Cyclodextrin Films with Fast Solvent Transport and Shape‐Selective Permeability

This study describes the molecular‐level design of a new type of filtration membrane made of crosslinked cyclodextrins—inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 29; no. 26
Main Authors Villalobos, Luis Francisco, Huang, Tiefan, Peinemann, Klaus‐Viktor
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study describes the molecular‐level design of a new type of filtration membrane made of crosslinked cyclodextrins—inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape‐sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester‐crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents. A filtration membrane made of crosslinked cyclodextrins is reported. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape‐sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester‐crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.
AbstractList This study describes the molecular‐level design of a new type of filtration membrane made of crosslinked cyclodextrins—inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape‐sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester‐crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.
This study describes the molecular‐level design of a new type of filtration membrane made of crosslinked cyclodextrins—inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape‐sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester‐crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents. A filtration membrane made of crosslinked cyclodextrins is reported. The channel‐like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape‐sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester‐crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.
This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester-crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose, shaped like hollow truncated cones. The channel-like cavities of cyclodextrins spawn numerous paths of defined aperture in the separation layer that can effectively discriminate between molecules. The transport of molecules through these membranes is highly shape-sensitive. In addition, the presence of hydrophobic (cavity) and hydrophilic (ester-crosslinked outer part) domains in these films results in high permeances for both polar and nonpolar solvents.
Author Villalobos, Luis Francisco
Huang, Tiefan
Peinemann, Klaus‐Viktor
Author_xml – sequence: 1
  givenname: Luis Francisco
  orcidid: 0000-0002-0745-4246
  surname: Villalobos
  fullname: Villalobos, Luis Francisco
  organization: Advanced Membranes and Porous Materials Center
– sequence: 2
  givenname: Tiefan
  surname: Huang
  fullname: Huang, Tiefan
  organization: Advanced Membranes and Porous Materials Center
– sequence: 3
  givenname: Klaus‐Viktor
  surname: Peinemann
  fullname: Peinemann, Klaus‐Viktor
  email: klausviktor.peinemann@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28437014$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPAlSNaiQuXDR5_ZX2MAgGkIkApZ8vrnVVdedfBdlpy4yfwG_klbJVSpEqI01ye553RvGfkZIwjEvIc6AIoZa9tN9gFo6CoUgIekRlIBrWgWp6QGdVc1lqJ5pSc5XxFKdUT94ScskbwJQUxI1_WBxdih99L8mO18WHI1Y0vl9XG5lJtY7jGsVQXyY55F1Op7NhV20u7w18_fm4xoCv-GqvPmAa0rQ--HJ6Sx70NGZ_dzTn5unl7sX5fn39692G9Oq-dAAp10zO-bNqlkq2EnnVaNJpxAGxbqSkiB9dgC8opp6XkoHpLuZSMS9oyZRWfk1fH3F2K3_aYixl8dhiCHTHus4FGg5CSTsqcvHyAXsV9GqfrDGhGBWit-US9uKP27YCd2SU_2HQwf541AYsj4FLMOWF_jwA1t22Y2zbMfRuTIB4IzhdbfBxLsj78W9NH7cYHPPxniVm9-bj66_4Gp3Gdkw
CitedBy_id crossref_primary_10_1016_j_seppur_2020_117370
crossref_primary_10_1002_cplu_202100473
crossref_primary_10_1016_j_carbon_2021_08_068
crossref_primary_10_1016_j_memsci_2023_121835
crossref_primary_10_1016_j_memsci_2023_121711
crossref_primary_10_1016_j_memsci_2022_120345
crossref_primary_10_1016_j_memsci_2022_120466
crossref_primary_10_1016_j_memsci_2023_122371
crossref_primary_10_1016_j_ces_2024_120925
crossref_primary_10_1016_j_memsci_2020_118938
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_1016_j_foodchem_2025_143253
crossref_primary_10_1016_j_jece_2025_116096
crossref_primary_10_1016_j_memsci_2024_123060
crossref_primary_10_1016_j_progpolymsci_2024_101815
crossref_primary_10_1016_j_cej_2023_146111
crossref_primary_10_1016_j_memsci_2021_119765
crossref_primary_10_1016_j_memsci_2020_117863
crossref_primary_10_1021_acssuschemeng_1c03561
crossref_primary_10_1016_j_memsci_2023_121969
crossref_primary_10_1002_chem_201802564
crossref_primary_10_1016_j_memsci_2023_122257
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_1002_admi_202001050
crossref_primary_10_1002_ange_202405891
crossref_primary_10_1016_j_seppur_2023_125282
crossref_primary_10_1016_j_memsci_2019_05_075
crossref_primary_10_3390_membranes11030184
crossref_primary_10_1016_j_memsci_2023_122382
crossref_primary_10_1021_acs_analchem_8b00239
crossref_primary_10_1039_D2RA01491B
crossref_primary_10_1039_C9TA12258C
crossref_primary_10_1016_j_seppur_2022_121985
crossref_primary_10_1016_j_desal_2024_117379
crossref_primary_10_1021_acsami_1c07584
crossref_primary_10_1002_ange_202212816
crossref_primary_10_1016_j_memsci_2020_118282
crossref_primary_10_1002_adma_201705933
crossref_primary_10_1016_j_electacta_2018_12_172
crossref_primary_10_1016_j_memsci_2023_121384
crossref_primary_10_1016_j_chemosphere_2022_137423
crossref_primary_10_1016_j_memsci_2022_120570
crossref_primary_10_1007_s10118_023_3012_5
crossref_primary_10_1016_j_seppur_2023_125852
crossref_primary_10_1016_j_chemosphere_2024_142808
crossref_primary_10_1002_adma_202404164
crossref_primary_10_1021_acs_chemmater_3c02448
crossref_primary_10_1126_sciadv_aax6976
crossref_primary_10_1016_j_seppur_2018_07_026
crossref_primary_10_1021_jacs_8b08788
crossref_primary_10_1016_j_memsci_2024_122537
crossref_primary_10_1126_sciadv_adg6134
crossref_primary_10_1016_j_memsci_2023_122123
crossref_primary_10_1016_j_desal_2025_118704
crossref_primary_10_1016_j_memsci_2020_118968
crossref_primary_10_1016_j_seppur_2024_129207
crossref_primary_10_1016_j_memsci_2021_119678
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1016_j_memsci_2018_10_052
crossref_primary_10_1021_acsami_0c16831
crossref_primary_10_1016_j_cjche_2024_06_032
crossref_primary_10_1016_j_memsci_2020_118465
crossref_primary_10_1002_anie_202405891
crossref_primary_10_1039_D0TA10632A
crossref_primary_10_1016_j_memsci_2023_121515
crossref_primary_10_1016_j_jhazmat_2021_126716
crossref_primary_10_1126_science_abm7686
crossref_primary_10_1016_j_seppur_2019_116192
crossref_primary_10_1016_j_cej_2024_152165
crossref_primary_10_1016_j_carbpol_2023_121438
crossref_primary_10_1016_j_memsci_2019_117761
crossref_primary_10_1016_j_memsci_2019_117641
crossref_primary_10_1016_j_memsci_2023_122052
crossref_primary_10_1016_j_seppur_2023_126048
crossref_primary_10_1016_j_desal_2022_116198
crossref_primary_10_1016_j_desal_2024_117961
crossref_primary_10_1016_j_snb_2025_137544
crossref_primary_10_1039_D2TA05880D
crossref_primary_10_3390_molecules26041090
crossref_primary_10_1016_j_seppur_2022_121541
crossref_primary_10_1016_j_cej_2021_130015
crossref_primary_10_1016_j_cej_2019_04_096
crossref_primary_10_1016_j_advmem_2022_100041
crossref_primary_10_1021_acsami_3c07440
crossref_primary_10_1016_j_jwpe_2022_103154
crossref_primary_10_1002_cnma_202200077
crossref_primary_10_1016_j_cej_2024_158137
crossref_primary_10_1016_j_jcis_2019_05_070
crossref_primary_10_1016_j_memsci_2019_05_033
crossref_primary_10_1016_j_colcom_2021_100530
crossref_primary_10_1016_j_memsci_2022_120925
crossref_primary_10_1021_acs_chemmater_8b02843
crossref_primary_10_1002_adfm_202425244
crossref_primary_10_1016_j_progpolymsci_2021_101470
crossref_primary_10_1021_acs_chemmater_2c01450
crossref_primary_10_1016_j_memsci_2021_120166
crossref_primary_10_1016_j_memsci_2022_121215
crossref_primary_10_1016_j_memsci_2022_121211
crossref_primary_10_1016_j_memsci_2024_123436
crossref_primary_10_1002_adfm_201906797
crossref_primary_10_1016_j_memsci_2023_122035
crossref_primary_10_1021_acsami_1c21862
crossref_primary_10_1021_acsami_3c09390
crossref_primary_10_1016_j_desal_2024_117866
crossref_primary_10_1021_acs_jchemed_4c01190
crossref_primary_10_1021_acsami_4c14283
crossref_primary_10_1016_j_memsci_2019_117505
crossref_primary_10_1002_admi_202001671
crossref_primary_10_3390_chemistry6040029
crossref_primary_10_1016_j_ccr_2023_215613
crossref_primary_10_1016_j_seppur_2021_119504
crossref_primary_10_1021_acs_chemrev_7b00231
crossref_primary_10_1016_j_cherd_2022_05_031
crossref_primary_10_1002_aic_17517
crossref_primary_10_1016_j_memsci_2024_122462
crossref_primary_10_1021_acs_est_9b06426
crossref_primary_10_1016_j_desal_2023_117219
crossref_primary_10_1016_j_memsci_2023_122282
crossref_primary_10_1016_j_memsci_2018_04_038
crossref_primary_10_1039_D2TA01546C
crossref_primary_10_1016_j_desal_2022_115774
crossref_primary_10_1016_j_seppur_2025_132092
crossref_primary_10_1016_j_memsci_2020_118786
crossref_primary_10_1002_adsu_201800165
crossref_primary_10_1039_D2TA10050A
crossref_primary_10_1039_D4SC04793A
crossref_primary_10_1016_j_coco_2024_102146
crossref_primary_10_1016_j_jcis_2020_04_079
crossref_primary_10_1016_j_memsci_2018_05_069
crossref_primary_10_1016_j_jwpe_2024_105646
crossref_primary_10_1021_acs_nanolett_0c03632
crossref_primary_10_1016_j_memsci_2022_120862
crossref_primary_10_1016_j_memsci_2022_121165
crossref_primary_10_1016_j_memsci_2022_121286
crossref_primary_10_1002_aic_18719
crossref_primary_10_1038_s41598_019_48908_5
crossref_primary_10_1016_j_memsci_2025_123859
crossref_primary_10_1016_j_desal_2023_117247
crossref_primary_10_1515_polyeng_2024_0115
crossref_primary_10_1002_adma_202001383
crossref_primary_10_1002_ange_202302809
crossref_primary_10_1016_j_jece_2023_111013
crossref_primary_10_1016_j_jwpe_2024_105777
crossref_primary_10_1002_marc_202300064
crossref_primary_10_1016_j_memsci_2023_121445
crossref_primary_10_1021_acsapm_8b00034
crossref_primary_10_1016_j_memsci_2024_123324
crossref_primary_10_1039_D1TA02982G
crossref_primary_10_1038_s41467_018_04467_3
crossref_primary_10_1002_anie_202212816
crossref_primary_10_1016_j_cej_2022_134705
crossref_primary_10_1016_j_oneear_2023_06_007
crossref_primary_10_1016_j_seppur_2023_125206
crossref_primary_10_1039_C9TA01915D
crossref_primary_10_1016_j_cej_2021_129756
crossref_primary_10_1002_jssc_202300269
crossref_primary_10_1016_j_jwpe_2024_106394
crossref_primary_10_1126_science_adh2404
crossref_primary_10_1016_j_seppur_2021_119777
crossref_primary_10_1021_acsnano_8b09761
crossref_primary_10_1016_j_memsci_2023_122197
crossref_primary_10_1002_aic_16879
crossref_primary_10_1021_acsomega_8b01808
crossref_primary_10_1002_anie_202416050
crossref_primary_10_1039_D4GC00466C
crossref_primary_10_1002_aic_17602
crossref_primary_10_1039_D0EN00401D
crossref_primary_10_1016_j_chemosphere_2023_140180
crossref_primary_10_1016_j_coche_2020_02_002
crossref_primary_10_1016_j_resconrec_2023_107149
crossref_primary_10_1002_adma_202309406
crossref_primary_10_1016_j_seppur_2020_116893
crossref_primary_10_1021_acs_nanolett_0c03288
crossref_primary_10_1016_j_memsci_2025_123770
crossref_primary_10_1016_j_memsci_2024_123229
crossref_primary_10_1039_C8TA11372F
crossref_primary_10_1016_j_seppur_2018_05_031
crossref_primary_10_1088_1361_6528_acbf56
crossref_primary_10_1039_C8TA08618D
crossref_primary_10_1016_j_seppur_2021_120419
crossref_primary_10_1016_j_desal_2023_117138
crossref_primary_10_1016_j_seppur_2023_124497
crossref_primary_10_1016_j_chroma_2020_461341
crossref_primary_10_1016_j_seppur_2021_119352
crossref_primary_10_1016_j_seppur_2021_119594
crossref_primary_10_1039_D0CC06768G
crossref_primary_10_1002_ange_202416050
crossref_primary_10_1016_j_memsci_2024_122969
crossref_primary_10_1016_j_memsci_2024_122605
crossref_primary_10_1016_j_memsci_2022_120782
crossref_primary_10_1002_anie_202302809
crossref_primary_10_1016_j_seppur_2024_126560
crossref_primary_10_1021_acsanm_2c04408
crossref_primary_10_1016_j_jcis_2019_12_012
crossref_primary_10_1016_j_scitotenv_2022_159922
crossref_primary_10_1039_C8CC04080J
crossref_primary_10_1016_j_desal_2022_115941
crossref_primary_10_1016_j_seppur_2024_127539
crossref_primary_10_1016_j_memsci_2018_11_012
crossref_primary_10_1016_j_memsci_2019_04_077
crossref_primary_10_1016_j_memsci_2020_118872
crossref_primary_10_1021_acsami_4c19244
crossref_primary_10_1038_s41586_022_05032_1
crossref_primary_10_1016_j_seppur_2021_118715
crossref_primary_10_1016_j_memsci_2023_121486
crossref_primary_10_1016_j_cej_2025_159244
crossref_primary_10_1016_j_memsci_2018_05_019
crossref_primary_10_1016_j_memsci_2025_123787
crossref_primary_10_1007_s13738_023_02748_3
crossref_primary_10_1016_j_memsci_2019_117375
crossref_primary_10_3390_membranes14090190
crossref_primary_10_1016_j_ces_2020_116001
crossref_primary_10_1016_j_desal_2022_116365
crossref_primary_10_1016_j_apsusc_2020_148284
crossref_primary_10_1016_j_memsci_2021_119216
crossref_primary_10_1016_j_seppur_2022_121941
crossref_primary_10_1039_D2ME00117A
crossref_primary_10_1039_D0CS00552E
crossref_primary_10_1038_s41467_020_19404_6
crossref_primary_10_1039_C9TA10190J
crossref_primary_10_1016_j_seppur_2019_115718
crossref_primary_10_1016_j_memsci_2022_121179
crossref_primary_10_1002_adfm_201907006
crossref_primary_10_1016_j_seppur_2024_128962
crossref_primary_10_1016_j_memsci_2019_117227
crossref_primary_10_1016_j_memsci_2022_121187
crossref_primary_10_1021_acs_langmuir_2c03261
crossref_primary_10_1126_sciadv_abm5899
crossref_primary_10_1016_j_memsci_2024_123041
crossref_primary_10_1021_acs_jpcb_4c02263
crossref_primary_10_1039_D0TA12283A
crossref_primary_10_1002_adma_202107401
crossref_primary_10_1021_acsami_0c02976
crossref_primary_10_1002_eem2_12319
crossref_primary_10_1002_admi_201800823
crossref_primary_10_1016_j_cej_2020_126796
crossref_primary_10_1016_j_chemosphere_2020_129425
crossref_primary_10_1016_j_seppur_2021_118372
crossref_primary_10_1039_D0TA02510K
crossref_primary_10_1016_j_desal_2023_116891
crossref_primary_10_1021_acs_iecr_2c02553
crossref_primary_10_5004_dwt_2023_29467
crossref_primary_10_1016_j_jcis_2023_03_044
crossref_primary_10_1016_j_memsci_2021_119908
crossref_primary_10_1039_D1CS00545F
crossref_primary_10_1002_smll_202205714
crossref_primary_10_1016_j_memsci_2024_122853
crossref_primary_10_1038_s41467_018_07888_2
crossref_primary_10_1007_s12274_024_6560_1
crossref_primary_10_1016_j_desal_2018_07_023
crossref_primary_10_1016_j_desal_2021_115519
crossref_primary_10_1038_s41467_023_38728_7
crossref_primary_10_1016_j_gee_2024_02_007
crossref_primary_10_1016_j_seppur_2023_123884
crossref_primary_10_1016_j_memsci_2021_119478
crossref_primary_10_1016_j_memsci_2020_118645
Cites_doi 10.1021/bm901065f
10.1126/science.1069580
10.1016/j.carres.2008.10.025
10.1002/3527608982
10.1038/ncomms8529
10.1038/nmat4638
10.1038/356325a0
10.1039/b417402j
10.1038/ncomms10742
10.1002/pola.1996.816
10.1021/cr970012b
10.1021/acs.langmuir.6b01646
10.1038/nature16185
10.1016/j.memsci.2015.10.061
10.1021/jp013806
10.1016/j.polymer.2013.05.075
10.1126/science.219.4589.1177
10.1016/0376-7388(92)80031-E
10.1023/A:1023065823358
10.1039/b600349d
10.1126/science.1203771
10.1126/science.1146744
10.1021/cr500006j
10.1038/nnano.2009.90
10.1016/j.memsci.2010.06.036
10.1126/science.aaa5058
10.1002/adfm.201605068
10.1038/nchem.873
10.1016/S0378-4347(00)00057-8
10.1016/j.progpolymsci.2012.06.005
10.1016/S0032-9592(03)00258-9
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201606641
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 28437014
10_1002_adma_201606641
ADMA201606641
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4101-8f2378b765b51f2d94892311ebb590ee31c8eb16c6c955316fa03552350b26a63
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 04:55:22 EDT 2025
Sun Jul 13 04:21:52 EDT 2025
Mon Jul 21 05:41:59 EDT 2025
Tue Jul 01 00:44:33 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Wed Aug 20 07:26:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords membranes
cyclodextrins
nanofiltration
interfacial polymerization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-8f2378b765b51f2d94892311ebb590ee31c8eb16c6c955316fa03552350b26a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0745-4246
PMID 28437014
PQID 1920419993
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_1891455052
proquest_journals_1920419993
pubmed_primary_28437014
crossref_primary_10_1002_adma_201606641
crossref_citationtrail_10_1002_adma_201606641
wiley_primary_10_1002_adma_201606641_ADMA201606641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Jul
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-Jul
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2002; 296
2006; 35
2017; 27
2016; 529
2016; 32
2010; 362
2016; 501
2006; 1
2015; 348
2016; 15
2014; 114
2011; 332
1983; 219
1996; 34
2016; 7
2009; 10
2013; 38
2013; 54
2004; 39
2000; 745
1992; 356
2002; 44
2002; 106
2009; 344
2009; 4
2005; 15
2010; 2
2007; 318
1998; 98
1992; 67
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 332
  start-page: 674
  year: 2011
  publication-title: Science
– volume: 54
  start-page: 4729
  year: 2013
  publication-title: Polymer
– volume: 362
  start-page: 154
  year: 2010
  publication-title: J. Membr. Sci.
– volume: 32
  start-page: 6682
  year: 2016
  publication-title: Langmuir
– volume: 44
  start-page: 101
  year: 2002
  publication-title: J. Inclusion Phenom. Macrocyclic Chem.
– volume: 15
  start-page: 1977
  year: 2005
  publication-title: J. Mater. Chem.
– volume: 34
  start-page: 531
  year: 1996
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 7
  start-page: 10742
  year: 2016
  publication-title: Nat. Commun.
– volume: 296
  start-page: 519
  year: 2002
  publication-title: Science
– volume: 106
  start-page: 4223
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: 10735
  year: 2014
  publication-title: Chem. Rev.
– volume: 344
  start-page: 250
  year: 2009
  publication-title: Carbohydr. Res.
– volume: 15
  start-page: 760
  year: 2016
  publication-title: Nat. Mater.
– volume: 356
  start-page: 325
  year: 1992
  publication-title: Nature
– volume: 745
  start-page: 83
  year: 2000
  publication-title: J. Chromatogr. B: Biomed. Sci. Appl.
– volume: 219
  start-page: 1177
  year: 1983
  publication-title: Science
– volume: 318
  start-page: 254
  year: 2007
  publication-title: Science
– volume: 501
  start-page: 33
  year: 2016
  publication-title: J. Membr. Sci.
– volume: 348
  start-page: 1347
  year: 2015
  publication-title: Science
– volume: 1
  year: 2006
– volume: 39
  start-page: 1033
  year: 2004
  publication-title: Process Biochem.
– volume: 38
  start-page: 344
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 6
  start-page: 7529
  year: 2015
  publication-title: Nat. Commun.
– volume: 98
  start-page: 1977
  year: 1998
  publication-title: Chem. Rev.
– volume: 4
  start-page: 353
  year: 2009
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 915
  year: 2010
  publication-title: Nat. Chem.
– volume: 27
  start-page: 1605068
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 675
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 67
  start-page: 283
  year: 1992
  publication-title: J. Membr. Sci.
– volume: 529
  start-page: 190
  year: 2016
  publication-title: Nature
– volume: 10
  start-page: 3157
  year: 2009
  publication-title: Biomacromolecules
– ident: e_1_2_5_17_1
  doi: 10.1021/bm901065f
– ident: e_1_2_5_6_1
  doi: 10.1126/science.1069580
– ident: e_1_2_5_24_1
  doi: 10.1016/j.carres.2008.10.025
– ident: e_1_2_5_10_1
  doi: 10.1002/3527608982
– ident: e_1_2_5_7_1
  doi: 10.1038/ncomms8529
– ident: e_1_2_5_26_1
  doi: 10.1038/nmat4638
– ident: e_1_2_5_30_1
  doi: 10.1038/356325a0
– ident: e_1_2_5_3_1
  doi: 10.1039/b417402j
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms10742
– ident: e_1_2_5_21_1
  doi: 10.1002/pola.1996.816
– ident: e_1_2_5_18_1
  doi: 10.1021/cr970012b
– ident: e_1_2_5_19_1
  doi: 10.1021/acs.langmuir.6b01646
– ident: e_1_2_5_14_1
  doi: 10.1038/nature16185
– ident: e_1_2_5_22_1
  doi: 10.1016/j.memsci.2015.10.061
– ident: e_1_2_5_29_1
  doi: 10.1021/jp013806
– ident: e_1_2_5_2_1
  doi: 10.1016/j.polymer.2013.05.075
– ident: e_1_2_5_31_1
  doi: 10.1126/science.219.4589.1177
– ident: e_1_2_5_25_1
  doi: 10.1016/0376-7388(92)80031-E
– ident: e_1_2_5_20_1
  doi: 10.1023/A:1023065823358
– ident: e_1_2_5_8_1
  doi: 10.1039/b600349d
– ident: e_1_2_5_4_1
  doi: 10.1126/science.1203771
– ident: e_1_2_5_5_1
  doi: 10.1126/science.1146744
– ident: e_1_2_5_1_1
  doi: 10.1021/cr500006j
– ident: e_1_2_5_28_1
  doi: 10.1038/nnano.2009.90
– ident: e_1_2_5_15_1
  doi: 10.1016/j.memsci.2010.06.036
– ident: e_1_2_5_23_1
  doi: 10.1126/science.aaa5058
– ident: e_1_2_5_27_1
  doi: 10.1002/adfm.201605068
– ident: e_1_2_5_9_1
  doi: 10.1038/nchem.873
– ident: e_1_2_5_12_1
  doi: 10.1016/S0378-4347(00)00057-8
– ident: e_1_2_5_13_1
  doi: 10.1016/j.progpolymsci.2012.06.005
– ident: e_1_2_5_11_1
  doi: 10.1016/S0032-9592(03)00258-9
SSID ssj0009606
Score 2.6306667
Snippet This study describes the molecular‐level design of a new type of filtration membrane made of crosslinked cyclodextrins—inexpensive macrocycles of glucose,...
This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins-inexpensive macrocycles of glucose,...
This study describes the molecular-level design of a new type of filtration membrane made of crosslinked cyclodextrins--inexpensive macrocycles of glucose,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Cones
Crosslinking
Cyclodextrins
Filtration
Glucose
Holes
interfacial polymerization
Materials science
Membranes
nanofiltration
Permeability
Separation
Solvents
Transport
Title Cyclodextrin Films with Fast Solvent Transport and Shape‐Selective Permeability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201606641
https://www.ncbi.nlm.nih.gov/pubmed/28437014
https://www.proquest.com/docview/1920419993
https://www.proquest.com/docview/1891455052
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefEKdxAPaDkQ0mT5q0kyHxr9jHqqNCk5hgHRK3yI4dgShptaYHOO1P4G_kL5nttCndNE2CYxRbcWw_v2-c9z4G-GRViG2nDkuuGWbGOWyIzbBInWVG2lzFPO6Tb-L4nH294BePsvhbPkS34RYsI67XwcC1mR4uoaHaRm5QFhR4zFwPAVtBFX1f8qOCPI-wPcqxEkwuqI0pOVytvuqV_pKaq8o1up7BFuhFo9uIk-uDWWMOyrs_eI7Peatt2JzrUtRrJ9JLWHP1K9h4RCt8DWf923IUMuAbf40GV6ObKQrbuGigpw0ajkchdBJ1tHSka4uGl3riHn7dD-NxO35lRafeFbgWDn77Bs4HRz_6x3h-IgMumbddLCtCc2lywQ3PKmIVk0EgZs4YrlLnaFZKv_iLUpSKe-sWlU69oCGUp4YILegOrNfj2u0C4saZyldW2qTMVlJx6rilROfM2bTKEsCLESnKOa48nJoxKlrQMilCVxVdVyXwuSs_aUEd_yy5txjgYm6w08IL3ZQFJANN4GN325ta-H-iazee-TJSRaw7Jwm8bSdG9yjv5WnuPzcTIHF4_9OGovflpNddvXtKpffwggSJEUOH92C9-Tlz-14gNeZDNILfBt8GSw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2hcgAOfFNSChgJiVPaxF-xj6vCaoFuBWwrcYvs2BGIJVt1s4dy4ifwG_kleJxNyoIQEhyt2Ipj-3menZk3AE-dRt925lMlDE-59T611OWpzLzjVrlCxzju6ZGcnPBX70XvTYixMJ0-xHDhhsiI-zUCHC-k9y9UQ42LwkE5UnAMXb-Mab3jqerdhYIUEvQot8dEqiVXvW5jRvc322_apd_I5iZ3jcZnfANs3-3O5-TT3qq1e9WXXxQd_-u7bsL1NTUlo24t3YJLvrkN134SLLwDbw_OqzkGwbehTMYf55-XBG9yydgsWzJbzNF7kgyC6cQ0jsw-mFP__eu3Wcy4EzZX8iZYA9_pg5_fhZPxi-ODSbpOypBWPMA3VTVlhbKFFFbkNXWaK-SIubdW6Mx7llcq7P-ykpUWAeCyNlngNJSJzFJpJLsHW82i8feBCOttHRprYzPuaqUF88IxagruXVbnCaT9lJTVWrEcE2fMy05rmZY4VOUwVAk8G-qfdlodf6y5289wucbssgxcN-OoysASeDI8DmjDXyim8YtVqKN0VHYXNIHtbmUMrwqGnhXhxJkAjfP7lz6Uo-fT0VDa-ZdGj-HK5Hh6WB6-PHr9AK5SZBzRk3gXttqzlX8Y-FJrH0VE_ABuzQpm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIaPUJEQLLhTAgWMhMTKreNb7OWoQ1QurQpDpe4iO3YEYsiMmMyirHgEnpEnwXZm0g4IIcEyiq04to_PH-eczwDPnI6x7cxjJQzH3HqPLXU5lsQ7bpUrdMrjPjySByf81ak4vZDF3_Mhhg23aBlpvY4GPnfN3jk01LjEDcqjAo-Z65e5JCrO6_G7c4BU1OeJtscE1pKrNbaR0L3N-ptu6TetuSldk-8pb4BZt7oPOfm0u-zsbv31F6Dj_7zWTbi-EqZo1M-kW3DJt7fh2gVc4R14u39WT2MKfBeuUflx-nmB4j4uKs2iQ5PZNMZOogGXjkzr0OSDmfsf375P0nk7YWlFx8EX-J4OfnYXTsoX7_cP8OpIBlzzYLxYNZQVyhZSWJE31GmuokLMvbVCE-9ZXquw-sta1loE85aNIUHRUCaIpdJIdg-22lnr7wMS1tsmVNbGEu4apQXzwjFqCu4dafIM8HpEqnrFK4_HZkyrnrRMq9hV1dBVGTwfys97UscfS-6sB7haWeyiCkqX8MhkYBk8HW4HW4s_UEzrZ8tQRunEdRc0g-1-YgyPCm6eFeF7MwOahvcvbahG48PRcPXgXyo9gSvH47J68_Lo9UO4SqPcSGHEO7DVfVn6R0EsdfZxsoefWqUJHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclodextrin+Films+with+Fast+Solvent+Transport+and+Shape%E2%80%90Selective+Permeability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Villalobos%2C+Luis+Francisco&rft.au=Huang%2C+Tiefan&rft.au=Peinemann%2C+Klaus%E2%80%90Viktor&rft.date=2017-07-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=29&rft.issue=26&rft_id=info:doi/10.1002%2Fadma.201606641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201606641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon