ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific

Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 12
Main Authors Zhou, Lu, Zhang, Rong‐Hua
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.06.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Plain Language Summary Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions. Key Points A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability
AbstractList Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions.
Abstract Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions.
Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions. A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability
Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions. Plain Language Summary Deep learning (DL) methods have emerged as a powerful tool for improving El Niño‐Southern Oscillation (ENSO) predictions. But DL‐based modeling looks like “black boxes” without effectively telling why good predictions can be made. In this study, we conduct interpretable analyses to uncover the key physical processes responsible for successful ENSO predictions using a DL‐based prediction model. Results identify ENSO‐related thermal precursors in the equatorial‐northern Pacific region, which precondition ENSO evolution months ahead of time. Specifically, interannual thermal precursors are illustrated to have consistent and coherent phase propagations in the tropical Pacific basin: eastward along the equator, westward across the off‐equatorial tropical North Pacific, and apparent meridional phase connections both in the western and eastern boundaries. From the prediction perspective, the demonstrated existence of upper‐ocean temperature anomaly pathways acts to enhance long‐lead ENSO predictability in the purely data‐driven DL framework. These physically explainable results indicate that the neural networks, despite their absence of explicit physical constraints, are capable of representing predictable precursors whose information is included in the input predictors, being able to make convincing and successful ENSO predictions. Key Points A deep learning (DL) model is used to conduct El Niño‐Southern Oscillation (ENSO) predictability studies for physical interpretability DL model experiments are made to identify ENSO‐related thermal precursors along a counterclockwise pathway encircling the tropical Pacific The existence of upper‐ocean thermal anomaly pathways is demonstrated to enhance long‐lead ENSO predictability
Author Zhou, Lu
Zhang, Rong‐Hua
Author_xml – sequence: 1
  givenname: Lu
  orcidid: 0000-0002-5747-937X
  surname: Zhou
  fullname: Zhou, Lu
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Rong‐Hua
  orcidid: 0000-0002-3332-7849
  surname: Zhang
  fullname: Zhang, Rong‐Hua
  email: rzhang@nuist.edu.cn
  organization: Laoshan Laboratory
BookMark eNp9kcFuEzEQhi1UJNLAjQewxJWAZ70br4-ltCFSoFFJz5bXHjeONnawN6py4xE4ceZZeBSeBJcUCSGBL2PZ3__NSHNKTkIMSMhzYK-AVfJ1xSo-WwATvBaPyAhkXU9axsQJGTEmy70S0yfkNOcNY4wzDiPy9eLDx6sfn79cY68HtHSZ0OxTjoku9bC-04dMo6PzMGDSIex1T1drTFvdf_92FmKpHjOdWwyDd77kb7IPt1TTVcGzi2mLqdjf6Fz-3iLu6AJ1CvfM-2ixpz7QYY0Fjztvin2pTRGZp-Sx033GZw91TG4uL1bn7yaLq9n8_GwxMTUwmGgLrO5aAJBGWs6NaJzruGNVo2sJRrbQtaa24NB0zk1raFwlGa-4Q2cbw8dkfvTaqDdql_xWp4OK2qtfDzHdKp0Gb3pUDESnRculZbx4WNfVbesa0YAFrtEW14uja5fipz3mQW3iPoUyvuJMgJSClzMm1ZEyKeac0CnjBz34GIakfa-Aqftdqj93WUIv_wr9HvUf-EOPO9_j4b-sml0vpmLKgf8EPTWy8g
CitedBy_id crossref_primary_10_1007_s11430_024_1396_x
crossref_primary_10_1038_s41612_024_00741_y
crossref_primary_10_1016_j_ocemod_2025_102500
crossref_primary_10_1360_N072024_0038
Cites_doi 10.1175/1520‐0469(1997)054<0830:aeorpf>2.0.co;2
10.1002/2017gl073475
10.1175/1520‐0493(1983)111<0370:amotoa>2.0.co;2
10.1029/2023gl105175
10.1093/nsr/nwac044
10.1038/36081
10.1029/2009jd012861
10.1175/1520‐0469(1988)045<3283:adaofe>2.0.co;2
10.1175/1520‐0469(1989)046<1687:iviata>2.0.co;2
10.1175/1520‐0469(1991)048<0584:tssstm>2.0.co;2
10.1175/bams‐d‐11‐00111.2
10.1007/s11434‐016‐1064‐4
10.1038/s41467‐023‐41551‐9
10.1029/96jc01805
10.1038/s41586‐023‐06185‐3
10.1175/1520‐0469(1997)054<0811:aeorpf>2.0.co;2
10.1029/2012gl051740
10.1038/s41586‐019‐1559‐7
10.1029/2011gl048275
10.1016/j.scib.2024.04.048
10.1029/2007gl033065
10.1029/2021gl097190
10.1175/JCLI3812.1
10.1175/1520‐0485(2000)030<0294:ASODAA>2.0.CO;2
10.5194/gmd‐14‐6977‐2021
10.1126/science.228.4703.1085
10.1126/sciadv.adf2827
10.1038/321827a0
10.1038/s43247‐021‐00295‐4
10.5194/gmd‐9‐1937‐2016
10.12157/IOCAS.20230829.001
10.1175/1520‐0493(1969)097<0163:atftep>2.3.co;2
10.1029/2023gl104034
10.5194/os‐15‐779‐2019
10.1175/1520‐0469(1988)045<0549:viacom>2.0.co;2
10.1038/s41467‐023‐36053‐7
10.1175/1520‐0485(1989)019<0551:otrooe>2.0.co;2
10.5194/gmd‐11‐3659‐2018
10.1175/jpo‐d‐15‐0118.1
10.1175/2007MWR1978.1
10.1029/2023jc020119
10.1029/2003gl016872
10.1175/jcli‐d‐16‐0880.1
10.24381/cds.67e8eeb7
10.1175/1520‐0493(1995)123<0460:AOASFS>2.0.CO;2
10.1175/1520‐0493(1998)126<1013:AICMFE>2.0.CO;2
10.1007/s00376‐021‐1368‐4
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL107347
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_017ba7839d034150bb488f5751d13aed
10_1029_2023GL107347
GRL67631
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42030410
– fundername: Strategic Priority Research Program of CAS
  funderid: XDB40000000
– fundername: Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology
– fundername: Laoshan Laboratory
  funderid: LSKJ202202402
– fundername: the Startup Foundation for Introducing Talent of NUIST
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
PUEGO
ID FETCH-LOGICAL-c4101-ad104b81119c9d33c75ffb3f025a491c981b8c4d1fecbff6415f290323fefd5c3
IEDL.DBID 24P
ISSN 0094-8276
IngestDate Wed Aug 27 01:32:03 EDT 2025
Fri Jul 25 10:33:53 EDT 2025
Thu Jul 24 02:12:49 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Wed Aug 20 07:26:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-ad104b81119c9d33c75ffb3f025a491c981b8c4d1fecbff6415f290323fefd5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5747-937X
0000-0002-3332-7849
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107347
PQID 3071997333
PQPubID 54723
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_017ba7839d034150bb488f5751d13aed
proquest_journals_3071997333
crossref_citationtrail_10_1029_2023GL107347
crossref_primary_10_1029_2023GL107347
wiley_primary_10_1029_2023GL107347_GRL67631
PublicationCentury 2000
PublicationDate 28 June 2024
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 28 June 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_10_2_2_1
e_1_2_10_1_27_1
e_1_2_10_1_29_1
e_1_2_10_1_23_1
e_1_2_10_1_46_1
e_1_2_10_1_25_1
e_1_2_10_1_48_1
e_1_2_10_1_42_1
e_1_2_10_1_21_1
e_1_2_10_1_44_1
e_1_2_10_1_40_1
Behringer D. (e_1_2_10_1_6_1) 2004
e_1_2_10_1_9_1
e_1_2_10_1_7_1
e_1_2_10_1_16_1
e_1_2_10_1_39_1
e_1_2_10_1_18_1
e_1_2_10_1_12_1
e_1_2_10_1_35_1
e_1_2_10_1_14_1
e_1_2_10_1_37_1
e_1_2_10_1_31_1
e_1_2_10_1_5_1
e_1_2_10_1_10_1
e_1_2_10_1_33_1
e_1_2_10_1_3_1
e_1_2_10_2_3_1
e_1_2_10_1_28_1
e_1_2_10_1_24_1
e_1_2_10_1_45_1
e_1_2_10_1_26_1
e_1_2_10_1_47_1
e_1_2_10_1_20_1
e_1_2_10_1_41_1
e_1_2_10_1_22_1
e_1_2_10_1_43_1
Vaswani A. (e_1_2_10_1_38_1) 2017; 30
e_1_2_10_1_8_1
e_1_2_10_1_17_1
e_1_2_10_1_19_1
e_1_2_10_1_2_1
e_1_2_10_1_13_1
e_1_2_10_1_34_1
e_1_2_10_1_15_1
e_1_2_10_1_36_1
e_1_2_10_1_30_1
e_1_2_10_1_4_1
e_1_2_10_1_11_1
e_1_2_10_1_32_1
References_xml – ident: e_1_2_10_1_24_1
  doi: 10.1175/1520‐0469(1997)054<0830:aeorpf>2.0.co;2
– ident: e_1_2_10_1_39_1
  doi: 10.1002/2017gl073475
– ident: e_1_2_10_1_28_1
  doi: 10.1175/1520‐0493(1983)111<0370:amotoa>2.0.co;2
– ident: e_1_2_10_1_36_1
  doi: 10.1029/2023gl105175
– ident: e_1_2_10_1_47_1
  doi: 10.1093/nsr/nwac044
– ident: e_1_2_10_1_42_1
  doi: 10.1038/36081
– ident: e_1_2_10_1_25_1
  doi: 10.1029/2009jd012861
– ident: e_1_2_10_1_35_1
  doi: 10.1175/1520‐0469(1988)045<3283:adaofe>2.0.co;2
– ident: e_1_2_10_1_5_1
  doi: 10.1175/1520‐0469(1989)046<1687:iviata>2.0.co;2
– ident: e_1_2_10_1_32_1
  doi: 10.1175/1520‐0469(1991)048<0584:tssstm>2.0.co;2
– ident: e_1_2_10_1_3_1
  doi: 10.1175/bams‐d‐11‐00111.2
– ident: e_1_2_10_1_40_1
  doi: 10.1007/s11434‐016‐1064‐4
– ident: e_1_2_10_1_26_1
  doi: 10.1038/s41467‐023‐41551‐9
– ident: e_1_2_10_1_41_1
  doi: 10.1029/96jc01805
– ident: e_1_2_10_1_8_1
  doi: 10.1038/s41586‐023‐06185‐3
– ident: e_1_2_10_1_23_1
  doi: 10.1175/1520‐0469(1997)054<0811:aeorpf>2.0.co;2
– ident: e_1_2_10_1_21_1
  doi: 10.1029/2012gl051740
– ident: e_1_2_10_1_20_1
  doi: 10.1038/s41586‐019‐1559‐7
– ident: e_1_2_10_1_30_1
  doi: 10.1029/2011gl048275
– ident: e_1_2_10_1_43_1
  doi: 10.1016/j.scib.2024.04.048
– ident: e_1_2_10_2_3_1
  doi: 10.1029/2007gl033065
– ident: e_1_2_10_1_37_1
  doi: 10.1029/2021gl097190
– ident: e_1_2_10_1_33_1
  doi: 10.1175/JCLI3812.1
– ident: e_1_2_10_1_12_1
  doi: 10.1175/1520‐0485(2000)030<0294:ASODAA>2.0.CO;2
– ident: e_1_2_10_1_31_1
  doi: 10.5194/gmd‐14‐6977‐2021
– volume: 30
  issue: 2017
  year: 2017
  ident: e_1_2_10_1_38_1
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_1_10_1
  doi: 10.1126/science.228.4703.1085
– ident: e_1_2_10_1_45_1
  doi: 10.1126/sciadv.adf2827
– ident: e_1_2_10_1_11_1
  doi: 10.1038/321827a0
– ident: e_1_2_10_1_27_1
  doi: 10.1038/s43247‐021‐00295‐4
– ident: e_1_2_10_1_16_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_10_1_46_1
  doi: 10.12157/IOCAS.20230829.001
– ident: e_1_2_10_1_9_1
  doi: 10.1175/1520‐0493(1969)097<0163:atftep>2.3.co;2
– ident: e_1_2_10_1_19_1
  doi: 10.1029/2023gl104034
– ident: e_1_2_10_1_48_1
  doi: 10.5194/os‐15‐779‐2019
– ident: e_1_2_10_1_34_1
  doi: 10.1175/1520‐0469(1988)045<0549:viacom>2.0.co;2
– ident: e_1_2_10_1_17_1
  doi: 10.1038/s41467‐023‐36053‐7
– ident: e_1_2_10_1_4_1
  doi: 10.1175/1520‐0485(1989)019<0551:otrooe>2.0.co;2
– ident: e_1_2_10_1_2_1
  doi: 10.5194/gmd‐11‐3659‐2018
– start-page: 11
  volume-title: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th annual meeting
  year: 2004
  ident: e_1_2_10_1_6_1
– ident: e_1_2_10_2_2_1
  doi: 10.1175/jpo‐d‐15‐0118.1
– ident: e_1_2_10_1_13_1
  doi: 10.1175/2007MWR1978.1
– ident: e_1_2_10_1_18_1
  doi: 10.1029/2023jc020119
– ident: e_1_2_10_1_29_1
  doi: 10.1029/2003gl016872
– ident: e_1_2_10_1_14_1
  doi: 10.1175/jcli‐d‐16‐0880.1
– ident: e_1_2_10_1_15_1
  doi: 10.24381/cds.67e8eeb7
– ident: e_1_2_10_1_22_1
  doi: 10.1175/1520‐0493(1995)123<0460:AOASFS>2.0.CO;2
– ident: e_1_2_10_1_7_1
  doi: 10.1175/1520‐0493(1998)126<1013:AICMFE>2.0.CO;2
– ident: e_1_2_10_1_44_1
  doi: 10.1007/s00376‐021‐1368‐4
SSID ssj0003031
Score 2.4769027
Snippet Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the...
Abstract Recent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However,...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Deep learning
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
ENSO predictions
Equatorial regions
Evolution
explainable artificial intelligence (XAI)
Initial conditions
multivariate three‐dimensional (3D) predictions
Neural networks
Neural stem cells
Ocean temperature
Oceans
Precursors
Prediction models
Southern Oscillation
Temperature anomalies
thermal precursors
Transformers
transformer‐based model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LattAFB1KoNBNSV_UeXEX7aqISho9ZpbNy6akbkhi8E5oXqVgbGOnlOz6CV1lnW_Jp-RLemY0Du6izSYrCTEMw9yjc88dXd3L2DspWiczbRNnpE0KyV0iqtQkqRalznQpS-3PO74Mq8Go-Dwux2utvnxOWFceuNu4j0CMamu4cZOCcMtUKUDO-a8FJuOtNZ594fNWwVTkYBBz1ytPFonI6yqmvKe59NE-758g6uG-pcqaMwo1-_8SmutyNfib4032PApF-tQt8AV7Yqcv2dN-aMR7hbuQuqmXr9j10fD8692v3yGtzRo6Xfgj9OVsQadQdz_bqyXNHIWTv64AKQEaoOPJ7Q1if1wRK1P3v66DHqWQREAtXawkrV1g9n14O0OH1s4plmT9Rr6P2oS-TwkiEsNnc29wiml-r9no-OjiYJDEbguJLvBeJq1BZKYEuE9qaTjXdemc4g6iqC1gTgmBK3RhMme1cq6CMVwuU55zZ50pNX_DNqazqX3LyAAXuVE2q3VdwG6t4CqV4F1XCwtB2WMfVtve6FiK3HfEmDThk3gum3Uj9dj7-9HzrgTHP8btewvej_GFs8MDwKmJcGoeglOP7azs38S3edmAB30-DuccKw-Y-O9Cmv7ZSQXezrYeY0Xb7BkmL3x6Wi522Mbl4ofdhRC6VHsB838AiQcDAg
  priority: 102
  providerName: Directory of Open Access Journals
Title ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL107347
https://www.proquest.com/docview/3071997333
https://doaj.org/article/017ba7839d034150bb488f5751d13aed
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NattAEF7ShEIvoU1a6iY1e0hPRVTSrqTdo906DiV1TRKX0IvY31AwkpESQm55hJx67rPkUfIknV2tjXNooCcZMTJrz863345mv0HogDNheaJMZDU3EeXERiyPdRQrlqlEZTxTLt_xbZIfzejX8-w8JNzcWZhOH2KVcHOR4fHaBbiQbRAbcBqZru_3-Bh2L4QWz9CWO13rSvpSOl0hMcBz1zGP04ilRR4K3-H5T-tPP1qSvHL_I7q5Tlr9qnP4Em0HuogHnX9foQ1T7aDnY9-O9wY--QJO1e6i36PJ6feH2ztf3GY0njYukd7WDZ4Cx7sWNy2uLfb5v06GFMMEAVCe3_8ZVDVcYceMu1O7Flgp9qUEWOCzJbE1DXz7ENY8jb8Ys8BBmPUCu25qc_yrwkAlwbxeOLfjUOz3Gs0OR2efj6LQcyFSFKIzEhr2Z5IBAnLFNSGqyKyVxAI1EhScyoHmMkV1Yo2S1uaw_tuUxyQl1lidKfIGbVZ1Zd4irGF2pFqapFAF1TERjMiYA_raghmglT30cfm3lyoIkru-GPPSvxhPebnupB76sLJedEIc_7AbOg-ubJx8tr9RNxdliMYSYEiKArghDAt-QSwl4Jh1r6B0QoTRPbS_9H8ZYrotAQ1dVQ4hBEbu58STAynHJ8c5oHfy7r-s99ALuE9dNVrK9tHmZXNl3gPvuZR9P7n7aGvwY_ZzBtfhaDI96fsswl_a6_-5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF5BKwQXxK8aKLAHOCEL27u2d48ptAmQhgoSVHFZef8qpMiOnCLUG4_AiTPPwqPwJMysN1F6AIlTomhibTIz3347Hn9DyFMpai8z4xJvpUu4ZD4RZWqT1IjCZKaQhcF6x_G0HM_5m9PiNM45xWdhen2ITcENMyPgNSY4FqSj2gCKZOLg79EEji-MV1fJLhIbCOvd4cf5p_kGjAGh-6F5kicir8rY-w5XeLH9_Uu7UhDvv8Q4t3lr2HiObpGbkTHSYe_i2-SKa-6Qa6MwkfcC3oUeTrO6S34cTj-8-_3te-hvc5aedFhLX7UdPQGa97W-WNHW01AC7JVIKcQI4PLi189h08IrHJpp_-CuB2JKQzcBrelszW1dB1c_gG3P0lfOLWnUZj2jOFBtQT83FNgkmLdL9DyN_X73yPzocPZynMSxC4nhkKBJbeGIpgWAoDTSMmaqwnvNPLCjmoNfJTBdYbjNvDPa-xIogM9lynLmnbeFYffJTtM2bo9QCwGSW-2yylTcpqwWTKcSANhXwgGzHJDn679dmahJjqMxFircG8-l2nbSgDzbWC97LY6_2B2gBzc2qKAdPmi7MxUTUgES6boCegjLgl-Qag1Q5vEulM1Y7eyA7K_9r2JarxTDGJMVYwxWHmLinwtRo_eTEgA8e_Bf1k_I9fHseKImr6dvH5IbYMOxOS0X-2TnvPviHgENOtePY6j_AZEUALY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELZKKhCXihZQQwv1gZ7Qit21d9c-pj9JC2kaQYMqLtb6r0KKdqNNEeqNR-DEuc_SR-mTMPY6UXoAiVOiaLLy7ng-fx7PfoPQW85KyxNlIqu5iSgnNmJ5rKNYsUwlKuOZcvmOs1F-MqEfLrPLkHBz78K0-hDLhJuLDI_XLsBn2gaxAaeR6fp-D4aweyG0eITWM1iY4g5a732ZfJ0ssRgAuu2Zx2nE0iIPpe9whfer_3-wKHnt_geEc5W2-nWn_wxtBMKIe62HN9GaqbbQ44FvyHsD33wJp5o_R7-PR5_P73_-8uVtRuNx41Lp87rBY2B5P8qbOa4t9hnAVogUwxQBWJ7e3faqGj5hz4zb93Yt8FLsiwlwiS8W1NY0cPUDWPU0PjJmhoM06xV2_dSm-FuFgUyCeT1zjseh3O8FmvSPLw5PotB1IVIU4jMqNezQJAMM5IprQlSRWSuJBXJUUnArB6LLFNWJNUpamwMDsCmPSUqssTpT5CXqVHVlthHWMD9SLU1SqILqmJSMyJgD_tqCGSCWXfRu8diFCpLkrjPGVPij8ZSLVSd10f7SetZKcfzF7sB5cGnjBLT9D3VzJUI8CgAiWRbADmFYcAexlIBk1h1C6YSURnfR7sL_IkT1XAAeurocQgiM3M-Jfw5EDD4Nc8Dv5NV_We-hJ-Ojvhiejj7uoKdgQl1pWsp2Uee6-W5eAwm6lm_CTP8D2q__xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ENSO%E2%80%90Related+Precursor+Pathways+of+Interannual+Thermal+Anomalies+Identified+Using+a+Transformer%E2%80%90Based+Deep+Learning+Model+in+the+Tropical+Pacific&rft.jtitle=Geophysical+research+letters&rft.au=Zhou%2C+Lu&rft.au=Rong%E2%80%90Hua+Zhang&rft.date=2024-06-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=12&rft_id=info:doi/10.1029%2F2023GL107347&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon