A Chain‐Elongated Oligophenylenevinylene Electrolyte Increases Microbial Membrane Stability

A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid‐bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 18; pp. e1808021 - n/a
Main Authors Zhou, Cheng, Chia, Geraldine W. N., Ho, James C. S., Moreland, Alex S., Seviour, Thomas, Liedberg, Bo, Parikh, Atul N., Kjelleberg, Staffan, Hinks, Jamie, Bazan, Guillermo C.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid‐bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichia coli treated with S6 exhibits a twofold improvement in butanol tolerance, a relevant feature to achieve within the general context of modifying microorganisms used in biofuel production. Filamentous growth, a morphological stress response to butanol toxicity in E. coli, is observed in untreated cells after incubation with 0.9% butanol (v/v), but is mitigated by S6 treatment. Real‐time fluorescence imaging using giant unilamellar vesicles reveals the extent to which S6 counters membrane instability. Moreover, S6 also reduces butanol‐induced lipopolysaccharide release from the outer membrane to further maintain cell integrity. These findings highlight a deliberate effort in the molecular design of a chain‐elongated COE to stabilize microbial membranes against environmental challenges. A novel membrane‐intercalating phenylenevinylene oligoelectrolyte S6, comprising a long conjugated backbone, is designed, which can be used to attain a twofold improvement in the butanol tolerance of Escherichia coli. Biophysical experiments based on giant unilamellar vesicles indicate that S6 counters membrane instability caused by butanol. This study demonstrates the power of materials design to achieve simple‐to‐apply methods that aid in inproving strategic properties of microbes.
AbstractList A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid-bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichia coli treated with S6 exhibits a twofold improvement in butanol tolerance, a relevant feature to achieve within the general context of modifying microorganisms used in biofuel production. Filamentous growth, a morphological stress response to butanol toxicity in E. coli, is observed in untreated cells after incubation with 0.9% butanol (v/v), but is mitigated by S6 treatment. Real-time fluorescence imaging using giant unilamellar vesicles reveals the extent to which S6 counters membrane instability. Moreover, S6 also reduces butanol-induced lipopolysaccharide release from the outer membrane to further maintain cell integrity. These findings highlight a deliberate effort in the molecular design of a chain-elongated COE to stabilize microbial membranes against environmental challenges.
A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid‐bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichia coli treated with S6 exhibits a twofold improvement in butanol tolerance, a relevant feature to achieve within the general context of modifying microorganisms used in biofuel production. Filamentous growth, a morphological stress response to butanol toxicity in E. coli, is observed in untreated cells after incubation with 0.9% butanol (v/v), but is mitigated by S6 treatment. Real‐time fluorescence imaging using giant unilamellar vesicles reveals the extent to which S6 counters membrane instability. Moreover, S6 also reduces butanol‐induced lipopolysaccharide release from the outer membrane to further maintain cell integrity. These findings highlight a deliberate effort in the molecular design of a chain‐elongated COE to stabilize microbial membranes against environmental challenges. A novel membrane‐intercalating phenylenevinylene oligoelectrolyte S6, comprising a long conjugated backbone, is designed, which can be used to attain a twofold improvement in the butanol tolerance of Escherichia coli. Biophysical experiments based on giant unilamellar vesicles indicate that S6 counters membrane instability caused by butanol. This study demonstrates the power of materials design to achieve simple‐to‐apply methods that aid in inproving strategic properties of microbes.
Abstract A novel conjugated oligoelectrolyte (COE) material, named S6 , is designed to have a lipid‐bilayer stabilizing topology afforded by an extended oligophenylenevinylene backbone. S6 intercalates biological membranes acting as a hydrophobic support for glycerophospholipid acyl chains. Indeed, Escherichia coli treated with S6 exhibits a twofold improvement in butanol tolerance, a relevant feature to achieve within the general context of modifying microorganisms used in biofuel production. Filamentous growth, a morphological stress response to butanol toxicity in E. coli , is observed in untreated cells after incubation with 0.9% butanol (v/v), but is mitigated by S6 treatment. Real‐time fluorescence imaging using giant unilamellar vesicles reveals the extent to which S6 counters membrane instability. Moreover, S6 also reduces butanol‐induced lipopolysaccharide release from the outer membrane to further maintain cell integrity. These findings highlight a deliberate effort in the molecular design of a chain‐elongated COE to stabilize microbial membranes against environmental challenges.
Author Zhou, Cheng
Bazan, Guillermo C.
Parikh, Atul N.
Liedberg, Bo
Seviour, Thomas
Hinks, Jamie
Ho, James C. S.
Kjelleberg, Staffan
Chia, Geraldine W. N.
Moreland, Alex S.
Author_xml – sequence: 1
  givenname: Cheng
  surname: Zhou
  fullname: Zhou, Cheng
  organization: Nanyang Technological University
– sequence: 2
  givenname: Geraldine W. N.
  surname: Chia
  fullname: Chia, Geraldine W. N.
  organization: Nanyang Technological University
– sequence: 3
  givenname: James C. S.
  surname: Ho
  fullname: Ho, James C. S.
  organization: Nanyang Technological University
– sequence: 4
  givenname: Alex S.
  surname: Moreland
  fullname: Moreland, Alex S.
  organization: University of California
– sequence: 5
  givenname: Thomas
  surname: Seviour
  fullname: Seviour, Thomas
  organization: Nanyang Technological University
– sequence: 6
  givenname: Bo
  surname: Liedberg
  fullname: Liedberg, Bo
  organization: Nanyang Technological University
– sequence: 7
  givenname: Atul N.
  surname: Parikh
  fullname: Parikh, Atul N.
  organization: University of California
– sequence: 8
  givenname: Staffan
  surname: Kjelleberg
  fullname: Kjelleberg, Staffan
  organization: Nanyang Technological University
– sequence: 9
  givenname: Jamie
  surname: Hinks
  fullname: Hinks, Jamie
  email: jhinks@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 10
  givenname: Guillermo C.
  orcidid: 0000-0002-2537-0310
  surname: Bazan
  fullname: Bazan, Guillermo C.
  email: bazan@chem.ucsb.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30908801$$D View this record in MEDLINE/PubMed
BookMark eNqFkM1uEzEUhS1URNPCliUaiQ2bCffak4m9jNIAlRp1ASyR5Z-b1pVnJtgT0Ox4BJ6RJ8FVSpHYsLqb7x6d852xk37oibGXCHME4G-N78ycA0qQwPEJm-GCY92AWpywGSixqFXbyFN2lvMdAKgW2mfsVIACKQFn7MuqWt-a0P_68XMTh_7GjOSr6xhuhv0t9VOknr6F4602kdyYhjiNVF32LpHJlKttcGmwwcRqS51NpoAfR2NDDOP0nD3dmZjpxcM9Z5_fbT6tP9RX1-8v16ur2jUIWCtAZ1sheGOFASs4emXs0nLvvFjIJXjckRNoSRpveZnrlg045-VOtr4lcc7eHHP3afh6oDzqLmRHMZY2wyFrjmopZSsVFvT1P-jdcEh9aac5R1mkomwLNT9SZVvOiXZ6n0Jn0qQR9L14fS9eP4ovD68eYg-2I_-I_zFdAHUEvodI03_i9Opiu_ob_hss9pKP
CitedBy_id crossref_primary_10_1002_anie_202305189
crossref_primary_10_1002_jev2_12354
crossref_primary_10_1021_acs_biomac_1c01498
crossref_primary_10_1039_D2NJ03906K
crossref_primary_10_1002_adma_202201989
crossref_primary_10_1371_journal_pone_0224816
crossref_primary_10_1002_anie_202015247
crossref_primary_10_1016_j_xcrp_2023_101429
crossref_primary_10_1021_acsami_0c12038
crossref_primary_10_1021_jacs_1c05055
crossref_primary_10_1002_anie_202318632
crossref_primary_10_1002_adfm_202305962
crossref_primary_10_3390_metabo12090784
crossref_primary_10_1039_D2QM00761D
crossref_primary_10_1002_anbr_202000044
crossref_primary_10_1002_ange_202305189
crossref_primary_10_1080_13543776_2020_1822818
crossref_primary_10_1002_ange_202015247
crossref_primary_10_1002_ange_202318632
crossref_primary_10_1002_anie_202004448
crossref_primary_10_1002_chem_202003391
crossref_primary_10_1039_D2CS00014H
crossref_primary_10_3390_bios14020105
crossref_primary_10_1002_advs_201903241
crossref_primary_10_1039_D0EN00983K
crossref_primary_10_1126_sciadv_ade2996
crossref_primary_10_1002_adfm_202004068
crossref_primary_10_1002_ange_202004448
crossref_primary_10_1021_acsami_1c06659
Cites_doi 10.1007/s00253-016-7771-6
10.1002/anie.201704729
10.1039/C8SC01130C
10.1021/acsnano.7b08056
10.1080/08982100802310261
10.1016/j.jbiosc.2014.05.023
10.1016/j.jmb.2016.08.013
10.1002/anie.201412049
10.1021/ja412695w
10.1002/adfm.201707408
10.1038/nrmicro.2017.173
10.1002/adma.201204271
10.1021/ja1016156
10.1002/cssc.201500194
10.1111/j.1365-2958.2006.05522.x
10.1128/mBio.00047-16
10.1128/jb.175.4.1118-1125.1993
10.1021/la403409t
10.1073/pnas.0912872107
10.1039/b311191c
10.1002/adma.201706063
10.1039/b923503e
10.1128/jb.114.3.897-908.1973
10.1016/j.sbi.2018.07.003
10.1002/ange.201803103
10.1016/j.nbt.2009.06.984
10.1038/nmat4781
10.1039/9781782628477-00098
10.1002/adfm.201504480
10.1002/adma.201602547
10.1007/s00253-003-1465-6
10.1039/C6SC00630B
10.1002/adma.201706759
10.1021/nl503668q
10.1002/adma.201500487
10.1038/nrmicro3525
10.1039/C4SC02789B
10.1002/anie.201706910
10.1038/nchem.2713
10.1023/A:1020573408652
10.1021/jacs.7b08440
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201808021
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201808021
30908801
ADMA201808021
Genre article
Journal Article
GrantInformation_xml – fundername: Collaborative Biotechnologies
  funderid: W911NF‐09‐D‐0001
– fundername: Singapore Ministry of Education
  funderid: M4360005
– fundername: NTU
  funderid: M4081984.120
– fundername: Singapore Ministry of Education
  grantid: M4360005
– fundername: Collaborative Biotechnologies
  grantid: W911NF-09-D-0001
– fundername: NTU
  grantid: M4081984.120
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
.Y3
31~
6TJ
8WZ
A6W
AAYOK
AAYXX
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4101-901cb63324b3a0b321d9ab7b2dcd35870d1fec31be8adb2201c740ccd8f86d6e3
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Aug 16 05:26:11 EDT 2024
Thu Oct 10 16:56:41 EDT 2024
Thu Sep 26 15:57:09 EDT 2024
Wed Oct 16 00:51:38 EDT 2024
Sat Aug 24 00:56:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords conjugated oligoelectrolytes
membrane integrity
biofuels
membrane stability
butanol tolerance
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-901cb63324b3a0b321d9ab7b2dcd35870d1fec31be8adb2201c740ccd8f86d6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2537-0310
PMID 30908801
PQID 2218100186
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2197886891
proquest_journals_2218100186
crossref_primary_10_1002_adma_201808021
pubmed_primary_30908801
wiley_primary_10_1002_adma_201808021_ADMA201808021
PublicationCentury 2000
PublicationDate May 3, 2019
PublicationDateYYYYMMDD 2019-05-03
PublicationDate_xml – month: 05
  year: 2019
  text: May 3, 2019
  day: 03
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010 2014; 132 30
2018; 130
1973; 114
2015; 27
2017 2018 2018 2017 2018; 9 140 9 29 30
2010; 107
2014 2017 2018; 56 30
2016; 428
2008; 18
2016 2016 2004; 100 7 64
2003; 5
2015; 119
2018; 51
2007 2015; 63 13
2014 2017 2016 2018 2018; 14 16 26 28 12
2015; 8
2013 2016; 25 7
2018 2002; 16 81
2014; 136
2009; 26
1993; 175
2017 2015 2010 2015; 56 54 3 6
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_22_2
e_1_2_4_22_1
e_1_2_4_1_1
e_1_2_4_1_3
e_1_2_4_2_2
e_1_2_4_3_1
e_1_2_4_1_2
e_1_2_4_2_1
e_1_2_4_1_5
e_1_2_4_2_4
e_1_2_4_3_3
e_1_2_4_4_2
e_1_2_4_5_1
e_1_2_4_1_4
e_1_2_4_2_3
e_1_2_4_3_2
e_1_2_4_4_1
e_1_2_4_6_2
e_1_2_4_7_1
e_1_2_4_2_5
e_1_2_4_3_4
e_1_2_4_4_3
e_1_2_4_6_1
e_1_2_4_8_2
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
Oliver J. D. (e_1_2_4_18_1) 1973; 114
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_15_2
e_1_2_4_16_3
e_1_2_4_16_2
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 56 54 3 6
  start-page: 10516 4904 544 203
  year: 2017 2015 2010 2015
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Energy Environ. Sci. Chem. Sci.
– volume: 428
  start-page: 4776
  year: 2016
  publication-title: J. Mol. Biol.
– volume: 114
  start-page: 897
  year: 1973
  publication-title: J. Bacteriol.
– volume: 27
  start-page: 2958
  year: 2015
  publication-title: Adv. Mater.
– volume: 16 81
  start-page: 304 61
  year: 2018 2002
  publication-title: Nat. Rev. Microbiol. Antonie Van Leeuwenhoek
– volume: 8
  start-page: 3718
  year: 2015
  publication-title: ChemSusChem
– volume: 9 140 9 29 30
  start-page: 537 1199 4730 1602547 1706759
  year: 2017 2018 2018 2017 2018
  publication-title: Nat. Chem. J. Am. Chem. Soc. Chem. Sci. Adv. Mater. Adv. Mater.
– volume: 26
  start-page: 117
  year: 2009
  publication-title: New Biotechnol.
– volume: 18
  start-page: 159
  year: 2008
  publication-title: J. Liposome Res.
– volume: 130
  start-page: 8201
  year: 2018
  publication-title: Angew. Chem.
– volume: 175
  start-page: 1118
  year: 1993
  publication-title: J. Bacteriol.
– volume: 63 13
  start-page: 545 605
  year: 2007 2015
  publication-title: Mol. Microbiol. Nat. Rev. Microbiol.
– volume: 25 7
  start-page: 1593 5714
  year: 2013 2016
  publication-title: Adv. Mater. Chem. Sci.
– volume: 100 7 64
  start-page: 9653 e00047 255
  year: 2016 2016 2004
  publication-title: Appl. Microbiol. Biotechnol. mBio Appl. Microbiol. Biotechnol.
– volume: 136
  start-page: 3736
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 56 30
  start-page: 98 13661 1706063
  year: 2014 2017 2018
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 132 30
  start-page: 10042 2429
  year: 2010 2014
  publication-title: J. Am. Chem. Soc. Langmuir
– volume: 5
  start-page: 5309
  year: 2003
  publication-title: Phys. Chem. Chem. Phys.
– volume: 107
  start-page: 5363
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 119
  start-page: 1
  year: 2015
  publication-title: J. Biosci. Bioeng.
– volume: 14 16 26 28 12
  start-page: 6737 236 1862 1707408 13
  year: 2014 2017 2016 2018 2018
  publication-title: Nano Lett. Nat. Mater. Adv. Funct. Mater. Adv. Funct. Mater. ACS Nano
– volume: 51
  start-page: 177
  year: 2018
  publication-title: Curr. Opin. Struct. Biol.
– ident: e_1_2_4_16_1
  doi: 10.1007/s00253-016-7771-6
– ident: e_1_2_4_3_1
  doi: 10.1002/anie.201704729
– ident: e_1_2_4_1_3
  doi: 10.1039/C8SC01130C
– ident: e_1_2_4_2_5
  doi: 10.1021/acsnano.7b08056
– ident: e_1_2_4_20_1
  doi: 10.1080/08982100802310261
– ident: e_1_2_4_13_1
  doi: 10.1016/j.jbiosc.2014.05.023
– ident: e_1_2_4_9_1
  doi: 10.1016/j.jmb.2016.08.013
– ident: e_1_2_4_3_2
  doi: 10.1002/anie.201412049
– ident: e_1_2_4_14_1
  doi: 10.1021/ja412695w
– ident: e_1_2_4_2_4
  doi: 10.1002/adfm.201707408
– ident: e_1_2_4_8_1
  doi: 10.1038/nrmicro.2017.173
– ident: e_1_2_4_6_1
  doi: 10.1002/adma.201204271
– ident: e_1_2_4_15_1
  doi: 10.1021/ja1016156
– ident: e_1_2_4_12_1
  doi: 10.1002/cssc.201500194
– ident: e_1_2_4_22_1
  doi: 10.1111/j.1365-2958.2006.05522.x
– ident: e_1_2_4_16_2
  doi: 10.1128/mBio.00047-16
– ident: e_1_2_4_17_1
  doi: 10.1128/jb.175.4.1118-1125.1993
– ident: e_1_2_4_15_2
  doi: 10.1021/la403409t
– ident: e_1_2_4_21_1
  doi: 10.1073/pnas.0912872107
– ident: e_1_2_4_19_1
  doi: 10.1039/b311191c
– ident: e_1_2_4_4_3
  doi: 10.1002/adma.201706063
– ident: e_1_2_4_3_3
  doi: 10.1039/b923503e
– volume: 114
  start-page: 897
  year: 1973
  ident: e_1_2_4_18_1
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.114.3.897-908.1973
  contributor:
    fullname: Oliver J. D.
– ident: e_1_2_4_10_1
  doi: 10.1016/j.sbi.2018.07.003
– ident: e_1_2_4_7_1
  doi: 10.1002/ange.201803103
– ident: e_1_2_4_11_1
  doi: 10.1016/j.nbt.2009.06.984
– ident: e_1_2_4_2_2
  doi: 10.1038/nmat4781
– ident: e_1_2_4_4_1
  doi: 10.1039/9781782628477-00098
– ident: e_1_2_4_2_3
  doi: 10.1002/adfm.201504480
– ident: e_1_2_4_1_4
  doi: 10.1002/adma.201602547
– ident: e_1_2_4_16_3
  doi: 10.1007/s00253-003-1465-6
– ident: e_1_2_4_6_2
  doi: 10.1039/C6SC00630B
– ident: e_1_2_4_1_5
  doi: 10.1002/adma.201706759
– ident: e_1_2_4_2_1
  doi: 10.1021/nl503668q
– ident: e_1_2_4_5_1
  doi: 10.1002/adma.201500487
– ident: e_1_2_4_22_2
  doi: 10.1038/nrmicro3525
– ident: e_1_2_4_3_4
  doi: 10.1039/C4SC02789B
– ident: e_1_2_4_4_2
  doi: 10.1002/anie.201706910
– ident: e_1_2_4_1_1
  doi: 10.1038/nchem.2713
– ident: e_1_2_4_8_2
  doi: 10.1023/A:1020573408652
– ident: e_1_2_4_1_2
  doi: 10.1021/jacs.7b08440
SSID ssj0009606
Score 2.4708254
Snippet A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid‐bilayer stabilizing topology afforded by an extended...
A novel conjugated oligoelectrolyte (COE) material, named S6, is designed to have a lipid-bilayer stabilizing topology afforded by an extended...
Abstract A novel conjugated oligoelectrolyte (COE) material, named S6 , is designed to have a lipid‐bilayer stabilizing topology afforded by an extended...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1808021
SubjectTerms biofuels
Butanol
butanol tolerance
Chains
conjugated oligoelectrolytes
E coli
Electrolytic cells
Elongation
Fluorescence
Lipids
Materials science
membrane integrity
membrane stability
Membranes
Microorganisms
Stability
Topology
Toxicity
Title A Chain‐Elongated Oligophenylenevinylene Electrolyte Increases Microbial Membrane Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808021
https://www.ncbi.nlm.nih.gov/pubmed/30908801
https://www.proquest.com/docview/2218100186
https://search.proquest.com/docview/2197886891
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB6kJz24L3UjguApdpLJNsdiW0SogljoRcJs1WJNxbaHevIn-Bv9Jb43aaLVg6CnJMy-vHnfTN58j5Bj2FUZyWXkAng3sEFh0uVMxG4sNEc3dipUeN-5fRmdd4KLbtj9cos_54coD9xQMux6jQIu5Kj2SRoqtOUN8pAY0d4k91iMNl2N60_-KITnlmyPhS6PgqRgbaR-bT75vFb6ATXnkatVPa0VIopK5xYnD6eTsTxVL9_4HP_TqlWyPMOlTj2fSGtkwWTrZOkLW-EGua07Z_ein72_vjUHwwzP37RzNejfITVBNgX1BUo2fzrN3LvOYDo2DixBaPluRk67b2mfoJy2eYRaQkQAu9Y8d7pJOq3mzdm5O_PO4KoA5BjtOpSMGAAyyQSVzPc0FzKWvlaahbAMaK9nFPOkSYSWPrRJxQFVSie9JNKRYVukkg0zs0Mc2vN4gERh6DUpYD3kyqWG0wSyMgGjVXJSjE76lJNwpDndsp9ih6Vlh1XJfjF46UwYR6mPMAa9D0ZVclQGgxjhvxFo6nACcTzYTidRwiGL7XzQy6IYRWMwCiG-Hbpf6pDWG-16-bX7l0R7ZBHeuTWsZPukMn6emAMAP2N5aCf4B0fX-2Y
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIAD-1LWICFxCjhxmsbHqosKNCChVuKCongpVJQUQXsoJz6Bb-RLmHGaQOGABKco8b6M59kZvyHkEHZVWnDh2wDeNWxQmLA5i0t2KVYc3djJosT7zuGF32h7Z9fFzJoQ78Kk_BD5gRtKhlmvUcDxQPrkkzU0VoY4yEFmRLxKPgMyz9B7Q_Xqk0EKAbqh22NFm_tekPE2UvdkMv2kXvoBNiexq1E-9UUismqnNif3x8OBOJYv3xgd_9WuJbIwhqZWOZ1Ly2RKJytk_gth4Sq5KVuVu7ibvL--1Xr9BI_glHXZ694iO0EyAg0GejZ9WrXUwU5vNNAWrEJo_K6frbBrmJ-gnFA_QDUhIuBdY6E7WiPteq1VadhjBw229ECU0bRDCp8BJhMspoK5juKxKAlXScWKsBIop6Mlc4QOYiVcaJMseVRKFXQCX_marZPppJ_oTWLRjsM95ApDx0ke6yBdLtWcBpCV9hgtkKNseKLHlIcjShmX3Qg7LMo7rEB2stGLxvL4HLmIZNABoV8gB3kwSBL-HoGm9ocQx4EddeAHHLLYSEc9L4pRtAejEOKasfulDlG5Gpbzt62_JNons41W2Iyapxfn22QOvnNjZ8l2yPTgaah3AQsNxJ6Z7R_5NP9-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7EuhQJCQOAWcOHXjY0VbsRUQAokLiuIlUFHSCtpDOfEJfCNfwozTBgoHJDhFifdlPM_O-A0hO7CrMlJI7gJ4N7BBYdIVLC675VgLdGOnSgrvOzfO-OF1cHxTuvlyiz_jh8gP3FAy7HqNAt7Ryf4naWisLW-Qh8SIeJN8IuAAfxEWXX4SSCE-t2x7rOQKHoRD2kbq74-mH1VLP7DmKHS1uqc-S-JhrTOTk4e9XlfuqZdvhI7_adYcmRkAU6eSzaR5MmbSBTL9ha5wkdxWnIP7uJm-v77VWu0UD-C0c95q3iE3QdoH_QVaNns6tcy9TqvfNQ6sQWj6bp6dRtPyPkE5DfMItYSIgHatfW5_iVzXa1cHh-7APYOrAhBkNOxQkjNAZJLFVDLf0yKWZelrpVkJ1gHtJUYxT5ow1tKHNqlyQJXSYRJyzQ1bJuNpOzWrxKGJJwJkCkO3SQFLkCyXGkFDyMoEjBbI7nB0ok7GwhFlfMt-hB0W5R1WIMXh4EUDaXyOfMQx6H6QF8h2HgxyhD9HoKntHsTxYD8d8lBAFivZoOdFMYrWYBRCfDt0v9QhqlQblfxt7S-JtsjkRbUenR6dnayTKfgsrJElK5Lx7lPPbAAQ6spNO9c_APbz_i0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Chain%E2%80%90Elongated+Oligophenylenevinylene+Electrolyte+Increases+Microbial+Membrane+Stability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Cheng&rft.au=Chia%2C+Geraldine+W.+N.&rft.au=Ho%2C+James+C.+S.&rft.au=Moreland%2C+Alex+S.&rft.date=2019-05-03&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=18&rft_id=info:doi/10.1002%2Fadma.201808021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201808021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon