The Principal Role of Chorus Ducting for Night‐Side Relativistic Electron Precipitation
Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativis...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
16.09.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation.
Plain Language Summary
Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation.
Key Points
We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves
We perform a comparison of observations with simulation results for different wave propagation regimes
We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side |
---|---|
AbstractList | Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Abstract Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Plain Language Summary Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation. Key Points We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves We perform a comparison of observations with simulation results for different wave propagation regimes We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation. We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves We perform a comparison of observations with simulation results for different wave propagation regimes We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side |
Author | Artemyev, Anton V. Zhang, Xiao‐Jia Kang, Ning Angelopoulos, Vassilis Bortnik, Jacob |
Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0002-7317-8665 surname: Kang fullname: Kang, Ning email: nkang20@atmos.ucla.edu organization: University of California – sequence: 2 givenname: Anton V. orcidid: 0000-0001-8823-4474 surname: Artemyev fullname: Artemyev, Anton V. organization: University of California – sequence: 3 givenname: Jacob orcidid: 0000-0001-8811-8836 surname: Bortnik fullname: Bortnik, Jacob organization: University of California – sequence: 4 givenname: Xiao‐Jia orcidid: 0000-0002-4185-5465 surname: Zhang fullname: Zhang, Xiao‐Jia organization: University of Texas at Dallas – sequence: 5 givenname: Vassilis orcidid: 0000-0001-7024-1561 surname: Angelopoulos fullname: Angelopoulos, Vassilis organization: University of California |
BookMark | eNqFkc2OEzEMxyO0SHQXbjxAJK4UHDvTyRxR2S0rVYDKcuAUZTJOm2qYlMwUtDcegWfkSQh0hRAHONmy__7561ycDWlgIR4reKYAm-cIqFdrpYAW1T0xU43WcwNQn4kZQFN8rBcPxPk47gGAgNRMfLjZsXyb4-DjwfVyk3qWKcjlLuXjKF8e_RSHrQwpy9dxu5u-f_32LnYsN9y7KX6O4xS9vOzZTzkNhcMFE6eSSsNDcT-4fuRHd_ZCvL-6vFm-mq_frK6XL9ZzrxWoOXVoVN1RqMgjmWDIKAxI1NahLNISG0LnAT0aYs0enQ7ceu-50r5GuhDXJ26X3N4ecvzo8q1NLtpfgZS31uUyZs_WmdqZqgoeTKM5tK5ugsIOmaqmcy0U1pMT65DTpyOPk92nYx7K-JbKhYkI66aonp5UPqdxzBx-d1Vgfz7C_vmIIse_5P7uRFN2sf9P0ZfY8-0_G9jVZr0wSiv6AQS_m2M |
CitedBy_id | crossref_primary_10_1029_2024GL111882 crossref_primary_10_1029_2024JA033208 |
Cites_doi | 10.1186/s40623‐018‐0842‐4 10.1002/2017JA025005 10.1029/2023JA031566 10.1029/2022JA030338 10.1029/2023JA031774 10.1002/2016JA022765 10.1029/RG007i001p00379 10.1029/2019JA027037 10.1029/2022JA030265 10.1007/s11214‐020‐00721‐7 10.1029/2020GL092305 10.1029/2022JA030705 10.1029/2023JA031350 10.1007/s11214‐008‐9371‐y 10.1186/s40623‐018‐0862‐0 10.1029/2006JA011993 10.1029/2012JA017978 10.1186/s40623‐021‐01380‐w 10.1016/j.jastp.2006.05.030 10.1002/2014JA020096 10.1029/2019ja026586 10.1029/2000JA003018 10.1002/2015JA021691 10.1029/2020JA028814 10.1029/2022GL100841 10.1029/2012JA018343 10.1029/2019GL083446 10.1029/2022JA030574 10.1002/2017JA024067 10.1007/s11214‐015‐0163‐x 10.1002/2017GL075001 10.1029/2022JA031087 10.1002/jgra.50264 10.1029/2000JA000286 10.1007/s11214‐018‐0576‐4 10.1029/2023JA032351 10.1002/9781119815624.ch6 10.1029/2004JA010882 10.1002/grl.50920 10.1007/s11214‐008‐9365‐9 10.1002/2014GL059815 10.1029/2021GL093879 10.1029/2011JA017154 10.1002/2014JA020364 10.1029/2021GL097559 10.1007/s11214‐023‐00984‐w 10.1029/2019GL083115 10.1029/2021GL095933 10.1029/2008GL034032 10.1002/jgra.50312 10.1029/2023ja032250 10.1063/5.0062160 10.1126/sciadv.abc0380 10.1016/0032‐0633(83)90103‐4 10.1029/2023JA032287 10.1186/s40623‐016‐0568‐0 10.1029/2022ja030779 10.1029/2021JA030111 10.1029/JA084iA11p06371 10.1029/91JA01548 10.1029/2022GL101920 10.1029/2005JA011182 10.1186/s40623‐018‐0847‐z 10.1029/2012JA017683 10.1002/2017ja024716 10.1029/2020JA027917 10.1007/s11214‐008‐9469‐2 10.1029/jz071i001p00001 10.3389/fspas.2021.745927 10.1029/2020GL090360 10.1007/s11214‐008‐9336‐1 10.1029/2021JA029851 10.1007/s11430‐019‐9384‐6 10.1016/0032‐0633(89)90066‐4 10.1029/2011JA017035 10.1007/s11214‐015‐0164‐9 10.1029/2010JA016313 10.1029/2003GL017698 10.1029/2011JA016768 10.1029/2010JA016245 10.5281/zenodo.11099919 10.1029/ja077i019p03495 10.1029/2011gl046810 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL110365 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a87a855fc0894efba79f12d2e359dab0 10_1029_2024GL110365 GRL68141 |
Genre | article |
GrantInformation_xml | – fundername: NSF funderid: AGS‐1242918; AGS‐2019950; AGS‐2025706; 2329897; 2225613 – fundername: AFOSR funderid: FA9453‐12‐D‐0285 – fundername: NASA funderid: 80NSSC22K1005; 80NSSC21K1393; 80NSSC22K1637; 80NSSC23K0089; 80NSSC23K0100; 80NSSC24K0138 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c4101-3d2817d3f53c238f83812f233b7f103b3e832ac02c283e4ec2a4febccce54c723 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Wed Aug 27 01:17:47 EDT 2025 Fri Jul 25 10:54:48 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 01 01:05:35 EDT 2025 Wed Jan 22 17:14:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4101-3d2817d3f53c238f83812f233b7f103b3e832ac02c283e4ec2a4febccce54c723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8823-4474 0000-0001-8811-8836 0000-0001-7024-1561 0000-0002-4185-5465 0000-0002-7317-8665 |
OpenAccessLink | https://doaj.org/article/a87a855fc0894efba79f12d2e359dab0 |
PQID | 3102333279 |
PQPubID | 54723 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a87a855fc0894efba79f12d2e359dab0 proquest_journals_3102333279 crossref_primary_10_1029_2024GL110365 crossref_citationtrail_10_1029_2024GL110365 wiley_primary_10_1029_2024GL110365_GRL68141 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 September 2024 |
PublicationDateYYYYMMDD | 2024-09-16 |
PublicationDate_xml | – month: 09 year: 2024 text: 16 September 2024 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2011; 116 2020; 63 2021; 126 2017; 44 2021; 28 2018; 123 2019; 124 2008; 35 2024 1992; 97 2021; 73 2008; 141 2001; 106 2021b; 126 2013; 118 1969; 7 2018; 70 2016; 199 2020; 216 2020; 47 2023; 219 2017; 122 1989; 37 2022; 127 2007; 69 2014; 119 2021; 7 2021; 48 2005; 110 2024; 129 2018b; 70 2013; 40 2022b; 49 2023; 128 1983; 31 1966; 71 2006 2018a; 70 2016; 121 2021a; 8 2014; 41 2011; 38 2003; 30 2022; 49 2007; 112 2021 2019; 46 2019; 215 1972; 77 2012; 117 2023; 50 2016; 68 1979; 84 2022a; 49 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 141 start-page: 303 issue: 1–4 year: 2008 end-page: 341 article-title: The electric field instrument (EFI) for THEMIS publication-title: Space Science Reviews – volume: 118 start-page: 1074 issue: 3 year: 2013 end-page: 1088 article-title: Modeling the wave normal distribution of chorus waves publication-title: Journal of Geophysical Research – volume: 122 start-page: 8096 issue: 8 year: 2017 end-page: 8107 article-title: Occurrence characteristics of relativistic electron microbursts from SAMPEX observations publication-title: Journal of Geophysical Research: Space Physics – volume: 49 issue: 23 year: 2022a article-title: Relativistic microburst scale size induced by a single point‐source chorus element publication-title: Geophysical Research Letters – volume: 70 start-page: 86 issue: 1 year: 2018b article-title: The plasma wave experiment (PWE) on board the Arase (ERG) satellite publication-title: Earth Planets and Space – volume: 47 issue: 21 year: 2020 article-title: Relativistic electron microbursts as high‐energy tail of pulsating aurora electrons publication-title: Geophysical Research Letters – volume: 8 start-page: 163 year: 2021a article-title: Electron microbursts induced by nonducted chorus waves publication-title: Frontiers in Astronomy and Space Sciences – volume: 116 issue: A6 year: 2011 article-title: Modulation of whistler mode chorus waves: 2. Role of density variations publication-title: Journal of Geophysical Research – volume: 123 start-page: 2566 issue: 4 year: 2018 end-page: 2587 article-title: A census of plasma waves and structures associated with an injection front in the inner magnetosphere publication-title: Journal of Geophysical Research – volume: 110 issue: A9 year: 2005 article-title: Timescale for MeV electron microburst loss during geomagnetic storms publication-title: Journal of Geophysical Research – volume: 128 issue: 1 year: 2023 article-title: Simulation of chorus wave excitation in the compressed/stretched dipole magnetic field publication-title: Journal of Geophysical Research: Space Physics – volume: 116 issue: A12 year: 2011 article-title: Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations publication-title: Journal of Geophysical Research – volume: 127 issue: 1 year: 2022 article-title: Relativistic electron precipitation near midnight: Drivers, distribution, and properties publication-title: Journal of Geophysical Research: Space Physics – volume: 46 start-page: 5735 issue: 11 year: 2019 end-page: 5745 article-title: Effects of ducting on whistler mode chorus or exohiss in the outer radiation belt publication-title: Geophysical Research Letters – volume: 118 start-page: 2296 issue: 5 year: 2013 end-page: 2312 article-title: Energetic electron (¿10 keV) microburst precipitation, 5‐15 s X‐ray pulsations, chorus, and wave‐particle interactions: A review publication-title: Journal of Geophysical Research – volume: 219 start-page: 37 issue: 5 year: 2023 article-title: Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN’s low altitude perspective publication-title: Space Science Reviews – volume: 126 issue: 3 year: 2021 article-title: Investigation of small scale electron density irregularities observed by the Arase and van allen probes satellites inside and outside the plasmasphere publication-title: Journal of Geophysical Research: Space Physics – year: 2006 article-title: Temporal signatures of radiation belt electron precipitation induced by lightning generated mr whistler waves: 1 publication-title: Methodology – volume: 126 issue: 4 year: 2021b article-title: In situ observations of whistler mode chorus waves guided by density ducts publication-title: Journal of Geophysical Research: Space Physics – volume: 41 start-page: 2729 issue: 8 year: 2014 end-page: 2737 article-title: Propagation of lower‐band whistler‐mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi‐component data from the Cluster spacecraft publication-title: Geophysical Research Letters – volume: 128 issue: 10 year: 2023 article-title: Statistical characteristics of the electron isotropy boundary publication-title: Journal of Geophysical Research: Space Physics – volume: 129 issue: 3 year: 2024 article-title: Modeling the global distribution of chorus wave induced relativistic microburst spatial characteristics publication-title: Journal of Geophysical Research: Space Physics – volume: 127 issue: 4 year: 2022 article-title: On the role of whistler‐mode waves in electron interaction with dipolarizing flux bundles publication-title: Journal of Geophysical Research: Space Physics – volume: 128 issue: 11 year: 2023 article-title: Global distribution of relativistic electron precipitation and the dependences on substorm injection and solar wind ram pressure: Long‐term POES observations publication-title: Journal of Geophysical Research: Space Physics – year: 2024 article-title: Data for the principal role of chorus ducting for night‐side relativistic electron precipitation publication-title: Zenodo – volume: 63 start-page: 78 issue: 1 year: 2020 end-page: 92 article-title: Theoretical and numerical studies of chorus waves: A review publication-title: Science China Earth Sciences – volume: 97 start-page: 1097 issue: A2 year: 1992 end-page: 1108 article-title: An ISEE/Whistler model of equatorial electron density in the magnetosphere publication-title: Journal of Geophysical Research – volume: 38 issue: 8 year: 2011 article-title: Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler‐mode waves publication-title: Geophysical Research Letters – volume: 124 start-page: 4157 issue: 6 year: 2019 end-page: 4167 article-title: Two‐dimensional gcpic simulation of rising‐tone chorus waves in a dipole magnetic field publication-title: Journal of Geophysical Research: Space Physics – volume: 30 start-page: 160000 issue: 16 year: 2003 end-page: 160001 article-title: Favored regions for chorus‐driven electron acceleration to relativistic energies in the Earth’s outer radiation belt publication-title: Geophysical Research Letters – volume: 77 start-page: 3495 issue: 19 year: 1972 end-page: 3507 article-title: On the stability of obliquely propagating whistlers publication-title: Journal of Geophysical Research – volume: 48 issue: 23 year: 2021 article-title: Conjugate observation of magnetospheric chorus propagating to the ionosphere by ducting publication-title: Geophysical Research Letters – volume: 116 issue: A9 year: 2011 article-title: Relations between multiple auroral streamers, pre‐onset thin arc formation, and substorm auroral onset publication-title: Journal of Geophysical Research – volume: 117 issue: A1 year: 2012 article-title: Magnetospheric location of the equatorward prebreakup arc publication-title: Journal of Geophysical Research – start-page: 93 year: 2021 end-page: 108 – volume: 141 start-page: 5 issue: 1–4 year: 2008 end-page: 34 article-title: The THEMIS mission publication-title: Space Science Reviews – volume: 46 start-page: 6178 issue: 12 year: 2019 end-page: 6187 article-title: Time scales for electron quasi‐linear diffusion by lower‐band chorus waves: The effects of ωpe/Ωce dependence on geomagnetic activity publication-title: Geophysical Research Letters – volume: 70 start-page: 101 issue: 1 year: 2018 article-title: Geospace exploration project ERG publication-title: Earth Planets and Space – volume: 128 issue: 4 year: 2023 article-title: Contribution of kinetic alfvén waves to energetic electron precipitation from the plasma sheet during a substorm publication-title: Journal of Geophysical Research: Space Physics – volume: 121 start-page: 8286 issue: 9 year: 2016 end-page: 8299 article-title: Relativistic electron precipitation as seen by NOAA POES publication-title: Journal of Geophysical Research: Space Physics – volume: 127 issue: 10 year: 2022 article-title: Thinning of the magnetotail current sheet inferred from low‐altitude observations of energetic electrons publication-title: Journal of Geophysical Research: Space Physics – volume: 117 issue: A9 year: 2012 article-title: The SuperMAG data processing technique publication-title: Journal of Geophysical Research – volume: 121 start-page: 1362 issue: 2 year: 2016 end-page: 1376 article-title: Dipolarizing flux bundles in the cis‐geosynchronous magnetosphere: Relationship between electric fields and energetic particle injections publication-title: Journal of Geophysical Research – volume: 141 start-page: 235 issue: 1–4 year: 2008 end-page: 264 article-title: The THEMIS fluxgate magnetometer publication-title: Space Science Reviews – volume: 49 issue: 23 year: 2022b article-title: Relativistic microburst scale size induced by a single point‐source chorus element publication-title: Geophysical Research Letters – volume: 141 start-page: 509 issue: 1–4 year: 2008 end-page: 534 article-title: First results of the THEMIS search coil magnetometers publication-title: Space Science Reviews – volume: 84 start-page: 6371 issue: A11 year: 1979 end-page: 6384 article-title: Studies of the sharply defined L dependent energy threshold for isotropy at the midnight trapping boundary publication-title: Journal of Geophysical Research – volume: 199 start-page: 5 issue: 1–4 year: 2016 end-page: 21 article-title: Magnetospheric multiscale Overview and science objectives publication-title: Space Science Reviews – volume: 124 start-page: 8427 issue: 11 year: 2019 end-page: 8456 article-title: Signatures of nonideal plasma evolution during substorms obtained by mining multimission magnetometer data publication-title: Journal of Geophysical Research: Space Physics – volume: 37 start-page: 5 issue: 1 year: 1989 end-page: 20 article-title: A magnetospheric magnetic field model with a warped tail current sheet publication-title: Planetary and Space Science – volume: 128 issue: 1 year: 2023 article-title: Temporal scales of electron precipitation driven by whistler‐mode waves publication-title: Journal of Geophysical Research: Space Physics – volume: 44 start-page: 11265 issue: 22 year: 2017 end-page: 11272 article-title: Observations directly linking relativistic electron microbursts to whistler mode chorus: Van allen probes and FIREBIRD II publication-title: Geophysical Research Letters – volume: 117 issue: A10 year: 2012 article-title: Global model of lower band and upper band chorus from multiple satellite observations publication-title: Journal of Geophysical Research – volume: 127 issue: 5 year: 2022 article-title: Relativistic electron precipitation driven by nonlinear resonance with whistler‐mode waves publication-title: Journal of Geophysical Research: Space Physics – volume: 199 start-page: 309 issue: 1–4 year: 2016 end-page: 329 article-title: The fly’s eye energetic particle spectrometer (FEEPS) sensors for the magnetospheric multiscale (MMS) mission publication-title: Space Science Reviews – volume: 216 start-page: 103 issue: 5 year: 2020 article-title: The ELFIN mission publication-title: Space Science Reviews – volume: 118 start-page: 3407 issue: 6 year: 2013 end-page: 3420 article-title: Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF‐SA measurements publication-title: Journal of Geophysical Research – volume: 106 start-page: 6017 issue: A4 year: 2001 end-page: 6028 article-title: Observations of relativistic electron microbursts in association with VLF chorus publication-title: Journal of Geophysical Research – volume: 69 start-page: 378 issue: 3 year: 2007 end-page: 386 article-title: The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 119 start-page: 8288 issue: 10 year: 2014 end-page: 8298 article-title: Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle‐in‐cell simulations publication-title: Journal of Geophysical Research: Space Physics – volume: 40 start-page: 4526 issue: 17 year: 2013 end-page: 4532 article-title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes publication-title: Geophysical Research Letters – volume: 48 issue: 17 year: 2021 article-title: Duration of individual relativistic electron microbursts: A probe into their scattering mechanism publication-title: Geophysical Research Letters – volume: 215 start-page: 9 issue: 1 year: 2019 article-title: The Space Physics environment data analysis system (SPEDAS) publication-title: Space Science Reviews – volume: 48 issue: 7 year: 2021 article-title: Whistler mode waves trapped by density irregularities in the earth’s magnetosphere publication-title: Geophysical Research Letters – volume: 129 issue: 3 year: 2024 article-title: Key factors determining nightside energetic electron losses driven by whistler‐mode waves publication-title: Journal of Geophysical Research: Space Physics – volume: 71 start-page: 1 year: 1966 end-page: 28 article-title: Limit on stably trapped particle fluxes publication-title: Journal of Geophysical Research – volume: 127 issue: 7 year: 2022 article-title: Statistical study on small‐scale (≤1,000 km) density irregularities in the inner magnetosphere publication-title: Journal of Geophysical Research: Space Physics – volume: 106 start-page: 25631 issue: A11 year: 2001 end-page: 25642 article-title: An empirical plasmasphere and trough density model: CRRES observations publication-title: Journal of Geophysical Research – volume: 31 start-page: 1147 issue: 10 year: 1983 end-page: 1155 article-title: Pitch‐angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere publication-title: Planetary and Space Science – volume: 129 issue: 2 year: 2024 article-title: Relativistic electron precipitation driven by mesoscale transients, inferred from ground and multi‐spacecraft platforms publication-title: Journal of Geophysical Research: Space Physics – volume: 119 start-page: 7327 issue: 9 year: 2014 end-page: 7342 article-title: The role of small‐scale ion injections in the buildup of Earth’s ring current pressure: Van Allen Probes observations of the 17 March 2013 storm publication-title: Journal of Geophysical Research – volume: 112 issue: A4 year: 2007 article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves publication-title: Journal of Geophysical Research – volume: 70 start-page: 69 issue: 1 year: 2018a article-title: Medium‐energy particle experiments‐electron analyzer (MEP‐e) for the exploration of energization and radiation in geospace (ERG) mission publication-title: Earth Planets and Space – volume: 73 start-page: 95 issue: 1 year: 2021 article-title: Nonlinear wave growth theory of whistler‐mode chorus and hiss emissions in the magnetosphere publication-title: Earth Planets and Space – volume: 35 issue: 11 year: 2008 article-title: Resonant scattering of plasma sheet electrons by whistler‐mode chorus: Contribution to diffuse auroral precipitation publication-title: Geophysical Research Letters – volume: 7 issue: 5 year: 2021 article-title: Gyroresonant wave‐particle interactions with chorus waves during extreme depletions of plasma density in the Van Allen radiation belts publication-title: Science Advances – volume: 68 start-page: 192 issue: 1 year: 2016 article-title: Electron hybrid code simulation of whistler‐mode chorus generation with real parameters in the Earth’s inner magnetosphere publication-title: Earth Planets and Space – volume: 49 issue: 5 year: 2022 article-title: Ducted chorus waves cause sub‐relativistic and relativistic electron microbursts publication-title: Geophysical Research Letters – volume: 50 issue: 8 year: 2023 article-title: Bursty energetic electron precipitation by high‐order resonance with very‐oblique whistler‐mode waves publication-title: Geophysical Research Letters – volume: 122 start-page: 11 issue: 11 year: 2017 end-page: 274 article-title: A statistical study of the spatial extent of relativistic electron precipitation with polar orbiting environmental satellites publication-title: Journal of Geophysical Research: Space Physics – volume: 7 start-page: 379 issue: 1–2 year: 1969 end-page: 419 article-title: Consequences of a magnetospheric plasma publication-title: Reviews of Geophysics and Space Physics – volume: 28 issue: 10 year: 2021 article-title: Charged particle scattering in dipolarized magnetotail publication-title: Physics of Plasmas – volume: 116 issue: A4 year: 2011 article-title: Evolution of electron pitch angle distributions following injection from the plasma sheet publication-title: Journal of Geophysical Research – volume: 126 issue: 11 year: 2021 article-title: Role of ducting in relativistic electron loss by whistler‐mode wave scattering publication-title: Journal of Geophysical Research: Space Physics – ident: e_1_2_7_41_1 doi: 10.1186/s40623‐018‐0842‐4 – ident: e_1_2_7_56_1 doi: 10.1002/2017JA025005 – ident: e_1_2_7_23_1 doi: 10.1029/2023JA031566 – ident: e_1_2_7_80_1 doi: 10.1029/2022JA030338 – ident: e_1_2_7_83_1 doi: 10.1029/2023JA031774 – ident: e_1_2_7_84_1 doi: 10.1002/2016JA022765 – ident: e_1_2_7_44_1 doi: 10.1029/RG007i001p00379 – ident: e_1_2_7_72_1 doi: 10.1029/2019JA027037 – ident: e_1_2_7_11_1 doi: 10.1029/2022JA030265 – ident: e_1_2_7_7_1 doi: 10.1007/s11214‐020‐00721‐7 – ident: e_1_2_7_43_1 doi: 10.1029/2020GL092305 – ident: e_1_2_7_9_1 doi: 10.1029/2022JA030705 – ident: e_1_2_7_69_1 doi: 10.1029/2023JA031350 – ident: e_1_2_7_48_1 doi: 10.1007/s11214‐008‐9371‐y – ident: e_1_2_7_60_1 doi: 10.1186/s40623‐018‐0862‐0 – ident: e_1_2_7_73_1 doi: 10.1029/2006JA011993 – ident: e_1_2_7_57_1 doi: 10.1029/2012JA017978 – ident: e_1_2_7_63_1 doi: 10.1186/s40623‐021‐01380‐w – ident: e_1_2_7_17_1 doi: 10.1016/j.jastp.2006.05.030 – ident: e_1_2_7_32_1 doi: 10.1002/2014JA020096 – ident: e_1_2_7_54_1 doi: 10.1029/2019ja026586 – ident: e_1_2_7_53_1 doi: 10.1029/2000JA003018 – ident: e_1_2_7_52_1 doi: 10.1002/2015JA021691 – ident: e_1_2_7_27_1 doi: 10.1029/2020JA028814 – ident: e_1_2_7_38_1 doi: 10.1029/2022GL100841 – ident: e_1_2_7_24_1 doi: 10.1029/2012JA018343 – ident: e_1_2_7_3_1 doi: 10.1029/2019GL083446 – ident: e_1_2_7_33_1 doi: 10.1029/2022JA030574 – ident: e_1_2_7_28_1 doi: 10.1002/2017JA024067 – ident: e_1_2_7_14_1 doi: 10.1007/s11214‐015‐0163‐x – ident: e_1_2_7_18_1 doi: 10.1002/2017GL075001 – ident: e_1_2_7_85_1 doi: 10.1029/2022JA031087 – ident: e_1_2_7_81_1 doi: 10.1002/jgra.50264 – ident: e_1_2_7_67_1 doi: 10.1029/2000JA000286 – ident: e_1_2_7_6_1 doi: 10.1007/s11214‐018‐0576‐4 – ident: e_1_2_7_79_1 doi: 10.1029/2023JA032351 – ident: e_1_2_7_77_1 doi: 10.1002/9781119815624.ch6 – ident: e_1_2_7_78_1 doi: 10.1029/2004JA010882 – ident: e_1_2_7_51_1 doi: 10.1002/grl.50920 – ident: e_1_2_7_13_1 doi: 10.1007/s11214‐008‐9365‐9 – ident: e_1_2_7_64_1 doi: 10.1002/2014GL059815 – ident: e_1_2_7_71_1 doi: 10.1029/2021GL093879 – ident: e_1_2_7_65_1 doi: 10.1029/2011JA017154 – ident: e_1_2_7_29_1 doi: 10.1002/2014JA020364 – ident: e_1_2_7_25_1 doi: 10.1029/2021GL097559 – ident: e_1_2_7_8_1 doi: 10.1007/s11214‐023‐00984‐w – ident: e_1_2_7_34_1 doi: 10.1029/2019GL083115 – ident: e_1_2_7_70_1 doi: 10.1029/2021GL095933 – ident: e_1_2_7_61_1 doi: 10.1029/2008GL034032 – ident: e_1_2_7_2_1 doi: 10.1002/jgra.50312 – ident: e_1_2_7_37_1 doi: 10.1029/2023ja032250 – ident: e_1_2_7_55_1 doi: 10.1063/5.0062160 – ident: e_1_2_7_4_1 doi: 10.1126/sciadv.abc0380 – ident: e_1_2_7_66_1 doi: 10.1016/0032‐0633(83)90103‐4 – ident: e_1_2_7_12_1 doi: 10.1029/2023JA032287 – ident: e_1_2_7_42_1 doi: 10.1186/s40623‐016‐0568‐0 – ident: e_1_2_7_47_1 doi: 10.1029/2022ja030779 – ident: e_1_2_7_21_1 doi: 10.1029/2021JA030111 – ident: e_1_2_7_35_1 doi: 10.1029/JA084iA11p06371 – ident: e_1_2_7_22_1 doi: 10.1029/91JA01548 – ident: e_1_2_7_30_1 doi: 10.1029/2022GL101920 – ident: e_1_2_7_16_1 doi: 10.1029/2005JA011182 – ident: e_1_2_7_40_1 doi: 10.1186/s40623‐018‐0847‐z – ident: e_1_2_7_31_1 doi: 10.1029/2012JA017683 – ident: e_1_2_7_68_1 doi: 10.1002/2017ja024716 – ident: e_1_2_7_76_1 doi: 10.1029/2020JA027917 – ident: e_1_2_7_15_1 doi: 10.1007/s11214‐008‐9469‐2 – ident: e_1_2_7_45_1 doi: 10.1029/jz071i001p00001 – ident: e_1_2_7_26_1 doi: 10.3389/fspas.2021.745927 – ident: e_1_2_7_59_1 doi: 10.1029/2020GL090360 – ident: e_1_2_7_5_1 doi: 10.1007/s11214‐008‐9336‐1 – ident: e_1_2_7_10_1 doi: 10.1029/2021JA029851 – ident: e_1_2_7_75_1 doi: 10.1007/s11430‐019‐9384‐6 – ident: e_1_2_7_82_1 doi: 10.1016/0032‐0633(89)90066‐4 – ident: e_1_2_7_39_1 doi: 10.1029/2022GL100841 – ident: e_1_2_7_49_1 doi: 10.1029/2011JA017035 – ident: e_1_2_7_20_1 doi: 10.1007/s11214‐015‐0164‐9 – ident: e_1_2_7_50_1 doi: 10.1029/2010JA016313 – ident: e_1_2_7_58_1 doi: 10.1029/2003GL017698 – ident: e_1_2_7_62_1 doi: 10.1029/2011JA016768 – ident: e_1_2_7_74_1 doi: 10.1029/2010JA016245 – ident: e_1_2_7_36_1 doi: 10.5281/zenodo.11099919 – ident: e_1_2_7_19_1 doi: 10.1029/ja077i019p03495 – ident: e_1_2_7_46_1 doi: 10.1029/2011gl046810 |
SSID | ssj0003031 |
Score | 2.5056844 |
Snippet | Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for... Abstract Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chorus waves Cubesat Damping Density Ducts Earth magnetosphere Electromagnetic radiation Electron precipitation Electrons Equator Latitude Magnetic field Magnetic fields Modelling Night Numerical models Precipitation Radiation belts Rainfall intensity Relativistic effects Relativistic theory Scattering Wave propagation Waves |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PTxUxEG8QYuKFKGp8iKYHPJmNb9tu2z0qwiMECEFJ8LRpp1MgIW_Je2DizY_gZ_STOO2Wl8dBE2-bZtp0O53On05_w9i2D-CDBqw0SKhUyqNytTMVaI3kjjTChHSje3Ss98_UwXlzXgJu6S3MgA-xCLglycjndRJw5-cFbCBhZJLXriaHpL1o_EdsLb2uTdj5Qp0sTmI6noeKea2qrDC6JL5T_w_LvR-opIzc_8DcXDZas9bZe8rWi7nIPw78fcZWcLrBHk9yOd4f9JUTOGH-nH0jfvOTIXJOHU77a-R95DuX_exuzj8njNjpBScLlR8nd_z3z19frgLyIRfue0Zr5rulJA6NgzRMQe9-wc72dr_u7FelbEIFigSskkHY2gQZGwmkkKMlpSyikNKbSP_rJZIUOxgLINMCFYJwKqIHAOIOGCFfstVpP8VXjCvjamjJg9aoFQTZKosobDROj1WMesTe369cB2VWqbTFdZfvtkXbLa_ziL1bUN8MWBp_ofuUmLCgSQjYuaGfXXRFoDpnjbNNE2FsW4XRO9PGWgSBsmmD8-MR27pnYVfEct7JBFQhpTAtzTyz9Z8T6Sanh9rWqt78L-rX7ElqT1kltd5iq7ezO3xDpsutf5v35x_t7uOi priority: 102 providerName: Wiley-Blackwell |
Title | The Principal Role of Chorus Ducting for Night‐Side Relativistic Electron Precipitation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110365 https://www.proquest.com/docview/3102333279 https://doaj.org/article/a87a855fc0894efba79f12d2e359dab0 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5KERKXqrzEQlnlACc0YifJ5HHscyvUVlXpVoXLKOM4gFTtVt0WiRs_gd_IL6mTyVbLAbhwG40ykcd28tmJ9Zmx112ALmjASoOESqU6Kl97U4HWSOlII0xIN7qHR3p_ot6fN-dLrb5STVhPD9wr7p23xtumiTCyTmHsvHGxFkGgbFzwXc7WCfMWyVTZg2lj7nvlOVVZYXQpeR8Jl7J9NT4g1JMJUJbAKHP2_xZoLoerGW_21tlaCRT5Zi_gI7aC08fswTg34v1OT7l0E-ZP2EeyND_uz8zpg5PZBfJZ5NtfZlc3c76T2GGnnznFpvwoJeK_fvz88DUg76vgvmWeZr5bmuHQPEjTFN7up2yyt3u6vV-VhgkVKFpalQzC1ibI2EggKI6W4FhEIWVnIv1vJ5HWr4eRAAoqUCEIryJ2AEB2ASPkM7Y6nU3xOePK-Boc5c4atYIgnbKIwkbj9UjFqAfs7UJzLRSpUlOLizbfagvXLut5wN7cjb7sWTT-MG4rGeFuTOK-zi_II9riEe2_PGLANhYmbMuCnLcyUVRIKYwjybNZ_ypIOz450LZW9Yv_IdFL9jBNnspMar3BVq-vbvAVxTLX3ZDdE-p4yO5vnk0-TYbZiW8BZgTvcA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaqqpcKuiP2JYfH9pTFXVjO7ZzLBR2ocsKUZDoyXLGNiChDdqFSr31EfqMPEnHjlkthyL1FkVjx_Hk88zYk28I-dA4aJwEX0jgUIiYR2VLqwqQ0mM4UjHl4onu4VgOT8XBWXWW65zGf2E6foj5hltERlqvI8DjhnRmG4gkmRi2i8EIzRc-4Cl5JiRTEZlMHM2XYlyfu5J5tSg0UzJnvmP7z4utH9ikRN3_wN9c9FqT2dlbIS-zv0i_dApeJU_85BV5Pkj1eH_hVcrghNlr8gMVTo-6rXNscNxeedoGunPRTm9n9GskiZ2cU3RR6TjG43e__3y_dJ52yXA_E10z3c01cbAfj91k-u435HRv92RnWOS6CQUIRFjBHdOlcjxUHNAiB41WmQXGeaMCvm_DPcLYQp8B-hZeeGBWBN8AAKoHFONvydKknfg1QoWyJdQYQksvBTheC-0900FZ2RchyB75dD9zBvKoYm2LK5MOt1ltFue5Rz7Opa87Mo1_yG1HJcxlIgV2utFOz01GlLFaWV1VAfq6Fj40VtWhZI55XtXONv0eWb9Xocm4nBkemSo4Z6rGkSe1PjoQMzgeSV2K8t1_SW-RF8OTw5EZ7Y-_vSfLUSammJRynSzdTG_9BvoxN81m-lb_AkcQ5w4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fTxQxEG8UovHFiH_CKUgf9MlsvG27bfcRgTvU80LQM-hL0522aEJuyR2Q8OZH4DPySZh2y-V40MS3zWY66XY6nT-d_Q0hbxoHjZPgCwkcChHrqGxpVQFSegxHKqZcvNH9Mpb7E_HpqDrKCbf4L0yHD7FIuEXNSOd1VPBTFzLYQMTIxKhdDEdovZD_fbIagfJwV69uf5_8nCzOYjygu555tSg0UzKXviOH98vj7xilhN1_x-FcdluT3Rk8IY-zw0i3OwmvkXt--pQ8GKaGvJf4lEo4Yf6M_ECJ04Mud44DDtsTT9tAd361s_M53Y0osdNjij4qHceA_PrP1dffztOuGu4i4TXTvdwUB_l4ZJPxu5-TyWDv285-kRsnFCBQxQrumC6V46HigCY5aDTLLDDOGxXwexvuUY8t9Bmgc-GFB2ZF8A0AoHxAMf6CrEzbqV8nVChbQo0xtPRSgOO10N4zHZSVfRGC7JF3tytnIM8qNrc4Mel2m9VmeZ175O2C-rRD0_gL3YcohAVNxMBOL9rZsckqZaxWVldVgL6uhQ-NVXUomWOeV7WzTb9HNm5FaLJizg2PUBWcM1XjzJNY_zkRMzwcSV2K8uV_UW-Rhwe7AzP6OP78ijyKJLHEpJQbZOVsdu430Y85a17nzXoDZhjoBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Principal+Role+of+Chorus+Ducting+for+Night%E2%80%90Side+Relativistic+Electron+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Kang%2C+Ning&rft.au=Artemyev%2C+Anton+V&rft.au=Bortnik%2C+Jacob&rft.au=Xiao%E2%80%90Jia+Zhang&rft.date=2024-09-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=17&rft_id=info:doi/10.1029%2F2024GL110365&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |