences (CAS)
– sequence: 5
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 6
  givenname: Sen
  surname: Xin
  fullname: Xin, Sen
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 7
  givenname: Wen‐Peng
  surname: Wang
  fullname: Wang, Wen‐Peng
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 8
  givenname: Xiong‐Wei
  surname: Wu
  fullname: Wu, Xiong‐Wei
  organization: Hunan Agricultural University
– sequence: 9
  givenname: Ji‐Lei
  surname: Shi
  fullname: Shi, Ji‐Lei
  email: jileishi@iccas.ac.cn
  organization: Chinese Academy of Sciences (CAS)
– sequence: 10
  givenname: Li‐Jun
  surname: Wan
  fullname: Wan, Li‐Jun
  email: wanlijun@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
– sequence: 11
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences (UCAS)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32017343$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URNuFK0dkiQuXbO3YSZzjsix0pQUOwDmaOBPiyom3tgPaG4_AldfjSXC1bZEqIU4e29_3y545JyeTm5CQ55wtOWP5BUwGlznjNS8F44_IGS9ynomqEieplkJklSr4KTkP4SrxSrHyCTkVyaiEFGfk12aC1prpKwX6ZvapRrqxqKN3esDRaLB0O0X0PWik3wxQmOjKR9MbbdLdanR-P7g50DXEwXX3tj1EPJr7AQLS3nl6eWi96egnZ013sTPXc9rsTBzMPP7-8fM9xhT4GmJyDIan5HEPNuCz23VBvrzdfF5fZruP77br1S7TkjOeIS8BOqwr6HOtWi1lWUmhhaxyiSAAFOdKd5Jh0ddlzpCLdNLLvhIaRSvFgrw65u69u54xxGY0QaO1MGH6V5OLgqlaqdTLBXn5AL1ys5_S6xKlyqoQJeOJenFLze2IXbP3ZgR_aO6angB5BLR3IXjsG20iROOm6MHYhrPmZrbNzWyb-9kmbflAu0v-p1Afhe_G4uE_dLP6sN38df8A03-4_g
CitedBy_id crossref_primary_10_1002_admi_202300254
crossref_primary_10_1016_j_jechem_2024_01_031
crossref_primary_10_1039_D4TA05468G
crossref_primary_10_1002_adma_202204835
crossref_primary_10_1016_j_ensm_2021_02_039
crossref_primary_10_1021_jacs_1c08425
crossref_primary_10_1002_smtd_202100920
crossref_primary_10_1016_j_cclet_2023_108242
crossref_primary_10_1016_j_jechem_2022_06_014
crossref_primary_10_1021_jacs_1c06003
crossref_primary_10_1016_j_scib_2022_10_007
crossref_primary_10_1002_adfm_202010611
crossref_primary_10_1016_j_cej_2022_135101
crossref_primary_10_1002_ange_202410825
crossref_primary_10_1002_idm2_12090
crossref_primary_10_1002_cssc_202402028
crossref_primary_10_1002_ange_202211626
crossref_primary_10_1002_anie_202300384
crossref_primary_10_1002_adma_202104557
crossref_primary_10_1021_acsami_0c05623
crossref_primary_10_1002_adma_202004898
crossref_primary_10_1039_D0TA11170H
crossref_primary_10_1002_eem2_12573
crossref_primary_10_1016_j_coelec_2022_100962
crossref_primary_10_1039_D0NR03833D
crossref_primary_10_1002_ange_202408246
crossref_primary_10_1039_D4TA04857A
crossref_primary_10_20517_energymater_2023_130
crossref_primary_10_3390_batteries10040135
crossref_primary_10_3866_PKU_WHXB202306039
crossref_primary_10_1021_jacs_0c12965
crossref_primary_10_1002_advs_202404307
crossref_primary_10_1021_acs_chemrev_3c00728
crossref_primary_10_1021_jacs_0c09602
crossref_primary_10_1002_adfm_202102347
crossref_primary_10_1039_D1EE03466A
crossref_primary_10_1002_batt_202400636
crossref_primary_10_1039_D2TA02315F
crossref_primary_10_1002_adfm_202008632
crossref_primary_10_1016_j_cej_2021_133589
crossref_primary_10_1021_acsenergylett_3c01047
crossref_primary_10_7498_aps_70_20210180
crossref_primary_10_1007_s11426_022_1221_4
crossref_primary_10_1016_j_ensm_2022_08_006
crossref_primary_10_1039_D1QM00004G
crossref_primary_10_1002_anie_202009575
crossref_primary_10_1002_adfm_202210465
crossref_primary_10_1002_idm2_12045
crossref_primary_10_1016_j_jechem_2024_06_023
crossref_primary_10_1007_s12274_023_5960_z
crossref_primary_10_1016_j_ensm_2022_02_045
crossref_primary_10_1002_adma_202209140
crossref_primary_10_1021_acs_nanolett_1c04492
crossref_primary_10_1016_j_nanoen_2020_105015
crossref_primary_10_1002_ange_202314480
crossref_primary_10_1021_acsami_4c02031
crossref_primary_10_1016_j_scib_2022_08_023
crossref_primary_10_1021_acs_nanolett_4c06471
crossref_primary_10_1002_smll_202304234
crossref_primary_10_1002_ange_202009575
crossref_primary_10_1002_smll_202309871
crossref_primary_10_1002_anie_202408246
crossref_primary_10_1039_D4EE02827A
crossref_primary_10_1016_j_jechem_2024_04_044
crossref_primary_10_1016_j_xcrp_2021_100731
crossref_primary_10_1021_acsami_1c24831
crossref_primary_10_1039_D3QM01263H
crossref_primary_10_1002_anie_202314480
crossref_primary_10_1002_cssc_202301242
crossref_primary_10_1016_j_nanoen_2022_107027
crossref_primary_10_1021_acsami_3c00636
crossref_primary_10_1016_j_memsci_2021_119840
crossref_primary_10_1021_acs_langmuir_2c03205
crossref_primary_10_2139_ssrn_3995084
crossref_primary_10_1002_sstr_202000042
crossref_primary_10_1007_s40820_024_01340_5
crossref_primary_10_1002_adfm_202104395
crossref_primary_10_1016_j_cej_2022_135030
crossref_primary_10_1038_s41467_023_35857_x
crossref_primary_10_1016_j_ensm_2021_05_035
crossref_primary_10_1021_acsenergylett_1c00265
crossref_primary_10_1038_s41467_025_57579_y
crossref_primary_10_1002_adfm_202204778
crossref_primary_10_1021_acsenergylett_4c02458
crossref_primary_10_1016_j_ensm_2023_103018
crossref_primary_10_1002_adma_202211047
crossref_primary_10_1016_j_nanoen_2022_107499
crossref_primary_10_1002_ange_202300384
crossref_primary_10_1021_acs_energyfuels_2c00724
crossref_primary_10_1002_adma_202300982
crossref_primary_10_2139_ssrn_3994258
crossref_primary_10_1021_acsami_2c09103
crossref_primary_10_1002_adfm_202423742
crossref_primary_10_1002_adfm_202105253
crossref_primary_10_1002_anie_202410825
crossref_primary_10_1002_adfm_202109184
crossref_primary_10_1007_s11426_023_1778_6
crossref_primary_10_1002_adfm_202406770
crossref_primary_10_2139_ssrn_4105380
crossref_primary_10_1002_adfm_202003945
crossref_primary_10_1038_s41467_025_56324_9
crossref_primary_10_1002_adma_202304951
crossref_primary_10_1002_advs_202201297
crossref_primary_10_1002_adma_202100726
crossref_primary_10_1016_j_jpowsour_2023_233717
crossref_primary_10_1002_anie_202211626
Cites_doi 10.1002/adma.201808393
10.1002/anie.201712702
10.1002/aenm.201702028
10.1016/j.jpowsour.2017.04.094
10.1016/j.electacta.2014.05.136
10.1002/ange.201901582
10.1002/anie.200907319
10.1002/ange.201712702
10.1038/natrevmats.2016.103
10.1016/j.joule.2019.02.006
10.1039/C6EE00123H
10.1002/ange.201908874
10.1002/ange.200907319
10.1016/j.enchem.2019.100002
10.1021/acsami.9b02440
10.1007/s12274-017-1526-2
10.1021/acs.nanolett.7b03498
10.1002/adma.201604549
10.1016/j.chempr.2018.12.002
10.1021/jacs.9b03517
10.1039/C9EE00515C
10.1002/advs.201901036
10.1016/j.electacta.2018.11.172
10.1002/adma.201807789
10.1002/ange.201814669
10.1002/anie.201908874
10.1002/aenm.201900626
10.1021/acs.jpcc.6b01207
10.1002/aenm.201702675
10.1016/j.joule.2019.08.004
10.1002/aenm.201800721
10.1021/jacs.8b03319
10.1126/sciadv.aat5383
10.1038/s41560-018-0312-z
10.1002/anie.201814669
10.1002/anie.201901582
10.1002/smll.201902813
10.1002/aenm.201601196
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201916301
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6589
ExternalDocumentID 32017343
10_1002_anie_201916301
ANIE201916301
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Basic Science Center Project of Natural Science Foundation of China
  funderid: 51788104
– fundername: National Natural Science Foundation of China
  funderid: 21773264; 51803054; 51902314
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202500
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDA21070300
– fundername: Beijing Natural Science Foundation
  funderid: L172023; L182051
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2019033
– fundername: National Key R&D Program of China
  grantid: 2016YFA0202500
– fundername: National Natural Science Foundation of China
  grantid: 21773264
– fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA21070300
– fundername: Basic Science Center Project of Natural Science Foundation of China
  grantid: 51788104
– fundername: National Natural Science Foundation of China
  grantid: 51803054
– fundername: National Natural Science Foundation of China
  grantid: 51902314
– fundername: Beijing Natural Science Foundation
  grantid: L182051
– fundername: Beijing Natural Science Foundation
  grantid: L172023
– fundername: Youth Innovation Promotion Association CAS
  grantid: 2019033
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4101-e16aade97af2c8bc446743c34724ea3aa8118cd40e5f9620e13811f4f73ce3b43
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 15:17:19 EDT 2025
Sun Jul 13 04:43:13 EDT 2025
Wed Feb 19 02:31:10 EST 2025
Tue Jul 01 02:27:08 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Jan 22 16:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords interfacial stability
amorphous phases
interfacial electrochemistry
cathode electrolyte interphase
hybrid solid/liquid batteries
Language English
License 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-e16aade97af2c8bc446743c34724ea3aa8118cd40e5f9620e13811f4f73ce3b43
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0322-8476
PMID 32017343
PQID 2386753601
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2350898843
proquest_journals_2386753601
pubmed_primary_32017343
crossref_citationtrail_10_1002_anie_201916301
crossref_primary_10_1002_anie_201916301
wiley_primary_10_1002_anie_201916301_ANIE201916301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 16, 2020
PublicationDateYYYYMMDD 2020-04-16
PublicationDate_xml – month: 04
  year: 2020
  text: April 16, 2020
  day: 16
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2019; 4
2017; 2
2019; 3
2019; 6
2018; 140
2019; 5
2019; 31
2019; 11
2019; 1
2019; 12
2019; 15
2010 2010; 49 122
2017; 29
2019; 141
2016; 120
2017; 357
2019 2019; 58 131
2014; 137
2018; 8
2018; 4
2017; 17
2018 2018; 57 130
2017; 10
2019
2016; 9
2019; 297
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_1
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_45_2
e_1_2_2_26_1
Cao D. (e_1_2_2_32_1) 2019
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
Chen R. (e_1_2_2_11_2) 2019
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_17_2
e_1_2_2_34_1
e_1_2_2_15_1
e_1_2_2_3_2
e_1_2_2_3_3
e_1_2_2_23_2
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_7_2
e_1_2_2_9_1
e_1_2_2_27_3
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_25_2
e_1_2_2_46_2
Zhang Y. (e_1_2_2_5_2) 2019
e_1_2_2_37_2
e_1_2_2_10_3
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_2
e_1_2_2_31_1
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_14_3
e_1_2_2_35_1
e_1_2_2_14_2
References_xml – volume: 17
  start-page: 6974
  year: 2017
  end-page: 6982
  publication-title: Nano Lett.
– volume: 10
  start-page: 3092
  year: 2017
  end-page: 3102
  publication-title: Nano Res.
– volume: 31
  start-page: 1808393
  year: 2019
  publication-title: Adv. Mater.
– volume: 58 131
  start-page: 6001 6062
  year: 2019 2019
  end-page: 6006 6067
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 1902813
  year: 2019
  publication-title: Small
– volume: 58 131
  start-page: 5292 5346
  year: 2019 2019
  end-page: 5296 5350
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 15002 15220
  year: 2018 2018
  end-page: 15027 15246
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 12
  start-page: 1780
  year: 2019
  end-page: 1804
  publication-title: Energy Environ. Sci.
– volume: 49 122
  start-page: 4414 4516
  year: 2010 2010
  end-page: 4417 4519
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 6767
  year: 2018
  end-page: 6770
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 74
  year: 2019
  end-page: 96
  publication-title: Chem
– volume: 9
  start-page: 1900626
  year: 2019
  publication-title: Adv. Energy Mater.
– year: 2019
  publication-title: Chem. Rev.
– volume: 8
  start-page: 1702675
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 120
  start-page: 13332
  year: 2016
  end-page: 13339
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 1955
  year: 2016
  end-page: 1988
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 1800721
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1601196
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 141
  start-page: 9165
  year: 2019
  end-page: 9169
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 14830
  year: 2019
  end-page: 14839
  publication-title: ACS Appl. Mater. Interfaces
– year: 2019
  publication-title: Mater. Today
– volume: 1
  start-page: 100002
  year: 2019
  publication-title: EnergyChem
– volume: 2
  start-page: 16103
  year: 2017
  publication-title: Nat. Rev. Mater.
– year: 2019
  publication-title: Nano Lett.
– volume: 8
  start-page: 1702028
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1807789
  year: 2019
  publication-title: Adv. Mater.
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  publication-title: Nat. Energy
– volume: 58 131
  start-page: 15235 15379
  year: 2019 2019
  end-page: 15238 15382
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 1
  year: 2014
  end-page: 8
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1252
  year: 2019
  end-page: 1275
  publication-title: Joule
– volume: 297
  start-page: 258
  year: 2019
  end-page: 266
  publication-title: Electrochim. Acta
– volume: 6
  start-page: 1901036
  year: 2019
  publication-title: Adv. Sci.
– volume: 3
  start-page: 2550
  year: 2019
  end-page: 2564
  publication-title: Joule
– volume: 29
  start-page: 1604549
  year: 2017
  publication-title: Adv. Mater.
– volume: 357
  start-page: 97
  year: 2017
  end-page: 106
  publication-title: J. Power Sources
– volume: 4
  start-page: 5383
  year: 2018
  publication-title: Sci. Adv.
– ident: e_1_2_2_19_2
  doi: 10.1002/adma.201808393
– ident: e_1_2_2_3_2
  doi: 10.1002/anie.201712702
– ident: e_1_2_2_46_2
  doi: 10.1002/aenm.201702028
– ident: e_1_2_2_39_1
  doi: 10.1016/j.jpowsour.2017.04.094
– year: 2019
  ident: e_1_2_2_11_2
  publication-title: Chem. Rev.
– ident: e_1_2_2_43_1
  doi: 10.1016/j.electacta.2014.05.136
– ident: e_1_2_2_10_3
  doi: 10.1002/ange.201901582
– ident: e_1_2_2_15_1
– ident: e_1_2_2_41_1
  doi: 10.1002/anie.200907319
– ident: e_1_2_2_3_3
  doi: 10.1002/ange.201712702
– ident: e_1_2_2_2_2
  doi: 10.1038/natrevmats.2016.103
– ident: e_1_2_2_31_1
  doi: 10.1016/j.joule.2019.02.006
– ident: e_1_2_2_34_1
  doi: 10.1039/C6EE00123H
– ident: e_1_2_2_22_1
– ident: e_1_2_2_14_3
  doi: 10.1002/ange.201908874
– ident: e_1_2_2_41_2
  doi: 10.1002/ange.200907319
– ident: e_1_2_2_44_1
– year: 2019
  ident: e_1_2_2_5_2
  publication-title: Mater. Today
– ident: e_1_2_2_6_1
– ident: e_1_2_2_9_1
– ident: e_1_2_2_4_2
  doi: 10.1016/j.enchem.2019.100002
– ident: e_1_2_2_21_1
  doi: 10.1021/acsami.9b02440
– ident: e_1_2_2_24_2
  doi: 10.1007/s12274-017-1526-2
– ident: e_1_2_2_40_1
  doi: 10.1021/acs.nanolett.7b03498
– ident: e_1_2_2_1_1
– ident: e_1_2_2_42_1
  doi: 10.1002/adma.201604549
– ident: e_1_2_2_7_2
  doi: 10.1016/j.chempr.2018.12.002
– ident: e_1_2_2_12_1
– ident: e_1_2_2_17_2
  doi: 10.1021/jacs.9b03517
– ident: e_1_2_2_29_1
  doi: 10.1039/C9EE00515C
– ident: e_1_2_2_33_1
  doi: 10.1002/advs.201901036
– ident: e_1_2_2_35_1
– ident: e_1_2_2_45_2
  doi: 10.1016/j.electacta.2018.11.172
– ident: e_1_2_2_8_2
  doi: 10.1002/adma.201807789
– ident: e_1_2_2_27_3
  doi: 10.1002/ange.201814669
– ident: e_1_2_2_14_2
  doi: 10.1002/anie.201908874
– year: 2019
  ident: e_1_2_2_32_1
  publication-title: Nano Lett.
– ident: e_1_2_2_30_1
  doi: 10.1002/aenm.201900626
– ident: e_1_2_2_28_2
  doi: 10.1021/acs.jpcc.6b01207
– ident: e_1_2_2_18_1
– ident: e_1_2_2_23_2
  doi: 10.1002/aenm.201702675
– ident: e_1_2_2_26_1
– ident: e_1_2_2_36_2
  doi: 10.1016/j.joule.2019.08.004
– ident: e_1_2_2_37_2
  doi: 10.1002/aenm.201800721
– ident: e_1_2_2_38_1
  doi: 10.1021/jacs.8b03319
– ident: e_1_2_2_13_2
  doi: 10.1126/sciadv.aat5383
– ident: e_1_2_2_16_2
  doi: 10.1038/s41560-018-0312-z
– ident: e_1_2_2_27_2
  doi: 10.1002/anie.201814669
– ident: e_1_2_2_10_2
  doi: 10.1002/anie.201901582
– ident: e_1_2_2_25_2
  doi: 10.1002/smll.201902813
– ident: e_1_2_2_20_2
  doi: 10.1002/aenm.201601196
SSID ssj0028806
Score 2.6148427
Snippet A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high‐energy‐density storage devices, but it suffers from inferior...
A hybrid solid/liquid electrolyte with superior security facilitates the implementation of high-energy-density storage devices, but it suffers from inferior...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6585
SubjectTerms amorphous phases
cathode electrolyte interphase
Cathodes
Chemical compatibility
Density
Electrochemistry
Electrolytes
Energy storage
hybrid solid/liquid batteries
Interface stability
interfacial electrochemistry
interfacial stability
Interphase
Liquid lithium
Lithium
Surface structure
Title Enabling a Durable Electrochemical Interface via an Artificial Amorphous Cathode Electrolyte Interphase for Hybrid Solid/Liquid Lithium‐Metal Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201916301
https://www.ncbi.nlm.nih.gov/pubmed/32017343
https://www.proquest.com/docview/2386753601
https://www.proquest.com/docview/2350898843
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VhoK1dC4pR21-N1kuOqbLWt2h6ASr1FtmOrq26T0k2QyomfwJW_xy9hJk4CC6qQ2mNkTx72TOYb2_MNY281unHa7opMPBaRHGGckuapihRY7UAp6XIKFI-O1exEHpyOT__I4g_8EP2CG1lG878mA9dmufObNJQysOloFuIbaBK46MAWoaIPPX-UQOUM6UUAEVWh71gbh2JnVXzVK_0DNVeRa-N69h4x3b10OHFyvl1XZtt-_YvP8S5f9Zg9bHEpnwRFesLuueIpu7_blYN7xn5MKcsKHR3X_H19RRlXfBpq6NiWdIA3y4teW8e_zDXXRXO7QFHBJxclTmlZLzklHZZ5L724rlyQvDxDl8oRRfPZNSWS8Y_lAm3lcP65xovDeXU2ry9-fvt-5DBi4IEZFAP95-xkb_ppdxa1dR0iK_EPELmR0jp3aay9sImxkiqegAUZC-k0aJ1g1GNzOXRjnyoxdCOEFSMvfQzWgZHwgq0VZeFeMa7HJONFmrhYuqHXSeoTgNykRngDyYBF3bxmtiU9p9obiyzQNYuMBjzrB3zA3vX9LwPdx4091zs1yVqzX2aIfzAAA0XNW30zThTtwujC4SBjH8TEaZJIGLCXQb36RwHePgZqEY2S_Ocdssnx_rS_en0boTfsgaAVBGKvVOtsrbqq3QbCrMpsNqb0C8vhIEU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQL78dCASMhcUq76_E6yXFVttrC7h6glbhFtmOrq26T0iZI5cRP4Mrf45cwEydBC0JIcIzsycOeyXxje75h7KVGN07bXZGJxyKSI4xT0jxVkQKrHSglXU6B4mKpZsfyzYdxd5qQcmECP0S_4EaW0fyvycBpQXrvJ2sopWDT2SwEOEAZXNeprHcTVb3rGaQEqmdIMAKIqA59x9s4FHub8pt-6TewuYldG-dzcIuZ7rXDmZPT3boyu_bzL4yO__Vdt9nNFprySdClO-yaK-6y7f2uItw99m1KiVbo67jmr-sLSrri01BGx7a8A7xZYfTaOv5ppbkumtsFlgo-OStxVsv6klPeYZn30uurygXJ8xP0qhyBNJ9dUS4Zf1-u0Vzmq481XsxX1cmqPvv-5evCYdDAAzkoxvr32fHB9Gh_FrWlHSIr8ScQuZHSOndprL2wibGSip6ABRkL6TRonWDgY3M5dGOfKjF0I0QWIy99DNaBkfCAbRVl4R4xrsck40WauFi6oddJ6hOA3KRGeAPJgEXdxGa25T2n8hvrLDA2i4wGPOsHfMBe9f3PA-PHH3vudHqStZZ_mSEEwhgMFDW_6JtxomgjRhcOBxn7ICxOk0TCgD0M-tU_CvD2MVCLaLTkL--QTZaH0_7q8b8IPWfbs6PFPJsfLt8-YTcELSgQmaXaYVvVRe2eIuqqzLPGrn4AvQQkYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkYBL-adbChgJiVParO11nOOqu6stbFcIqNRb5Di2umKbbNsEqZx4hF77ejwJM3ESWBBCgmNkT37smcw3tucbQl5pcOO43RWk0YAFog9xSpzFMpDcaMulFDbDQPFwLqdH4s3x4PinLH7PD9EtuKFl1P9rNPBV5vZ-kIZiBjYezQJ8wzGB66aQoUK9Hr3vCKQYaKfPL-I8wDL0LW1jyPbW5dfd0m9Ycx261r5ncpfo9q39kZNPu1WZ7povvxA6_s9n3SObDTClQ69J98kNmz8gt_fbenAPyfUY06zA01FNR9U5plzRsS-iYxrWAVqvLzptLP280FTn9e08RwUdnhYwp0V1QTHrsMg66eVlab3k6gR8KgUYTaeXmElGPxRLMJbZ4qyCi9miPFlUp9--Xh1aCBmopwaFSP8ROZqMP-5Pg6awQ2AE_AIC25daZzaOtGNGpUZgyRNuuIiYsJprrSDsMZkI7cDFkoW2D7ii74SLuLE8Ffwx2ciL3G4Rqgco41isbCRs6LSKneI8S-OUuZSrHgnaeU1Mw3qOxTeWiedrZgkOeNINeI-87vqvPN_HH3vutGqSNHZ_kQAAggiMS2x-2TXDROE2jM4tDDL0AVAcKyV4jzzx6tU9isPtI44trFaSv7xDMpwfjLur7X8RekFuvRtNktnB_O1TcofhagIyWcodslGeV_YZQK4yfV5b1XdPzCMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+a+Durable+Electrochemical+Interface+via+an+Artificial+Amorphous+Cathode+Electrolyte+Interphase+for+Hybrid+Solid%2FLiquid+Lithium-Metal+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Jia-Yan&rft.au=Zhang%2C+Xu-Dong&rft.au=Zeng%2C+Xian-Xiang&rft.au=Yan%2C+Min&rft.date=2020-04-16&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=16&rft.spage=6585&rft_id=info:doi/10.1002%2Fanie.201916301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon