The Principal Role of Chorus Ducting for Night‐Side Relativistic Electron Precipitation

Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativis...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 51; no. 17
Main Authors Kang, Ning, Artemyev, Anton V., Bortnik, Jacob, Zhang, Xiao‐Jia, Angelopoulos, Vassilis
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 16.09.2024
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Plain Language Summary Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation. Key Points We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves We perform a comparison of observations with simulation results for different wave propagation regimes We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side
AbstractList Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation.
Abstract Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation.
Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Plain Language Summary Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation. Key Points We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves We perform a comparison of observations with simulation results for different wave propagation regimes We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side
Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for precipitation of ≲100 keV electrons. However, recent low‐altitude observations have revealed the critical role of chorus waves in scattering relativistic electrons on the night‐side. This study presents a night‐side relativistic electron precipitation event induced by chorus waves at the strong diffusion regime, as observed by the ELFIN CubeSats. Through event‐based modeling of wave propagation under ducted or unducted regimes, we show that a density duct is essential for guiding chorus waves to high latitudes with minimal damping, thus enabling the strong night‐side relativistic electron precipitation. These findings underline both the existence and the important role of density ducts in facilitating night‐side relativistic electron precipitation. Chorus waves, an important mode of electromagnetic waves in Earth's magnetosphere, play a vital role in scattering energetic electrons (electron precipitation) in the radiation belts. It has been shown in observations that night‐side chorus waves usually remain confined near their equatorial source and thus do not significantly affect relativistic electron precipitation. However, recent observations challenge this notion, suggesting a viable connection between the night‐side relativistic electron precipitation and chorus waves. In this work, we present an event observed on the ELFIN CubeSats that reveals intense relativistic electron precipitation on the night‐side, where the ratio between precipitation and trapped fluxes reaches the theoretical maximum of 1. To investigate the physical mechanism responsible for this event, we used numerical modeling to simulate scenarios with and without a density‐enhancement duct along magnetic field lines. Our results show that such ducts can efficiently trap chorus waves and guide them to high latitudes without significant damping where they can efficiently interact with the relativistic electrons. By comparing the precipitation intensity in ducted and unducted cases, we affirm the crucial role of density ducts in driving strong night‐side relativistic electron precipitation. We present observations of night‐side relativistic electron precipitation induced by whistler‐mode waves We perform a comparison of observations with simulation results for different wave propagation regimes We show that only ducted whistler‐mode waves can effectively scatter relativistic electrons on the night‐side
Author Artemyev, Anton V.
Zhang, Xiao‐Jia
Kang, Ning
Angelopoulos, Vassilis
Bortnik, Jacob
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0002-7317-8665
  surname: Kang
  fullname: Kang, Ning
  email: nkang20@atmos.ucla.edu
  organization: University of California
– sequence: 2
  givenname: Anton V.
  orcidid: 0000-0001-8823-4474
  surname: Artemyev
  fullname: Artemyev, Anton V.
  organization: University of California
– sequence: 3
  givenname: Jacob
  orcidid: 0000-0001-8811-8836
  surname: Bortnik
  fullname: Bortnik, Jacob
  organization: University of California
– sequence: 4
  givenname: Xiao‐Jia
  orcidid: 0000-0002-4185-5465
  surname: Zhang
  fullname: Zhang, Xiao‐Jia
  organization: University of Texas at Dallas
– sequence: 5
  givenname: Vassilis
  orcidid: 0000-0001-7024-1561
  surname: Angelopoulos
  fullname: Angelopoulos, Vassilis
  organization: University of California
BookMark eNqFkc2OEzEMxyO0SHQXbjxAJK4UHDvTyRxR2S0rVYDKcuAUZTJOm2qYlMwUtDcegWfkSQh0hRAHONmy__7561ycDWlgIR4reKYAm-cIqFdrpYAW1T0xU43WcwNQn4kZQFN8rBcPxPk47gGAgNRMfLjZsXyb4-DjwfVyk3qWKcjlLuXjKF8e_RSHrQwpy9dxu5u-f_32LnYsN9y7KX6O4xS9vOzZTzkNhcMFE6eSSsNDcT-4fuRHd_ZCvL-6vFm-mq_frK6XL9ZzrxWoOXVoVN1RqMgjmWDIKAxI1NahLNISG0LnAT0aYs0enQ7ceu-50r5GuhDXJ26X3N4ecvzo8q1NLtpfgZS31uUyZs_WmdqZqgoeTKM5tK5ugsIOmaqmcy0U1pMT65DTpyOPk92nYx7K-JbKhYkI66aonp5UPqdxzBx-d1Vgfz7C_vmIIse_5P7uRFN2sf9P0ZfY8-0_G9jVZr0wSiv6AQS_m2M
CitedBy_id crossref_primary_10_1029_2024GL111882
crossref_primary_10_1029_2024JA033208
Cites_doi 10.1186/s40623‐018‐0842‐4
10.1002/2017JA025005
10.1029/2023JA031566
10.1029/2022JA030338
10.1029/2023JA031774
10.1002/2016JA022765
10.1029/RG007i001p00379
10.1029/2019JA027037
10.1029/2022JA030265
10.1007/s11214‐020‐00721‐7
10.1029/2020GL092305
10.1029/2022JA030705
10.1029/2023JA031350
10.1007/s11214‐008‐9371‐y
10.1186/s40623‐018‐0862‐0
10.1029/2006JA011993
10.1029/2012JA017978
10.1186/s40623‐021‐01380‐w
10.1016/j.jastp.2006.05.030
10.1002/2014JA020096
10.1029/2019ja026586
10.1029/2000JA003018
10.1002/2015JA021691
10.1029/2020JA028814
10.1029/2022GL100841
10.1029/2012JA018343
10.1029/2019GL083446
10.1029/2022JA030574
10.1002/2017JA024067
10.1007/s11214‐015‐0163‐x
10.1002/2017GL075001
10.1029/2022JA031087
10.1002/jgra.50264
10.1029/2000JA000286
10.1007/s11214‐018‐0576‐4
10.1029/2023JA032351
10.1002/9781119815624.ch6
10.1029/2004JA010882
10.1002/grl.50920
10.1007/s11214‐008‐9365‐9
10.1002/2014GL059815
10.1029/2021GL093879
10.1029/2011JA017154
10.1002/2014JA020364
10.1029/2021GL097559
10.1007/s11214‐023‐00984‐w
10.1029/2019GL083115
10.1029/2021GL095933
10.1029/2008GL034032
10.1002/jgra.50312
10.1029/2023ja032250
10.1063/5.0062160
10.1126/sciadv.abc0380
10.1016/0032‐0633(83)90103‐4
10.1029/2023JA032287
10.1186/s40623‐016‐0568‐0
10.1029/2022ja030779
10.1029/2021JA030111
10.1029/JA084iA11p06371
10.1029/91JA01548
10.1029/2022GL101920
10.1029/2005JA011182
10.1186/s40623‐018‐0847‐z
10.1029/2012JA017683
10.1002/2017ja024716
10.1029/2020JA027917
10.1007/s11214‐008‐9469‐2
10.1029/jz071i001p00001
10.3389/fspas.2021.745927
10.1029/2020GL090360
10.1007/s11214‐008‐9336‐1
10.1029/2021JA029851
10.1007/s11430‐019‐9384‐6
10.1016/0032‐0633(89)90066‐4
10.1029/2011JA017035
10.1007/s11214‐015‐0164‐9
10.1029/2010JA016313
10.1029/2003GL017698
10.1029/2011JA016768
10.1029/2010JA016245
10.5281/zenodo.11099919
10.1029/ja077i019p03495
10.1029/2011gl046810
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2024GL110365
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a87a855fc0894efba79f12d2e359dab0
10_1029_2024GL110365
GRL68141
Genre article
GrantInformation_xml – fundername: NSF
  funderid: AGS‐1242918; AGS‐2019950; AGS‐2025706; 2329897; 2225613
– fundername: AFOSR
  funderid: FA9453‐12‐D‐0285
– fundername: NASA
  funderid: 80NSSC22K1005; 80NSSC21K1393; 80NSSC22K1637; 80NSSC23K0089; 80NSSC23K0100; 80NSSC24K0138
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
GROUPED_DOAJ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c4101-3d2817d3f53c238f83812f233b7f103b3e832ac02c283e4ec2a4febccce54c723
IEDL.DBID DOA
ISSN 0094-8276
IngestDate Wed Aug 27 01:17:47 EDT 2025
Fri Jul 25 10:54:48 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Tue Jul 01 01:05:35 EDT 2025
Wed Jan 22 17:14:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4101-3d2817d3f53c238f83812f233b7f103b3e832ac02c283e4ec2a4febccce54c723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8823-4474
0000-0001-8811-8836
0000-0001-7024-1561
0000-0002-4185-5465
0000-0002-7317-8665
OpenAccessLink https://doaj.org/article/a87a855fc0894efba79f12d2e359dab0
PQID 3102333279
PQPubID 54723
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a87a855fc0894efba79f12d2e359dab0
proquest_journals_3102333279
crossref_primary_10_1029_2024GL110365
crossref_citationtrail_10_1029_2024GL110365
wiley_primary_10_1029_2024GL110365_GRL68141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 September 2024
PublicationDateYYYYMMDD 2024-09-16
PublicationDate_xml – month: 09
  year: 2024
  text: 16 September 2024
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2011; 116
2020; 63
2021; 126
2017; 44
2021; 28
2018; 123
2019; 124
2008; 35
2024
1992; 97
2021; 73
2008; 141
2001; 106
2021b; 126
2013; 118
1969; 7
2018; 70
2016; 199
2020; 216
2020; 47
2023; 219
2017; 122
1989; 37
2022; 127
2007; 69
2014; 119
2021; 7
2021; 48
2005; 110
2024; 129
2018b; 70
2013; 40
2022b; 49
2023; 128
1983; 31
1966; 71
2006
2018a; 70
2016; 121
2021a; 8
2014; 41
2011; 38
2003; 30
2022; 49
2007; 112
2021
2019; 46
2019; 215
1972; 77
2012; 117
2023; 50
2016; 68
1979; 84
2022a; 49
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 141
  start-page: 303
  issue: 1–4
  year: 2008
  end-page: 341
  article-title: The electric field instrument (EFI) for THEMIS
  publication-title: Space Science Reviews
– volume: 118
  start-page: 1074
  issue: 3
  year: 2013
  end-page: 1088
  article-title: Modeling the wave normal distribution of chorus waves
  publication-title: Journal of Geophysical Research
– volume: 122
  start-page: 8096
  issue: 8
  year: 2017
  end-page: 8107
  article-title: Occurrence characteristics of relativistic electron microbursts from SAMPEX observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 49
  issue: 23
  year: 2022a
  article-title: Relativistic microburst scale size induced by a single point‐source chorus element
  publication-title: Geophysical Research Letters
– volume: 70
  start-page: 86
  issue: 1
  year: 2018b
  article-title: The plasma wave experiment (PWE) on board the Arase (ERG) satellite
  publication-title: Earth Planets and Space
– volume: 47
  issue: 21
  year: 2020
  article-title: Relativistic electron microbursts as high‐energy tail of pulsating aurora electrons
  publication-title: Geophysical Research Letters
– volume: 8
  start-page: 163
  year: 2021a
  article-title: Electron microbursts induced by nonducted chorus waves
  publication-title: Frontiers in Astronomy and Space Sciences
– volume: 116
  issue: A6
  year: 2011
  article-title: Modulation of whistler mode chorus waves: 2. Role of density variations
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 2566
  issue: 4
  year: 2018
  end-page: 2587
  article-title: A census of plasma waves and structures associated with an injection front in the inner magnetosphere
  publication-title: Journal of Geophysical Research
– volume: 110
  issue: A9
  year: 2005
  article-title: Timescale for MeV electron microburst loss during geomagnetic storms
  publication-title: Journal of Geophysical Research
– volume: 128
  issue: 1
  year: 2023
  article-title: Simulation of chorus wave excitation in the compressed/stretched dipole magnetic field
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 116
  issue: A12
  year: 2011
  article-title: Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 1
  year: 2022
  article-title: Relativistic electron precipitation near midnight: Drivers, distribution, and properties
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 46
  start-page: 5735
  issue: 11
  year: 2019
  end-page: 5745
  article-title: Effects of ducting on whistler mode chorus or exohiss in the outer radiation belt
  publication-title: Geophysical Research Letters
– volume: 118
  start-page: 2296
  issue: 5
  year: 2013
  end-page: 2312
  article-title: Energetic electron (¿10 keV) microburst precipitation, 5‐15 s X‐ray pulsations, chorus, and wave‐particle interactions: A review
  publication-title: Journal of Geophysical Research
– volume: 219
  start-page: 37
  issue: 5
  year: 2023
  article-title: Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN’s low altitude perspective
  publication-title: Space Science Reviews
– volume: 126
  issue: 3
  year: 2021
  article-title: Investigation of small scale electron density irregularities observed by the Arase and van allen probes satellites inside and outside the plasmasphere
  publication-title: Journal of Geophysical Research: Space Physics
– year: 2006
  article-title: Temporal signatures of radiation belt electron precipitation induced by lightning generated mr whistler waves: 1
  publication-title: Methodology
– volume: 126
  issue: 4
  year: 2021b
  article-title: In situ observations of whistler mode chorus waves guided by density ducts
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 41
  start-page: 2729
  issue: 8
  year: 2014
  end-page: 2737
  article-title: Propagation of lower‐band whistler‐mode waves in the outer Van Allen belt: Systematic analysis of 11 years of multi‐component data from the Cluster spacecraft
  publication-title: Geophysical Research Letters
– volume: 128
  issue: 10
  year: 2023
  article-title: Statistical characteristics of the electron isotropy boundary
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 129
  issue: 3
  year: 2024
  article-title: Modeling the global distribution of chorus wave induced relativistic microburst spatial characteristics
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 127
  issue: 4
  year: 2022
  article-title: On the role of whistler‐mode waves in electron interaction with dipolarizing flux bundles
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 128
  issue: 11
  year: 2023
  article-title: Global distribution of relativistic electron precipitation and the dependences on substorm injection and solar wind ram pressure: Long‐term POES observations
  publication-title: Journal of Geophysical Research: Space Physics
– year: 2024
  article-title: Data for the principal role of chorus ducting for night‐side relativistic electron precipitation
  publication-title: Zenodo
– volume: 63
  start-page: 78
  issue: 1
  year: 2020
  end-page: 92
  article-title: Theoretical and numerical studies of chorus waves: A review
  publication-title: Science China Earth Sciences
– volume: 97
  start-page: 1097
  issue: A2
  year: 1992
  end-page: 1108
  article-title: An ISEE/Whistler model of equatorial electron density in the magnetosphere
  publication-title: Journal of Geophysical Research
– volume: 38
  issue: 8
  year: 2011
  article-title: Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler‐mode waves
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 4157
  issue: 6
  year: 2019
  end-page: 4167
  article-title: Two‐dimensional gcpic simulation of rising‐tone chorus waves in a dipole magnetic field
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 30
  start-page: 160000
  issue: 16
  year: 2003
  end-page: 160001
  article-title: Favored regions for chorus‐driven electron acceleration to relativistic energies in the Earth’s outer radiation belt
  publication-title: Geophysical Research Letters
– volume: 77
  start-page: 3495
  issue: 19
  year: 1972
  end-page: 3507
  article-title: On the stability of obliquely propagating whistlers
  publication-title: Journal of Geophysical Research
– volume: 48
  issue: 23
  year: 2021
  article-title: Conjugate observation of magnetospheric chorus propagating to the ionosphere by ducting
  publication-title: Geophysical Research Letters
– volume: 116
  issue: A9
  year: 2011
  article-title: Relations between multiple auroral streamers, pre‐onset thin arc formation, and substorm auroral onset
  publication-title: Journal of Geophysical Research
– volume: 117
  issue: A1
  year: 2012
  article-title: Magnetospheric location of the equatorward prebreakup arc
  publication-title: Journal of Geophysical Research
– start-page: 93
  year: 2021
  end-page: 108
– volume: 141
  start-page: 5
  issue: 1–4
  year: 2008
  end-page: 34
  article-title: The THEMIS mission
  publication-title: Space Science Reviews
– volume: 46
  start-page: 6178
  issue: 12
  year: 2019
  end-page: 6187
  article-title: Time scales for electron quasi‐linear diffusion by lower‐band chorus waves: The effects of ωpe/Ωce dependence on geomagnetic activity
  publication-title: Geophysical Research Letters
– volume: 70
  start-page: 101
  issue: 1
  year: 2018
  article-title: Geospace exploration project ERG
  publication-title: Earth Planets and Space
– volume: 128
  issue: 4
  year: 2023
  article-title: Contribution of kinetic alfvén waves to energetic electron precipitation from the plasma sheet during a substorm
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 121
  start-page: 8286
  issue: 9
  year: 2016
  end-page: 8299
  article-title: Relativistic electron precipitation as seen by NOAA POES
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 127
  issue: 10
  year: 2022
  article-title: Thinning of the magnetotail current sheet inferred from low‐altitude observations of energetic electrons
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 117
  issue: A9
  year: 2012
  article-title: The SuperMAG data processing technique
  publication-title: Journal of Geophysical Research
– volume: 121
  start-page: 1362
  issue: 2
  year: 2016
  end-page: 1376
  article-title: Dipolarizing flux bundles in the cis‐geosynchronous magnetosphere: Relationship between electric fields and energetic particle injections
  publication-title: Journal of Geophysical Research
– volume: 141
  start-page: 235
  issue: 1–4
  year: 2008
  end-page: 264
  article-title: The THEMIS fluxgate magnetometer
  publication-title: Space Science Reviews
– volume: 49
  issue: 23
  year: 2022b
  article-title: Relativistic microburst scale size induced by a single point‐source chorus element
  publication-title: Geophysical Research Letters
– volume: 141
  start-page: 509
  issue: 1–4
  year: 2008
  end-page: 534
  article-title: First results of the THEMIS search coil magnetometers
  publication-title: Space Science Reviews
– volume: 84
  start-page: 6371
  issue: A11
  year: 1979
  end-page: 6384
  article-title: Studies of the sharply defined L dependent energy threshold for isotropy at the midnight trapping boundary
  publication-title: Journal of Geophysical Research
– volume: 199
  start-page: 5
  issue: 1–4
  year: 2016
  end-page: 21
  article-title: Magnetospheric multiscale Overview and science objectives
  publication-title: Space Science Reviews
– volume: 124
  start-page: 8427
  issue: 11
  year: 2019
  end-page: 8456
  article-title: Signatures of nonideal plasma evolution during substorms obtained by mining multimission magnetometer data
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 37
  start-page: 5
  issue: 1
  year: 1989
  end-page: 20
  article-title: A magnetospheric magnetic field model with a warped tail current sheet
  publication-title: Planetary and Space Science
– volume: 128
  issue: 1
  year: 2023
  article-title: Temporal scales of electron precipitation driven by whistler‐mode waves
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 44
  start-page: 11265
  issue: 22
  year: 2017
  end-page: 11272
  article-title: Observations directly linking relativistic electron microbursts to whistler mode chorus: Van allen probes and FIREBIRD II
  publication-title: Geophysical Research Letters
– volume: 117
  issue: A10
  year: 2012
  article-title: Global model of lower band and upper band chorus from multiple satellite observations
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 5
  year: 2022
  article-title: Relativistic electron precipitation driven by nonlinear resonance with whistler‐mode waves
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 199
  start-page: 309
  issue: 1–4
  year: 2016
  end-page: 329
  article-title: The fly’s eye energetic particle spectrometer (FEEPS) sensors for the magnetospheric multiscale (MMS) mission
  publication-title: Space Science Reviews
– volume: 216
  start-page: 103
  issue: 5
  year: 2020
  article-title: The ELFIN mission
  publication-title: Space Science Reviews
– volume: 118
  start-page: 3407
  issue: 6
  year: 2013
  end-page: 3420
  article-title: Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF‐SA measurements
  publication-title: Journal of Geophysical Research
– volume: 106
  start-page: 6017
  issue: A4
  year: 2001
  end-page: 6028
  article-title: Observations of relativistic electron microbursts in association with VLF chorus
  publication-title: Journal of Geophysical Research
– volume: 69
  start-page: 378
  issue: 3
  year: 2007
  end-page: 386
  article-title: The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 119
  start-page: 8288
  issue: 10
  year: 2014
  end-page: 8298
  article-title: Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle‐in‐cell simulations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 40
  start-page: 4526
  issue: 17
  year: 2013
  end-page: 4532
  article-title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes
  publication-title: Geophysical Research Letters
– volume: 48
  issue: 17
  year: 2021
  article-title: Duration of individual relativistic electron microbursts: A probe into their scattering mechanism
  publication-title: Geophysical Research Letters
– volume: 215
  start-page: 9
  issue: 1
  year: 2019
  article-title: The Space Physics environment data analysis system (SPEDAS)
  publication-title: Space Science Reviews
– volume: 48
  issue: 7
  year: 2021
  article-title: Whistler mode waves trapped by density irregularities in the earth’s magnetosphere
  publication-title: Geophysical Research Letters
– volume: 129
  issue: 3
  year: 2024
  article-title: Key factors determining nightside energetic electron losses driven by whistler‐mode waves
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 71
  start-page: 1
  year: 1966
  end-page: 28
  article-title: Limit on stably trapped particle fluxes
  publication-title: Journal of Geophysical Research
– volume: 127
  issue: 7
  year: 2022
  article-title: Statistical study on small‐scale (≤1,000 km) density irregularities in the inner magnetosphere
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 106
  start-page: 25631
  issue: A11
  year: 2001
  end-page: 25642
  article-title: An empirical plasmasphere and trough density model: CRRES observations
  publication-title: Journal of Geophysical Research
– volume: 31
  start-page: 1147
  issue: 10
  year: 1983
  end-page: 1155
  article-title: Pitch‐angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere
  publication-title: Planetary and Space Science
– volume: 129
  issue: 2
  year: 2024
  article-title: Relativistic electron precipitation driven by mesoscale transients, inferred from ground and multi‐spacecraft platforms
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 119
  start-page: 7327
  issue: 9
  year: 2014
  end-page: 7342
  article-title: The role of small‐scale ion injections in the buildup of Earth’s ring current pressure: Van Allen Probes observations of the 17 March 2013 storm
  publication-title: Journal of Geophysical Research
– volume: 112
  issue: A4
  year: 2007
  article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves
  publication-title: Journal of Geophysical Research
– volume: 70
  start-page: 69
  issue: 1
  year: 2018a
  article-title: Medium‐energy particle experiments‐electron analyzer (MEP‐e) for the exploration of energization and radiation in geospace (ERG) mission
  publication-title: Earth Planets and Space
– volume: 73
  start-page: 95
  issue: 1
  year: 2021
  article-title: Nonlinear wave growth theory of whistler‐mode chorus and hiss emissions in the magnetosphere
  publication-title: Earth Planets and Space
– volume: 35
  issue: 11
  year: 2008
  article-title: Resonant scattering of plasma sheet electrons by whistler‐mode chorus: Contribution to diffuse auroral precipitation
  publication-title: Geophysical Research Letters
– volume: 7
  issue: 5
  year: 2021
  article-title: Gyroresonant wave‐particle interactions with chorus waves during extreme depletions of plasma density in the Van Allen radiation belts
  publication-title: Science Advances
– volume: 68
  start-page: 192
  issue: 1
  year: 2016
  article-title: Electron hybrid code simulation of whistler‐mode chorus generation with real parameters in the Earth’s inner magnetosphere
  publication-title: Earth Planets and Space
– volume: 49
  issue: 5
  year: 2022
  article-title: Ducted chorus waves cause sub‐relativistic and relativistic electron microbursts
  publication-title: Geophysical Research Letters
– volume: 50
  issue: 8
  year: 2023
  article-title: Bursty energetic electron precipitation by high‐order resonance with very‐oblique whistler‐mode waves
  publication-title: Geophysical Research Letters
– volume: 122
  start-page: 11
  issue: 11
  year: 2017
  end-page: 274
  article-title: A statistical study of the spatial extent of relativistic electron precipitation with polar orbiting environmental satellites
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 7
  start-page: 379
  issue: 1–2
  year: 1969
  end-page: 419
  article-title: Consequences of a magnetospheric plasma
  publication-title: Reviews of Geophysics and Space Physics
– volume: 28
  issue: 10
  year: 2021
  article-title: Charged particle scattering in dipolarized magnetotail
  publication-title: Physics of Plasmas
– volume: 116
  issue: A4
  year: 2011
  article-title: Evolution of electron pitch angle distributions following injection from the plasma sheet
  publication-title: Journal of Geophysical Research
– volume: 126
  issue: 11
  year: 2021
  article-title: Role of ducting in relativistic electron loss by whistler‐mode wave scattering
  publication-title: Journal of Geophysical Research: Space Physics
– ident: e_1_2_7_41_1
  doi: 10.1186/s40623‐018‐0842‐4
– ident: e_1_2_7_56_1
  doi: 10.1002/2017JA025005
– ident: e_1_2_7_23_1
  doi: 10.1029/2023JA031566
– ident: e_1_2_7_80_1
  doi: 10.1029/2022JA030338
– ident: e_1_2_7_83_1
  doi: 10.1029/2023JA031774
– ident: e_1_2_7_84_1
  doi: 10.1002/2016JA022765
– ident: e_1_2_7_44_1
  doi: 10.1029/RG007i001p00379
– ident: e_1_2_7_72_1
  doi: 10.1029/2019JA027037
– ident: e_1_2_7_11_1
  doi: 10.1029/2022JA030265
– ident: e_1_2_7_7_1
  doi: 10.1007/s11214‐020‐00721‐7
– ident: e_1_2_7_43_1
  doi: 10.1029/2020GL092305
– ident: e_1_2_7_9_1
  doi: 10.1029/2022JA030705
– ident: e_1_2_7_69_1
  doi: 10.1029/2023JA031350
– ident: e_1_2_7_48_1
  doi: 10.1007/s11214‐008‐9371‐y
– ident: e_1_2_7_60_1
  doi: 10.1186/s40623‐018‐0862‐0
– ident: e_1_2_7_73_1
  doi: 10.1029/2006JA011993
– ident: e_1_2_7_57_1
  doi: 10.1029/2012JA017978
– ident: e_1_2_7_63_1
  doi: 10.1186/s40623‐021‐01380‐w
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jastp.2006.05.030
– ident: e_1_2_7_32_1
  doi: 10.1002/2014JA020096
– ident: e_1_2_7_54_1
  doi: 10.1029/2019ja026586
– ident: e_1_2_7_53_1
  doi: 10.1029/2000JA003018
– ident: e_1_2_7_52_1
  doi: 10.1002/2015JA021691
– ident: e_1_2_7_27_1
  doi: 10.1029/2020JA028814
– ident: e_1_2_7_38_1
  doi: 10.1029/2022GL100841
– ident: e_1_2_7_24_1
  doi: 10.1029/2012JA018343
– ident: e_1_2_7_3_1
  doi: 10.1029/2019GL083446
– ident: e_1_2_7_33_1
  doi: 10.1029/2022JA030574
– ident: e_1_2_7_28_1
  doi: 10.1002/2017JA024067
– ident: e_1_2_7_14_1
  doi: 10.1007/s11214‐015‐0163‐x
– ident: e_1_2_7_18_1
  doi: 10.1002/2017GL075001
– ident: e_1_2_7_85_1
  doi: 10.1029/2022JA031087
– ident: e_1_2_7_81_1
  doi: 10.1002/jgra.50264
– ident: e_1_2_7_67_1
  doi: 10.1029/2000JA000286
– ident: e_1_2_7_6_1
  doi: 10.1007/s11214‐018‐0576‐4
– ident: e_1_2_7_79_1
  doi: 10.1029/2023JA032351
– ident: e_1_2_7_77_1
  doi: 10.1002/9781119815624.ch6
– ident: e_1_2_7_78_1
  doi: 10.1029/2004JA010882
– ident: e_1_2_7_51_1
  doi: 10.1002/grl.50920
– ident: e_1_2_7_13_1
  doi: 10.1007/s11214‐008‐9365‐9
– ident: e_1_2_7_64_1
  doi: 10.1002/2014GL059815
– ident: e_1_2_7_71_1
  doi: 10.1029/2021GL093879
– ident: e_1_2_7_65_1
  doi: 10.1029/2011JA017154
– ident: e_1_2_7_29_1
  doi: 10.1002/2014JA020364
– ident: e_1_2_7_25_1
  doi: 10.1029/2021GL097559
– ident: e_1_2_7_8_1
  doi: 10.1007/s11214‐023‐00984‐w
– ident: e_1_2_7_34_1
  doi: 10.1029/2019GL083115
– ident: e_1_2_7_70_1
  doi: 10.1029/2021GL095933
– ident: e_1_2_7_61_1
  doi: 10.1029/2008GL034032
– ident: e_1_2_7_2_1
  doi: 10.1002/jgra.50312
– ident: e_1_2_7_37_1
  doi: 10.1029/2023ja032250
– ident: e_1_2_7_55_1
  doi: 10.1063/5.0062160
– ident: e_1_2_7_4_1
  doi: 10.1126/sciadv.abc0380
– ident: e_1_2_7_66_1
  doi: 10.1016/0032‐0633(83)90103‐4
– ident: e_1_2_7_12_1
  doi: 10.1029/2023JA032287
– ident: e_1_2_7_42_1
  doi: 10.1186/s40623‐016‐0568‐0
– ident: e_1_2_7_47_1
  doi: 10.1029/2022ja030779
– ident: e_1_2_7_21_1
  doi: 10.1029/2021JA030111
– ident: e_1_2_7_35_1
  doi: 10.1029/JA084iA11p06371
– ident: e_1_2_7_22_1
  doi: 10.1029/91JA01548
– ident: e_1_2_7_30_1
  doi: 10.1029/2022GL101920
– ident: e_1_2_7_16_1
  doi: 10.1029/2005JA011182
– ident: e_1_2_7_40_1
  doi: 10.1186/s40623‐018‐0847‐z
– ident: e_1_2_7_31_1
  doi: 10.1029/2012JA017683
– ident: e_1_2_7_68_1
  doi: 10.1002/2017ja024716
– ident: e_1_2_7_76_1
  doi: 10.1029/2020JA027917
– ident: e_1_2_7_15_1
  doi: 10.1007/s11214‐008‐9469‐2
– ident: e_1_2_7_45_1
  doi: 10.1029/jz071i001p00001
– ident: e_1_2_7_26_1
  doi: 10.3389/fspas.2021.745927
– ident: e_1_2_7_59_1
  doi: 10.1029/2020GL090360
– ident: e_1_2_7_5_1
  doi: 10.1007/s11214‐008‐9336‐1
– ident: e_1_2_7_10_1
  doi: 10.1029/2021JA029851
– ident: e_1_2_7_75_1
  doi: 10.1007/s11430‐019‐9384‐6
– ident: e_1_2_7_82_1
  doi: 10.1016/0032‐0633(89)90066‐4
– ident: e_1_2_7_39_1
  doi: 10.1029/2022GL100841
– ident: e_1_2_7_49_1
  doi: 10.1029/2011JA017035
– ident: e_1_2_7_20_1
  doi: 10.1007/s11214‐015‐0164‐9
– ident: e_1_2_7_50_1
  doi: 10.1029/2010JA016313
– ident: e_1_2_7_58_1
  doi: 10.1029/2003GL017698
– ident: e_1_2_7_62_1
  doi: 10.1029/2011JA016768
– ident: e_1_2_7_74_1
  doi: 10.1029/2010JA016245
– ident: e_1_2_7_36_1
  doi: 10.5281/zenodo.11099919
– ident: e_1_2_7_19_1
  doi: 10.1029/ja077i019p03495
– ident: e_1_2_7_46_1
  doi: 10.1029/2011gl046810
SSID ssj0003031
Score 2.5056844
Snippet Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for...
Abstract Night‐side chorus waves are often observed during plasma sheet injections, typically confined around the equator and thus potentially responsible for...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chorus waves
Cubesat
Damping
Density
Ducts
Earth magnetosphere
Electromagnetic radiation
Electron precipitation
Electrons
Equator
Latitude
Magnetic field
Magnetic fields
Modelling
Night
Numerical models
Precipitation
Radiation belts
Rainfall intensity
Relativistic effects
Relativistic theory
Scattering
Wave propagation
Waves
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PTxUxEG8QYuKFKGp8iKYHPJmNb9tu2z0qwiMECEFJ8LRpp1MgIW_Je2DizY_gZ_STOO2Wl8dBE2-bZtp0O53On05_w9i2D-CDBqw0SKhUyqNytTMVaI3kjjTChHSje3Ss98_UwXlzXgJu6S3MgA-xCLglycjndRJw5-cFbCBhZJLXriaHpL1o_EdsLb2uTdj5Qp0sTmI6noeKea2qrDC6JL5T_w_LvR-opIzc_8DcXDZas9bZe8rWi7nIPw78fcZWcLrBHk9yOd4f9JUTOGH-nH0jfvOTIXJOHU77a-R95DuX_exuzj8njNjpBScLlR8nd_z3z19frgLyIRfue0Zr5rulJA6NgzRMQe9-wc72dr_u7FelbEIFigSskkHY2gQZGwmkkKMlpSyikNKbSP_rJZIUOxgLINMCFYJwKqIHAOIOGCFfstVpP8VXjCvjamjJg9aoFQTZKosobDROj1WMesTe369cB2VWqbTFdZfvtkXbLa_ziL1bUN8MWBp_ofuUmLCgSQjYuaGfXXRFoDpnjbNNE2FsW4XRO9PGWgSBsmmD8-MR27pnYVfEct7JBFQhpTAtzTyz9Z8T6Sanh9rWqt78L-rX7ElqT1kltd5iq7ezO3xDpsutf5v35x_t7uOi
  priority: 102
  providerName: Wiley-Blackwell
Title The Principal Role of Chorus Ducting for Night‐Side Relativistic Electron Precipitation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL110365
https://www.proquest.com/docview/3102333279
https://doaj.org/article/a87a855fc0894efba79f12d2e359dab0
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5KERKXqrzEQlnlACc0YifJ5HHscyvUVlXpVoXLKOM4gFTtVt0WiRs_gd_IL6mTyVbLAbhwG40ykcd28tmJ9Zmx112ALmjASoOESqU6Kl97U4HWSOlII0xIN7qHR3p_ot6fN-dLrb5STVhPD9wr7p23xtumiTCyTmHsvHGxFkGgbFzwXc7WCfMWyVTZg2lj7nvlOVVZYXQpeR8Jl7J9NT4g1JMJUJbAKHP2_xZoLoerGW_21tlaCRT5Zi_gI7aC08fswTg34v1OT7l0E-ZP2EeyND_uz8zpg5PZBfJZ5NtfZlc3c76T2GGnnznFpvwoJeK_fvz88DUg76vgvmWeZr5bmuHQPEjTFN7up2yyt3u6vV-VhgkVKFpalQzC1ibI2EggKI6W4FhEIWVnIv1vJ5HWr4eRAAoqUCEIryJ2AEB2ASPkM7Y6nU3xOePK-Boc5c4atYIgnbKIwkbj9UjFqAfs7UJzLRSpUlOLizbfagvXLut5wN7cjb7sWTT-MG4rGeFuTOK-zi_II9riEe2_PGLANhYmbMuCnLcyUVRIKYwjybNZ_ypIOz450LZW9Yv_IdFL9jBNnspMar3BVq-vbvAVxTLX3ZDdE-p4yO5vnk0-TYbZiW8BZgTvcA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELZaqqpcKuiP2JYfH9pTFXVjO7ZzLBR2ocsKUZDoyXLGNiChDdqFSr31EfqMPEnHjlkthyL1FkVjx_Hk88zYk28I-dA4aJwEX0jgUIiYR2VLqwqQ0mM4UjHl4onu4VgOT8XBWXWW65zGf2E6foj5hltERlqvI8DjhnRmG4gkmRi2i8EIzRc-4Cl5JiRTEZlMHM2XYlyfu5J5tSg0UzJnvmP7z4utH9ikRN3_wN9c9FqT2dlbIS-zv0i_dApeJU_85BV5Pkj1eH_hVcrghNlr8gMVTo-6rXNscNxeedoGunPRTm9n9GskiZ2cU3RR6TjG43e__3y_dJ52yXA_E10z3c01cbAfj91k-u435HRv92RnWOS6CQUIRFjBHdOlcjxUHNAiB41WmQXGeaMCvm_DPcLYQp8B-hZeeGBWBN8AAKoHFONvydKknfg1QoWyJdQYQksvBTheC-0900FZ2RchyB75dD9zBvKoYm2LK5MOt1ltFue5Rz7Opa87Mo1_yG1HJcxlIgV2utFOz01GlLFaWV1VAfq6Fj40VtWhZI55XtXONv0eWb9Xocm4nBkemSo4Z6rGkSe1PjoQMzgeSV2K8t1_SW-RF8OTw5EZ7Y-_vSfLUSammJRynSzdTG_9BvoxN81m-lb_AkcQ5w4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fTxQxEG8UovHFiH_CKUgf9MlsvG27bfcRgTvU80LQM-hL0522aEJuyR2Q8OZH4DPySZh2y-V40MS3zWY66XY6nT-d_Q0hbxoHjZPgCwkcChHrqGxpVQFSegxHKqZcvNH9Mpb7E_HpqDrKCbf4L0yHD7FIuEXNSOd1VPBTFzLYQMTIxKhdDEdovZD_fbIagfJwV69uf5_8nCzOYjygu555tSg0UzKXviOH98vj7xilhN1_x-FcdluT3Rk8IY-zw0i3OwmvkXt--pQ8GKaGvJf4lEo4Yf6M_ECJ04Mud44DDtsTT9tAd361s_M53Y0osdNjij4qHceA_PrP1dffztOuGu4i4TXTvdwUB_l4ZJPxu5-TyWDv285-kRsnFCBQxQrumC6V46HigCY5aDTLLDDOGxXwexvuUY8t9Bmgc-GFB2ZF8A0AoHxAMf6CrEzbqV8nVChbQo0xtPRSgOO10N4zHZSVfRGC7JF3tytnIM8qNrc4Mel2m9VmeZ175O2C-rRD0_gL3YcohAVNxMBOL9rZsckqZaxWVldVgL6uhQ-NVXUomWOeV7WzTb9HNm5FaLJizg2PUBWcM1XjzJNY_zkRMzwcSV2K8uV_UW-Rhwe7AzP6OP78ijyKJLHEpJQbZOVsdu430Y85a17nzXoDZhjoBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Principal+Role+of+Chorus+Ducting+for+Night%E2%80%90Side+Relativistic+Electron+Precipitation&rft.jtitle=Geophysical+research+letters&rft.au=Kang%2C+Ning&rft.au=Artemyev%2C+Anton+V&rft.au=Bortnik%2C+Jacob&rft.au=Xiao%E2%80%90Jia+Zhang&rft.date=2024-09-16&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=17&rft_id=info:doi/10.1029%2F2024GL110365&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon