ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific
Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.06.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions.
Plain Language Summary
Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions.
Key Points
A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability
DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific
The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability |
---|---|
AbstractList | Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Abstract Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions. A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Plain Language Summary Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions. Key Points A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability |
Author | Zhou, Lu Zhang, Rong‐Hua |
Author_xml | – sequence: 1 givenname: Lu orcidid: 0000-0002-5747-937X surname: Zhou fullname: Zhou, Lu organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Rong‐Hua orcidid: 0000-0002-3332-7849 surname: Zhang fullname: Zhang, Rong‐Hua email: rzhang@nuist.edu.cn organization: Laoshan Laboratory |
BookMark | eNp9kcFuEzEQhi1UJNLAjQewxJWAZ70br4-ltCFSoFFJz5bXHjeONnawN6py4xE4ceZZeBSeBJcUCSGBL2PZ3__NSHNKTkIMSMhzYK-AVfJ1xSo-WwATvBaPyAhkXU9axsQJGTEmy70S0yfkNOcNY4wzDiPy9eLDx6sfn79cY68HtHSZ0OxTjoku9bC-04dMo6PzMGDSIex1T1drTFvdf_92FmKpHjOdWwyDd77kb7IPt1TTVcGzi2mLqdjf6Fz-3iLu6AJ1CvfM-2ixpz7QYY0Fjztvin2pTRGZp-Sx033GZw91TG4uL1bn7yaLq9n8_GwxMTUwmGgLrO5aAJBGWs6NaJzruGNVo2sJRrbQtaa24NB0zk1raFwlGa-4Q2cbw8dkfvTaqDdql_xWp4OK2qtfDzHdKp0Gb3pUDESnRculZbx4WNfVbesa0YAFrtEW14uja5fipz3mQW3iPoUyvuJMgJSClzMm1ZEyKeac0CnjBz34GIakfa-Aqftdqj93WUIv_wr9HvUf-EOPO9_j4b-sml0vpmLKgf8EPTWy8g |
CitedBy_id | crossref_primary_10_1007_s11430_024_1396_x crossref_primary_10_1038_s41612_024_00741_y crossref_primary_10_1016_j_ocemod_2025_102500 crossref_primary_10_1360_N072024_0038 |
Cites_doi | 10.1175/1520‐0469(1997)054<0830:aeorpf>2.0.co;2 10.1002/2017gl073475 10.1175/1520‐0493(1983)111<0370:amotoa>2.0.co;2 10.1029/2023gl105175 10.1093/nsr/nwac044 10.1038/36081 10.1029/2009jd012861 10.1175/1520‐0469(1988)045<3283:adaofe>2.0.co;2 10.1175/1520‐0469(1989)046<1687:iviata>2.0.co;2 10.1175/1520‐0469(1991)048<0584:tssstm>2.0.co;2 10.1175/bams‐d‐11‐00111.2 10.1007/s11434‐016‐1064‐4 10.1038/s41467‐023‐41551‐9 10.1029/96jc01805 10.1038/s41586‐023‐06185‐3 10.1175/1520‐0469(1997)054<0811:aeorpf>2.0.co;2 10.1029/2012gl051740 10.1038/s41586‐019‐1559‐7 10.1029/2011gl048275 10.1016/j.scib.2024.04.048 10.1029/2007gl033065 10.1029/2021gl097190 10.1175/JCLI3812.1 10.1175/1520‐0485(2000)030<0294:ASODAA>2.0.CO;2 10.5194/gmd‐14‐6977‐2021 10.1126/science.228.4703.1085 10.1126/sciadv.adf2827 10.1038/321827a0 10.1038/s43247‐021‐00295‐4 10.5194/gmd‐9‐1937‐2016 10.12157/IOCAS.20230829.001 10.1175/1520‐0493(1969)097<0163:atftep>2.3.co;2 10.1029/2023gl104034 10.5194/os‐15‐779‐2019 10.1175/1520‐0469(1988)045<0549:viacom>2.0.co;2 10.1038/s41467‐023‐36053‐7 10.1175/1520‐0485(1989)019<0551:otrooe>2.0.co;2 10.5194/gmd‐11‐3659‐2018 10.1175/jpo‐d‐15‐0118.1 10.1175/2007MWR1978.1 10.1029/2023jc020119 10.1029/2003gl016872 10.1175/jcli‐d‐16‐0880.1 10.24381/cds.67e8eeb7 10.1175/1520‐0493(1995)123<0460:AOASFS>2.0.CO;2 10.1175/1520‐0493(1998)126<1013:AICMFE>2.0.CO;2 10.1007/s00376‐021‐1368‐4 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2023GL107347 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_017ba7839d034150bb488f5751d13aed 10_1029_2023GL107347 GRL67631 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42030410 – fundername: Strategic Priority Research Program of CAS funderid: XDB40000000 – fundername: Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology – fundername: Laoshan Laboratory funderid: LSKJ202202402 – fundername: the Startup Foundation for Introducing Talent of NUIST |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PQGLB PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M PUEGO |
ID | FETCH-LOGICAL-c4101-ad104b81119c9d33c75ffb3f025a491c981b8c4d1fecbff6415f290323fefd5c3 |
IEDL.DBID | 24P |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Fri Jul 25 10:33:53 EDT 2025 Thu Jul 24 02:12:49 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Wed Aug 20 07:26:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-ad104b81119c9d33c75ffb3f025a491c981b8c4d1fecbff6415f290323fefd5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5747-937X 0000-0002-3332-7849 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107347 |
PQID | 3071997333 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_017ba7839d034150bb488f5751d13aed proquest_journals_3071997333 crossref_citationtrail_10_1029_2023GL107347 crossref_primary_10_1029_2023GL107347 wiley_primary_10_1029_2023GL107347_GRL67631 |
PublicationCentury | 2000 |
PublicationDate | 28 June 2024 |
PublicationDateYYYYMMDD | 2024-06-28 |
PublicationDate_xml | – month: 06 year: 2024 text: 28 June 2024 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_10_2_2_1 e_1_2_10_1_27_1 e_1_2_10_1_29_1 e_1_2_10_1_23_1 e_1_2_10_1_46_1 e_1_2_10_1_25_1 e_1_2_10_1_48_1 e_1_2_10_1_42_1 e_1_2_10_1_21_1 e_1_2_10_1_44_1 e_1_2_10_1_40_1 Behringer D. (e_1_2_10_1_6_1) 2004 e_1_2_10_1_9_1 e_1_2_10_1_7_1 e_1_2_10_1_16_1 e_1_2_10_1_39_1 e_1_2_10_1_18_1 e_1_2_10_1_12_1 e_1_2_10_1_35_1 e_1_2_10_1_14_1 e_1_2_10_1_37_1 e_1_2_10_1_31_1 e_1_2_10_1_5_1 e_1_2_10_1_10_1 e_1_2_10_1_33_1 e_1_2_10_1_3_1 e_1_2_10_2_3_1 e_1_2_10_1_28_1 e_1_2_10_1_24_1 e_1_2_10_1_45_1 e_1_2_10_1_26_1 e_1_2_10_1_47_1 e_1_2_10_1_20_1 e_1_2_10_1_41_1 e_1_2_10_1_22_1 e_1_2_10_1_43_1 Vaswani A. (e_1_2_10_1_38_1) 2017; 30 e_1_2_10_1_8_1 e_1_2_10_1_17_1 e_1_2_10_1_19_1 e_1_2_10_1_2_1 e_1_2_10_1_13_1 e_1_2_10_1_34_1 e_1_2_10_1_15_1 e_1_2_10_1_36_1 e_1_2_10_1_30_1 e_1_2_10_1_4_1 e_1_2_10_1_11_1 e_1_2_10_1_32_1 |
References_xml | – ident: e_1_2_10_1_24_1 doi: 10.1175/1520‐0469(1997)054<0830:aeorpf>2.0.co;2 – ident: e_1_2_10_1_39_1 doi: 10.1002/2017gl073475 – ident: e_1_2_10_1_28_1 doi: 10.1175/1520‐0493(1983)111<0370:amotoa>2.0.co;2 – ident: e_1_2_10_1_36_1 doi: 10.1029/2023gl105175 – ident: e_1_2_10_1_47_1 doi: 10.1093/nsr/nwac044 – ident: e_1_2_10_1_42_1 doi: 10.1038/36081 – ident: e_1_2_10_1_25_1 doi: 10.1029/2009jd012861 – ident: e_1_2_10_1_35_1 doi: 10.1175/1520‐0469(1988)045<3283:adaofe>2.0.co;2 – ident: e_1_2_10_1_5_1 doi: 10.1175/1520‐0469(1989)046<1687:iviata>2.0.co;2 – ident: e_1_2_10_1_32_1 doi: 10.1175/1520‐0469(1991)048<0584:tssstm>2.0.co;2 – ident: e_1_2_10_1_3_1 doi: 10.1175/bams‐d‐11‐00111.2 – ident: e_1_2_10_1_40_1 doi: 10.1007/s11434‐016‐1064‐4 – ident: e_1_2_10_1_26_1 doi: 10.1038/s41467‐023‐41551‐9 – ident: e_1_2_10_1_41_1 doi: 10.1029/96jc01805 – ident: e_1_2_10_1_8_1 doi: 10.1038/s41586‐023‐06185‐3 – ident: e_1_2_10_1_23_1 doi: 10.1175/1520‐0469(1997)054<0811:aeorpf>2.0.co;2 – ident: e_1_2_10_1_21_1 doi: 10.1029/2012gl051740 – ident: e_1_2_10_1_20_1 doi: 10.1038/s41586‐019‐1559‐7 – ident: e_1_2_10_1_30_1 doi: 10.1029/2011gl048275 – ident: e_1_2_10_1_43_1 doi: 10.1016/j.scib.2024.04.048 – ident: e_1_2_10_2_3_1 doi: 10.1029/2007gl033065 – ident: e_1_2_10_1_37_1 doi: 10.1029/2021gl097190 – ident: e_1_2_10_1_33_1 doi: 10.1175/JCLI3812.1 – ident: e_1_2_10_1_12_1 doi: 10.1175/1520‐0485(2000)030<0294:ASODAA>2.0.CO;2 – ident: e_1_2_10_1_31_1 doi: 10.5194/gmd‐14‐6977‐2021 – volume: 30 issue: 2017 year: 2017 ident: e_1_2_10_1_38_1 article-title: Attention is all you need publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_1_10_1 doi: 10.1126/science.228.4703.1085 – ident: e_1_2_10_1_45_1 doi: 10.1126/sciadv.adf2827 – ident: e_1_2_10_1_11_1 doi: 10.1038/321827a0 – ident: e_1_2_10_1_27_1 doi: 10.1038/s43247‐021‐00295‐4 – ident: e_1_2_10_1_16_1 doi: 10.5194/gmd‐9‐1937‐2016 – ident: e_1_2_10_1_46_1 doi: 10.12157/IOCAS.20230829.001 – ident: e_1_2_10_1_9_1 doi: 10.1175/1520‐0493(1969)097<0163:atftep>2.3.co;2 – ident: e_1_2_10_1_19_1 doi: 10.1029/2023gl104034 – ident: e_1_2_10_1_48_1 doi: 10.5194/os‐15‐779‐2019 – ident: e_1_2_10_1_34_1 doi: 10.1175/1520‐0469(1988)045<0549:viacom>2.0.co;2 – ident: e_1_2_10_1_17_1 doi: 10.1038/s41467‐023‐36053‐7 – ident: e_1_2_10_1_4_1 doi: 10.1175/1520‐0485(1989)019<0551:otrooe>2.0.co;2 – ident: e_1_2_10_1_2_1 doi: 10.5194/gmd‐11‐3659‐2018 – start-page: 11 volume-title: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting year: 2004 ident: e_1_2_10_1_6_1 – ident: e_1_2_10_2_2_1 doi: 10.1175/jpo‐d‐15‐0118.1 – ident: e_1_2_10_1_13_1 doi: 10.1175/2007MWR1978.1 – ident: e_1_2_10_1_18_1 doi: 10.1029/2023jc020119 – ident: e_1_2_10_1_29_1 doi: 10.1029/2003gl016872 – ident: e_1_2_10_1_14_1 doi: 10.1175/jcli‐d‐16‐0880.1 – ident: e_1_2_10_1_15_1 doi: 10.24381/cds.67e8eeb7 – ident: e_1_2_10_1_22_1 doi: 10.1175/1520‐0493(1995)123<0460:AOASFS>2.0.CO;2 – ident: e_1_2_10_1_7_1 doi: 10.1175/1520‐0493(1998)126<1013:AICMFE>2.0.CO;2 – ident: e_1_2_10_1_44_1 doi: 10.1007/s00376‐021‐1368‐4 |
SSID | ssj0003031 |
Score | 2.4769027 |
Snippet | Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the... Abstract Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However,... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Deep learning El Nino El Nino phenomena El Nino-Southern Oscillation event ENSO predictions Equatorial regions Evolution explainable artificial intelligence (XAI) Initial conditions multivariate three‐dimensional (3D) predictions Neural networks Neural stem cells Ocean temperature Oceans Precursors Prediction models Southern Oscillation Temperature anomalies thermal precursors Transformers transformer‐based model |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LattAFB1KoNBNSV_UeXEX7aqISho9ZpbNy6akbkhi8E5oXqVgbGOnlOz6CV1lnW_Jp-RLemY0Du6izSYrCTEMw9yjc88dXd3L2DspWiczbRNnpE0KyV0iqtQkqRalznQpS-3PO74Mq8Go-Dwux2utvnxOWFceuNu4j0CMamu4cZOCcMtUKUDO-a8FJuOtNZ594fNWwVTkYBBz1ytPFonI6yqmvKe59NE-758g6uG-pcqaMwo1-_8SmutyNfib4032PApF-tQt8AV7Yqcv2dN-aMR7hbuQuqmXr9j10fD8692v3yGtzRo6Xfgj9OVsQadQdz_bqyXNHIWTv64AKQEaoOPJ7Q1if1wRK1P3v66DHqWQREAtXawkrV1g9n14O0OH1s4plmT9Rr6P2oS-TwkiEsNnc29wiml-r9no-OjiYJDEbguJLvBeJq1BZKYEuE9qaTjXdemc4g6iqC1gTgmBK3RhMme1cq6CMVwuU55zZ50pNX_DNqazqX3LyAAXuVE2q3VdwG6t4CqV4F1XCwtB2WMfVtve6FiK3HfEmDThk3gum3Uj9dj7-9HzrgTHP8btewvej_GFs8MDwKmJcGoeglOP7azs38S3edmAB30-DuccKw-Y-O9Cmv7ZSQXezrYeY0Xb7BkmL3x6Wi522Mbl4ofdhRC6VHsB838AiQcDAg priority: 102 providerName: Directory of Open Access Journals |
Title | ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107347 https://www.proquest.com/docview/3071997333 https://doaj.org/article/017ba7839d034150bb488f5751d13aed |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEF7ShEIvoU1a6iY1e0hPRVTSrqTdo906DiV1TRKX0IvY31AwkpESQm55hJx67rPkUfIknV2tjXNooCcZMTJrz863345mv0HogDNheaJMZDU3EeXERiyPdRQrlqlEZTxTLt_xbZIfzejX8-w8JNzcWZhOH2KVcHOR4fHaBbiQbRAbcBqZru_3-Bh2L4QWz9CWO13rSvpSOl0hMcBz1zGP04ilRR4K3-H5T-tPP1qSvHL_I7q5Tlr9qnP4Em0HuogHnX9foQ1T7aDnY9-O9wY--QJO1e6i36PJ6feH2ztf3GY0njYukd7WDZ4Cx7sWNy2uLfb5v06GFMMEAVCe3_8ZVDVcYceMu1O7Flgp9qUEWOCzJbE1DXz7ENY8jb8Ys8BBmPUCu25qc_yrwkAlwbxeOLfjUOz3Gs0OR2efj6LQcyFSFKIzEhr2Z5IBAnLFNSGqyKyVxAI1EhScyoHmMkV1Yo2S1uaw_tuUxyQl1lidKfIGbVZ1Zd4irGF2pFqapFAF1TERjMiYA_raghmglT30cfm3lyoIkru-GPPSvxhPebnupB76sLJedEIc_7AbOg-ubJx8tr9RNxdliMYSYEiKArghDAt-QSwl4Jh1r6B0QoTRPbS_9H8ZYrotAQ1dVQ4hBEbu58STAynHJ8c5oHfy7r-s99ALuE9dNVrK9tHmZXNl3gPvuZR9P7n7aGvwY_ZzBtfhaDI96fsswl_a6_-5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5BKwQXxK8aKLAHOCEL27u2d48ptAmQhgoSVHFZef8qpMiOnCLUG4_AiTPPwqPwJMysN1F6AIlTomhibTIz3347Hn9DyFMpai8z4xJvpUu4ZD4RZWqT1IjCZKaQhcF6x_G0HM_5m9PiNM45xWdhen2ITcENMyPgNSY4FqSj2gCKZOLg79EEji-MV1fJLhIbCOvd4cf5p_kGjAGh-6F5kicir8rY-w5XeLH9_Uu7UhDvv8Q4t3lr2HiObpGbkTHSYe_i2-SKa-6Qa6MwkfcC3oUeTrO6S34cTj-8-_3te-hvc5aedFhLX7UdPQGa97W-WNHW01AC7JVIKcQI4PLi189h08IrHJpp_-CuB2JKQzcBrelszW1dB1c_gG3P0lfOLWnUZj2jOFBtQT83FNgkmLdL9DyN_X73yPzocPZynMSxC4nhkKBJbeGIpgWAoDTSMmaqwnvNPLCjmoNfJTBdYbjNvDPa-xIogM9lynLmnbeFYffJTtM2bo9QCwGSW-2yylTcpqwWTKcSANhXwgGzHJDn679dmahJjqMxFircG8-l2nbSgDzbWC97LY6_2B2gBzc2qKAdPmi7MxUTUgES6boCegjLgl-Qag1Q5vEulM1Y7eyA7K_9r2JarxTDGJMVYwxWHmLinwtRo_eTEgA8e_Bf1k_I9fHseKImr6dvH5IbYMOxOS0X-2TnvPviHgENOtePY6j_AZEUALY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELZKKhCXihZQQwv1gZ7Qit21d9c-pj9JC2kaQYMqLtb6r0KKdqNNEeqNR-DEuc_SR-mTMPY6UXoAiVOiaLLy7ng-fx7PfoPQW85KyxNlIqu5iSgnNmJ5rKNYsUwlKuOZcvmOs1F-MqEfLrPLkHBz78K0-hDLhJuLDI_XLsBn2gaxAaeR6fp-D4aweyG0eITWM1iY4g5a732ZfJ0ssRgAuu2Zx2nE0iIPpe9whfer_3-wKHnt_geEc5W2-nWn_wxtBMKIe62HN9GaqbbQ44FvyHsD33wJp5o_R7-PR5_P73_-8uVtRuNx41Lp87rBY2B5P8qbOa4t9hnAVogUwxQBWJ7e3faqGj5hz4zb93Yt8FLsiwlwiS8W1NY0cPUDWPU0PjJmhoM06xV2_dSm-FuFgUyCeT1zjseh3O8FmvSPLw5PotB1IVIU4jMqNezQJAMM5IprQlSRWSuJBXJUUnArB6LLFNWJNUpamwMDsCmPSUqssTpT5CXqVHVlthHWMD9SLU1SqILqmJSMyJgD_tqCGSCWXfRu8diFCpLkrjPGVPij8ZSLVSd10f7SetZKcfzF7sB5cGnjBLT9D3VzJUI8CgAiWRbADmFYcAexlIBk1h1C6YSURnfR7sL_IkT1XAAeurocQgiM3M-Jfw5EDD4Nc8Dv5NV_We-hJ-Ojvhiejj7uoKdgQl1pWsp2Uee6-W5eAwm6lm_CTP8D2q__xw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ENSO%E2%80%90Related+Precursor+Pathways+of+Interannual+Thermal+Anomalies+Identified+Using+a+Transformer%E2%80%90Based+Deep+Learning+Model+in+the+Tropical+Pacific&rft.jtitle=Geophysical+research+letters&rft.au=Zhou%2C+Lu&rft.au=Rong%E2%80%90Hua+Zhang&rft.date=2024-06-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=12&rft_id=info:doi/10.1029%2F2023GL107347&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |