Dopant‐Free Squaraine‐Based Polymeric Hole‐Transporting Materials with Comprehensive Passivation Effects for Efficient All‐Inorganic Perovskite Solar Cells

Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 49; pp. 17724 - 17730
Main Authors Xiao, Qi, Tian, Jingjing, Xue, Qifan, Wang, Jing, Xiong, Bijin, Han, Mengmeng, Li, Zhen, Zhu, Zonglong, Yip, Hin‐Lap, Li, Zhong'an
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 02.12.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs. Squaring the hole: Using N,N‐diarylanilinosquaraines as the comonomers gives polysquaraine hole‐transporting materials (HTMs) that have very high hole mobility. As a dopant‐free HTM for α‐CsPbI2Br‐based all‐inorganic perovskite solar cells, the power conversion efficiency (PCE) can reach 15.5 %, among the best for all‐inorganic PVSCs.
AbstractList Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm-2  V-1  s-1 . Thus as dopant-free HTMs for α-CsPbI2 Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs.Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm-2  V-1  s-1 . Thus as dopant-free HTMs for α-CsPbI2 Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm −2  V −1  s −1 . Thus as dopant‐free HTMs for α‐CsPbI 2 Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.
Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm  V  s . Thus as dopant-free HTMs for α-CsPbI Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs.
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs. Squaring the hole: Using N,N‐diarylanilinosquaraines as the comonomers gives polysquaraine hole‐transporting materials (HTMs) that have very high hole mobility. As a dopant‐free HTM for α‐CsPbI2Br‐based all‐inorganic perovskite solar cells, the power conversion efficiency (PCE) can reach 15.5 %, among the best for all‐inorganic PVSCs.
Author Li, Zhen
Han, Mengmeng
Xiao, Qi
Xiong, Bijin
Zhu, Zonglong
Li, Zhong'an
Tian, Jingjing
Wang, Jing
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Qi
  surname: Xiao
  fullname: Xiao, Qi
  organization: Huazhong University of Science and Technology
– sequence: 2
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
  organization: South China University of Technology
– sequence: 3
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China University of Technology
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: City University of Hong Kong
– sequence: 5
  givenname: Bijin
  surname: Xiong
  fullname: Xiong, Bijin
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Mengmeng
  surname: Han
  fullname: Han, Mengmeng
  organization: Wuhan University
– sequence: 7
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: Wuhan University
– sequence: 8
  givenname: Zonglong
  surname: Zhu
  fullname: Zhu, Zonglong
  organization: City University of Hong Kong
– sequence: 9
  givenname: Hin‐Lap
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China University of Technology
– sequence: 10
  givenname: Zhong'an
  orcidid: 0000-0001-9294-8939
  surname: Li
  fullname: Li, Zhong'an
  email: lizha@hust.edu.cn
  organization: Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31560144$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEQxy1URD_gyhFZ4sJlgz9217vHkKZtpAKRKOeV1xm3Ll47tb2tcuMR-g68GU-CQ0qRKiFOMxr__jPj-R-iPecdIPSakgklhL2XzsCEEdoSwTl9hg5oxWjBheB7OS85L0RT0X10GON15puG1C_QPqdVTWhZHqAfx34tXfr5_f4kAOAvN6MM0jjIhQ8ywgovvd0MEIzCZ95uyxdBurj2IRl3iT_KlN-kjfjOpCs888M6wBW4aG4BL2XMUSbjHZ5rDSpFrH3Y5kYZcAlPrc0dF86Hy_wRhZcQ_G38ZlLexFsZ8AysjS_Rc51HwKuHeIS-nswvZmfF-efTxWx6XqiSElpUtQaiK6jZShIFuu9F3zLSEN0w1QNo0dStYpKxlnMNDemBirYpW9L3_YpRfoTe7fqug78ZIaZuMFHlDaQDP8YuC1taUlazjL59gl77Mbi8Xcc4FRVtRSUy9eaBGvsBVt06mEGGTffn_BmY7AAVfIwB9CNCSbf1t9v62z36mwXlE4Ey6feFU7bN_lvW7mR3xsLmP0O66afF_K_2F3GmwRA
CitedBy_id crossref_primary_10_1002_aenm_202303997
crossref_primary_10_1021_acsaem_0c01917
crossref_primary_10_1088_1742_6596_2174_1_012027
crossref_primary_10_1007_s40820_020_00509_y
crossref_primary_10_1021_acsenergylett_2c00684
crossref_primary_10_1039_D2EE00663D
crossref_primary_10_1016_j_jpowsour_2025_236283
crossref_primary_10_1039_D2SC04600H
crossref_primary_10_1002_adfm_202308435
crossref_primary_10_1016_j_cej_2022_135107
crossref_primary_10_1002_adma_202306982
crossref_primary_10_1002_adfm_202112647
crossref_primary_10_1002_adom_202301361
crossref_primary_10_1016_j_snb_2024_135725
crossref_primary_10_1039_D0TC01892A
crossref_primary_10_1021_acsenergylett_2c01537
crossref_primary_10_1111_php_13624
crossref_primary_10_1002_cjoc_202200688
crossref_primary_10_1039_D3TC03183G
crossref_primary_10_1021_acsmaterialslett_0c00320
crossref_primary_10_1002_adfm_202214562
crossref_primary_10_1021_acsaem_0c02438
crossref_primary_10_1039_D3EE02033A
crossref_primary_10_1002_ange_202113749
crossref_primary_10_1002_ange_202016085
crossref_primary_10_1016_j_scib_2020_04_021
crossref_primary_10_1002_aenm_202000183
crossref_primary_10_1002_anie_202218752
crossref_primary_10_1007_s11426_022_1445_2
crossref_primary_10_1002_bte2_20230065
crossref_primary_10_1016_j_cej_2020_126298
crossref_primary_10_1016_j_mtener_2023_101411
crossref_primary_10_1021_acs_macromol_0c00525
crossref_primary_10_1002_ente_202100691
crossref_primary_10_1021_acs_chemmater_0c03038
crossref_primary_10_1016_j_dyepig_2019_108162
crossref_primary_10_1016_j_materresbull_2021_111666
crossref_primary_10_1039_D0NR03408H
crossref_primary_10_1021_acsenergylett_0c02385
crossref_primary_10_1021_acsmaterialslett_0c00134
crossref_primary_10_1016_j_cej_2021_131675
crossref_primary_10_1016_j_cej_2022_139047
crossref_primary_10_1021_acsaem_0c02306
crossref_primary_10_1002_adfm_202103316
crossref_primary_10_1016_j_mattod_2023_06_009
crossref_primary_10_1021_acsami_2c19954
crossref_primary_10_1002_ange_202218752
crossref_primary_10_1016_j_dyepig_2021_109633
crossref_primary_10_1039_D1TC04014F
crossref_primary_10_1039_D0QM00357C
crossref_primary_10_1002_adfm_202100332
crossref_primary_10_1039_D1TC01243F
crossref_primary_10_1016_j_nanoen_2020_105490
crossref_primary_10_1039_D2SC04508G
crossref_primary_10_1002_anie_202113749
crossref_primary_10_1021_acsenergylett_1c00124
crossref_primary_10_1016_j_dyepig_2023_111349
crossref_primary_10_1016_j_jpowsour_2021_229580
crossref_primary_10_1007_s12598_022_01982_7
crossref_primary_10_1016_j_joule_2020_12_003
crossref_primary_10_1002_cjoc_202300234
crossref_primary_10_1016_j_nanoen_2025_110859
crossref_primary_10_1007_s11426_020_9857_1
crossref_primary_10_1021_acsenergylett_9b02716
crossref_primary_10_1002_anie_202004256
crossref_primary_10_1016_j_mattod_2021_11_017
crossref_primary_10_1016_j_cej_2020_128328
crossref_primary_10_1002_adfm_202103614
crossref_primary_10_1021_acsenergylett_1c01126
crossref_primary_10_1002_advs_201903331
crossref_primary_10_1021_acsmaterialslett_3c00225
crossref_primary_10_1039_D0PY00134A
crossref_primary_10_1016_j_jpowsour_2021_230095
crossref_primary_10_1002_anie_202016085
crossref_primary_10_1002_cssc_202301489
crossref_primary_10_1021_acs_jpclett_1c00954
crossref_primary_10_1021_acssuschemeng_3c06121
crossref_primary_10_1039_D3CP03409G
crossref_primary_10_3390_sym14050966
crossref_primary_10_7498_aps_69_20200822
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1016_j_orgel_2020_105873
crossref_primary_10_1016_j_mattod_2021_05_016
crossref_primary_10_1039_D1CS01157J
crossref_primary_10_1016_j_nanoen_2020_104673
crossref_primary_10_1002_adma_202110587
crossref_primary_10_1039_D0TA12509A
crossref_primary_10_1039_D0TA10449C
crossref_primary_10_1002_solr_202000184
crossref_primary_10_1016_j_dyepig_2021_109368
crossref_primary_10_1002_aenm_202101926
crossref_primary_10_1016_j_jcis_2022_11_096
crossref_primary_10_1021_acsaem_4c02631
crossref_primary_10_1021_acsami_0c21729
crossref_primary_10_1088_1674_4926_42_5_050501
crossref_primary_10_1007_s11426_020_9899_x
crossref_primary_10_1021_jacs_0c06373
crossref_primary_10_1002_adfm_202308584
crossref_primary_10_1016_j_mtadv_2022_100300
crossref_primary_10_1021_acsami_1c13792
crossref_primary_10_1038_s41578_021_00331_x
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1002_smtd_202200624
crossref_primary_10_1016_j_nanoen_2020_104933
crossref_primary_10_1016_j_dyepig_2020_108786
crossref_primary_10_26599_NRE_2023_9120073
crossref_primary_10_1016_j_jechem_2021_11_026
crossref_primary_10_1002_ange_202004256
crossref_primary_10_1002_aenm_202100967
crossref_primary_10_1016_j_jcis_2023_03_049
crossref_primary_10_1016_j_xcrp_2021_100662
crossref_primary_10_1002_admt_202000960
crossref_primary_10_3390_polym13101652
crossref_primary_10_1039_D2TA06697A
crossref_primary_10_1021_acsami_4c10529
crossref_primary_10_1016_j_ccr_2025_216500
crossref_primary_10_1002_solr_202000119
crossref_primary_10_1016_j_cej_2022_136781
crossref_primary_10_1021_acsenergylett_4c00816
crossref_primary_10_1021_acsami_2c01216
crossref_primary_10_1016_j_dyepig_2022_110279
crossref_primary_10_1002_adfm_202008201
crossref_primary_10_1002_inf2_12322
crossref_primary_10_1039_D1TA10388A
Cites_doi 10.1038/s41467-018-07255-1
10.1002/aenm.201803573
10.1039/C5TA01879J
10.1016/j.joule.2018.10.011
10.1038/s41563-018-0071-z
10.1002/anie.201807270
10.1038/s41467-018-03169-0
10.1002/aenm.201803140
10.1002/ange.201801837
10.1002/adma.201700183
10.1016/j.joule.2018.04.012
10.1021/jacs.7b04949
10.1002/aenm.201802060
10.1002/ejoc.201501598
10.1016/j.joule.2018.05.004
10.1039/C7TA01718A
10.1002/adma.201505140
10.1002/adfm.201803269
10.1021/jacs.7b07949
10.1021/acsami.8b22044
10.1002/anie.201801837
10.1021/jacs.6b10227
10.1021/acs.jpclett.6b02594
10.1002/aenm.201800681
10.1021/acsenergylett.7b00508
10.1039/C8TC00385H
10.1126/science.aag2700
10.1002/adma.201900428
10.1039/B707734C
10.1021/jacs.8b07927
10.1002/adma.201901152
10.1002/cssc.201700197
10.1021/acs.chemrev.8b00539
10.1002/adfm.201803753
10.1002/adma.201705393
10.1021/cm0107225
10.1002/anie.201814024
10.1002/ange.201800019
10.1016/j.joule.2018.08.011
10.1039/C8TA12139G
10.1002/adma.201606555
10.1039/C8CS00262B
10.1039/C5TA06398A
10.1021/jacs.8b09809
10.1021/nn204676j
10.1039/C8TA05026K
10.1002/adma.201505440
10.1002/ange.201807270
10.1002/adma.201900605
10.1021/jacs.7b13229
10.1021/acs.chemrev.8b00336
10.1021/cm2020803
10.1021/acs.nanolett.7b00050
10.1126/sciadv.1700841
10.1021/nn5036476
10.1016/j.solmat.2012.06.006
10.1002/ange.201814024
10.1002/anie.201800019
10.1002/aenm.201800554
10.1039/C7TA02562A
10.1038/s41467-018-04636-4
10.1002/adma.201802509
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201907331
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17730
ExternalDocumentID 31560144
10_1002_anie_201907331
ANIE201907331
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2017YF0206600
– fundername: National Natural Science Foundation of China
  funderid: 21704030; 21761132001, 51803060, 51573057; 21975085
– fundername: National Natural Science Foundation of China
  grantid: 21704030
– fundername: National Natural Science Foundation of China
  grantid: 21761132001, 51803060, 51573057
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2017YF0206600
– fundername: National Natural Science Foundation of China
  grantid: 21975085
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
YIN
7TM
K9.
7X8
ID FETCH-LOGICAL-c4101-56fe0f5e62da0cefbb7b92080f82cbeef7869c2a22933fe80be1798490bbbd213
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 05:12:13 EDT 2025
Fri Jul 25 10:33:37 EDT 2025
Wed Feb 19 02:30:40 EST 2025
Tue Jul 01 02:26:58 EDT 2025
Thu Apr 24 22:53:08 EDT 2025
Wed Jan 22 16:39:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords passivation
polysquaraines
hole-transporting materials
dopant-free
all-inorganic perovskite solar cells
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-56fe0f5e62da0cefbb7b92080f82cbeef7869c2a22933fe80be1798490bbbd213
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9294-8939
PMID 31560144
PQID 2317519757
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2299141262
proquest_journals_2317519757
pubmed_primary_31560144
crossref_primary_10_1002_anie_201907331
crossref_citationtrail_10_1002_anie_201907331
wiley_primary_10_1002_anie_201907331_ANIE201907331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2, 2019
PublicationDateYYYYMMDD 2019-12-02
PublicationDate_xml – month: 12
  year: 2019
  text: December 2, 2019
  day: 02
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2002; 14
2018; 28
2017; 8
2019; 9
2019; 3
2017; 2
2018; 140
2017; 3
2015; 3
2019; 31
2019; 11
2008; 18
2017; 29
2012; 105
2019 2019; 58 131
2018; 47
2017; 139
2018; 6
2018; 18
2018; 9
2018; 8
2018; 2
2019 2019
2017; 17
2018 2018; 57 130
2017; 10
2016; 354
2019; 119
2018; 30
2016
2016; 138
2011; 23
2012; 6
2016; 28
2014; 8
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_72_2
e_1_2_6_53_1
e_1_2_6_70_1
e_1_2_6_30_2
e_1_2_6_17_3
e_1_2_6_19_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_76_2
e_1_2_6_15_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_60_1
Zhang J. (e_1_2_6_9_2) 2019
e_1_2_6_9_3
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_47_1
e_1_2_6_73_2
e_1_2_6_52_1
e_1_2_6_75_2
e_1_2_6_31_1
e_1_2_6_71_2
e_1_2_6_50_1
e_1_2_6_18_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_16_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_35_3
e_1_2_6_61_2
e_1_2_6_63_1
e_1_2_6_42_2
e_1_2_6_65_1
e_1_2_6_40_2
e_1_2_6_8_1
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_46_3
e_1_2_6_48_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_69_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 28
  start-page: 1803753
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 191
  year: 2019
  end-page: 204
  publication-title: Joule
– volume: 139
  start-page: 12175
  year: 2017
  end-page: 12181
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 372
  year: 2018
  end-page: 376
  publication-title: Nat. Mater.
– volume: 28
  start-page: 3966
  year: 2016
  end-page: 3972
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1356
  year: 2018
  end-page: 1368
  publication-title: Joule
– volume: 28
  start-page: 3615
  year: 2016
  end-page: 3645
  publication-title: Adv. Mater.
– volume: 138
  start-page: 15829
  year: 2016
  end-page: 15832
  publication-title: J. Am. Chem. Soc.
– year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 12345
  year: 2018
  end-page: 12348
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1802509
  year: 2018
  publication-title: Adv. Mater.
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 119
  start-page: 3418
  year: 2019
  end-page: 3451
  publication-title: Chem. Rev.
– volume: 3
  start-page: 19688
  year: 2015
  end-page: 19695
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 1900605
  year: 2019
  publication-title: Adv. Mater.
– volume: 57 130
  start-page: 3787 3849
  year: 2018 2018
  end-page: 3791 3853
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 5221
  year: 2019
  end-page: 5226
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1800554
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 14009
  year: 2017
  end-page: 14012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 67
  year: 2017
  end-page: 72
  publication-title: J. Phys. Chem. Lett.
– volume: 28
  start-page: 1803269
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 354
  start-page: 92
  year: 2016
  end-page: 95
  publication-title: Science
– volume: 2
  start-page: 1500
  year: 2018
  end-page: 1510
  publication-title: Joule
– volume: 6
  start-page: 4706
  year: 2018
  end-page: 4713
  publication-title: J. Mater. Chem. C
– volume: 105
  start-page: 220
  year: 2012
  end-page: 228
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 5
  start-page: 7811
  year: 2017
  end-page: 7815
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 16720
  year: 2018
  end-page: 16730
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 2028
  year: 2017
  end-page: 2033
  publication-title: Nano Lett.
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– start-page: 2244
  year: 2016
  end-page: 2259
  publication-title: Eur. J. Org. Chem.
– volume: 2
  start-page: 2450
  year: 2018
  end-page: 2463
  publication-title: Joule
– volume: 6
  start-page: 972
  year: 2012
  end-page: 978
  publication-title: ACS Nano
– volume: 23
  start-page: 4789
  year: 2011
  end-page: 4798
  publication-title: Chem. Mater.
– volume: 58 131
  start-page: 5587 5643
  year: 2019 2019
  end-page: 5591 5647
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1803573
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 13644
  year: 2018
  end-page: 13651
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1800681
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 9815
  year: 2014
  end-page: 9821
  publication-title: ACS Nano
– volume: 57 130
  start-page: 12745 12927
  year: 2018 2018
  end-page: 12749 12931
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 410
  year: 2002
  end-page: 418
  publication-title: Chem. Mater.
– volume: 47
  start-page: 8541
  year: 2018
  end-page: 8571
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 1700183
  year: 2017
  publication-title: Adv. Mater.
– volume: 18
  start-page: 264
  year: 2008
  end-page: 274
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 10798
  year: 2017
  end-page: 10814
  publication-title: J. Mater. Chem. A
– volume: 31
  start-page: 1900428
  year: 2019
  publication-title: Adv. Mater.
– volume: 57 130
  start-page: 5746 5848
  year: 2018 2018
  end-page: 5749 5851
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 3825
  year: 2018
  end-page: 3828
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1606555
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 2219
  year: 2017
  end-page: 2227
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 10012
  year: 2019
  end-page: 10020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 14517
  year: 2015
  end-page: 14534
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1705393
  year: 2018
  publication-title: Adv. Mater.
– volume: 119
  start-page: 3036
  year: 2019
  end-page: 3103
  publication-title: Chem. Rev.
– volume: 10
  start-page: 2833
  year: 2017
  end-page: 2838
  publication-title: ChemSusChem
– volume: 9
  start-page: 1803140
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 5265
  year: 2018
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1802060
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 1901152
  year: 2019
  publication-title: Adv. Mater.
– ident: e_1_2_6_4_2
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_2_6_72_2
  doi: 10.1002/aenm.201803573
– ident: e_1_2_6_54_2
  doi: 10.1039/C5TA01879J
– ident: e_1_2_6_21_2
  doi: 10.1016/j.joule.2018.10.011
– ident: e_1_2_6_31_1
– ident: e_1_2_6_3_2
  doi: 10.1038/s41563-018-0071-z
– ident: e_1_2_6_35_2
  doi: 10.1002/anie.201807270
– ident: e_1_2_6_42_2
  doi: 10.1038/s41467-018-03169-0
– year: 2019
  ident: e_1_2_6_9_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_23_1
  doi: 10.1002/aenm.201803140
– ident: e_1_2_6_53_1
– ident: e_1_2_6_17_3
  doi: 10.1002/ange.201801837
– ident: e_1_2_6_28_1
– ident: e_1_2_6_68_2
  doi: 10.1002/adma.201700183
– ident: e_1_2_6_36_1
– ident: e_1_2_6_39_2
  doi: 10.1016/j.joule.2018.04.012
– ident: e_1_2_6_67_2
  doi: 10.1021/jacs.7b04949
– ident: e_1_2_6_11_2
  doi: 10.1002/aenm.201802060
– ident: e_1_2_6_48_2
  doi: 10.1002/ejoc.201501598
– ident: e_1_2_6_40_2
  doi: 10.1016/j.joule.2018.05.004
– ident: e_1_2_6_66_2
  doi: 10.1039/C7TA01718A
– ident: e_1_2_6_75_2
  doi: 10.1002/adma.201505140
– ident: e_1_2_6_47_1
– ident: e_1_2_6_45_2
  doi: 10.1002/adfm.201803269
– ident: e_1_2_6_32_2
  doi: 10.1021/jacs.7b07949
– ident: e_1_2_6_52_1
  doi: 10.1021/acsami.8b22044
– ident: e_1_2_6_17_2
  doi: 10.1002/anie.201801837
– ident: e_1_2_6_13_2
  doi: 10.1021/jacs.6b10227
– ident: e_1_2_6_14_2
  doi: 10.1021/acs.jpclett.6b02594
– ident: e_1_2_6_73_2
  doi: 10.1002/aenm.201800681
– ident: e_1_2_6_33_2
  doi: 10.1021/acsenergylett.7b00508
– ident: e_1_2_6_12_1
– ident: e_1_2_6_62_2
  doi: 10.1039/C8TC00385H
– ident: e_1_2_6_37_2
  doi: 10.1126/science.aag2700
– ident: e_1_2_6_65_1
– ident: e_1_2_6_76_2
  doi: 10.1002/adma.201900428
– ident: e_1_2_6_49_2
  doi: 10.1039/B707734C
– ident: e_1_2_6_1_1
– ident: e_1_2_6_20_2
  doi: 10.1021/jacs.8b07927
– ident: e_1_2_6_22_2
  doi: 10.1002/adma.201901152
– ident: e_1_2_6_61_2
  doi: 10.1002/cssc.201700197
– ident: e_1_2_6_7_1
  doi: 10.1021/acs.chemrev.8b00539
– ident: e_1_2_6_74_1
– ident: e_1_2_6_56_1
– ident: e_1_2_6_6_2
  doi: 10.1002/adfm.201803753
– ident: e_1_2_6_43_2
  doi: 10.1002/adma.201705393
– ident: e_1_2_6_60_1
– ident: e_1_2_6_50_1
  doi: 10.1021/cm0107225
– ident: e_1_2_6_46_2
  doi: 10.1002/anie.201814024
– ident: e_1_2_6_16_3
  doi: 10.1002/ange.201800019
– ident: e_1_2_6_29_2
  doi: 10.1016/j.joule.2018.08.011
– ident: e_1_2_6_30_2
  doi: 10.1039/C8TA12139G
– ident: e_1_2_6_64_1
  doi: 10.1002/adma.201606555
– ident: e_1_2_6_27_2
  doi: 10.1039/C8CS00262B
– ident: e_1_2_6_41_1
– ident: e_1_2_6_10_2
  doi: 10.1039/C5TA06398A
– ident: e_1_2_6_19_1
– ident: e_1_2_6_26_2
  doi: 10.1021/jacs.8b09809
– ident: e_1_2_6_58_2
  doi: 10.1021/nn204676j
– ident: e_1_2_6_51_1
  doi: 10.1039/C8TA05026K
– ident: e_1_2_6_2_1
– ident: e_1_2_6_55_2
  doi: 10.1002/adma.201505440
– ident: e_1_2_6_35_3
  doi: 10.1002/ange.201807270
– ident: e_1_2_6_44_2
  doi: 10.1002/adma.201900605
– ident: e_1_2_6_15_2
  doi: 10.1021/jacs.7b13229
– ident: e_1_2_6_24_1
– ident: e_1_2_6_5_2
  doi: 10.1021/acs.chemrev.8b00336
– ident: e_1_2_6_57_2
  doi: 10.1021/cm2020803
– ident: e_1_2_6_8_1
– ident: e_1_2_6_34_2
  doi: 10.1021/acs.nanolett.7b00050
– ident: e_1_2_6_38_2
  doi: 10.1126/sciadv.1700841
– ident: e_1_2_6_71_2
  doi: 10.1021/nn5036476
– ident: e_1_2_6_63_1
  doi: 10.1016/j.solmat.2012.06.006
– ident: e_1_2_6_46_3
  doi: 10.1002/ange.201814024
– ident: e_1_2_6_70_1
– ident: e_1_2_6_9_3
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201800019
– ident: e_1_2_6_25_2
  doi: 10.1002/aenm.201800554
– ident: e_1_2_6_59_1
  doi: 10.1039/C7TA02562A
– ident: e_1_2_6_18_2
  doi: 10.1038/s41467-018-04636-4
– ident: e_1_2_6_69_1
  doi: 10.1002/adma.201802509
SSID ssj0028806
Score 2.615992
SecondaryResourceType review_article
Snippet Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic...
Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17724
SubjectTerms all-inorganic perovskite solar cells
dopant-free
Dopants
Energy levels
Hole mobility
hole-transporting materials
Mobility
passivation
Passivity
Perovskites
Photovoltaic cells
Polymers
polysquaraines
Solar cells
Transportation
Title Dopant‐Free Squaraine‐Based Polymeric Hole‐Transporting Materials with Comprehensive Passivation Effects for Efficient All‐Inorganic Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907331
https://www.ncbi.nlm.nih.gov/pubmed/31560144
https://www.proquest.com/docview/2317519757
https://www.proquest.com/docview/2299141262
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fj5QwEG_MveiL__-gp6mJiU_c0XYp8Liut9kzucvG85J7I20ZopGALqyJPvkR_A5-Mz-JMxTQ1RgTfSul0ALT6W_KzG8Ye1KAElbERWiFKdFA0SrMjNBhoZVONUSZkRTvfHKqV-ezFxfxxU9R_J4fYtpwo5nR62ua4Ma2hz9IQykCm1yzsj7tICphctgiVPRy4o-SKJw-vEipkLLQj6yNkTzcvXx3VfoNau4i137pWV5jZhy09zh5e7Dt7IH79Auf4_881XV2dcClfO4F6Qa7BPVNdnkxpoO7xb4-R_O67r59_rLcAPCz9yhbBrvDime4EhZ83VQf-98_fNVUVD3xpuPqyE9M52Wd084vJzW0gdfee56vEcEPWda4p1NuOYJpKr_pAzb5vKrwjse1T0Ll-Bo2zYeWdp75GRnnfAFV1d5m58ujV4tVOGR4CN0MdUEY6xKiMgYtCxM5KK1NbCYRxJapdBagTFKdOWkkghJVQhpZIIK1WRZZawsp1B22Vzc13GMcJUuQMSRSiwgPnDVOp4mMi9QqIYwOWDh-4dwN9OeUhaPKPXGzzOnV59OrD9jTqf07T_zxx5b7o8DkgwJoc0m4TGRJnATs8XQaPxn9jzE1NFtsg1BAzITUMmB3vaBNXSmKcEdjN2CyF5e_jCGfnx4fTUf3_-WiB-wKlXtXHbnP9rrNFh4i4Orso35SfQeVIigx
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4pQ2djZOcuCw7Ha1S7urFW2l3tI4cQQiSmCzCyonHoF34Al4FR6BJ2EmToIWhJCQeuCWOE7i2DP2NxPPNwCPU-1yxb3UVjzO0ECRrh3GXNqpdGUgtRPGguKdpzM5Pu69OPFONuBrGwtj-CE6hxtpRj1fk4KTQ3r3J2sohWDT3qywzjvY7Kvc12cf0Gqrnk2GOMRPhBjtHQ3GdpNYwE56KIK2JzPtZJ6WIo2dRGdK-SoUiJ2yQCRK68wPZJiIWOBa6GY6cJQmXq9e6CilUsFdfO4FuEhpxImuf_iyY6wSqA4moMl1bcp73_JEOmJ3vb3r6-Bv4HYdK9eL3egKfGu7yexxebOzWqqd5OMvDJL_VT9ehcsN9GZ9oyvXYEMX12Fr0Ga8uwFfhiXOjcvvnz6PFlqzw3eoPjF-HxY8x8U-ZfMyP6v_cLFxmVNxRw2PAIBN46VRZ0bObUYz7UK_MgECbI5GSpNIjhnG6IqhvUDHr-uYVNbPc3zipDB5thI214vyfUXOdXZI_gc20Hle3YTjc-mjW7BZlIW-AwyVh5O9xwOFIFYnKk5k4AsvDZTLeSwtsFuRipKG4Z0SjeSR4aYWEQ111A21BU-7-m8Nt8kfa263Eho1c1wVCYKePPQ934JH3WUcMvrlFBe6XGEdRDu8x4UUFtw2kt29yqUgfrTnLRC1fP6lDVF_Ntnrzu7-y00PYWt8ND2IDiaz_XtwicrrnUliGzaXi5W-j_hyqR7UGs3g9LxF_wcdV4ef
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYwE4pQ2dhJvcuCw7Ha1S-lqRanUW4gTRyCipGyyoHLiEXgHXoBX4RV4EmbiJGhBCAmpB26J4ziOPeP5secbgIepdrnifmorHmdooEjXDmMu7VS6MpDaCWNB8c77czk99J4d-Ucb8LWLhTH4EL3DjTijWa-JwY_TbOcnaChFYNPRrLBJO9geq9zTJx_QaKuezMY4w4-EmOy-HE3tNq-AnXhIgbYvM-1kvpYijZ1EZ0oNVChQdcoCkSits0Egw0TEAkWhm-nAUZpgvbzQUUqlgrvY7hk460knpGQR4xc9YJVAbjDxTK5rU9r7DibSETvr_V0Xg7_ptuuqciPrJpfgWzdK5ojL2-1VrbaTj78ASP5Pw3gZLraKNxsaTrkCG7q4CudHXb67a_BlXOLKWH__9Hmy1JodvEPmifH3sOApivqULcr8pNnfYtMyp-IeGB7FP9uPa8PMjFzbjNbZpX5twgPYAk2UNo0cM3jRFUNrga7fNBGpbJjn2OKsMFm2ErbQy_J9Ra51dkDeBzbSeV5dh8NTGaMbsFmUhb4FDFmHk7XHA4UqrE5UnMhgIPw0UC7nsbTA7igqSlp8d0ozkkcGmVpENNVRP9UWPO7rHxtkkz_W3OoINGpXuCoSpHjycOAPLHjQP8Ypow2nuNDlCuugrsM9LqSw4KYh7P5TLoXwozVvgWjI8y99iIbz2W5_d_tfXroP5xbjSfR8Nt-7AxeouDmWJLZgs16u9F1ULmt1r-FnBq9Om_J_APmJhk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopant%E2%80%90Free+Squaraine%E2%80%90Based+Polymeric+Hole%E2%80%90Transporting+Materials+with+Comprehensive+Passivation+Effects+for+Efficient+All%E2%80%90Inorganic+Perovskite+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiao%2C+Qi&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Wang%2C+Jing&rft.date=2019-12-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=49&rft.spage=17724&rft.epage=17730&rft_id=info:doi/10.1002%2Fanie.201907331&rft.externalDBID=10.1002%252Fanie.201907331&rft.externalDocID=ANIE201907331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon