Dopant‐Free Squaraine‐Based Polymeric Hole‐Transporting Materials with Comprehensive Passivation Effects for Efficient All‐Inorganic Perovskite Solar Cells
Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 49; pp. 17724 - 17730 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
02.12.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs.
Squaring the hole: Using N,N‐diarylanilinosquaraines as the comonomers gives polysquaraine hole‐transporting materials (HTMs) that have very high hole mobility. As a dopant‐free HTM for α‐CsPbI2Br‐based all‐inorganic perovskite solar cells, the power conversion efficiency (PCE) can reach 15.5 %, among the best for all‐inorganic PVSCs. |
---|---|
AbstractList | Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm-2 V-1 s-1 . Thus as dopant-free HTMs for α-CsPbI2 Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs.Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm-2 V-1 s-1 . Thus as dopant-free HTMs for α-CsPbI2 Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs. Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs. Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm −2 V −1 s −1 . Thus as dopant‐free HTMs for α‐CsPbI 2 Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs. Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant-free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p-π conjugated polymers could overcome this problem. By rationally using N,N-diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm V s . Thus as dopant-free HTMs for α-CsPbI Br-based all-inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped-Spiro-OMeTAD (14.4 %) based control devices and among the best for all-inorganic PVSCs. Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic perovskite solar cells (PVSCs). Squaraines (SQs) could be a candidate for dopant‐free HTMs as they are natural passivators for perovskites. One major limitation of SQs is their relatively low hole mobility. Herein we demonstrate that polymerizing SQs into pseudo two dimensional (2D) p–π conjugated polymers could overcome this problem. By rationally using N,N‐diarylanilinosquaraines as the comonomers, the resulting polysquaraine HTMs not only exhibit suitable energy levels and efficient passivation effects, but also achieve very high hole mobility close to 0.01 cm−2 V−1 s−1. Thus as dopant‐free HTMs for α‐CsPbI2Br‐based all‐inorganic PVSCs, the best PCE reached is 15.5 %, outperforming those of the doped‐Spiro‐OMeTAD (14.4 %) based control devices and among the best for all‐inorganic PVSCs. Squaring the hole: Using N,N‐diarylanilinosquaraines as the comonomers gives polysquaraine hole‐transporting materials (HTMs) that have very high hole mobility. As a dopant‐free HTM for α‐CsPbI2Br‐based all‐inorganic perovskite solar cells, the power conversion efficiency (PCE) can reach 15.5 %, among the best for all‐inorganic PVSCs. |
Author | Li, Zhen Han, Mengmeng Xiao, Qi Xiong, Bijin Zhu, Zonglong Li, Zhong'an Tian, Jingjing Wang, Jing Yip, Hin‐Lap Xue, Qifan |
Author_xml | – sequence: 1 givenname: Qi surname: Xiao fullname: Xiao, Qi organization: Huazhong University of Science and Technology – sequence: 2 givenname: Jingjing surname: Tian fullname: Tian, Jingjing organization: South China University of Technology – sequence: 3 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China University of Technology – sequence: 4 givenname: Jing surname: Wang fullname: Wang, Jing organization: City University of Hong Kong – sequence: 5 givenname: Bijin surname: Xiong fullname: Xiong, Bijin organization: Huazhong University of Science and Technology – sequence: 6 givenname: Mengmeng surname: Han fullname: Han, Mengmeng organization: Wuhan University – sequence: 7 givenname: Zhen surname: Li fullname: Li, Zhen organization: Wuhan University – sequence: 8 givenname: Zonglong surname: Zhu fullname: Zhu, Zonglong organization: City University of Hong Kong – sequence: 9 givenname: Hin‐Lap surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China University of Technology – sequence: 10 givenname: Zhong'an orcidid: 0000-0001-9294-8939 surname: Li fullname: Li, Zhong'an email: lizha@hust.edu.cn organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31560144$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEQxy1URD_gyhFZ4sJlgz9217vHkKZtpAKRKOeV1xm3Ll47tb2tcuMR-g68GU-CQ0qRKiFOMxr__jPj-R-iPecdIPSakgklhL2XzsCEEdoSwTl9hg5oxWjBheB7OS85L0RT0X10GON15puG1C_QPqdVTWhZHqAfx34tXfr5_f4kAOAvN6MM0jjIhQ8ywgovvd0MEIzCZ95uyxdBurj2IRl3iT_KlN-kjfjOpCs888M6wBW4aG4BL2XMUSbjHZ5rDSpFrH3Y5kYZcAlPrc0dF86Hy_wRhZcQ_G38ZlLexFsZ8AysjS_Rc51HwKuHeIS-nswvZmfF-efTxWx6XqiSElpUtQaiK6jZShIFuu9F3zLSEN0w1QNo0dStYpKxlnMNDemBirYpW9L3_YpRfoTe7fqug78ZIaZuMFHlDaQDP8YuC1taUlazjL59gl77Mbi8Xcc4FRVtRSUy9eaBGvsBVt06mEGGTffn_BmY7AAVfIwB9CNCSbf1t9v62z36mwXlE4Ey6feFU7bN_lvW7mR3xsLmP0O66afF_K_2F3GmwRA |
CitedBy_id | crossref_primary_10_1002_aenm_202303997 crossref_primary_10_1021_acsaem_0c01917 crossref_primary_10_1088_1742_6596_2174_1_012027 crossref_primary_10_1007_s40820_020_00509_y crossref_primary_10_1021_acsenergylett_2c00684 crossref_primary_10_1039_D2EE00663D crossref_primary_10_1016_j_jpowsour_2025_236283 crossref_primary_10_1039_D2SC04600H crossref_primary_10_1002_adfm_202308435 crossref_primary_10_1016_j_cej_2022_135107 crossref_primary_10_1002_adma_202306982 crossref_primary_10_1002_adfm_202112647 crossref_primary_10_1002_adom_202301361 crossref_primary_10_1016_j_snb_2024_135725 crossref_primary_10_1039_D0TC01892A crossref_primary_10_1021_acsenergylett_2c01537 crossref_primary_10_1111_php_13624 crossref_primary_10_1002_cjoc_202200688 crossref_primary_10_1039_D3TC03183G crossref_primary_10_1021_acsmaterialslett_0c00320 crossref_primary_10_1002_adfm_202214562 crossref_primary_10_1021_acsaem_0c02438 crossref_primary_10_1039_D3EE02033A crossref_primary_10_1002_ange_202113749 crossref_primary_10_1002_ange_202016085 crossref_primary_10_1016_j_scib_2020_04_021 crossref_primary_10_1002_aenm_202000183 crossref_primary_10_1002_anie_202218752 crossref_primary_10_1007_s11426_022_1445_2 crossref_primary_10_1002_bte2_20230065 crossref_primary_10_1016_j_cej_2020_126298 crossref_primary_10_1016_j_mtener_2023_101411 crossref_primary_10_1021_acs_macromol_0c00525 crossref_primary_10_1002_ente_202100691 crossref_primary_10_1021_acs_chemmater_0c03038 crossref_primary_10_1016_j_dyepig_2019_108162 crossref_primary_10_1016_j_materresbull_2021_111666 crossref_primary_10_1039_D0NR03408H crossref_primary_10_1021_acsenergylett_0c02385 crossref_primary_10_1021_acsmaterialslett_0c00134 crossref_primary_10_1016_j_cej_2021_131675 crossref_primary_10_1016_j_cej_2022_139047 crossref_primary_10_1021_acsaem_0c02306 crossref_primary_10_1002_adfm_202103316 crossref_primary_10_1016_j_mattod_2023_06_009 crossref_primary_10_1021_acsami_2c19954 crossref_primary_10_1002_ange_202218752 crossref_primary_10_1016_j_dyepig_2021_109633 crossref_primary_10_1039_D1TC04014F crossref_primary_10_1039_D0QM00357C crossref_primary_10_1002_adfm_202100332 crossref_primary_10_1039_D1TC01243F crossref_primary_10_1016_j_nanoen_2020_105490 crossref_primary_10_1039_D2SC04508G crossref_primary_10_1002_anie_202113749 crossref_primary_10_1021_acsenergylett_1c00124 crossref_primary_10_1016_j_dyepig_2023_111349 crossref_primary_10_1016_j_jpowsour_2021_229580 crossref_primary_10_1007_s12598_022_01982_7 crossref_primary_10_1016_j_joule_2020_12_003 crossref_primary_10_1002_cjoc_202300234 crossref_primary_10_1016_j_nanoen_2025_110859 crossref_primary_10_1007_s11426_020_9857_1 crossref_primary_10_1021_acsenergylett_9b02716 crossref_primary_10_1002_anie_202004256 crossref_primary_10_1016_j_mattod_2021_11_017 crossref_primary_10_1016_j_cej_2020_128328 crossref_primary_10_1002_adfm_202103614 crossref_primary_10_1021_acsenergylett_1c01126 crossref_primary_10_1002_advs_201903331 crossref_primary_10_1021_acsmaterialslett_3c00225 crossref_primary_10_1039_D0PY00134A crossref_primary_10_1016_j_jpowsour_2021_230095 crossref_primary_10_1002_anie_202016085 crossref_primary_10_1002_cssc_202301489 crossref_primary_10_1021_acs_jpclett_1c00954 crossref_primary_10_1021_acssuschemeng_3c06121 crossref_primary_10_1039_D3CP03409G crossref_primary_10_3390_sym14050966 crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1016_j_orgel_2020_105873 crossref_primary_10_1016_j_mattod_2021_05_016 crossref_primary_10_1039_D1CS01157J crossref_primary_10_1016_j_nanoen_2020_104673 crossref_primary_10_1002_adma_202110587 crossref_primary_10_1039_D0TA12509A crossref_primary_10_1039_D0TA10449C crossref_primary_10_1002_solr_202000184 crossref_primary_10_1016_j_dyepig_2021_109368 crossref_primary_10_1002_aenm_202101926 crossref_primary_10_1016_j_jcis_2022_11_096 crossref_primary_10_1021_acsaem_4c02631 crossref_primary_10_1021_acsami_0c21729 crossref_primary_10_1088_1674_4926_42_5_050501 crossref_primary_10_1007_s11426_020_9899_x crossref_primary_10_1021_jacs_0c06373 crossref_primary_10_1002_adfm_202308584 crossref_primary_10_1016_j_mtadv_2022_100300 crossref_primary_10_1021_acsami_1c13792 crossref_primary_10_1038_s41578_021_00331_x crossref_primary_10_1039_D1EE01562A crossref_primary_10_1002_smtd_202200624 crossref_primary_10_1016_j_nanoen_2020_104933 crossref_primary_10_1016_j_dyepig_2020_108786 crossref_primary_10_26599_NRE_2023_9120073 crossref_primary_10_1016_j_jechem_2021_11_026 crossref_primary_10_1002_ange_202004256 crossref_primary_10_1002_aenm_202100967 crossref_primary_10_1016_j_jcis_2023_03_049 crossref_primary_10_1016_j_xcrp_2021_100662 crossref_primary_10_1002_admt_202000960 crossref_primary_10_3390_polym13101652 crossref_primary_10_1039_D2TA06697A crossref_primary_10_1021_acsami_4c10529 crossref_primary_10_1016_j_ccr_2025_216500 crossref_primary_10_1002_solr_202000119 crossref_primary_10_1016_j_cej_2022_136781 crossref_primary_10_1021_acsenergylett_4c00816 crossref_primary_10_1021_acsami_2c01216 crossref_primary_10_1016_j_dyepig_2022_110279 crossref_primary_10_1002_adfm_202008201 crossref_primary_10_1002_inf2_12322 crossref_primary_10_1039_D1TA10388A |
Cites_doi | 10.1038/s41467-018-07255-1 10.1002/aenm.201803573 10.1039/C5TA01879J 10.1016/j.joule.2018.10.011 10.1038/s41563-018-0071-z 10.1002/anie.201807270 10.1038/s41467-018-03169-0 10.1002/aenm.201803140 10.1002/ange.201801837 10.1002/adma.201700183 10.1016/j.joule.2018.04.012 10.1021/jacs.7b04949 10.1002/aenm.201802060 10.1002/ejoc.201501598 10.1016/j.joule.2018.05.004 10.1039/C7TA01718A 10.1002/adma.201505140 10.1002/adfm.201803269 10.1021/jacs.7b07949 10.1021/acsami.8b22044 10.1002/anie.201801837 10.1021/jacs.6b10227 10.1021/acs.jpclett.6b02594 10.1002/aenm.201800681 10.1021/acsenergylett.7b00508 10.1039/C8TC00385H 10.1126/science.aag2700 10.1002/adma.201900428 10.1039/B707734C 10.1021/jacs.8b07927 10.1002/adma.201901152 10.1002/cssc.201700197 10.1021/acs.chemrev.8b00539 10.1002/adfm.201803753 10.1002/adma.201705393 10.1021/cm0107225 10.1002/anie.201814024 10.1002/ange.201800019 10.1016/j.joule.2018.08.011 10.1039/C8TA12139G 10.1002/adma.201606555 10.1039/C8CS00262B 10.1039/C5TA06398A 10.1021/jacs.8b09809 10.1021/nn204676j 10.1039/C8TA05026K 10.1002/adma.201505440 10.1002/ange.201807270 10.1002/adma.201900605 10.1021/jacs.7b13229 10.1021/acs.chemrev.8b00336 10.1021/cm2020803 10.1021/acs.nanolett.7b00050 10.1126/sciadv.1700841 10.1021/nn5036476 10.1016/j.solmat.2012.06.006 10.1002/ange.201814024 10.1002/anie.201800019 10.1002/aenm.201800554 10.1039/C7TA02562A 10.1038/s41467-018-04636-4 10.1002/adma.201802509 |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201907331 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17730 |
ExternalDocumentID | 31560144 10_1002_anie_201907331 ANIE201907331 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China funderid: 2017YF0206600 – fundername: National Natural Science Foundation of China funderid: 21704030; 21761132001, 51803060, 51573057; 21975085 – fundername: National Natural Science Foundation of China grantid: 21704030 – fundername: National Natural Science Foundation of China grantid: 21761132001, 51803060, 51573057 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2017YF0206600 – fundername: National Natural Science Foundation of China grantid: 21975085 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4101-56fe0f5e62da0cefbb7b92080f82cbeef7869c2a22933fe80be1798490bbbd213 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 05:12:13 EDT 2025 Fri Jul 25 10:33:37 EDT 2025 Wed Feb 19 02:30:40 EST 2025 Tue Jul 01 02:26:58 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 Wed Jan 22 16:39:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | passivation polysquaraines hole-transporting materials dopant-free all-inorganic perovskite solar cells |
Language | English |
License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-56fe0f5e62da0cefbb7b92080f82cbeef7869c2a22933fe80be1798490bbbd213 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9294-8939 |
PMID | 31560144 |
PQID | 2317519757 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2299141262 proquest_journals_2317519757 pubmed_primary_31560144 crossref_primary_10_1002_anie_201907331 crossref_citationtrail_10_1002_anie_201907331 wiley_primary_10_1002_anie_201907331_ANIE201907331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2, 2019 |
PublicationDateYYYYMMDD | 2019-12-02 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2, 2019 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2019; 7 2002; 14 2018; 28 2017; 8 2019; 9 2019; 3 2017; 2 2018; 140 2017; 3 2015; 3 2019; 31 2019; 11 2008; 18 2017; 29 2012; 105 2019 2019; 58 131 2018; 47 2017; 139 2018; 6 2018; 18 2018; 9 2018; 8 2018; 2 2019 2019 2017; 17 2018 2018; 57 130 2017; 10 2016; 354 2019; 119 2018; 30 2016 2016; 138 2011; 23 2012; 6 2016; 28 2014; 8 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_72_2 e_1_2_6_53_1 e_1_2_6_70_1 e_1_2_6_30_2 e_1_2_6_17_3 e_1_2_6_19_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_76_2 e_1_2_6_15_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_1 Zhang J. (e_1_2_6_9_2) 2019 e_1_2_6_9_3 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_73_2 e_1_2_6_52_1 e_1_2_6_75_2 e_1_2_6_31_1 e_1_2_6_71_2 e_1_2_6_50_1 e_1_2_6_18_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_16_3 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_35_3 e_1_2_6_61_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_40_2 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_46_3 e_1_2_6_48_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_69_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 28 start-page: 1803753 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 191 year: 2019 end-page: 204 publication-title: Joule – volume: 139 start-page: 12175 year: 2017 end-page: 12181 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 372 year: 2018 end-page: 376 publication-title: Nat. Mater. – volume: 28 start-page: 3966 year: 2016 end-page: 3972 publication-title: Adv. Mater. – volume: 2 start-page: 1356 year: 2018 end-page: 1368 publication-title: Joule – volume: 28 start-page: 3615 year: 2016 end-page: 3645 publication-title: Adv. Mater. – volume: 138 start-page: 15829 year: 2016 end-page: 15832 publication-title: J. Am. Chem. Soc. – year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 12345 year: 2018 end-page: 12348 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1802509 year: 2018 publication-title: Adv. Mater. – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 119 start-page: 3418 year: 2019 end-page: 3451 publication-title: Chem. Rev. – volume: 3 start-page: 19688 year: 2015 end-page: 19695 publication-title: J. Mater. Chem. A – volume: 31 start-page: 1900605 year: 2019 publication-title: Adv. Mater. – volume: 57 130 start-page: 3787 3849 year: 2018 2018 end-page: 3791 3853 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 5221 year: 2019 end-page: 5226 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1800554 year: 2018 publication-title: Adv. Energy Mater. – volume: 139 start-page: 14009 year: 2017 end-page: 14012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 67 year: 2017 end-page: 72 publication-title: J. Phys. Chem. Lett. – volume: 28 start-page: 1803269 year: 2018 publication-title: Adv. Funct. Mater. – volume: 354 start-page: 92 year: 2016 end-page: 95 publication-title: Science – volume: 2 start-page: 1500 year: 2018 end-page: 1510 publication-title: Joule – volume: 6 start-page: 4706 year: 2018 end-page: 4713 publication-title: J. Mater. Chem. C – volume: 105 start-page: 220 year: 2012 end-page: 228 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 5 start-page: 7811 year: 2017 end-page: 7815 publication-title: J. Mater. Chem. A – volume: 140 start-page: 16720 year: 2018 end-page: 16730 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2028 year: 2017 end-page: 2033 publication-title: Nano Lett. – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – start-page: 2244 year: 2016 end-page: 2259 publication-title: Eur. J. Org. Chem. – volume: 2 start-page: 2450 year: 2018 end-page: 2463 publication-title: Joule – volume: 6 start-page: 972 year: 2012 end-page: 978 publication-title: ACS Nano – volume: 23 start-page: 4789 year: 2011 end-page: 4798 publication-title: Chem. Mater. – volume: 58 131 start-page: 5587 5643 year: 2019 2019 end-page: 5591 5647 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1803573 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 13644 year: 2018 end-page: 13651 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1800681 year: 2018 publication-title: Adv. Energy Mater. – volume: 8 start-page: 9815 year: 2014 end-page: 9821 publication-title: ACS Nano – volume: 57 130 start-page: 12745 12927 year: 2018 2018 end-page: 12749 12931 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 410 year: 2002 end-page: 418 publication-title: Chem. Mater. – volume: 47 start-page: 8541 year: 2018 end-page: 8571 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 1700183 year: 2017 publication-title: Adv. Mater. – volume: 18 start-page: 264 year: 2008 end-page: 274 publication-title: J. Mater. Chem. – volume: 5 start-page: 10798 year: 2017 end-page: 10814 publication-title: J. Mater. Chem. A – volume: 31 start-page: 1900428 year: 2019 publication-title: Adv. Mater. – volume: 57 130 start-page: 5746 5848 year: 2018 2018 end-page: 5749 5851 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 3825 year: 2018 end-page: 3828 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1606555 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 2219 year: 2017 end-page: 2227 publication-title: ACS Energy Lett. – volume: 11 start-page: 10012 year: 2019 end-page: 10020 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 14517 year: 2015 end-page: 14534 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1705393 year: 2018 publication-title: Adv. Mater. – volume: 119 start-page: 3036 year: 2019 end-page: 3103 publication-title: Chem. Rev. – volume: 10 start-page: 2833 year: 2017 end-page: 2838 publication-title: ChemSusChem – volume: 9 start-page: 1803140 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 5265 year: 2018 publication-title: Nat. Commun. – volume: 8 start-page: 1802060 year: 2018 publication-title: Adv. Energy Mater. – volume: 31 start-page: 1901152 year: 2019 publication-title: Adv. Mater. – ident: e_1_2_6_4_2 doi: 10.1038/s41467-018-07255-1 – ident: e_1_2_6_72_2 doi: 10.1002/aenm.201803573 – ident: e_1_2_6_54_2 doi: 10.1039/C5TA01879J – ident: e_1_2_6_21_2 doi: 10.1016/j.joule.2018.10.011 – ident: e_1_2_6_31_1 – ident: e_1_2_6_3_2 doi: 10.1038/s41563-018-0071-z – ident: e_1_2_6_35_2 doi: 10.1002/anie.201807270 – ident: e_1_2_6_42_2 doi: 10.1038/s41467-018-03169-0 – year: 2019 ident: e_1_2_6_9_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_23_1 doi: 10.1002/aenm.201803140 – ident: e_1_2_6_53_1 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201801837 – ident: e_1_2_6_28_1 – ident: e_1_2_6_68_2 doi: 10.1002/adma.201700183 – ident: e_1_2_6_36_1 – ident: e_1_2_6_39_2 doi: 10.1016/j.joule.2018.04.012 – ident: e_1_2_6_67_2 doi: 10.1021/jacs.7b04949 – ident: e_1_2_6_11_2 doi: 10.1002/aenm.201802060 – ident: e_1_2_6_48_2 doi: 10.1002/ejoc.201501598 – ident: e_1_2_6_40_2 doi: 10.1016/j.joule.2018.05.004 – ident: e_1_2_6_66_2 doi: 10.1039/C7TA01718A – ident: e_1_2_6_75_2 doi: 10.1002/adma.201505140 – ident: e_1_2_6_47_1 – ident: e_1_2_6_45_2 doi: 10.1002/adfm.201803269 – ident: e_1_2_6_32_2 doi: 10.1021/jacs.7b07949 – ident: e_1_2_6_52_1 doi: 10.1021/acsami.8b22044 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201801837 – ident: e_1_2_6_13_2 doi: 10.1021/jacs.6b10227 – ident: e_1_2_6_14_2 doi: 10.1021/acs.jpclett.6b02594 – ident: e_1_2_6_73_2 doi: 10.1002/aenm.201800681 – ident: e_1_2_6_33_2 doi: 10.1021/acsenergylett.7b00508 – ident: e_1_2_6_12_1 – ident: e_1_2_6_62_2 doi: 10.1039/C8TC00385H – ident: e_1_2_6_37_2 doi: 10.1126/science.aag2700 – ident: e_1_2_6_65_1 – ident: e_1_2_6_76_2 doi: 10.1002/adma.201900428 – ident: e_1_2_6_49_2 doi: 10.1039/B707734C – ident: e_1_2_6_1_1 – ident: e_1_2_6_20_2 doi: 10.1021/jacs.8b07927 – ident: e_1_2_6_22_2 doi: 10.1002/adma.201901152 – ident: e_1_2_6_61_2 doi: 10.1002/cssc.201700197 – ident: e_1_2_6_7_1 doi: 10.1021/acs.chemrev.8b00539 – ident: e_1_2_6_74_1 – ident: e_1_2_6_56_1 – ident: e_1_2_6_6_2 doi: 10.1002/adfm.201803753 – ident: e_1_2_6_43_2 doi: 10.1002/adma.201705393 – ident: e_1_2_6_60_1 – ident: e_1_2_6_50_1 doi: 10.1021/cm0107225 – ident: e_1_2_6_46_2 doi: 10.1002/anie.201814024 – ident: e_1_2_6_16_3 doi: 10.1002/ange.201800019 – ident: e_1_2_6_29_2 doi: 10.1016/j.joule.2018.08.011 – ident: e_1_2_6_30_2 doi: 10.1039/C8TA12139G – ident: e_1_2_6_64_1 doi: 10.1002/adma.201606555 – ident: e_1_2_6_27_2 doi: 10.1039/C8CS00262B – ident: e_1_2_6_41_1 – ident: e_1_2_6_10_2 doi: 10.1039/C5TA06398A – ident: e_1_2_6_19_1 – ident: e_1_2_6_26_2 doi: 10.1021/jacs.8b09809 – ident: e_1_2_6_58_2 doi: 10.1021/nn204676j – ident: e_1_2_6_51_1 doi: 10.1039/C8TA05026K – ident: e_1_2_6_2_1 – ident: e_1_2_6_55_2 doi: 10.1002/adma.201505440 – ident: e_1_2_6_35_3 doi: 10.1002/ange.201807270 – ident: e_1_2_6_44_2 doi: 10.1002/adma.201900605 – ident: e_1_2_6_15_2 doi: 10.1021/jacs.7b13229 – ident: e_1_2_6_24_1 – ident: e_1_2_6_5_2 doi: 10.1021/acs.chemrev.8b00336 – ident: e_1_2_6_57_2 doi: 10.1021/cm2020803 – ident: e_1_2_6_8_1 – ident: e_1_2_6_34_2 doi: 10.1021/acs.nanolett.7b00050 – ident: e_1_2_6_38_2 doi: 10.1126/sciadv.1700841 – ident: e_1_2_6_71_2 doi: 10.1021/nn5036476 – ident: e_1_2_6_63_1 doi: 10.1016/j.solmat.2012.06.006 – ident: e_1_2_6_46_3 doi: 10.1002/ange.201814024 – ident: e_1_2_6_70_1 – ident: e_1_2_6_9_3 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201800019 – ident: e_1_2_6_25_2 doi: 10.1002/aenm.201800554 – ident: e_1_2_6_59_1 doi: 10.1039/C7TA02562A – ident: e_1_2_6_18_2 doi: 10.1038/s41467-018-04636-4 – ident: e_1_2_6_69_1 doi: 10.1002/adma.201802509 |
SSID | ssj0028806 |
Score | 2.615992 |
SecondaryResourceType | review_article |
Snippet | Development of high‐performance dopant‐free hole‐transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all‐inorganic... Development of high-performance dopant-free hole-transporting materials (HTMs) with comprehensive passivation effects is highly desirable for all-inorganic... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17724 |
SubjectTerms | all-inorganic perovskite solar cells dopant-free Dopants Energy levels Hole mobility hole-transporting materials Mobility passivation Passivity Perovskites Photovoltaic cells Polymers polysquaraines Solar cells Transportation |
Title | Dopant‐Free Squaraine‐Based Polymeric Hole‐Transporting Materials with Comprehensive Passivation Effects for Efficient All‐Inorganic Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201907331 https://www.ncbi.nlm.nih.gov/pubmed/31560144 https://www.proquest.com/docview/2317519757 https://www.proquest.com/docview/2299141262 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fj5QwEG_MveiL__-gp6mJiU_c0XYp8Liut9kzucvG85J7I20ZopGALqyJPvkR_A5-Mz-JMxTQ1RgTfSul0ALT6W_KzG8Ye1KAElbERWiFKdFA0SrMjNBhoZVONUSZkRTvfHKqV-ezFxfxxU9R_J4fYtpwo5nR62ua4Ma2hz9IQykCm1yzsj7tICphctgiVPRy4o-SKJw-vEipkLLQj6yNkTzcvXx3VfoNau4i137pWV5jZhy09zh5e7Dt7IH79Auf4_881XV2dcClfO4F6Qa7BPVNdnkxpoO7xb4-R_O67r59_rLcAPCz9yhbBrvDime4EhZ83VQf-98_fNVUVD3xpuPqyE9M52Wd084vJzW0gdfee56vEcEPWda4p1NuOYJpKr_pAzb5vKrwjse1T0Ll-Bo2zYeWdp75GRnnfAFV1d5m58ujV4tVOGR4CN0MdUEY6xKiMgYtCxM5KK1NbCYRxJapdBagTFKdOWkkghJVQhpZIIK1WRZZawsp1B22Vzc13GMcJUuQMSRSiwgPnDVOp4mMi9QqIYwOWDh-4dwN9OeUhaPKPXGzzOnV59OrD9jTqf07T_zxx5b7o8DkgwJoc0m4TGRJnATs8XQaPxn9jzE1NFtsg1BAzITUMmB3vaBNXSmKcEdjN2CyF5e_jCGfnx4fTUf3_-WiB-wKlXtXHbnP9rrNFh4i4Orso35SfQeVIigx |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_n8CBYwE4pQ2djZOcuCw7Ha1S7urFW2l3tI4cQQiSmCzCyonHoF34Al4FR6BJ2EmToIWhJCQeuCWOE7i2DP2NxPPNwCPU-1yxb3UVjzO0ECRrh3GXNqpdGUgtRPGguKdpzM5Pu69OPFONuBrGwtj-CE6hxtpRj1fk4KTQ3r3J2sohWDT3qywzjvY7Kvc12cf0Gqrnk2GOMRPhBjtHQ3GdpNYwE56KIK2JzPtZJ6WIo2dRGdK-SoUiJ2yQCRK68wPZJiIWOBa6GY6cJQmXq9e6CilUsFdfO4FuEhpxImuf_iyY6wSqA4moMl1bcp73_JEOmJ3vb3r6-Bv4HYdK9eL3egKfGu7yexxebOzWqqd5OMvDJL_VT9ehcsN9GZ9oyvXYEMX12Fr0Ga8uwFfhiXOjcvvnz6PFlqzw3eoPjF-HxY8x8U-ZfMyP6v_cLFxmVNxRw2PAIBN46VRZ0bObUYz7UK_MgECbI5GSpNIjhnG6IqhvUDHr-uYVNbPc3zipDB5thI214vyfUXOdXZI_gc20Hle3YTjc-mjW7BZlIW-AwyVh5O9xwOFIFYnKk5k4AsvDZTLeSwtsFuRipKG4Z0SjeSR4aYWEQ111A21BU-7-m8Nt8kfa263Eho1c1wVCYKePPQ934JH3WUcMvrlFBe6XGEdRDu8x4UUFtw2kt29yqUgfrTnLRC1fP6lDVF_Ntnrzu7-y00PYWt8ND2IDiaz_XtwicrrnUliGzaXi5W-j_hyqR7UGs3g9LxF_wcdV4ef |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_n8CBYwE4pQ2dhJvcuCw7Ha1S-lqRanUW4gTRyCipGyyoHLiEXgHXoBX4RV4EmbiJGhBCAmpB26J4ziOPeP5secbgIepdrnifmorHmdooEjXDmMu7VS6MpDaCWNB8c77czk99J4d-Ucb8LWLhTH4EL3DjTijWa-JwY_TbOcnaChFYNPRrLBJO9geq9zTJx_QaKuezMY4w4-EmOy-HE3tNq-AnXhIgbYvM-1kvpYijZ1EZ0oNVChQdcoCkSits0Egw0TEAkWhm-nAUZpgvbzQUUqlgrvY7hk460knpGQR4xc9YJVAbjDxTK5rU9r7DibSETvr_V0Xg7_ptuuqciPrJpfgWzdK5ojL2-1VrbaTj78ASP5Pw3gZLraKNxsaTrkCG7q4CudHXb67a_BlXOLKWH__9Hmy1JodvEPmifH3sOApivqULcr8pNnfYtMyp-IeGB7FP9uPa8PMjFzbjNbZpX5twgPYAk2UNo0cM3jRFUNrga7fNBGpbJjn2OKsMFm2ErbQy_J9Ra51dkDeBzbSeV5dh8NTGaMbsFmUhb4FDFmHk7XHA4UqrE5UnMhgIPw0UC7nsbTA7igqSlp8d0ozkkcGmVpENNVRP9UWPO7rHxtkkz_W3OoINGpXuCoSpHjycOAPLHjQP8Ypow2nuNDlCuugrsM9LqSw4KYh7P5TLoXwozVvgWjI8y99iIbz2W5_d_tfXroP5xbjSfR8Nt-7AxeouDmWJLZgs16u9F1ULmt1r-FnBq9Om_J_APmJhk4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dopant%E2%80%90Free+Squaraine%E2%80%90Based+Polymeric+Hole%E2%80%90Transporting+Materials+with+Comprehensive+Passivation+Effects+for+Efficient+All%E2%80%90Inorganic+Perovskite+Solar+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiao%2C+Qi&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Wang%2C+Jing&rft.date=2019-12-02&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=49&rft.spage=17724&rft.epage=17730&rft_id=info:doi/10.1002%2Fanie.201907331&rft.externalDBID=10.1002%252Fanie.201907331&rft.externalDocID=ANIE201907331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |